rt2560.c revision 1.8.2.3 1 /* $NetBSD: rt2560.c,v 1.8.2.3 2007/10/23 20:07:40 ad Exp $ */
2 /* $OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
4
5 /*-
6 * Copyright (c) 2005, 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2560 chipset driver
24 * http://www.ralinktech.com/
25 */
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.8.2.3 2007/10/23 20:07:40 ad Exp $");
28
29 #include "bpfilter.h"
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/mbuf.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/callout.h>
39 #include <sys/conf.h>
40 #include <sys/device.h>
41
42 #include <sys/bus.h>
43 #include <machine/endian.h>
44 #include <sys/intr.h>
45
46 #if NBPFILTER > 0
47 #include <net/bpf.h>
48 #endif
49 #include <net/if.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_ether.h>
55
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_rssadapt.h>
63 #include <net80211/ieee80211_radiotap.h>
64
65 #include <dev/ic/rt2560reg.h>
66 #include <dev/ic/rt2560var.h>
67
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pcidevs.h>
71
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0)
75 int rt2560_debug = 0;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80
81 static int rt2560_alloc_tx_ring(struct rt2560_softc *,
82 struct rt2560_tx_ring *, int);
83 static void rt2560_reset_tx_ring(struct rt2560_softc *,
84 struct rt2560_tx_ring *);
85 static void rt2560_free_tx_ring(struct rt2560_softc *,
86 struct rt2560_tx_ring *);
87 static int rt2560_alloc_rx_ring(struct rt2560_softc *,
88 struct rt2560_rx_ring *, int);
89 static void rt2560_reset_rx_ring(struct rt2560_softc *,
90 struct rt2560_rx_ring *);
91 static void rt2560_free_rx_ring(struct rt2560_softc *,
92 struct rt2560_rx_ring *);
93 static struct ieee80211_node *
94 rt2560_node_alloc(struct ieee80211_node_table *);
95 static int rt2560_media_change(struct ifnet *);
96 static void rt2560_next_scan(void *);
97 static void rt2560_iter_func(void *, struct ieee80211_node *);
98 static void rt2560_update_rssadapt(void *);
99 static int rt2560_newstate(struct ieee80211com *, enum ieee80211_state,
100 int);
101 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
102 static void rt2560_encryption_intr(struct rt2560_softc *);
103 static void rt2560_tx_intr(struct rt2560_softc *);
104 static void rt2560_prio_intr(struct rt2560_softc *);
105 static void rt2560_decryption_intr(struct rt2560_softc *);
106 static void rt2560_rx_intr(struct rt2560_softc *);
107 static void rt2560_beacon_expire(struct rt2560_softc *);
108 static void rt2560_wakeup_expire(struct rt2560_softc *);
109 #if NBPFILTER > 0
110 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *);
111 #endif
112 static int rt2560_ack_rate(struct ieee80211com *, int);
113 static uint16_t rt2560_txtime(int, int, uint32_t);
114 static uint8_t rt2560_plcp_signal(int);
115 static void rt2560_setup_tx_desc(struct rt2560_softc *,
116 struct rt2560_tx_desc *, uint32_t, int, int, int,
117 bus_addr_t);
118 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
119 struct ieee80211_node *);
120 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
121 struct ieee80211_node *);
122 static struct mbuf *rt2560_get_rts(struct rt2560_softc *,
123 struct ieee80211_frame *, uint16_t);
124 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
125 struct ieee80211_node *);
126 static void rt2560_start(struct ifnet *);
127 static void rt2560_watchdog(struct ifnet *);
128 static int rt2560_reset(struct ifnet *);
129 static int rt2560_ioctl(struct ifnet *, u_long, void *);
130 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, uint8_t);
131 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t);
132 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, uint32_t);
133 static void rt2560_set_chan(struct rt2560_softc *,
134 struct ieee80211_channel *);
135 static void rt2560_disable_rf_tune(struct rt2560_softc *);
136 static void rt2560_enable_tsf_sync(struct rt2560_softc *);
137 static void rt2560_update_plcp(struct rt2560_softc *);
138 static void rt2560_update_slot(struct ifnet *);
139 static void rt2560_set_basicrates(struct rt2560_softc *);
140 static void rt2560_update_led(struct rt2560_softc *, int, int);
141 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
142 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
143 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
144 static void rt2560_update_promisc(struct rt2560_softc *);
145 static void rt2560_set_txantenna(struct rt2560_softc *, int);
146 static void rt2560_set_rxantenna(struct rt2560_softc *, int);
147 static const char *rt2560_get_rf(int);
148 static void rt2560_read_eeprom(struct rt2560_softc *);
149 static int rt2560_bbp_init(struct rt2560_softc *);
150 static int rt2560_init(struct ifnet *);
151 static void rt2560_stop(void *);
152 static void rt2560_powerhook(int, void *);
153
154 /*
155 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
156 */
157 static const struct ieee80211_rateset rt2560_rateset_11a =
158 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
159
160 static const struct ieee80211_rateset rt2560_rateset_11b =
161 { 4, { 2, 4, 11, 22 } };
162
163 static const struct ieee80211_rateset rt2560_rateset_11g =
164 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
165
166 /*
167 * Default values for MAC registers; values taken from the reference driver.
168 */
169 static const struct {
170 uint32_t reg;
171 uint32_t val;
172 } rt2560_def_mac[] = {
173 { RT2560_PSCSR0, 0x00020002 },
174 { RT2560_PSCSR1, 0x00000002 },
175 { RT2560_PSCSR2, 0x00020002 },
176 { RT2560_PSCSR3, 0x00000002 },
177 { RT2560_TIMECSR, 0x00003f21 },
178 { RT2560_CSR9, 0x00000780 },
179 { RT2560_CSR11, 0x07041483 },
180 { RT2560_CNT3, 0x00000000 },
181 { RT2560_TXCSR1, 0x07614562 },
182 { RT2560_ARSP_PLCP_0, 0x8c8d8b8a },
183 { RT2560_ACKPCTCSR, 0x7038140a },
184 { RT2560_ARTCSR1, 0x1d21252d },
185 { RT2560_ARTCSR2, 0x1919191d },
186 { RT2560_RXCSR0, 0xffffffff },
187 { RT2560_RXCSR3, 0xb3aab3af },
188 { RT2560_PCICSR, 0x000003b8 },
189 { RT2560_PWRCSR0, 0x3f3b3100 },
190 { RT2560_GPIOCSR, 0x0000ff00 },
191 { RT2560_TESTCSR, 0x000000f0 },
192 { RT2560_PWRCSR1, 0x000001ff },
193 { RT2560_MACCSR0, 0x00213223 },
194 { RT2560_MACCSR1, 0x00235518 },
195 { RT2560_RLPWCSR, 0x00000040 },
196 { RT2560_RALINKCSR, 0x9a009a11 },
197 { RT2560_CSR7, 0xffffffff },
198 { RT2560_BBPCSR1, 0x82188200 },
199 { RT2560_TXACKCSR0, 0x00000020 },
200 { RT2560_SECCSR3, 0x0000e78f }
201 };
202
203 /*
204 * Default values for BBP registers; values taken from the reference driver.
205 */
206 static const struct {
207 uint8_t reg;
208 uint8_t val;
209 } rt2560_def_bbp[] = {
210 { 3, 0x02 },
211 { 4, 0x19 },
212 { 14, 0x1c },
213 { 15, 0x30 },
214 { 16, 0xac },
215 { 17, 0x48 },
216 { 18, 0x18 },
217 { 19, 0xff },
218 { 20, 0x1e },
219 { 21, 0x08 },
220 { 22, 0x08 },
221 { 23, 0x08 },
222 { 24, 0x80 },
223 { 25, 0x50 },
224 { 26, 0x08 },
225 { 27, 0x23 },
226 { 30, 0x10 },
227 { 31, 0x2b },
228 { 32, 0xb9 },
229 { 34, 0x12 },
230 { 35, 0x50 },
231 { 39, 0xc4 },
232 { 40, 0x02 },
233 { 41, 0x60 },
234 { 53, 0x10 },
235 { 54, 0x18 },
236 { 56, 0x08 },
237 { 57, 0x10 },
238 { 58, 0x08 },
239 { 61, 0x60 },
240 { 62, 0x10 },
241 { 75, 0xff }
242 };
243
244 /*
245 * Default values for RF register R2 indexed by channel numbers; values taken
246 * from the reference driver.
247 */
248 static const uint32_t rt2560_rf2522_r2[] = {
249 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
250 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
251 };
252
253 static const uint32_t rt2560_rf2523_r2[] = {
254 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
255 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
256 };
257
258 static const uint32_t rt2560_rf2524_r2[] = {
259 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
260 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
261 };
262
263 static const uint32_t rt2560_rf2525_r2[] = {
264 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
265 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
266 };
267
268 static const uint32_t rt2560_rf2525_hi_r2[] = {
269 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
270 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
271 };
272
273 static const uint32_t rt2560_rf2525e_r2[] = {
274 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
275 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
276 };
277
278 static const uint32_t rt2560_rf2526_hi_r2[] = {
279 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
280 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
281 };
282
283 static const uint32_t rt2560_rf2526_r2[] = {
284 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
285 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
286 };
287
288 /*
289 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
290 * values taken from the reference driver.
291 */
292 static const struct {
293 uint8_t chan;
294 uint32_t r1;
295 uint32_t r2;
296 uint32_t r4;
297 } rt2560_rf5222[] = {
298 { 1, 0x08808, 0x0044d, 0x00282 },
299 { 2, 0x08808, 0x0044e, 0x00282 },
300 { 3, 0x08808, 0x0044f, 0x00282 },
301 { 4, 0x08808, 0x00460, 0x00282 },
302 { 5, 0x08808, 0x00461, 0x00282 },
303 { 6, 0x08808, 0x00462, 0x00282 },
304 { 7, 0x08808, 0x00463, 0x00282 },
305 { 8, 0x08808, 0x00464, 0x00282 },
306 { 9, 0x08808, 0x00465, 0x00282 },
307 { 10, 0x08808, 0x00466, 0x00282 },
308 { 11, 0x08808, 0x00467, 0x00282 },
309 { 12, 0x08808, 0x00468, 0x00282 },
310 { 13, 0x08808, 0x00469, 0x00282 },
311 { 14, 0x08808, 0x0046b, 0x00286 },
312
313 { 36, 0x08804, 0x06225, 0x00287 },
314 { 40, 0x08804, 0x06226, 0x00287 },
315 { 44, 0x08804, 0x06227, 0x00287 },
316 { 48, 0x08804, 0x06228, 0x00287 },
317 { 52, 0x08804, 0x06229, 0x00287 },
318 { 56, 0x08804, 0x0622a, 0x00287 },
319 { 60, 0x08804, 0x0622b, 0x00287 },
320 { 64, 0x08804, 0x0622c, 0x00287 },
321
322 { 100, 0x08804, 0x02200, 0x00283 },
323 { 104, 0x08804, 0x02201, 0x00283 },
324 { 108, 0x08804, 0x02202, 0x00283 },
325 { 112, 0x08804, 0x02203, 0x00283 },
326 { 116, 0x08804, 0x02204, 0x00283 },
327 { 120, 0x08804, 0x02205, 0x00283 },
328 { 124, 0x08804, 0x02206, 0x00283 },
329 { 128, 0x08804, 0x02207, 0x00283 },
330 { 132, 0x08804, 0x02208, 0x00283 },
331 { 136, 0x08804, 0x02209, 0x00283 },
332 { 140, 0x08804, 0x0220a, 0x00283 },
333
334 { 149, 0x08808, 0x02429, 0x00281 },
335 { 153, 0x08808, 0x0242b, 0x00281 },
336 { 157, 0x08808, 0x0242d, 0x00281 },
337 { 161, 0x08808, 0x0242f, 0x00281 }
338 };
339
340 int
341 rt2560_attach(void *xsc, int id)
342 {
343 struct rt2560_softc *sc = xsc;
344 struct ieee80211com *ic = &sc->sc_ic;
345 struct ifnet *ifp = &sc->sc_if;
346 int error, i;
347
348 callout_init(&sc->scan_ch, 0);
349 callout_init(&sc->rssadapt_ch, 0);
350
351 /* retrieve RT2560 rev. no */
352 sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
353
354 /* retrieve MAC address */
355 rt2560_get_macaddr(sc, ic->ic_myaddr);
356
357 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
358 ether_sprintf(ic->ic_myaddr));
359
360 /* retrieve RF rev. no and various other things from EEPROM */
361 rt2560_read_eeprom(sc);
362
363 aprint_normal("%s: MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
364 sc->sc_dev.dv_xname, sc->asic_rev, rt2560_get_rf(sc->rf_rev));
365
366 /*
367 * Allocate Tx and Rx rings.
368 */
369 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
370 if (error != 0) {
371 aprint_error("%s: could not allocate Tx ring\n)",
372 sc->sc_dev.dv_xname);
373 goto fail1;
374 }
375
376 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
377 if (error != 0) {
378 aprint_error("%s: could not allocate ATIM ring\n",
379 sc->sc_dev.dv_xname);
380 goto fail2;
381 }
382
383 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
384 if (error != 0) {
385 aprint_error("%s: could not allocate Prio ring\n",
386 sc->sc_dev.dv_xname);
387 goto fail3;
388 }
389
390 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
391 if (error != 0) {
392 aprint_error("%s: could not allocate Beacon ring\n",
393 sc->sc_dev.dv_xname);
394 goto fail4;
395 }
396
397 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
398 if (error != 0) {
399 aprint_error("%s: could not allocate Rx ring\n",
400 sc->sc_dev.dv_xname);
401 goto fail5;
402 }
403
404 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
405 rt2560_powerhook, sc);
406 if (sc->sc_powerhook == NULL)
407 aprint_error("%s: can't establish powerhook\n",
408 sc->sc_dev.dv_xname);
409 sc->sc_suspend = PWR_RESUME;
410
411 ifp->if_softc = sc;
412 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
413 ifp->if_init = rt2560_init;
414 ifp->if_ioctl = rt2560_ioctl;
415 ifp->if_start = rt2560_start;
416 ifp->if_watchdog = rt2560_watchdog;
417 IFQ_SET_READY(&ifp->if_snd);
418 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
419
420 ic->ic_ifp = ifp;
421 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
422 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
423 ic->ic_state = IEEE80211_S_INIT;
424
425 /* set device capabilities */
426 ic->ic_caps =
427 IEEE80211_C_IBSS | /* IBSS mode supported */
428 IEEE80211_C_MONITOR | /* monitor mode supported */
429 IEEE80211_C_HOSTAP | /* HostAp mode supported */
430 IEEE80211_C_TXPMGT | /* tx power management */
431 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
432 IEEE80211_C_SHSLOT | /* short slot time supported */
433 IEEE80211_C_WPA; /* 802.11i */
434
435 if (sc->rf_rev == RT2560_RF_5222) {
436 /* set supported .11a rates */
437 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
438
439 /* set supported .11a channels */
440 for (i = 36; i <= 64; i += 4) {
441 ic->ic_channels[i].ic_freq =
442 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
443 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
444 }
445 for (i = 100; i <= 140; i += 4) {
446 ic->ic_channels[i].ic_freq =
447 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
448 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
449 }
450 for (i = 149; i <= 161; i += 4) {
451 ic->ic_channels[i].ic_freq =
452 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
453 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
454 }
455 }
456
457 /* set supported .11b and .11g rates */
458 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
459 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
460
461 /* set supported .11b and .11g channels (1 through 14) */
462 for (i = 1; i <= 14; i++) {
463 ic->ic_channels[i].ic_freq =
464 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
465 ic->ic_channels[i].ic_flags =
466 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
467 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
468 }
469
470 if_attach(ifp);
471 ieee80211_ifattach(ic);
472 ic->ic_node_alloc = rt2560_node_alloc;
473 ic->ic_updateslot = rt2560_update_slot;
474 ic->ic_reset = rt2560_reset;
475
476 /* override state transition machine */
477 sc->sc_newstate = ic->ic_newstate;
478 ic->ic_newstate = rt2560_newstate;
479 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
480
481 #if NBPFILTER > 0
482 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
483 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
484 #endif
485
486 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
487 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
488 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
489
490 sc->sc_txtap_len = sizeof sc->sc_txtapu;
491 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
492 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
493
494
495 sc->dwelltime = 200;
496
497 ieee80211_announce(ic);
498
499 return 0;
500
501 fail5: rt2560_free_tx_ring(sc, &sc->bcnq);
502 fail4: rt2560_free_tx_ring(sc, &sc->prioq);
503 fail3: rt2560_free_tx_ring(sc, &sc->atimq);
504 fail2: rt2560_free_tx_ring(sc, &sc->txq);
505 fail1:
506 return ENXIO;
507 }
508
509
510 int
511 rt2560_detach(void *xsc)
512 {
513 struct rt2560_softc *sc = xsc;
514 struct ifnet *ifp = &sc->sc_if;
515
516 callout_stop(&sc->scan_ch);
517 callout_stop(&sc->rssadapt_ch);
518
519 if (sc->sc_powerhook != NULL)
520 powerhook_disestablish(sc->sc_powerhook);
521
522 rt2560_stop(sc);
523
524 ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
525 if_detach(ifp);
526
527 rt2560_free_tx_ring(sc, &sc->txq);
528 rt2560_free_tx_ring(sc, &sc->atimq);
529 rt2560_free_tx_ring(sc, &sc->prioq);
530 rt2560_free_tx_ring(sc, &sc->bcnq);
531 rt2560_free_rx_ring(sc, &sc->rxq);
532
533 return 0;
534 }
535
536 int
537 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
538 int count)
539 {
540 int i, nsegs, error;
541
542 ring->count = count;
543 ring->queued = 0;
544 ring->cur = ring->next = 0;
545 ring->cur_encrypt = ring->next_encrypt = 0;
546
547 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_TX_DESC_SIZE, 1,
548 count * RT2560_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
549 if (error != 0) {
550 printf("%s: could not create desc DMA map\n",
551 sc->sc_dev.dv_xname);
552 goto fail;
553 }
554
555 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_TX_DESC_SIZE,
556 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
557 if (error != 0) {
558 printf("%s: could not allocate DMA memory\n",
559 sc->sc_dev.dv_xname);
560 goto fail;
561 }
562
563 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
564 count * RT2560_TX_DESC_SIZE, (void **)&ring->desc,
565 BUS_DMA_NOWAIT);
566 if (error != 0) {
567 printf("%s: could not map desc DMA memory\n",
568 sc->sc_dev.dv_xname);
569 goto fail;
570 }
571
572 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
573 count * RT2560_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
574 if (error != 0) {
575 printf("%s: could not load desc DMA map\n",
576 sc->sc_dev.dv_xname);
577 goto fail;
578 }
579
580 memset(ring->desc, 0, count * RT2560_TX_DESC_SIZE);
581 ring->physaddr = ring->map->dm_segs->ds_addr;
582
583 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
584 M_NOWAIT);
585 if (ring->data == NULL) {
586 printf("%s: could not allocate soft data\n",
587 sc->sc_dev.dv_xname);
588 error = ENOMEM;
589 goto fail;
590 }
591
592 memset(ring->data, 0, count * sizeof (struct rt2560_tx_data));
593 for (i = 0; i < count; i++) {
594 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
595 RT2560_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
596 &ring->data[i].map);
597 if (error != 0) {
598 printf("%s: could not create DMA map\n",
599 sc->sc_dev.dv_xname);
600 goto fail;
601 }
602 }
603
604 return 0;
605
606 fail: rt2560_free_tx_ring(sc, ring);
607 return error;
608 }
609
610 void
611 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
612 {
613 struct rt2560_tx_desc *desc;
614 struct rt2560_tx_data *data;
615 int i;
616
617 for (i = 0; i < ring->count; i++) {
618 desc = &ring->desc[i];
619 data = &ring->data[i];
620
621 if (data->m != NULL) {
622 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
623 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
624 bus_dmamap_unload(sc->sc_dmat, data->map);
625 m_freem(data->m);
626 data->m = NULL;
627 }
628
629 if (data->ni != NULL) {
630 ieee80211_free_node(data->ni);
631 data->ni = NULL;
632 }
633
634 desc->flags = 0;
635 }
636
637 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
638 BUS_DMASYNC_PREWRITE);
639
640 ring->queued = 0;
641 ring->cur = ring->next = 0;
642 ring->cur_encrypt = ring->next_encrypt = 0;
643 }
644
645 void
646 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
647 {
648 struct rt2560_tx_data *data;
649 int i;
650
651 if (ring->desc != NULL) {
652 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
653 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
654 bus_dmamap_unload(sc->sc_dmat, ring->map);
655 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
656 ring->count * RT2560_TX_DESC_SIZE);
657 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
658 }
659
660 if (ring->data != NULL) {
661 for (i = 0; i < ring->count; i++) {
662 data = &ring->data[i];
663
664 if (data->m != NULL) {
665 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
666 data->map->dm_mapsize,
667 BUS_DMASYNC_POSTWRITE);
668 bus_dmamap_unload(sc->sc_dmat, data->map);
669 m_freem(data->m);
670 }
671
672 if (data->ni != NULL)
673 ieee80211_free_node(data->ni);
674
675
676 if (data->map != NULL)
677 bus_dmamap_destroy(sc->sc_dmat, data->map);
678 }
679 free(ring->data, M_DEVBUF);
680 }
681 }
682
683 int
684 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
685 int count)
686 {
687 struct rt2560_rx_desc *desc;
688 struct rt2560_rx_data *data;
689 int i, nsegs, error;
690
691 ring->count = count;
692 ring->cur = ring->next = 0;
693 ring->cur_decrypt = 0;
694
695 error = bus_dmamap_create(sc->sc_dmat, count * RT2560_RX_DESC_SIZE, 1,
696 count * RT2560_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
697 if (error != 0) {
698 printf("%s: could not create desc DMA map\n",
699 sc->sc_dev.dv_xname);
700 goto fail;
701 }
702
703 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2560_RX_DESC_SIZE,
704 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
705 if (error != 0) {
706 printf("%s: could not allocate DMA memory\n",
707 sc->sc_dev.dv_xname);
708 goto fail;
709 }
710
711 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
712 count * RT2560_RX_DESC_SIZE, (void **)&ring->desc,
713 BUS_DMA_NOWAIT);
714 if (error != 0) {
715 printf("%s: could not map desc DMA memory\n",
716 sc->sc_dev.dv_xname);
717 goto fail;
718 }
719
720 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
721 count * RT2560_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
722 if (error != 0) {
723 printf("%s: could not load desc DMA map\n",
724 sc->sc_dev.dv_xname);
725 goto fail;
726 }
727
728 memset(ring->desc, 0, count * RT2560_RX_DESC_SIZE);
729 ring->physaddr = ring->map->dm_segs->ds_addr;
730
731 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
732 M_NOWAIT);
733 if (ring->data == NULL) {
734 printf("%s: could not allocate soft data\n",
735 sc->sc_dev.dv_xname);
736 error = ENOMEM;
737 goto fail;
738 }
739
740 /*
741 * Pre-allocate Rx buffers and populate Rx ring.
742 */
743 memset(ring->data, 0, count * sizeof (struct rt2560_rx_data));
744 for (i = 0; i < count; i++) {
745 desc = &sc->rxq.desc[i];
746 data = &sc->rxq.data[i];
747
748 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
749 0, BUS_DMA_NOWAIT, &data->map);
750 if (error != 0) {
751 printf("%s: could not create DMA map\n",
752 sc->sc_dev.dv_xname);
753 goto fail;
754 }
755
756 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
757 if (data->m == NULL) {
758 printf("%s: could not allocate rx mbuf\n",
759 sc->sc_dev.dv_xname);
760 error = ENOMEM;
761 goto fail;
762 }
763
764 MCLGET(data->m, M_DONTWAIT);
765 if (!(data->m->m_flags & M_EXT)) {
766 printf("%s: could not allocate rx mbuf cluster\n",
767 sc->sc_dev.dv_xname);
768 error = ENOMEM;
769 goto fail;
770 }
771
772 error = bus_dmamap_load(sc->sc_dmat, data->map,
773 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
774 if (error != 0) {
775 printf("%s: could not load rx buf DMA map",
776 sc->sc_dev.dv_xname);
777 goto fail;
778 }
779
780 desc->flags = htole32(RT2560_RX_BUSY);
781 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
782 }
783
784 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
785 BUS_DMASYNC_PREWRITE);
786
787 return 0;
788
789 fail: rt2560_free_rx_ring(sc, ring);
790 return error;
791 }
792
793 void
794 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
795 {
796 int i;
797
798 for (i = 0; i < ring->count; i++) {
799 ring->desc[i].flags = htole32(RT2560_RX_BUSY);
800 ring->data[i].drop = 0;
801 }
802
803 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
804 BUS_DMASYNC_PREWRITE);
805
806 ring->cur = ring->next = 0;
807 ring->cur_decrypt = 0;
808 }
809
810 void
811 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
812 {
813 struct rt2560_rx_data *data;
814 int i;
815
816 if (ring->desc != NULL) {
817 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
818 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
819 bus_dmamap_unload(sc->sc_dmat, ring->map);
820 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
821 ring->count * RT2560_RX_DESC_SIZE);
822 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
823 }
824
825 if (ring->data != NULL) {
826 for (i = 0; i < ring->count; i++) {
827 data = &ring->data[i];
828
829 if (data->m != NULL) {
830 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
831 data->map->dm_mapsize,
832 BUS_DMASYNC_POSTREAD);
833 bus_dmamap_unload(sc->sc_dmat, data->map);
834 m_freem(data->m);
835 }
836
837 if (data->map != NULL)
838 bus_dmamap_destroy(sc->sc_dmat, data->map);
839 }
840 free(ring->data, M_DEVBUF);
841 }
842 }
843
844 struct ieee80211_node *
845 rt2560_node_alloc(struct ieee80211_node_table *nt)
846 {
847 struct rt2560_node *rn;
848
849 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
850 M_NOWAIT | M_ZERO);
851
852 return (rn != NULL) ? &rn->ni : NULL;
853 }
854
855 int
856 rt2560_media_change(struct ifnet *ifp)
857 {
858 int error;
859
860 error = ieee80211_media_change(ifp);
861 if (error != ENETRESET)
862 return error;
863
864 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
865 rt2560_init(ifp);
866
867 return 0;
868 }
869
870 /*
871 * This function is called periodically (every 200ms) during scanning to
872 * switch from one channel to another.
873 */
874 void
875 rt2560_next_scan(void *arg)
876 {
877 struct rt2560_softc *sc = arg;
878 struct ieee80211com *ic = &sc->sc_ic;
879
880 if (ic->ic_state == IEEE80211_S_SCAN)
881 ieee80211_next_scan(ic);
882 }
883
884 /*
885 * This function is called for each neighbor node.
886 */
887 void
888 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
889 {
890 struct rt2560_node *rn = (struct rt2560_node *)ni;
891
892 ieee80211_rssadapt_updatestats(&rn->rssadapt);
893 }
894
895 /*
896 * This function is called periodically (every 100ms) in RUN state to update
897 * the rate adaptation statistics.
898 */
899 void
900 rt2560_update_rssadapt(void *arg)
901 {
902 struct rt2560_softc *sc = arg;
903 struct ieee80211com *ic = &sc->sc_ic;
904
905 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
906
907 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
908 }
909
910 int
911 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
912 {
913 struct rt2560_softc *sc = ic->ic_ifp->if_softc;
914 enum ieee80211_state ostate;
915 struct ieee80211_node *ni;
916 struct mbuf *m;
917 int error = 0;
918
919 ostate = ic->ic_state;
920 callout_stop(&sc->scan_ch);
921
922 switch (nstate) {
923 case IEEE80211_S_INIT:
924 callout_stop(&sc->rssadapt_ch);
925
926 if (ostate == IEEE80211_S_RUN) {
927 /* abort TSF synchronization */
928 RAL_WRITE(sc, RT2560_CSR14, 0);
929
930 /* turn association led off */
931 rt2560_update_led(sc, 0, 0);
932 }
933 break;
934
935 case IEEE80211_S_SCAN:
936 rt2560_set_chan(sc, ic->ic_curchan);
937 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
938 rt2560_next_scan, sc);
939 break;
940
941 case IEEE80211_S_AUTH:
942 rt2560_set_chan(sc, ic->ic_curchan);
943 break;
944
945 case IEEE80211_S_ASSOC:
946 rt2560_set_chan(sc, ic->ic_curchan);
947 break;
948
949 case IEEE80211_S_RUN:
950 rt2560_set_chan(sc, ic->ic_curchan);
951
952 ni = ic->ic_bss;
953
954 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
955 rt2560_update_plcp(sc);
956 rt2560_set_basicrates(sc);
957 rt2560_set_bssid(sc, ni->ni_bssid);
958 }
959
960 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
961 ic->ic_opmode == IEEE80211_M_IBSS) {
962 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
963 if (m == NULL) {
964 printf("%s: could not allocate beacon\n",
965 sc->sc_dev.dv_xname);
966 error = ENOBUFS;
967 break;
968 }
969
970 ieee80211_ref_node(ni);
971 error = rt2560_tx_bcn(sc, m, ni);
972 if (error != 0)
973 break;
974 }
975
976 /* turn assocation led on */
977 rt2560_update_led(sc, 1, 0);
978
979 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
980 callout_reset(&sc->rssadapt_ch, hz / 10,
981 rt2560_update_rssadapt, sc);
982 rt2560_enable_tsf_sync(sc);
983 }
984 break;
985 }
986
987 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
988 }
989
990 /*
991 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
992 * 93C66).
993 */
994 uint16_t
995 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
996 {
997 uint32_t tmp;
998 uint16_t val;
999 int n;
1000
1001 /* clock C once before the first command */
1002 RT2560_EEPROM_CTL(sc, 0);
1003
1004 RT2560_EEPROM_CTL(sc, RT2560_S);
1005 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1006 RT2560_EEPROM_CTL(sc, RT2560_S);
1007
1008 /* write start bit (1) */
1009 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1010 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1011
1012 /* write READ opcode (10) */
1013 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
1014 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
1015 RT2560_EEPROM_CTL(sc, RT2560_S);
1016 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1017
1018 /* write address (A5-A0 or A7-A0) */
1019 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
1020 for (; n >= 0; n--) {
1021 RT2560_EEPROM_CTL(sc, RT2560_S |
1022 (((addr >> n) & 1) << RT2560_SHIFT_D));
1023 RT2560_EEPROM_CTL(sc, RT2560_S |
1024 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
1025 }
1026
1027 RT2560_EEPROM_CTL(sc, RT2560_S);
1028
1029 /* read data Q15-Q0 */
1030 val = 0;
1031 for (n = 15; n >= 0; n--) {
1032 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
1033 tmp = RAL_READ(sc, RT2560_CSR21);
1034 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
1035 RT2560_EEPROM_CTL(sc, RT2560_S);
1036 }
1037
1038 RT2560_EEPROM_CTL(sc, 0);
1039
1040 /* clear Chip Select and clock C */
1041 RT2560_EEPROM_CTL(sc, RT2560_S);
1042 RT2560_EEPROM_CTL(sc, 0);
1043 RT2560_EEPROM_CTL(sc, RT2560_C);
1044
1045 return val;
1046 }
1047
1048 /*
1049 * Some frames were processed by the hardware cipher engine and are ready for
1050 * transmission.
1051 */
1052 void
1053 rt2560_encryption_intr(struct rt2560_softc *sc)
1054 {
1055 struct rt2560_tx_desc *desc;
1056 int hw;
1057
1058 /* retrieve last descriptor index processed by cipher engine */
1059 hw = (RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr) /
1060 RT2560_TX_DESC_SIZE;
1061
1062 for (; sc->txq.next_encrypt != hw;) {
1063 desc = &sc->txq.desc[sc->txq.next_encrypt];
1064
1065 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1066 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1067 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1068
1069 if (le32toh(desc->flags) &
1070 (RT2560_TX_BUSY | RT2560_TX_CIPHER_BUSY))
1071 break;
1072
1073 /* for TKIP, swap eiv field to fix a bug in ASIC */
1074 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
1075 RT2560_TX_CIPHER_TKIP)
1076 desc->eiv = bswap32(desc->eiv);
1077
1078 /* mark the frame ready for transmission */
1079 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1080
1081 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1082 sc->txq.next_encrypt * RT2560_TX_DESC_SIZE,
1083 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1084
1085 DPRINTFN(15, ("encryption done idx=%u\n",
1086 sc->txq.next_encrypt));
1087
1088 sc->txq.next_encrypt =
1089 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
1090 }
1091
1092 /* kick Tx */
1093 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
1094 }
1095
1096 void
1097 rt2560_tx_intr(struct rt2560_softc *sc)
1098 {
1099 struct ieee80211com *ic = &sc->sc_ic;
1100 struct ifnet *ifp = ic->ic_ifp;
1101 struct rt2560_tx_desc *desc;
1102 struct rt2560_tx_data *data;
1103 struct rt2560_node *rn;
1104
1105 for (;;) {
1106 desc = &sc->txq.desc[sc->txq.next];
1107 data = &sc->txq.data[sc->txq.next];
1108
1109 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1110 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1111 BUS_DMASYNC_POSTREAD);
1112
1113 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1114 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1115 !(le32toh(desc->flags) & RT2560_TX_VALID))
1116 break;
1117
1118 rn = (struct rt2560_node *)data->ni;
1119
1120 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1121 case RT2560_TX_SUCCESS:
1122 DPRINTFN(10, ("data frame sent successfully\n"));
1123 if (data->id.id_node != NULL) {
1124 ieee80211_rssadapt_raise_rate(ic,
1125 &rn->rssadapt, &data->id);
1126 }
1127 ifp->if_opackets++;
1128 break;
1129
1130 case RT2560_TX_SUCCESS_RETRY:
1131 DPRINTFN(9, ("data frame sent after %u retries\n",
1132 (le32toh(desc->flags) >> 5) & 0x7));
1133 ifp->if_opackets++;
1134 break;
1135
1136 case RT2560_TX_FAIL_RETRY:
1137 DPRINTFN(9, ("sending data frame failed (too much "
1138 "retries)\n"));
1139 if (data->id.id_node != NULL) {
1140 ieee80211_rssadapt_lower_rate(ic, data->ni,
1141 &rn->rssadapt, &data->id);
1142 }
1143 ifp->if_oerrors++;
1144 break;
1145
1146 case RT2560_TX_FAIL_INVALID:
1147 case RT2560_TX_FAIL_OTHER:
1148 default:
1149 printf("%s: sending data frame failed 0x%08x\n",
1150 sc->sc_dev.dv_xname, le32toh(desc->flags));
1151 ifp->if_oerrors++;
1152 }
1153
1154 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1155 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1156 bus_dmamap_unload(sc->sc_dmat, data->map);
1157 m_freem(data->m);
1158 data->m = NULL;
1159 ieee80211_free_node(data->ni);
1160 data->ni = NULL;
1161
1162 /* descriptor is no longer valid */
1163 desc->flags &= ~htole32(RT2560_TX_VALID);
1164
1165 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1166 sc->txq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1167 BUS_DMASYNC_PREWRITE);
1168
1169 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1170
1171 sc->txq.queued--;
1172 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1173 }
1174
1175 sc->sc_tx_timer = 0;
1176 ifp->if_flags &= ~IFF_OACTIVE;
1177 rt2560_start(ifp);
1178 }
1179
1180 void
1181 rt2560_prio_intr(struct rt2560_softc *sc)
1182 {
1183 struct ieee80211com *ic = &sc->sc_ic;
1184 struct ifnet *ifp = ic->ic_ifp;
1185 struct rt2560_tx_desc *desc;
1186 struct rt2560_tx_data *data;
1187
1188 for (;;) {
1189 desc = &sc->prioq.desc[sc->prioq.next];
1190 data = &sc->prioq.data[sc->prioq.next];
1191
1192 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1193 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1194 BUS_DMASYNC_POSTREAD);
1195
1196 if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1197 !(le32toh(desc->flags) & RT2560_TX_VALID))
1198 break;
1199
1200 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1201 case RT2560_TX_SUCCESS:
1202 DPRINTFN(10, ("mgt frame sent successfully\n"));
1203 break;
1204
1205 case RT2560_TX_SUCCESS_RETRY:
1206 DPRINTFN(9, ("mgt frame sent after %u retries\n",
1207 (le32toh(desc->flags) >> 5) & 0x7));
1208 break;
1209
1210 case RT2560_TX_FAIL_RETRY:
1211 DPRINTFN(9, ("sending mgt frame failed (too much "
1212 "retries)\n"));
1213 break;
1214
1215 case RT2560_TX_FAIL_INVALID:
1216 case RT2560_TX_FAIL_OTHER:
1217 default:
1218 printf("%s: sending mgt frame failed 0x%08x\n",
1219 sc->sc_dev.dv_xname, le32toh(desc->flags));
1220 }
1221
1222 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1223 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1224 bus_dmamap_unload(sc->sc_dmat, data->map);
1225 m_freem(data->m);
1226 data->m = NULL;
1227 ieee80211_free_node(data->ni);
1228 data->ni = NULL;
1229
1230 /* descriptor is no longer valid */
1231 desc->flags &= ~htole32(RT2560_TX_VALID);
1232
1233 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1234 sc->prioq.next * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1235 BUS_DMASYNC_PREWRITE);
1236
1237 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1238
1239 sc->prioq.queued--;
1240 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1241 }
1242
1243 sc->sc_tx_timer = 0;
1244 ifp->if_flags &= ~IFF_OACTIVE;
1245 rt2560_start(ifp);
1246 }
1247
1248 /*
1249 * Some frames were processed by the hardware cipher engine and are ready for
1250 * transmission to the IEEE802.11 layer.
1251 */
1252 void
1253 rt2560_decryption_intr(struct rt2560_softc *sc)
1254 {
1255 struct ieee80211com *ic = &sc->sc_ic;
1256 struct ifnet *ifp = ic->ic_ifp;
1257 struct rt2560_rx_desc *desc;
1258 struct rt2560_rx_data *data;
1259 struct rt2560_node *rn;
1260 struct ieee80211_frame *wh;
1261 struct ieee80211_node *ni;
1262 struct mbuf *mnew, *m;
1263 int hw, error;
1264
1265 /* retrieve last decriptor index processed by cipher engine */
1266 hw = (RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr) /
1267 RT2560_RX_DESC_SIZE;
1268
1269 for (; sc->rxq.cur_decrypt != hw;) {
1270 desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1271 data = &sc->rxq.data[sc->rxq.cur_decrypt];
1272
1273 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1274 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1275 RT2560_TX_DESC_SIZE, BUS_DMASYNC_POSTREAD);
1276
1277 if (le32toh(desc->flags) &
1278 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1279 break;
1280
1281 if (data->drop) {
1282 ifp->if_ierrors++;
1283 goto skip;
1284 }
1285
1286 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1287 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1288 ifp->if_ierrors++;
1289 goto skip;
1290 }
1291
1292 /*
1293 * Try to allocate a new mbuf for this ring element and load it
1294 * before processing the current mbuf. If the ring element
1295 * cannot be loaded, drop the received packet and reuse the old
1296 * mbuf. In the unlikely case that the old mbuf can't be
1297 * reloaded either, explicitly panic.
1298 */
1299 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1300 if (mnew == NULL) {
1301 ifp->if_ierrors++;
1302 goto skip;
1303 }
1304
1305 MCLGET(mnew, M_DONTWAIT);
1306 if (!(mnew->m_flags & M_EXT)) {
1307 m_freem(mnew);
1308 ifp->if_ierrors++;
1309 goto skip;
1310 }
1311
1312 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1313 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1314 bus_dmamap_unload(sc->sc_dmat, data->map);
1315
1316 error = bus_dmamap_load(sc->sc_dmat, data->map,
1317 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1318 if (error != 0) {
1319 m_freem(mnew);
1320
1321 /* try to reload the old mbuf */
1322 error = bus_dmamap_load(sc->sc_dmat, data->map,
1323 mtod(data->m, void *), MCLBYTES, NULL,
1324 BUS_DMA_NOWAIT);
1325 if (error != 0) {
1326 /* very unlikely that it will fail... */
1327 panic("%s: could not load old rx mbuf",
1328 sc->sc_dev.dv_xname);
1329 }
1330 ifp->if_ierrors++;
1331 goto skip;
1332 }
1333
1334 /*
1335 * New mbuf successfully loaded, update Rx ring and continue
1336 * processing.
1337 */
1338 m = data->m;
1339 data->m = mnew;
1340 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1341
1342 /* finalize mbuf */
1343 m->m_pkthdr.rcvif = ifp;
1344 m->m_pkthdr.len = m->m_len =
1345 (le32toh(desc->flags) >> 16) & 0xfff;
1346
1347 #if NBPFILTER > 0
1348 if (sc->sc_drvbpf != NULL) {
1349 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1350 uint32_t tsf_lo, tsf_hi;
1351
1352 /* get timestamp (low and high 32 bits) */
1353 tsf_hi = RAL_READ(sc, RT2560_CSR17);
1354 tsf_lo = RAL_READ(sc, RT2560_CSR16);
1355
1356 tap->wr_tsf =
1357 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1358 tap->wr_flags = 0;
1359 tap->wr_rate = rt2560_rxrate(desc);
1360 tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1361 tap->wr_chan_flags =
1362 htole16(ic->ic_ibss_chan->ic_flags);
1363 tap->wr_antenna = sc->rx_ant;
1364 tap->wr_antsignal = desc->rssi;
1365
1366 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1367 }
1368 #endif
1369
1370 wh = mtod(m, struct ieee80211_frame *);
1371 ni = ieee80211_find_rxnode(ic,
1372 (struct ieee80211_frame_min *)wh);
1373
1374 /* send the frame to the 802.11 layer */
1375 ieee80211_input(ic, m, ni, desc->rssi, 0);
1376
1377 /* give rssi to the rate adatation algorithm */
1378 rn = (struct rt2560_node *)ni;
1379 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1380
1381 /* node is no longer needed */
1382 ieee80211_free_node(ni);
1383
1384 skip: desc->flags = htole32(RT2560_RX_BUSY);
1385
1386 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1387 sc->rxq.cur_decrypt * RT2560_TX_DESC_SIZE,
1388 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1389
1390 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1391
1392 sc->rxq.cur_decrypt =
1393 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1394 }
1395
1396 /*
1397 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1398 * without calling if_start().
1399 */
1400 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1401 rt2560_start(ifp);
1402 }
1403
1404 /*
1405 * Some frames were received. Pass them to the hardware cipher engine before
1406 * sending them to the 802.11 layer.
1407 */
1408 void
1409 rt2560_rx_intr(struct rt2560_softc *sc)
1410 {
1411 struct rt2560_rx_desc *desc;
1412 struct rt2560_rx_data *data;
1413
1414 for (;;) {
1415 desc = &sc->rxq.desc[sc->rxq.cur];
1416 data = &sc->rxq.data[sc->rxq.cur];
1417
1418 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1419 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1420 BUS_DMASYNC_POSTREAD);
1421
1422 if (le32toh(desc->flags) &
1423 (RT2560_RX_BUSY | RT2560_RX_CIPHER_BUSY))
1424 break;
1425
1426 data->drop = 0;
1427
1428 if (le32toh(desc->flags) &
1429 (RT2560_RX_PHY_ERROR | RT2560_RX_CRC_ERROR)) {
1430 /*
1431 * This should not happen since we did not request
1432 * to receive those frames when we filled RXCSR0.
1433 */
1434 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1435 le32toh(desc->flags)));
1436 data->drop = 1;
1437 }
1438
1439 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1440 DPRINTFN(5, ("bad length\n"));
1441 data->drop = 1;
1442 }
1443
1444 /* mark the frame for decryption */
1445 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1446
1447 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1448 sc->rxq.cur * RT2560_RX_DESC_SIZE, RT2560_RX_DESC_SIZE,
1449 BUS_DMASYNC_PREWRITE);
1450
1451 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1452
1453 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1454 }
1455
1456 /* kick decrypt */
1457 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1458 }
1459
1460 #if 0
1461 void
1462 rt2560_shutdown(void *xsc)
1463 {
1464 struct rt2560_softc *sc = xsc;
1465
1466 rt2560_stop(sc);
1467 }
1468
1469 void
1470 rt2560_suspend(void *xsc)
1471 {
1472 struct rt2560_softc *sc = xsc;
1473
1474 rt2560_stop(sc);
1475 }
1476
1477 void
1478 rt2560_resume(void *xsc)
1479 {
1480 struct rt2560_softc *sc = xsc;
1481 struct ifnet *ifp = sc->sc_ic.ic_ifp;
1482
1483 if (ifp->if_flags & IFF_UP) {
1484 ifp->if_init(ifp->if_softc);
1485 if (ifp->if_flags & IFF_RUNNING)
1486 ifp->if_start(ifp);
1487 }
1488 }
1489
1490 #endif
1491 /*
1492 * This function is called periodically in IBSS mode when a new beacon must be
1493 * sent out.
1494 */
1495 static void
1496 rt2560_beacon_expire(struct rt2560_softc *sc)
1497 {
1498 struct ieee80211com *ic = &sc->sc_ic;
1499 struct rt2560_tx_data *data;
1500
1501 if (ic->ic_opmode != IEEE80211_M_IBSS &&
1502 ic->ic_opmode != IEEE80211_M_HOSTAP)
1503 return;
1504
1505 data = &sc->bcnq.data[sc->bcnq.next];
1506
1507 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1508 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1509 bus_dmamap_unload(sc->sc_dmat, data->map);
1510
1511 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1512
1513 #if NBPFILTER > 0
1514 if (ic->ic_rawbpf != NULL)
1515 bpf_mtap(ic->ic_rawbpf, data->m);
1516 #endif
1517 rt2560_tx_bcn(sc, data->m, data->ni);
1518
1519 DPRINTFN(15, ("beacon expired\n"));
1520
1521 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1522 }
1523
1524 static void
1525 rt2560_wakeup_expire(struct rt2560_softc *sc)
1526 {
1527 DPRINTFN(15, ("wakeup expired\n"));
1528 }
1529
1530 int
1531 rt2560_intr(void *arg)
1532 {
1533 struct rt2560_softc *sc = arg;
1534 struct ifnet *ifp = &sc->sc_if;
1535 uint32_t r;
1536
1537 /* disable interrupts */
1538 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1539
1540 /* don't re-enable interrupts if we're shutting down */
1541 if (!(ifp->if_flags & IFF_RUNNING))
1542 return 0;
1543
1544 /* if we're suspended, don't bother */
1545 if (sc->sc_suspend != PWR_RESUME)
1546 return 0;
1547
1548 r = RAL_READ(sc, RT2560_CSR7);
1549 RAL_WRITE(sc, RT2560_CSR7, r);
1550
1551 if (r & RT2560_BEACON_EXPIRE)
1552 rt2560_beacon_expire(sc);
1553
1554 if (r & RT2560_WAKEUP_EXPIRE)
1555 rt2560_wakeup_expire(sc);
1556
1557 if (r & RT2560_ENCRYPTION_DONE)
1558 rt2560_encryption_intr(sc);
1559
1560 if (r & RT2560_TX_DONE)
1561 rt2560_tx_intr(sc);
1562
1563 if (r & RT2560_PRIO_DONE)
1564 rt2560_prio_intr(sc);
1565
1566 if (r & RT2560_DECRYPTION_DONE)
1567 rt2560_decryption_intr(sc);
1568
1569 if (r & RT2560_RX_DONE)
1570 rt2560_rx_intr(sc);
1571
1572 /* re-enable interrupts */
1573 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1574
1575 return 1;
1576 }
1577
1578 /* quickly determine if a given rate is CCK or OFDM */
1579 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1580
1581 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1582 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1583
1584 #define RAL_SIFS 10 /* us */
1585
1586 #define RT2560_RXTX_TURNAROUND 10 /* us */
1587
1588 /*
1589 * This function is only used by the Rx radiotap code. It returns the rate at
1590 * which a given frame was received.
1591 */
1592 #if NBPFILTER > 0
1593 static uint8_t
1594 rt2560_rxrate(struct rt2560_rx_desc *desc)
1595 {
1596 if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1597 /* reverse function of rt2560_plcp_signal */
1598 switch (desc->rate) {
1599 case 0xb: return 12;
1600 case 0xf: return 18;
1601 case 0xa: return 24;
1602 case 0xe: return 36;
1603 case 0x9: return 48;
1604 case 0xd: return 72;
1605 case 0x8: return 96;
1606 case 0xc: return 108;
1607 }
1608 } else {
1609 if (desc->rate == 10)
1610 return 2;
1611 if (desc->rate == 20)
1612 return 4;
1613 if (desc->rate == 55)
1614 return 11;
1615 if (desc->rate == 110)
1616 return 22;
1617 }
1618 return 2; /* should not get there */
1619 }
1620 #endif
1621
1622 /*
1623 * Return the expected ack rate for a frame transmitted at rate `rate'.
1624 * XXX: this should depend on the destination node basic rate set.
1625 */
1626 static int
1627 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1628 {
1629 switch (rate) {
1630 /* CCK rates */
1631 case 2:
1632 return 2;
1633 case 4:
1634 case 11:
1635 case 22:
1636 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1637
1638 /* OFDM rates */
1639 case 12:
1640 case 18:
1641 return 12;
1642 case 24:
1643 case 36:
1644 return 24;
1645 case 48:
1646 case 72:
1647 case 96:
1648 case 108:
1649 return 48;
1650 }
1651
1652 /* default to 1Mbps */
1653 return 2;
1654 }
1655
1656 /*
1657 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1658 * The function automatically determines the operating mode depending on the
1659 * given rate. `flags' indicates whether short preamble is in use or not.
1660 */
1661 static uint16_t
1662 rt2560_txtime(int len, int rate, uint32_t flags)
1663 {
1664 uint16_t txtime;
1665
1666 if (RAL_RATE_IS_OFDM(rate)) {
1667 /* IEEE Std 802.11a-1999, pp. 37 */
1668 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1669 txtime = 16 + 4 + 4 * txtime + 6;
1670 } else {
1671 /* IEEE Std 802.11b-1999, pp. 28 */
1672 txtime = (16 * len + rate - 1) / rate;
1673 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1674 txtime += 72 + 24;
1675 else
1676 txtime += 144 + 48;
1677 }
1678 return txtime;
1679 }
1680
1681 static uint8_t
1682 rt2560_plcp_signal(int rate)
1683 {
1684 switch (rate) {
1685 /* CCK rates (returned values are device-dependent) */
1686 case 2: return 0x0;
1687 case 4: return 0x1;
1688 case 11: return 0x2;
1689 case 22: return 0x3;
1690
1691 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1692 case 12: return 0xb;
1693 case 18: return 0xf;
1694 case 24: return 0xa;
1695 case 36: return 0xe;
1696 case 48: return 0x9;
1697 case 72: return 0xd;
1698 case 96: return 0x8;
1699 case 108: return 0xc;
1700
1701 /* unsupported rates (should not get there) */
1702 default: return 0xff;
1703 }
1704 }
1705
1706 static void
1707 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1708 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1709 {
1710 struct ieee80211com *ic = &sc->sc_ic;
1711 uint16_t plcp_length;
1712 int remainder;
1713
1714 desc->flags = htole32(flags);
1715 desc->flags |= htole32(len << 16);
1716 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1717 htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1718
1719 desc->physaddr = htole32(physaddr);
1720 desc->wme = htole16(
1721 RT2560_AIFSN(2) |
1722 RT2560_LOGCWMIN(3) |
1723 RT2560_LOGCWMAX(8));
1724
1725 /* setup PLCP fields */
1726 desc->plcp_signal = rt2560_plcp_signal(rate);
1727 desc->plcp_service = 4;
1728
1729 len += IEEE80211_CRC_LEN;
1730 if (RAL_RATE_IS_OFDM(rate)) {
1731 desc->flags |= htole32(RT2560_TX_OFDM);
1732
1733 plcp_length = len & 0xfff;
1734 desc->plcp_length_hi = plcp_length >> 6;
1735 desc->plcp_length_lo = plcp_length & 0x3f;
1736 } else {
1737 plcp_length = (16 * len + rate - 1) / rate;
1738 if (rate == 22) {
1739 remainder = (16 * len) % 22;
1740 if (remainder != 0 && remainder < 7)
1741 desc->plcp_service |= RT2560_PLCP_LENGEXT;
1742 }
1743 desc->plcp_length_hi = plcp_length >> 8;
1744 desc->plcp_length_lo = plcp_length & 0xff;
1745
1746 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1747 desc->plcp_signal |= 0x08;
1748 }
1749 }
1750
1751 static int
1752 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1753 struct ieee80211_node *ni)
1754 {
1755 struct rt2560_tx_desc *desc;
1756 struct rt2560_tx_data *data;
1757 int rate, error;
1758
1759 desc = &sc->bcnq.desc[sc->bcnq.cur];
1760 data = &sc->bcnq.data[sc->bcnq.cur];
1761
1762 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1763
1764 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1765 BUS_DMA_NOWAIT);
1766 if (error != 0) {
1767 printf("%s: could not map mbuf (error %d)\n",
1768 sc->sc_dev.dv_xname, error);
1769 m_freem(m0);
1770 return error;
1771 }
1772
1773 data->m = m0;
1774 data->ni = ni;
1775
1776 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1777 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0,
1778 data->map->dm_segs->ds_addr);
1779
1780 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1781 BUS_DMASYNC_PREWRITE);
1782 bus_dmamap_sync(sc->sc_dmat, sc->bcnq.map,
1783 sc->bcnq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1784 BUS_DMASYNC_PREWRITE);
1785
1786 return 0;
1787 }
1788
1789 static int
1790 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1791 struct ieee80211_node *ni)
1792 {
1793 struct ieee80211com *ic = &sc->sc_ic;
1794 struct rt2560_tx_desc *desc;
1795 struct rt2560_tx_data *data;
1796 struct ieee80211_frame *wh;
1797 uint16_t dur;
1798 uint32_t flags = 0;
1799 int rate, error;
1800
1801 desc = &sc->prioq.desc[sc->prioq.cur];
1802 data = &sc->prioq.data[sc->prioq.cur];
1803
1804 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1805
1806 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1807 BUS_DMA_NOWAIT);
1808 if (error != 0) {
1809 printf("%s: could not map mbuf (error %d)\n",
1810 sc->sc_dev.dv_xname, error);
1811 m_freem(m0);
1812 return error;
1813 }
1814
1815 #if NBPFILTER > 0
1816 if (sc->sc_drvbpf != NULL) {
1817 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1818
1819 tap->wt_flags = 0;
1820 tap->wt_rate = rate;
1821 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
1822 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
1823 tap->wt_antenna = sc->tx_ant;
1824
1825 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1826 }
1827 #endif
1828
1829 data->m = m0;
1830 data->ni = ni;
1831
1832 wh = mtod(m0, struct ieee80211_frame *);
1833
1834 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1835 flags |= RT2560_TX_ACK;
1836
1837 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1838 RAL_SIFS;
1839 *(uint16_t *)wh->i_dur = htole16(dur);
1840
1841 /* tell hardware to add timestamp for probe responses */
1842 if ((wh->i_fc[0] &
1843 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1844 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1845 flags |= RT2560_TX_TIMESTAMP;
1846 }
1847
1848 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1849 data->map->dm_segs->ds_addr);
1850
1851 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1852 BUS_DMASYNC_PREWRITE);
1853 bus_dmamap_sync(sc->sc_dmat, sc->prioq.map,
1854 sc->prioq.cur * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
1855 BUS_DMASYNC_PREWRITE);
1856
1857 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1858 m0->m_pkthdr.len, sc->prioq.cur, rate));
1859
1860 /* kick prio */
1861 sc->prioq.queued++;
1862 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1863 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1864
1865 return 0;
1866 }
1867
1868 /*
1869 * Build a RTS control frame.
1870 */
1871 static struct mbuf *
1872 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1873 uint16_t dur)
1874 {
1875 struct ieee80211_frame_rts *rts;
1876 struct mbuf *m;
1877
1878 MGETHDR(m, M_DONTWAIT, MT_DATA);
1879 if (m == NULL) {
1880 sc->sc_ic.ic_stats.is_tx_nobuf++;
1881 printf("%s: could not allocate RTS frame\n",
1882 sc->sc_dev.dv_xname);
1883 return NULL;
1884 }
1885
1886 rts = mtod(m, struct ieee80211_frame_rts *);
1887
1888 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1889 IEEE80211_FC0_SUBTYPE_RTS;
1890 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1891 *(uint16_t *)rts->i_dur = htole16(dur);
1892 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1893 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1894
1895 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1896
1897 return m;
1898 }
1899
1900 static int
1901 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1902 struct ieee80211_node *ni)
1903 {
1904 struct ieee80211com *ic = &sc->sc_ic;
1905 struct rt2560_tx_desc *desc;
1906 struct rt2560_tx_data *data;
1907 struct rt2560_node *rn;
1908 struct ieee80211_rateset *rs;
1909 struct ieee80211_frame *wh;
1910 struct ieee80211_key *k;
1911 struct mbuf *mnew;
1912 uint16_t dur;
1913 uint32_t flags = 0;
1914 int rate, error;
1915
1916 wh = mtod(m0, struct ieee80211_frame *);
1917
1918 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1919 rs = &ic->ic_sup_rates[ic->ic_curmode];
1920 rate = rs->rs_rates[ic->ic_fixed_rate];
1921 } else {
1922 rs = &ni->ni_rates;
1923 rn = (struct rt2560_node *)ni;
1924 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1925 wh, m0->m_pkthdr.len, -1, NULL, 0);
1926 rate = rs->rs_rates[ni->ni_txrate];
1927 }
1928 rate &= IEEE80211_RATE_VAL;
1929
1930 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1931 k = ieee80211_crypto_encap(ic, ni, m0);
1932 if (k == NULL) {
1933 m_freem(m0);
1934 return ENOBUFS;
1935 }
1936
1937 /* packet header may have moved, reset our local pointer */
1938 wh = mtod(m0, struct ieee80211_frame *);
1939 }
1940
1941 /*
1942 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1943 * for directed frames only when the length of the MPDU is greater
1944 * than the length threshold indicated by [...]" ic_rtsthreshold.
1945 */
1946 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1947 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1948 struct mbuf *m;
1949 int rtsrate, ackrate;
1950
1951 rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1952 ackrate = rt2560_ack_rate(ic, rate);
1953
1954 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1955 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1956 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1957 3 * RAL_SIFS;
1958
1959 m = rt2560_get_rts(sc, wh, dur);
1960
1961 desc = &sc->txq.desc[sc->txq.cur_encrypt];
1962 data = &sc->txq.data[sc->txq.cur_encrypt];
1963
1964 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1965 BUS_DMA_NOWAIT);
1966 if (error != 0) {
1967 printf("%s: could not map mbuf (error %d)\n",
1968 sc->sc_dev.dv_xname, error);
1969 m_freem(m);
1970 m_freem(m0);
1971 return error;
1972 }
1973
1974 /* avoid multiple free() of the same node for each fragment */
1975 ieee80211_ref_node(ni);
1976
1977 data->m = m;
1978 data->ni = ni;
1979
1980 /* RTS frames are not taken into account for rssadapt */
1981 data->id.id_node = NULL;
1982
1983 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1984 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1985 data->map->dm_segs->ds_addr);
1986
1987 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1988 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1989 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
1990 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE,
1991 RT2560_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1992
1993 sc->txq.queued++;
1994 sc->txq.cur_encrypt =
1995 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1996
1997 /*
1998 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1999 * asynchronous data frame shall be transmitted after the CTS
2000 * frame and a SIFS period.
2001 */
2002 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
2003 }
2004
2005 data = &sc->txq.data[sc->txq.cur_encrypt];
2006 desc = &sc->txq.desc[sc->txq.cur_encrypt];
2007
2008 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2009 BUS_DMA_NOWAIT);
2010 if (error != 0 && error != EFBIG) {
2011 printf("%s: could not map mbuf (error %d)\n",
2012 sc->sc_dev.dv_xname, error);
2013 m_freem(m0);
2014 return error;
2015 }
2016 if (error != 0) {
2017 /* too many fragments, linearize */
2018
2019 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
2020 if (mnew == NULL) {
2021 m_freem(m0);
2022 return ENOMEM;
2023 }
2024
2025 M_COPY_PKTHDR(mnew, m0);
2026 if (m0->m_pkthdr.len > MHLEN) {
2027 MCLGET(mnew, M_DONTWAIT);
2028 if (!(mnew->m_flags & M_EXT)) {
2029 m_freem(m0);
2030 m_freem(mnew);
2031 return ENOMEM;
2032 }
2033 }
2034
2035 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
2036 m_freem(m0);
2037 mnew->m_len = mnew->m_pkthdr.len;
2038 m0 = mnew;
2039
2040 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
2041 BUS_DMA_NOWAIT);
2042 if (error != 0) {
2043 printf("%s: could not map mbuf (error %d)\n",
2044 sc->sc_dev.dv_xname, error);
2045 m_freem(m0);
2046 return error;
2047 }
2048
2049 /* packet header have moved, reset our local pointer */
2050 wh = mtod(m0, struct ieee80211_frame *);
2051 }
2052
2053 #if NBPFILTER > 0
2054 if (sc->sc_drvbpf != NULL) {
2055 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
2056
2057 tap->wt_flags = 0;
2058 tap->wt_rate = rate;
2059 tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
2060 tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
2061 tap->wt_antenna = sc->tx_ant;
2062
2063 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
2064 }
2065 #endif
2066
2067 data->m = m0;
2068 data->ni = ni;
2069
2070 /* remember link conditions for rate adaptation algorithm */
2071 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
2072 data->id.id_len = m0->m_pkthdr.len;
2073 data->id.id_rateidx = ni->ni_txrate;
2074 data->id.id_node = ni;
2075 data->id.id_rssi = ni->ni_rssi;
2076 } else
2077 data->id.id_node = NULL;
2078
2079 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2080 flags |= RT2560_TX_ACK;
2081
2082 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
2083 ic->ic_flags) + RAL_SIFS;
2084 *(uint16_t *)wh->i_dur = htole16(dur);
2085 }
2086
2087 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
2088 data->map->dm_segs->ds_addr);
2089
2090 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2091 BUS_DMASYNC_PREWRITE);
2092 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
2093 sc->txq.cur_encrypt * RT2560_TX_DESC_SIZE, RT2560_TX_DESC_SIZE,
2094 BUS_DMASYNC_PREWRITE);
2095
2096 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2097 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
2098
2099 /* kick encrypt */
2100 sc->txq.queued++;
2101 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2102 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2103
2104 return 0;
2105 }
2106
2107 static void
2108 rt2560_start(struct ifnet *ifp)
2109 {
2110 struct rt2560_softc *sc = ifp->if_softc;
2111 struct ieee80211com *ic = &sc->sc_ic;
2112 struct mbuf *m0;
2113 struct ieee80211_node *ni;
2114 struct ether_header *eh;
2115
2116 /*
2117 * net80211 may still try to send management frames even if the
2118 * IFF_RUNNING flag is not set...
2119 */
2120 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2121 return;
2122
2123 for (;;) {
2124 IF_POLL(&ic->ic_mgtq, m0);
2125 if (m0 != NULL) {
2126 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2127 ifp->if_flags |= IFF_OACTIVE;
2128 break;
2129 }
2130 IF_DEQUEUE(&ic->ic_mgtq, m0);
2131 if (m0 == NULL)
2132 break;
2133
2134 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2135 m0->m_pkthdr.rcvif = NULL;
2136 #if NBPFILTER > 0
2137 if (ic->ic_rawbpf != NULL)
2138 bpf_mtap(ic->ic_rawbpf, m0);
2139 #endif
2140 if (rt2560_tx_mgt(sc, m0, ni) != 0)
2141 break;
2142
2143 } else {
2144 if (ic->ic_state != IEEE80211_S_RUN)
2145 break;
2146 IFQ_DEQUEUE(&ifp->if_snd, m0);
2147 if (m0 == NULL)
2148 break;
2149 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2150 ifp->if_flags |= IFF_OACTIVE;
2151 break;
2152 }
2153
2154 if (m0->m_len < sizeof (struct ether_header) &&
2155 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2156 continue;
2157
2158 eh = mtod(m0, struct ether_header *);
2159 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2160 if (ni == NULL) {
2161 m_freem(m0);
2162 continue;
2163 }
2164 #if NBPFILTER > 0
2165 if (ifp->if_bpf != NULL)
2166 bpf_mtap(ifp->if_bpf, m0);
2167 #endif
2168
2169 m0 = ieee80211_encap(ic, m0, ni);
2170 if (m0 == NULL) {
2171 ieee80211_free_node(ni);
2172 continue;
2173 }
2174
2175 #if NBPFILTER > 0
2176 if (ic->ic_rawbpf != NULL)
2177 bpf_mtap(ic->ic_rawbpf, m0);
2178
2179 #endif
2180 if (rt2560_tx_data(sc, m0, ni) != 0) {
2181 ieee80211_free_node(ni);
2182 ifp->if_oerrors++;
2183 break;
2184 }
2185 }
2186
2187 sc->sc_tx_timer = 5;
2188 ifp->if_timer = 1;
2189 }
2190 }
2191
2192 static void
2193 rt2560_watchdog(struct ifnet *ifp)
2194 {
2195 struct rt2560_softc *sc = ifp->if_softc;
2196
2197 ifp->if_timer = 0;
2198
2199 if (sc->sc_tx_timer > 0) {
2200 if (--sc->sc_tx_timer == 0) {
2201 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2202 rt2560_init(ifp);
2203 ifp->if_oerrors++;
2204 return;
2205 }
2206 ifp->if_timer = 1;
2207 }
2208
2209 ieee80211_watchdog(&sc->sc_ic);
2210 }
2211
2212 /*
2213 * This function allows for fast channel switching in monitor mode (used by
2214 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2215 * generate a new beacon frame.
2216 */
2217 static int
2218 rt2560_reset(struct ifnet *ifp)
2219 {
2220 struct rt2560_softc *sc = ifp->if_softc;
2221 struct ieee80211com *ic = &sc->sc_ic;
2222
2223 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2224 return ENETRESET;
2225
2226 rt2560_set_chan(sc, ic->ic_curchan);
2227
2228 return 0;
2229 }
2230
2231 int
2232 rt2560_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2233 {
2234 struct rt2560_softc *sc = ifp->if_softc;
2235 struct ieee80211com *ic = &sc->sc_ic;
2236 int s, error = 0;
2237
2238 s = splnet();
2239
2240 switch (cmd) {
2241 case SIOCSIFFLAGS:
2242 if (ifp->if_flags & IFF_UP) {
2243 if (ifp->if_flags & IFF_RUNNING)
2244 rt2560_update_promisc(sc);
2245 else
2246 rt2560_init(ifp);
2247 } else {
2248 if (ifp->if_flags & IFF_RUNNING)
2249 rt2560_stop(sc);
2250 }
2251 break;
2252
2253 case SIOCADDMULTI:
2254 case SIOCDELMULTI:
2255 /* XXX no h/w multicast filter? --dyoung */
2256 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2257 error = 0;
2258 break;
2259
2260 case SIOCS80211CHANNEL:
2261 /*
2262 * This allows for fast channel switching in monitor mode
2263 * (used by kismet). In IBSS mode, we must explicitly reset
2264 * the interface to generate a new beacon frame.
2265 */
2266 error = ieee80211_ioctl(ic, cmd, data);
2267 if (error == ENETRESET &&
2268 ic->ic_opmode == IEEE80211_M_MONITOR) {
2269 rt2560_set_chan(sc, ic->ic_ibss_chan);
2270 error = 0;
2271 }
2272 break;
2273
2274 default:
2275 error = ieee80211_ioctl(ic, cmd, data);
2276 }
2277
2278 if (error == ENETRESET) {
2279 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2280 (IFF_UP | IFF_RUNNING))
2281 rt2560_init(ifp);
2282 error = 0;
2283 }
2284
2285 splx(s);
2286
2287 return error;
2288 }
2289
2290 static void
2291 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2292 {
2293 uint32_t tmp;
2294 int ntries;
2295
2296 for (ntries = 0; ntries < 100; ntries++) {
2297 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2298 break;
2299 DELAY(1);
2300 }
2301 if (ntries == 100) {
2302 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2303 return;
2304 }
2305
2306 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2307 RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2308
2309 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2310 }
2311
2312 static uint8_t
2313 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2314 {
2315 uint32_t val;
2316 int ntries;
2317
2318 val = RT2560_BBP_BUSY | reg << 8;
2319 RAL_WRITE(sc, RT2560_BBPCSR, val);
2320
2321 for (ntries = 0; ntries < 100; ntries++) {
2322 val = RAL_READ(sc, RT2560_BBPCSR);
2323 if (!(val & RT2560_BBP_BUSY))
2324 return val & 0xff;
2325 DELAY(1);
2326 }
2327
2328 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2329 return 0;
2330 }
2331
2332 static void
2333 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2334 {
2335 uint32_t tmp;
2336 int ntries;
2337
2338 for (ntries = 0; ntries < 100; ntries++) {
2339 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2340 break;
2341 DELAY(1);
2342 }
2343 if (ntries == 100) {
2344 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2345 return;
2346 }
2347
2348 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2349 (reg & 0x3);
2350 RAL_WRITE(sc, RT2560_RFCSR, tmp);
2351
2352 /* remember last written value in sc */
2353 sc->rf_regs[reg] = val;
2354
2355 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2356 }
2357
2358 static void
2359 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2360 {
2361 struct ieee80211com *ic = &sc->sc_ic;
2362 uint8_t power, tmp;
2363 u_int i, chan;
2364
2365 chan = ieee80211_chan2ieee(ic, c);
2366 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2367 return;
2368
2369 if (IEEE80211_IS_CHAN_2GHZ(c))
2370 power = min(sc->txpow[chan - 1], 31);
2371 else
2372 power = 31;
2373
2374 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2375
2376 switch (sc->rf_rev) {
2377 case RT2560_RF_2522:
2378 rt2560_rf_write(sc, RT2560_RF1, 0x00814);
2379 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2522_r2[chan - 1]);
2380 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2381 break;
2382
2383 case RT2560_RF_2523:
2384 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2385 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2523_r2[chan - 1]);
2386 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x38044);
2387 rt2560_rf_write(sc, RT2560_RF4,
2388 (chan == 14) ? 0x00280 : 0x00286);
2389 break;
2390
2391 case RT2560_RF_2524:
2392 rt2560_rf_write(sc, RT2560_RF1, 0x0c808);
2393 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2524_r2[chan - 1]);
2394 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2395 rt2560_rf_write(sc, RT2560_RF4,
2396 (chan == 14) ? 0x00280 : 0x00286);
2397 break;
2398
2399 case RT2560_RF_2525:
2400 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2401 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2402 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2403 rt2560_rf_write(sc, RT2560_RF4,
2404 (chan == 14) ? 0x00280 : 0x00286);
2405
2406 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2407 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525_r2[chan - 1]);
2408 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2409 rt2560_rf_write(sc, RT2560_RF4,
2410 (chan == 14) ? 0x00280 : 0x00286);
2411 break;
2412
2413 case RT2560_RF_2525E:
2414 rt2560_rf_write(sc, RT2560_RF1, 0x08808);
2415 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2525e_r2[chan - 1]);
2416 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2417 rt2560_rf_write(sc, RT2560_RF4,
2418 (chan == 14) ? 0x00286 : 0x00282);
2419 break;
2420
2421 case RT2560_RF_2526:
2422 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2423 rt2560_rf_write(sc, RT2560_RF4,
2424 (chan & 1) ? 0x00386 : 0x00381);
2425 rt2560_rf_write(sc, RT2560_RF1, 0x08804);
2426
2427 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf2526_r2[chan - 1]);
2428 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x18044);
2429 rt2560_rf_write(sc, RT2560_RF4,
2430 (chan & 1) ? 0x00386 : 0x00381);
2431 break;
2432
2433 /* dual-band RF */
2434 case RT2560_RF_5222:
2435 for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2436
2437 rt2560_rf_write(sc, RT2560_RF1, rt2560_rf5222[i].r1);
2438 rt2560_rf_write(sc, RT2560_RF2, rt2560_rf5222[i].r2);
2439 rt2560_rf_write(sc, RT2560_RF3, power << 7 | 0x00040);
2440 rt2560_rf_write(sc, RT2560_RF4, rt2560_rf5222[i].r4);
2441 break;
2442 }
2443
2444 if (ic->ic_opmode != IEEE80211_M_MONITOR &&
2445 ic->ic_state != IEEE80211_S_SCAN) {
2446 /* set Japan filter bit for channel 14 */
2447 tmp = rt2560_bbp_read(sc, 70);
2448
2449 tmp &= ~RT2560_JAPAN_FILTER;
2450 if (chan == 14)
2451 tmp |= RT2560_JAPAN_FILTER;
2452
2453 rt2560_bbp_write(sc, 70, tmp);
2454
2455 DELAY(1000); /* RF needs a 1ms delay here */
2456 rt2560_disable_rf_tune(sc);
2457
2458 /* clear CRC errors */
2459 RAL_READ(sc, RT2560_CNT0);
2460 }
2461 }
2462
2463 /*
2464 * Disable RF auto-tuning.
2465 */
2466 static void
2467 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2468 {
2469 uint32_t tmp;
2470
2471 if (sc->rf_rev != RT2560_RF_2523) {
2472 tmp = sc->rf_regs[RT2560_RF1] & ~RT2560_RF1_AUTOTUNE;
2473 rt2560_rf_write(sc, RT2560_RF1, tmp);
2474 }
2475
2476 tmp = sc->rf_regs[RT2560_RF3] & ~RT2560_RF3_AUTOTUNE;
2477 rt2560_rf_write(sc, RT2560_RF3, tmp);
2478
2479 DPRINTFN(2, ("disabling RF autotune\n"));
2480 }
2481
2482 /*
2483 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2484 * synchronization.
2485 */
2486 static void
2487 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2488 {
2489 struct ieee80211com *ic = &sc->sc_ic;
2490 uint16_t logcwmin, preload;
2491 uint32_t tmp;
2492
2493 /* first, disable TSF synchronization */
2494 RAL_WRITE(sc, RT2560_CSR14, 0);
2495
2496 tmp = 16 * ic->ic_bss->ni_intval;
2497 RAL_WRITE(sc, RT2560_CSR12, tmp);
2498
2499 RAL_WRITE(sc, RT2560_CSR13, 0);
2500
2501 logcwmin = 5;
2502 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2503 tmp = logcwmin << 16 | preload;
2504 RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2505
2506 /* finally, enable TSF synchronization */
2507 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2508 if (ic->ic_opmode == IEEE80211_M_STA)
2509 tmp |= RT2560_ENABLE_TSF_SYNC(1);
2510 else
2511 tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2512 RT2560_ENABLE_BEACON_GENERATOR;
2513 RAL_WRITE(sc, RT2560_CSR14, tmp);
2514
2515 DPRINTF(("enabling TSF synchronization\n"));
2516 }
2517
2518 static void
2519 rt2560_update_plcp(struct rt2560_softc *sc)
2520 {
2521 struct ieee80211com *ic = &sc->sc_ic;
2522
2523 /* no short preamble for 1Mbps */
2524 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2525
2526 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2527 /* values taken from the reference driver */
2528 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401);
2529 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2530 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403);
2531 } else {
2532 /* same values as above or'ed 0x8 */
2533 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409);
2534 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2535 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b);
2536 }
2537
2538 DPRINTF(("updating PLCP for %s preamble\n",
2539 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2540 }
2541
2542 /*
2543 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2544 * know how these values are computed.
2545 */
2546 static void
2547 rt2560_update_slot(struct ifnet *ifp)
2548 {
2549 struct rt2560_softc *sc = ifp->if_softc;
2550 struct ieee80211com *ic = &sc->sc_ic;
2551 uint8_t slottime;
2552 uint16_t sifs, pifs, difs, eifs;
2553 uint32_t tmp;
2554
2555 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2556
2557 /* define the MAC slot boundaries */
2558 sifs = RAL_SIFS - RT2560_RXTX_TURNAROUND;
2559 pifs = sifs + slottime;
2560 difs = sifs + 2 * slottime;
2561 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2562
2563 tmp = RAL_READ(sc, RT2560_CSR11);
2564 tmp = (tmp & ~0x1f00) | slottime << 8;
2565 RAL_WRITE(sc, RT2560_CSR11, tmp);
2566
2567 tmp = pifs << 16 | sifs;
2568 RAL_WRITE(sc, RT2560_CSR18, tmp);
2569
2570 tmp = eifs << 16 | difs;
2571 RAL_WRITE(sc, RT2560_CSR19, tmp);
2572
2573 DPRINTF(("setting slottime to %uus\n", slottime));
2574 }
2575
2576 static void
2577 rt2560_set_basicrates(struct rt2560_softc *sc)
2578 {
2579 struct ieee80211com *ic = &sc->sc_ic;
2580
2581 /* update basic rate set */
2582 if (ic->ic_curmode == IEEE80211_MODE_11B) {
2583 /* 11b basic rates: 1, 2Mbps */
2584 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2585 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
2586 /* 11a basic rates: 6, 12, 24Mbps */
2587 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2588 } else {
2589 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2590 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2591 }
2592 }
2593
2594 static void
2595 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2596 {
2597 uint32_t tmp;
2598
2599 /* set ON period to 70ms and OFF period to 30ms */
2600 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2601 RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2602 }
2603
2604 static void
2605 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2606 {
2607 uint32_t tmp;
2608
2609 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2610 RAL_WRITE(sc, RT2560_CSR5, tmp);
2611
2612 tmp = bssid[4] | bssid[5] << 8;
2613 RAL_WRITE(sc, RT2560_CSR6, tmp);
2614
2615 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
2616 }
2617
2618 static void
2619 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2620 {
2621 uint32_t tmp;
2622
2623 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2624 RAL_WRITE(sc, RT2560_CSR3, tmp);
2625
2626 tmp = addr[4] | addr[5] << 8;
2627 RAL_WRITE(sc, RT2560_CSR4, tmp);
2628
2629 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
2630 }
2631
2632 static void
2633 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2634 {
2635 uint32_t tmp;
2636
2637 tmp = RAL_READ(sc, RT2560_CSR3);
2638 addr[0] = tmp & 0xff;
2639 addr[1] = (tmp >> 8) & 0xff;
2640 addr[2] = (tmp >> 16) & 0xff;
2641 addr[3] = (tmp >> 24);
2642
2643 tmp = RAL_READ(sc, RT2560_CSR4);
2644 addr[4] = tmp & 0xff;
2645 addr[5] = (tmp >> 8) & 0xff;
2646 }
2647
2648 static void
2649 rt2560_update_promisc(struct rt2560_softc *sc)
2650 {
2651 struct ifnet *ifp = &sc->sc_if;
2652 uint32_t tmp;
2653
2654 tmp = RAL_READ(sc, RT2560_RXCSR0);
2655
2656 tmp &= ~RT2560_DROP_NOT_TO_ME;
2657 if (!(ifp->if_flags & IFF_PROMISC))
2658 tmp |= RT2560_DROP_NOT_TO_ME;
2659
2660 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2661
2662 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2663 "entering" : "leaving"));
2664 }
2665
2666 static void
2667 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2668 {
2669 uint32_t tmp;
2670 uint8_t tx;
2671
2672 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2673 if (antenna == 1)
2674 tx |= RT2560_BBP_ANTA;
2675 else if (antenna == 2)
2676 tx |= RT2560_BBP_ANTB;
2677 else
2678 tx |= RT2560_BBP_DIVERSITY;
2679
2680 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2681 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2682 sc->rf_rev == RT2560_RF_5222)
2683 tx |= RT2560_BBP_FLIPIQ;
2684
2685 rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2686
2687 /* update values for CCK and OFDM in BBPCSR1 */
2688 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2689 tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2690 RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2691 }
2692
2693 static void
2694 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2695 {
2696 uint8_t rx;
2697
2698 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2699 if (antenna == 1)
2700 rx |= RT2560_BBP_ANTA;
2701 else if (antenna == 2)
2702 rx |= RT2560_BBP_ANTB;
2703 else
2704 rx |= RT2560_BBP_DIVERSITY;
2705
2706 /* need to force no I/Q flip for RF 2525e and 2526 */
2707 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2708 rx &= ~RT2560_BBP_FLIPIQ;
2709
2710 rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2711 }
2712
2713 static const char *
2714 rt2560_get_rf(int rev)
2715 {
2716 switch (rev) {
2717 case RT2560_RF_2522: return "RT2522";
2718 case RT2560_RF_2523: return "RT2523";
2719 case RT2560_RF_2524: return "RT2524";
2720 case RT2560_RF_2525: return "RT2525";
2721 case RT2560_RF_2525E: return "RT2525e";
2722 case RT2560_RF_2526: return "RT2526";
2723 case RT2560_RF_5222: return "RT5222";
2724 default: return "unknown";
2725 }
2726 }
2727
2728 static void
2729 rt2560_read_eeprom(struct rt2560_softc *sc)
2730 {
2731 uint16_t val;
2732 int i;
2733
2734 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2735 sc->rf_rev = (val >> 11) & 0x1f;
2736 sc->hw_radio = (val >> 10) & 0x1;
2737 sc->led_mode = (val >> 6) & 0x7;
2738 sc->rx_ant = (val >> 4) & 0x3;
2739 sc->tx_ant = (val >> 2) & 0x3;
2740 sc->nb_ant = val & 0x3;
2741
2742 /* read default values for BBP registers */
2743 for (i = 0; i < 16; i++) {
2744 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2745 sc->bbp_prom[i].reg = val >> 8;
2746 sc->bbp_prom[i].val = val & 0xff;
2747 }
2748
2749 /* read Tx power for all b/g channels */
2750 for (i = 0; i < 14 / 2; i++) {
2751 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2752 sc->txpow[i * 2] = val >> 8;
2753 sc->txpow[i * 2 + 1] = val & 0xff;
2754 }
2755 }
2756
2757 static int
2758 rt2560_bbp_init(struct rt2560_softc *sc)
2759 {
2760 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2761 int i, ntries;
2762
2763 /* wait for BBP to be ready */
2764 for (ntries = 0; ntries < 100; ntries++) {
2765 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2766 break;
2767 DELAY(1);
2768 }
2769 if (ntries == 100) {
2770 printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2771 return EIO;
2772 }
2773
2774 /* initialize BBP registers to default values */
2775 for (i = 0; i < N(rt2560_def_bbp); i++) {
2776 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2777 rt2560_def_bbp[i].val);
2778 }
2779 #if 0
2780 /* initialize BBP registers to values stored in EEPROM */
2781 for (i = 0; i < 16; i++) {
2782 if (sc->bbp_prom[i].reg == 0xff)
2783 continue;
2784 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2785 }
2786 #endif
2787
2788 return 0;
2789 #undef N
2790 }
2791
2792 static int
2793 rt2560_init(struct ifnet *ifp)
2794 {
2795 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2796 struct rt2560_softc *sc = ifp->if_softc;
2797 struct ieee80211com *ic = &sc->sc_ic;
2798 uint32_t tmp;
2799 int i;
2800
2801 /* for CardBus, power on the socket */
2802 if (!(sc->sc_flags & RT2560_ENABLED)) {
2803 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2804 printf("%s: could not enable device\n",
2805 sc->sc_dev.dv_xname);
2806 return EIO;
2807 }
2808 sc->sc_flags |= RT2560_ENABLED;
2809 }
2810
2811 rt2560_stop(sc);
2812
2813 /* setup tx rings */
2814 tmp = RT2560_PRIO_RING_COUNT << 24 |
2815 RT2560_ATIM_RING_COUNT << 16 |
2816 RT2560_TX_RING_COUNT << 8 |
2817 RT2560_TX_DESC_SIZE;
2818
2819 /* rings _must_ be initialized in this _exact_ order! */
2820 RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2821 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2822 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2823 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2824 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2825
2826 /* setup rx ring */
2827 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2828
2829 RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2830 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2831
2832 /* initialize MAC registers to default values */
2833 for (i = 0; i < N(rt2560_def_mac); i++)
2834 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2835
2836 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2837 rt2560_set_macaddr(sc, ic->ic_myaddr);
2838
2839 /* set basic rate set (will be updated later) */
2840 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2841
2842 rt2560_set_txantenna(sc, 1);
2843 rt2560_set_rxantenna(sc, 1);
2844 rt2560_update_slot(ifp);
2845 rt2560_update_plcp(sc);
2846 rt2560_update_led(sc, 0, 0);
2847
2848 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2849 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2850
2851 if (rt2560_bbp_init(sc) != 0) {
2852 rt2560_stop(sc);
2853 return EIO;
2854 }
2855
2856 /* set default BSS channel */
2857 ic->ic_bss->ni_chan = ic->ic_ibss_chan;
2858 rt2560_set_chan(sc, ic->ic_bss->ni_chan);
2859
2860 /* kick Rx */
2861 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2862 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2863 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2864 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2865 tmp |= RT2560_DROP_TODS;
2866 if (!(ifp->if_flags & IFF_PROMISC))
2867 tmp |= RT2560_DROP_NOT_TO_ME;
2868 }
2869 RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2870
2871 /* clear old FCS and Rx FIFO errors */
2872 RAL_READ(sc, RT2560_CNT0);
2873 RAL_READ(sc, RT2560_CNT4);
2874
2875 /* clear any pending interrupts */
2876 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2877
2878 /* enable interrupts */
2879 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2880
2881 ifp->if_flags &= ~IFF_OACTIVE;
2882 ifp->if_flags |= IFF_RUNNING;
2883
2884 if (ic->ic_opmode == IEEE80211_M_MONITOR)
2885 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2886 else
2887 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2888
2889 return 0;
2890 #undef N
2891 }
2892
2893 static void
2894 rt2560_stop(void *priv)
2895 {
2896 struct rt2560_softc *sc = priv;
2897 struct ieee80211com *ic = &sc->sc_ic;
2898 struct ifnet *ifp = ic->ic_ifp;
2899
2900 sc->sc_tx_timer = 0;
2901 ifp->if_timer = 0;
2902 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2903
2904 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2905
2906 /* abort Tx */
2907 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2908
2909 /* disable Rx */
2910 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2911
2912 /* reset ASIC (and thus, BBP) */
2913 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2914 RAL_WRITE(sc, RT2560_CSR1, 0);
2915
2916 /* disable interrupts */
2917 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2918
2919 /* clear any pending interrupt */
2920 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2921
2922 /* reset Tx and Rx rings */
2923 rt2560_reset_tx_ring(sc, &sc->txq);
2924 rt2560_reset_tx_ring(sc, &sc->atimq);
2925 rt2560_reset_tx_ring(sc, &sc->prioq);
2926 rt2560_reset_tx_ring(sc, &sc->bcnq);
2927 rt2560_reset_rx_ring(sc, &sc->rxq);
2928
2929 }
2930
2931 static void
2932 rt2560_powerhook(int why, void *opaque)
2933 {
2934 struct rt2560_softc *sc;
2935 struct ifnet *ifp;
2936 int s;
2937
2938 sc = (struct rt2560_softc *)opaque;
2939 ifp = &sc->sc_if;
2940
2941 s = splnet();
2942 switch (why) {
2943 case PWR_SUSPEND:
2944 sc->sc_suspend = why;
2945 rt2560_stop(sc);
2946 if (sc->sc_power != NULL)
2947 (*sc->sc_power)(sc, why);
2948 break;
2949 case PWR_RESUME:
2950 sc->sc_suspend = why;
2951 if (ifp->if_flags & IFF_UP) {
2952 if (sc->sc_power != NULL)
2953 (*sc->sc_power)(sc, why);
2954 rt2560_init(ifp);
2955 if (ifp->if_flags & IFF_RUNNING)
2956 rt2560_start(ifp);
2957 }
2958 break;
2959 case PWR_STANDBY:
2960 case PWR_SOFTSUSPEND:
2961 case PWR_SOFTRESUME:
2962 break;
2963 }
2964 splx(s);
2965
2966 return;
2967 }
2968