rt2661.c revision 1.17 1 /* $NetBSD: rt2661.c,v 1.17 2007/09/01 07:32:27 dyoung Exp $ */
2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */
4
5 /*-
6 * Copyright (c) 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24 * http://www.ralinktech.com/
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.17 2007/09/01 07:32:27 dyoung Exp $");
29
30 #include "bpfilter.h"
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <machine/bus.h>
45 #include <machine/endian.h>
46 #include <machine/intr.h>
47
48 #if NBPFILTER > 0
49 #include <net/bpf.h>
50 #endif
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_ether.h>
57
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_rssadapt.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #include <dev/ic/rt2661reg.h>
68 #include <dev/ic/rt2661var.h>
69
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73
74 #include <dev/firmload.h>
75
76 #ifdef RAL_DEBUG
77 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0)
79 int rt2661_debug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 static int rt2661_alloc_tx_ring(struct rt2661_softc *,
86 struct rt2661_tx_ring *, int);
87 static void rt2661_reset_tx_ring(struct rt2661_softc *,
88 struct rt2661_tx_ring *);
89 static void rt2661_free_tx_ring(struct rt2661_softc *,
90 struct rt2661_tx_ring *);
91 static int rt2661_alloc_rx_ring(struct rt2661_softc *,
92 struct rt2661_rx_ring *, int);
93 static void rt2661_reset_rx_ring(struct rt2661_softc *,
94 struct rt2661_rx_ring *);
95 static void rt2661_free_rx_ring(struct rt2661_softc *,
96 struct rt2661_rx_ring *);
97 static struct ieee80211_node *
98 rt2661_node_alloc(struct ieee80211_node_table *);
99 static int rt2661_media_change(struct ifnet *);
100 static void rt2661_next_scan(void *);
101 static void rt2661_iter_func(void *, struct ieee80211_node *);
102 static void rt2661_rssadapt_updatestats(void *);
103 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
104 int);
105 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
106 static void rt2661_tx_intr(struct rt2661_softc *);
107 static void rt2661_tx_dma_intr(struct rt2661_softc *,
108 struct rt2661_tx_ring *);
109 static void rt2661_rx_intr(struct rt2661_softc *);
110 static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
111 static void rt2661_mcu_wakeup(struct rt2661_softc *);
112 static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
113 int rt2661_intr(void *);
114 #if NBPFILTER > 0
115 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
116 #endif
117 static int rt2661_ack_rate(struct ieee80211com *, int);
118 static uint16_t rt2661_txtime(int, int, uint32_t);
119 static uint8_t rt2661_plcp_signal(int);
120 static void rt2661_setup_tx_desc(struct rt2661_softc *,
121 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
122 const bus_dma_segment_t *, int, int);
123 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
124 struct ieee80211_node *);
125 static struct mbuf *
126 rt2661_get_rts(struct rt2661_softc *,
127 struct ieee80211_frame *, uint16_t);
128 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
129 struct ieee80211_node *, int);
130 static void rt2661_start(struct ifnet *);
131 static void rt2661_watchdog(struct ifnet *);
132 static int rt2661_reset(struct ifnet *);
133 static int rt2661_ioctl(struct ifnet *, u_long, void *);
134 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
135 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
136 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
137 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
138 static void rt2661_select_antenna(struct rt2661_softc *);
139 static void rt2661_enable_mrr(struct rt2661_softc *);
140 static void rt2661_set_txpreamble(struct rt2661_softc *);
141 static void rt2661_set_basicrates(struct rt2661_softc *,
142 const struct ieee80211_rateset *);
143 static void rt2661_select_band(struct rt2661_softc *,
144 struct ieee80211_channel *);
145 static void rt2661_set_chan(struct rt2661_softc *,
146 struct ieee80211_channel *);
147 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
148 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
149 static void rt2661_update_promisc(struct rt2661_softc *);
150 #if 0
151 static int rt2661_wme_update(struct ieee80211com *);
152 #endif
153
154 static void rt2661_update_slot(struct ifnet *);
155 static const char *
156 rt2661_get_rf(int);
157 static void rt2661_read_eeprom(struct rt2661_softc *);
158 static int rt2661_bbp_init(struct rt2661_softc *);
159 static int rt2661_init(struct ifnet *);
160 static void rt2661_stop(struct ifnet *, int);
161 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
162 int);
163 #ifdef notyet
164 static void rt2661_rx_tune(struct rt2661_softc *);
165 static void rt2661_radar_start(struct rt2661_softc *);
166 static int rt2661_radar_stop(struct rt2661_softc *);
167 #endif
168 static int rt2661_prepare_beacon(struct rt2661_softc *);
169 static void rt2661_enable_tsf_sync(struct rt2661_softc *);
170 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
171
172 /*
173 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174 */
175 static const struct ieee80211_rateset rt2661_rateset_11a =
176 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177
178 static const struct ieee80211_rateset rt2661_rateset_11b =
179 { 4, { 2, 4, 11, 22 } };
180
181 static const struct ieee80211_rateset rt2661_rateset_11g =
182 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183
184 /*
185 * Default values for MAC registers; values taken from the reference driver.
186 */
187 static const struct {
188 uint32_t reg;
189 uint32_t val;
190 } rt2661_def_mac[] = {
191 { RT2661_TXRX_CSR0, 0x0000b032 },
192 { RT2661_TXRX_CSR1, 0x9eb39eb3 },
193 { RT2661_TXRX_CSR2, 0x8a8b8c8d },
194 { RT2661_TXRX_CSR3, 0x00858687 },
195 { RT2661_TXRX_CSR7, 0x2e31353b },
196 { RT2661_TXRX_CSR8, 0x2a2a2a2c },
197 { RT2661_TXRX_CSR15, 0x0000000f },
198 { RT2661_MAC_CSR6, 0x00000fff },
199 { RT2661_MAC_CSR8, 0x016c030a },
200 { RT2661_MAC_CSR10, 0x00000718 },
201 { RT2661_MAC_CSR12, 0x00000004 },
202 { RT2661_MAC_CSR13, 0x0000e000 },
203 { RT2661_SEC_CSR0, 0x00000000 },
204 { RT2661_SEC_CSR1, 0x00000000 },
205 { RT2661_SEC_CSR5, 0x00000000 },
206 { RT2661_PHY_CSR1, 0x000023b0 },
207 { RT2661_PHY_CSR5, 0x060a100c },
208 { RT2661_PHY_CSR6, 0x00080606 },
209 { RT2661_PHY_CSR7, 0x00000a08 },
210 { RT2661_PCI_CFG_CSR, 0x3cca4808 },
211 { RT2661_AIFSN_CSR, 0x00002273 },
212 { RT2661_CWMIN_CSR, 0x00002344 },
213 { RT2661_CWMAX_CSR, 0x000034aa },
214 { RT2661_TEST_MODE_CSR, 0x00000200 },
215 { RT2661_M2H_CMD_DONE_CSR, 0xffffffff }
216 };
217
218 /*
219 * Default values for BBP registers; values taken from the reference driver.
220 */
221 static const struct {
222 uint8_t reg;
223 uint8_t val;
224 } rt2661_def_bbp[] = {
225 { 3, 0x00 },
226 { 15, 0x30 },
227 { 17, 0x20 },
228 { 21, 0xc8 },
229 { 22, 0x38 },
230 { 23, 0x06 },
231 { 24, 0xfe },
232 { 25, 0x0a },
233 { 26, 0x0d },
234 { 34, 0x12 },
235 { 37, 0x07 },
236 { 39, 0xf8 },
237 { 41, 0x60 },
238 { 53, 0x10 },
239 { 54, 0x18 },
240 { 60, 0x10 },
241 { 61, 0x04 },
242 { 62, 0x04 },
243 { 75, 0xfe },
244 { 86, 0xfe },
245 { 88, 0xfe },
246 { 90, 0x0f },
247 { 99, 0x00 },
248 { 102, 0x16 },
249 { 107, 0x04 }
250 };
251
252 /*
253 * Default settings for RF registers; values taken from the reference driver.
254 */
255 static const struct rfprog {
256 uint8_t chan;
257 uint32_t r1;
258 uint32_t r2;
259 uint32_t r3;
260 uint32_t r4;
261 } rt2661_rf5225_1[] = {
262 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
263 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
264 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
265 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
266 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
267 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
268 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
269 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
270 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
271 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
272 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
273 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
274 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
275 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
276
277 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 },
278 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 },
279 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 },
280 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
281 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
282 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
283 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
284 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
285
286 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
287 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
288 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
289 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
290 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
291 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
292 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
293 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
294 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
295 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
296 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
297
298 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
299 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
300 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
301 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
302 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
303
304 }, rt2661_rf5225_2[] = {
305 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
306 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
307 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
308 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
309 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
310 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
311 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
312 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
313 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
314 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
315 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
316 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
317 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
318 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
319
320 { 36, 0x00b35, 0x11206, 0x26014, 0x30280 },
321 { 40, 0x00b34, 0x111a0, 0x26014, 0x30280 },
322 { 44, 0x00b34, 0x111a1, 0x26014, 0x30286 },
323 { 48, 0x00b34, 0x111a3, 0x26014, 0x30282 },
324 { 52, 0x00b34, 0x111a4, 0x26014, 0x30288 },
325 { 56, 0x00b34, 0x111a6, 0x26014, 0x30284 },
326 { 60, 0x00b34, 0x111a8, 0x26014, 0x30280 },
327 { 64, 0x00b34, 0x111a9, 0x26014, 0x30286 },
328
329 { 100, 0x00b35, 0x11226, 0x2e014, 0x30280 },
330 { 104, 0x00b35, 0x11228, 0x2e014, 0x30280 },
331 { 108, 0x00b35, 0x1122a, 0x2e014, 0x30280 },
332 { 112, 0x00b35, 0x1122c, 0x2e014, 0x30280 },
333 { 116, 0x00b35, 0x1122e, 0x2e014, 0x30280 },
334 { 120, 0x00b34, 0x111c0, 0x2e014, 0x30280 },
335 { 124, 0x00b34, 0x111c1, 0x2e014, 0x30286 },
336 { 128, 0x00b34, 0x111c3, 0x2e014, 0x30282 },
337 { 132, 0x00b34, 0x111c4, 0x2e014, 0x30288 },
338 { 136, 0x00b34, 0x111c6, 0x2e014, 0x30284 },
339 { 140, 0x00b34, 0x111c8, 0x2e014, 0x30280 },
340
341 { 149, 0x00b34, 0x111cb, 0x2e014, 0x30286 },
342 { 153, 0x00b34, 0x111cd, 0x2e014, 0x30282 },
343 { 157, 0x00b35, 0x11242, 0x2e014, 0x30285 },
344 { 161, 0x00b35, 0x11244, 0x2e014, 0x30285 },
345 { 165, 0x00b35, 0x11246, 0x2e014, 0x30285 }
346 };
347
348 int
349 rt2661_attach(void *xsc, int id)
350 {
351 struct rt2661_softc *sc = xsc;
352 struct ieee80211com *ic = &sc->sc_ic;
353 struct ifnet *ifp = &sc->sc_if;
354 uint32_t val;
355 int error, i, ntries;
356
357 sc->sc_id = id;
358
359 callout_init(&sc->scan_ch, 0);
360 callout_init(&sc->rssadapt_ch, 0);
361
362 /* wait for NIC to initialize */
363 for (ntries = 0; ntries < 1000; ntries++) {
364 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
365 break;
366 DELAY(1000);
367 }
368 if (ntries == 1000) {
369 aprint_error("%s: timeout waiting for NIC to initialize\n",
370 sc->sc_dev.dv_xname);
371 return EIO;
372 }
373
374 /* retrieve RF rev. no and various other things from EEPROM */
375 rt2661_read_eeprom(sc);
376 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
377 ether_sprintf(ic->ic_myaddr));
378
379 aprint_normal("%s: MAC/BBP RT%X, RF %s\n", sc->sc_dev.dv_xname, val,
380 rt2661_get_rf(sc->rf_rev));
381
382 /*
383 * Allocate Tx and Rx rings.
384 */
385 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
386 if (error != 0) {
387 aprint_error("%s: could not allocate Tx ring 0\n",
388 sc->sc_dev.dv_xname);
389 goto fail1;
390 }
391
392 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
393 if (error != 0) {
394 aprint_error("%s: could not allocate Tx ring 1\n",
395 sc->sc_dev.dv_xname);
396 goto fail2;
397 }
398
399 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
400 if (error != 0) {
401 aprint_error("%s: could not allocate Tx ring 2\n",
402 sc->sc_dev.dv_xname);
403 goto fail3;
404 }
405
406 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
407 if (error != 0) {
408 aprint_error("%s: could not allocate Tx ring 3\n",
409 sc->sc_dev.dv_xname);
410 goto fail4;
411 }
412
413 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
414 if (error != 0) {
415 aprint_error("%s: could not allocate Mgt ring\n",
416 sc->sc_dev.dv_xname);
417 goto fail5;
418 }
419
420 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
421 if (error != 0) {
422 aprint_error("%s: could not allocate Rx ring\n",
423 sc->sc_dev.dv_xname);
424 goto fail6;
425 }
426
427 ifp->if_softc = sc;
428 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
429 ifp->if_init = rt2661_init;
430 ifp->if_ioctl = rt2661_ioctl;
431 ifp->if_start = rt2661_start;
432 ifp->if_watchdog = rt2661_watchdog;
433 IFQ_SET_READY(&ifp->if_snd);
434 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
435
436 ic->ic_ifp = ifp;
437 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
438 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
439 ic->ic_state = IEEE80211_S_INIT;
440
441 /* set device capabilities */
442 ic->ic_caps =
443 IEEE80211_C_IBSS | /* IBSS mode supported */
444 IEEE80211_C_MONITOR | /* monitor mode supported */
445 IEEE80211_C_HOSTAP | /* HostAp mode supported */
446 IEEE80211_C_TXPMGT | /* tx power management */
447 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
448 IEEE80211_C_SHSLOT | /* short slot time supported */
449 IEEE80211_C_WPA; /* 802.11i */
450
451 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
452 /* set supported .11a rates */
453 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
454
455 /* set supported .11a channels */
456 for (i = 36; i <= 64; i += 4) {
457 ic->ic_channels[i].ic_freq =
458 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
459 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
460 }
461 for (i = 100; i <= 140; i += 4) {
462 ic->ic_channels[i].ic_freq =
463 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
464 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
465 }
466 for (i = 149; i <= 165; i += 4) {
467 ic->ic_channels[i].ic_freq =
468 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
469 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
470 }
471 }
472
473 /* set supported .11b and .11g rates */
474 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
475 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
476
477 /* set supported .11b and .11g channels (1 through 14) */
478 for (i = 1; i <= 14; i++) {
479 ic->ic_channels[i].ic_freq =
480 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
481 ic->ic_channels[i].ic_flags =
482 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
483 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
484 }
485
486 if_attach(ifp);
487 ieee80211_ifattach(ic);
488 ic->ic_node_alloc = rt2661_node_alloc;
489 ic->ic_updateslot = rt2661_update_slot;
490 ic->ic_reset = rt2661_reset;
491
492 /* override state transition machine */
493 sc->sc_newstate = ic->ic_newstate;
494 ic->ic_newstate = rt2661_newstate;
495 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
496
497 #if NPBFILTER > 0
498 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
499 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
500
501 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
502 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
503 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
504
505 sc->sc_txtap_len = sizeof sc->sc_txtapu;
506 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
507 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
508 #endif
509
510 ieee80211_announce(ic);
511
512 return 0;
513
514 fail6: rt2661_free_tx_ring(sc, &sc->mgtq);
515 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]);
516 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]);
517 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]);
518 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]);
519 fail1: return ENXIO;
520 }
521
522 int
523 rt2661_detach(void *xsc)
524 {
525 struct rt2661_softc *sc = xsc;
526 struct ifnet *ifp = &sc->sc_if;
527
528 callout_stop(&sc->scan_ch);
529 callout_stop(&sc->rssadapt_ch);
530
531 ieee80211_ifdetach(&sc->sc_ic);
532 if_detach(ifp);
533
534 rt2661_free_tx_ring(sc, &sc->txq[0]);
535 rt2661_free_tx_ring(sc, &sc->txq[1]);
536 rt2661_free_tx_ring(sc, &sc->txq[2]);
537 rt2661_free_tx_ring(sc, &sc->txq[3]);
538 rt2661_free_tx_ring(sc, &sc->mgtq);
539 rt2661_free_rx_ring(sc, &sc->rxq);
540
541 return 0;
542 }
543
544 static int
545 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
546 int count)
547 {
548 int i, nsegs, error;
549
550 ring->count = count;
551 ring->queued = 0;
552 ring->cur = ring->next = ring->stat = 0;
553
554 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
555 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
556 if (error != 0) {
557 aprint_error("%s: could not create desc DMA map\n",
558 sc->sc_dev.dv_xname);
559 goto fail;
560 }
561
562 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
563 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
564 if (error != 0) {
565 aprint_error("%s: could not allocate DMA memory\n",
566 sc->sc_dev.dv_xname);
567 goto fail;
568 }
569
570 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
571 count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
572 BUS_DMA_NOWAIT);
573 if (error != 0) {
574 aprint_error("%s: could not map desc DMA memory\n",
575 sc->sc_dev.dv_xname);
576 goto fail;
577 }
578
579 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
580 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
581 if (error != 0) {
582 aprint_error("%s: could not load desc DMA map\n",
583 sc->sc_dev.dv_xname);
584 goto fail;
585 }
586
587 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
588 ring->physaddr = ring->map->dm_segs->ds_addr;
589
590 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
591 M_NOWAIT);
592 if (ring->data == NULL) {
593 aprint_error("%s: could not allocate soft data\n",
594 sc->sc_dev.dv_xname);
595 error = ENOMEM;
596 goto fail;
597 }
598
599 memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
600 for (i = 0; i < count; i++) {
601 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
602 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
603 &ring->data[i].map);
604 if (error != 0) {
605 aprint_error("%s: could not create DMA map\n",
606 sc->sc_dev.dv_xname);
607 goto fail;
608 }
609 }
610
611 return 0;
612
613 fail: rt2661_free_tx_ring(sc, ring);
614 return error;
615 }
616
617 static void
618 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
619 {
620 struct rt2661_tx_desc *desc;
621 struct rt2661_tx_data *data;
622 int i;
623
624 for (i = 0; i < ring->count; i++) {
625 desc = &ring->desc[i];
626 data = &ring->data[i];
627
628 if (data->m != NULL) {
629 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
630 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
631 bus_dmamap_unload(sc->sc_dmat, data->map);
632 m_freem(data->m);
633 data->m = NULL;
634 }
635
636 if (data->ni != NULL) {
637 ieee80211_free_node(data->ni);
638 data->ni = NULL;
639 }
640
641 desc->flags = 0;
642 }
643
644 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
645 BUS_DMASYNC_PREWRITE);
646
647 ring->queued = 0;
648 ring->cur = ring->next = ring->stat = 0;
649 }
650
651
652 static void
653 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
654 {
655 struct rt2661_tx_data *data;
656 int i;
657
658 if (ring->desc != NULL) {
659 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
660 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
661 bus_dmamap_unload(sc->sc_dmat, ring->map);
662 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
663 ring->count * RT2661_TX_DESC_SIZE);
664 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
665 }
666
667 if (ring->data != NULL) {
668 for (i = 0; i < ring->count; i++) {
669 data = &ring->data[i];
670
671 if (data->m != NULL) {
672 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
673 data->map->dm_mapsize,
674 BUS_DMASYNC_POSTWRITE);
675 bus_dmamap_unload(sc->sc_dmat, data->map);
676 m_freem(data->m);
677 }
678
679 if (data->ni != NULL)
680 ieee80211_free_node(data->ni);
681
682 if (data->map != NULL)
683 bus_dmamap_destroy(sc->sc_dmat, data->map);
684 }
685 free(ring->data, M_DEVBUF);
686 }
687 }
688
689 static int
690 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
691 int count)
692 {
693 struct rt2661_rx_desc *desc;
694 struct rt2661_rx_data *data;
695 int i, nsegs, error;
696
697 ring->count = count;
698 ring->cur = ring->next = 0;
699
700 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
701 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
702 if (error != 0) {
703 aprint_error("%s: could not create desc DMA map\n",
704 sc->sc_dev.dv_xname);
705 goto fail;
706 }
707
708 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
709 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
710 if (error != 0) {
711 aprint_error("%s: could not allocate DMA memory\n",
712 sc->sc_dev.dv_xname);
713 goto fail;
714 }
715
716 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
717 count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
718 BUS_DMA_NOWAIT);
719 if (error != 0) {
720 aprint_error("%s: could not map desc DMA memory\n",
721 sc->sc_dev.dv_xname);
722 goto fail;
723 }
724
725 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
726 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
727 if (error != 0) {
728 aprint_error("%s: could not load desc DMA map\n",
729 sc->sc_dev.dv_xname);
730 goto fail;
731 }
732
733 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
734 ring->physaddr = ring->map->dm_segs->ds_addr;
735
736 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
737 M_NOWAIT);
738 if (ring->data == NULL) {
739 aprint_error("%s: could not allocate soft data\n",
740 sc->sc_dev.dv_xname);
741 error = ENOMEM;
742 goto fail;
743 }
744
745 /*
746 * Pre-allocate Rx buffers and populate Rx ring.
747 */
748 memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
749 for (i = 0; i < count; i++) {
750 desc = &sc->rxq.desc[i];
751 data = &sc->rxq.data[i];
752
753 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
754 0, BUS_DMA_NOWAIT, &data->map);
755 if (error != 0) {
756 printf("%s: could not create DMA map\n",
757 sc->sc_dev.dv_xname);
758 goto fail;
759 }
760
761 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
762 if (data->m == NULL) {
763 printf("%s: could not allocate rx mbuf\n",
764 sc->sc_dev.dv_xname);
765 error = ENOMEM;
766 goto fail;
767 }
768
769 MCLGET(data->m, M_DONTWAIT);
770 if (!(data->m->m_flags & M_EXT)) {
771 printf("%s: could not allocate rx mbuf cluster\n",
772 sc->sc_dev.dv_xname);
773 error = ENOMEM;
774 goto fail;
775 }
776
777 error = bus_dmamap_load(sc->sc_dmat, data->map,
778 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
779 if (error != 0) {
780 printf("%s: could not load rx buf DMA map",
781 sc->sc_dev.dv_xname);
782 goto fail;
783 }
784
785 desc->flags = htole32(RT2661_RX_BUSY);
786 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
787 }
788
789 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
790 BUS_DMASYNC_PREWRITE);
791
792 return 0;
793
794 fail: rt2661_free_rx_ring(sc, ring);
795 return error;
796 }
797
798 static void
799 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
800 {
801 int i;
802
803 for (i = 0; i < ring->count; i++)
804 ring->desc[i].flags = htole32(RT2661_RX_BUSY);
805
806 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
807 BUS_DMASYNC_PREWRITE);
808
809 ring->cur = ring->next = 0;
810 }
811
812 static void
813 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
814 {
815 struct rt2661_rx_data *data;
816 int i;
817
818 if (ring->desc != NULL) {
819 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
820 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
821 bus_dmamap_unload(sc->sc_dmat, ring->map);
822 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
823 ring->count * RT2661_RX_DESC_SIZE);
824 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
825 }
826
827 if (ring->data != NULL) {
828 for (i = 0; i < ring->count; i++) {
829 data = &ring->data[i];
830
831 if (data->m != NULL) {
832 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
833 data->map->dm_mapsize,
834 BUS_DMASYNC_POSTREAD);
835 bus_dmamap_unload(sc->sc_dmat, data->map);
836 m_freem(data->m);
837 }
838
839 if (data->map != NULL)
840 bus_dmamap_destroy(sc->sc_dmat, data->map);
841 }
842 free(ring->data, M_DEVBUF);
843 }
844 }
845
846 static struct ieee80211_node *
847 rt2661_node_alloc(struct ieee80211_node_table *nt)
848 {
849 struct rt2661_node *rn;
850
851 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
852 M_NOWAIT | M_ZERO);
853
854 return (rn != NULL) ? &rn->ni : NULL;
855 }
856
857 static int
858 rt2661_media_change(struct ifnet *ifp)
859 {
860 int error;
861
862 error = ieee80211_media_change(ifp);
863 if (error != ENETRESET)
864 return error;
865
866 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
867 rt2661_init(ifp);
868
869 return 0;
870 }
871
872 /*
873 * This function is called periodically (every 200ms) during scanning to
874 * switch from one channel to another.
875 */
876 static void
877 rt2661_next_scan(void *arg)
878 {
879 struct rt2661_softc *sc = arg;
880 struct ieee80211com *ic = &sc->sc_ic;
881
882 if (ic->ic_state == IEEE80211_S_SCAN)
883 ieee80211_next_scan(ic);
884 }
885
886 /*
887 * This function is called for each neighbor node.
888 */
889 static void
890 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
891 {
892 struct rt2661_node *rn = (struct rt2661_node *)ni;
893
894 ieee80211_rssadapt_updatestats(&rn->rssadapt);
895 }
896
897 /*
898 * This function is called periodically (every 100ms) in RUN state to update
899 * the rate adaptation statistics.
900 */
901 static void
902 rt2661_rssadapt_updatestats(void *arg)
903 {
904 struct rt2661_softc *sc = arg;
905 struct ieee80211com *ic = &sc->sc_ic;
906
907 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
908
909 callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_rssadapt_updatestats,
910 sc);
911 }
912
913 static int
914 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
915 {
916 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
917 enum ieee80211_state ostate;
918 struct ieee80211_node *ni;
919 uint32_t tmp;
920 int error = 0;
921
922 ostate = ic->ic_state;
923 callout_stop(&sc->scan_ch);
924
925 switch (nstate) {
926 case IEEE80211_S_INIT:
927 callout_stop(&sc->rssadapt_ch);
928
929 if (ostate == IEEE80211_S_RUN) {
930 /* abort TSF synchronization */
931 tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
932 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
933 }
934 break;
935
936 case IEEE80211_S_SCAN:
937 rt2661_set_chan(sc, ic->ic_curchan);
938 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
939 break;
940
941 case IEEE80211_S_AUTH:
942 case IEEE80211_S_ASSOC:
943 rt2661_set_chan(sc, ic->ic_curchan);
944 break;
945
946 case IEEE80211_S_RUN:
947 rt2661_set_chan(sc, ic->ic_curchan);
948
949 ni = ic->ic_bss;
950
951 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
952 rt2661_enable_mrr(sc);
953 rt2661_set_txpreamble(sc);
954 rt2661_set_basicrates(sc, &ni->ni_rates);
955 rt2661_set_bssid(sc, ni->ni_bssid);
956 }
957
958 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
959 ic->ic_opmode == IEEE80211_M_IBSS) {
960 if ((error = rt2661_prepare_beacon(sc)) != 0)
961 break;
962 }
963
964 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
965 callout_reset(&sc->rssadapt_ch, hz / 10,
966 rt2661_rssadapt_updatestats, sc);
967 rt2661_enable_tsf_sync(sc);
968 }
969 break;
970 }
971
972 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
973 }
974
975 /*
976 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
977 * 93C66).
978 */
979 static uint16_t
980 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
981 {
982 uint32_t tmp;
983 uint16_t val;
984 int n;
985
986 /* clock C once before the first command */
987 RT2661_EEPROM_CTL(sc, 0);
988
989 RT2661_EEPROM_CTL(sc, RT2661_S);
990 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
991 RT2661_EEPROM_CTL(sc, RT2661_S);
992
993 /* write start bit (1) */
994 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
995 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
996
997 /* write READ opcode (10) */
998 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
999 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1000 RT2661_EEPROM_CTL(sc, RT2661_S);
1001 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1002
1003 /* write address (A5-A0 or A7-A0) */
1004 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
1005 for (; n >= 0; n--) {
1006 RT2661_EEPROM_CTL(sc, RT2661_S |
1007 (((addr >> n) & 1) << RT2661_SHIFT_D));
1008 RT2661_EEPROM_CTL(sc, RT2661_S |
1009 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
1010 }
1011
1012 RT2661_EEPROM_CTL(sc, RT2661_S);
1013
1014 /* read data Q15-Q0 */
1015 val = 0;
1016 for (n = 15; n >= 0; n--) {
1017 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1018 tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1019 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1020 RT2661_EEPROM_CTL(sc, RT2661_S);
1021 }
1022
1023 RT2661_EEPROM_CTL(sc, 0);
1024
1025 /* clear Chip Select and clock C */
1026 RT2661_EEPROM_CTL(sc, RT2661_S);
1027 RT2661_EEPROM_CTL(sc, 0);
1028 RT2661_EEPROM_CTL(sc, RT2661_C);
1029
1030 return val;
1031 }
1032
1033 static void
1034 rt2661_tx_intr(struct rt2661_softc *sc)
1035 {
1036 struct ieee80211com *ic = &sc->sc_ic;
1037 struct ifnet *ifp = &sc->sc_if;
1038 struct rt2661_tx_ring *txq;
1039 struct rt2661_tx_data *data;
1040 struct rt2661_node *rn;
1041 uint32_t val;
1042 int qid, retrycnt;
1043
1044 for (;;) {
1045 val = RAL_READ(sc, RT2661_STA_CSR4);
1046 if (!(val & RT2661_TX_STAT_VALID))
1047 break;
1048
1049 /* retrieve the queue in which this frame was sent */
1050 qid = RT2661_TX_QID(val);
1051 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
1052
1053 /* retrieve rate control algorithm context */
1054 data = &txq->data[txq->stat];
1055 rn = (struct rt2661_node *)data->ni;
1056
1057 /* if no frame has been sent, ignore */
1058 if (rn == NULL)
1059 continue;
1060
1061 switch (RT2661_TX_RESULT(val)) {
1062 case RT2661_TX_SUCCESS:
1063 retrycnt = RT2661_TX_RETRYCNT(val);
1064
1065 DPRINTFN(10, ("data frame sent successfully after "
1066 "%d retries\n", retrycnt));
1067 if (retrycnt == 0 && data->id.id_node != NULL) {
1068 ieee80211_rssadapt_raise_rate(ic,
1069 &rn->rssadapt, &data->id);
1070 }
1071 ifp->if_opackets++;
1072 break;
1073
1074 case RT2661_TX_RETRY_FAIL:
1075 DPRINTFN(9, ("sending data frame failed (too much "
1076 "retries)\n"));
1077 if (data->id.id_node != NULL) {
1078 ieee80211_rssadapt_lower_rate(ic, data->ni,
1079 &rn->rssadapt, &data->id);
1080 }
1081 ifp->if_oerrors++;
1082 break;
1083
1084 default:
1085 /* other failure */
1086 printf("%s: sending data frame failed 0x%08x\n",
1087 sc->sc_dev.dv_xname, val);
1088 ifp->if_oerrors++;
1089 }
1090
1091 ieee80211_free_node(data->ni);
1092 data->ni = NULL;
1093
1094 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
1095
1096 txq->queued--;
1097 if (++txq->stat >= txq->count) /* faster than % count */
1098 txq->stat = 0;
1099 }
1100
1101 sc->sc_tx_timer = 0;
1102 ifp->if_flags &= ~IFF_OACTIVE;
1103 rt2661_start(ifp);
1104 }
1105
1106 static void
1107 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1108 {
1109 struct rt2661_tx_desc *desc;
1110 struct rt2661_tx_data *data;
1111
1112 for (;;) {
1113 desc = &txq->desc[txq->next];
1114 data = &txq->data[txq->next];
1115
1116 bus_dmamap_sync(sc->sc_dmat, txq->map,
1117 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1118 BUS_DMASYNC_POSTREAD);
1119
1120 if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1121 !(le32toh(desc->flags) & RT2661_TX_VALID))
1122 break;
1123
1124 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1125 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1126 bus_dmamap_unload(sc->sc_dmat, data->map);
1127 m_freem(data->m);
1128 data->m = NULL;
1129 /* node reference is released in rt2661_tx_intr() */
1130
1131 /* descriptor is no longer valid */
1132 desc->flags &= ~htole32(RT2661_TX_VALID);
1133
1134 bus_dmamap_sync(sc->sc_dmat, txq->map,
1135 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1136 BUS_DMASYNC_PREWRITE);
1137
1138 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1139
1140 if (++txq->next >= txq->count) /* faster than % count */
1141 txq->next = 0;
1142 }
1143 }
1144
1145 static void
1146 rt2661_rx_intr(struct rt2661_softc *sc)
1147 {
1148 struct ieee80211com *ic = &sc->sc_ic;
1149 struct ifnet *ifp = &sc->sc_if;
1150 struct rt2661_rx_desc *desc;
1151 struct rt2661_rx_data *data;
1152 struct rt2661_node *rn;
1153 struct ieee80211_frame *wh;
1154 struct ieee80211_node *ni;
1155 struct mbuf *mnew, *m;
1156 int error;
1157
1158 for (;;) {
1159 desc = &sc->rxq.desc[sc->rxq.cur];
1160 data = &sc->rxq.data[sc->rxq.cur];
1161
1162 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1163 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1164 BUS_DMASYNC_POSTREAD);
1165
1166 if (le32toh(desc->flags) & RT2661_RX_BUSY)
1167 break;
1168
1169 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1170 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1171 /*
1172 * This should not happen since we did not request
1173 * to receive those frames when we filled TXRX_CSR0.
1174 */
1175 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1176 le32toh(desc->flags)));
1177 ifp->if_ierrors++;
1178 goto skip;
1179 }
1180
1181 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1182 ifp->if_ierrors++;
1183 goto skip;
1184 }
1185
1186 /*
1187 * Try to allocate a new mbuf for this ring element and load it
1188 * before processing the current mbuf. If the ring element
1189 * cannot be loaded, drop the received packet and reuse the old
1190 * mbuf. In the unlikely case that the old mbuf can't be
1191 * reloaded either, explicitly panic.
1192 */
1193 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1194 if (mnew == NULL) {
1195 ifp->if_ierrors++;
1196 goto skip;
1197 }
1198
1199 MCLGET(mnew, M_DONTWAIT);
1200 if (!(mnew->m_flags & M_EXT)) {
1201 m_freem(mnew);
1202 ifp->if_ierrors++;
1203 goto skip;
1204 }
1205
1206 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1207 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1208 bus_dmamap_unload(sc->sc_dmat, data->map);
1209
1210 error = bus_dmamap_load(sc->sc_dmat, data->map,
1211 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1212 if (error != 0) {
1213 m_freem(mnew);
1214
1215 /* try to reload the old mbuf */
1216 error = bus_dmamap_load(sc->sc_dmat, data->map,
1217 mtod(data->m, void *), MCLBYTES, NULL,
1218 BUS_DMA_NOWAIT);
1219 if (error != 0) {
1220 /* very unlikely that it will fail... */
1221 panic("%s: could not load old rx mbuf",
1222 sc->sc_dev.dv_xname);
1223 }
1224 ifp->if_ierrors++;
1225 goto skip;
1226 }
1227
1228 /*
1229 * New mbuf successfully loaded, update Rx ring and continue
1230 * processing.
1231 */
1232 m = data->m;
1233 data->m = mnew;
1234 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1235
1236 /* finalize mbuf */
1237 m->m_pkthdr.rcvif = ifp;
1238 m->m_pkthdr.len = m->m_len =
1239 (le32toh(desc->flags) >> 16) & 0xfff;
1240
1241 #if NBPFILTER > 0
1242 if (sc->sc_drvbpf != NULL) {
1243 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1244 uint32_t tsf_lo, tsf_hi;
1245
1246 /* get timestamp (low and high 32 bits) */
1247 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1248 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1249
1250 tap->wr_tsf =
1251 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1252 tap->wr_flags = 0;
1253 tap->wr_rate = rt2661_rxrate(desc);
1254 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1255 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1256 tap->wr_antsignal = desc->rssi;
1257
1258 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1259 }
1260 #endif
1261
1262 wh = mtod(m, struct ieee80211_frame *);
1263 ni = ieee80211_find_rxnode(ic,
1264 (struct ieee80211_frame_min *)wh);
1265
1266 /* send the frame to the 802.11 layer */
1267 ieee80211_input(ic, m, ni, desc->rssi, 0);
1268
1269
1270 /* give rssi to the rate adatation algorithm */
1271 rn = (struct rt2661_node *)ni;
1272 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt,
1273 rt2661_get_rssi(sc, desc->rssi));
1274
1275 /* node is no longer needed */
1276 ieee80211_free_node(ni);
1277
1278 skip: desc->flags |= htole32(RT2661_RX_BUSY);
1279
1280 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1281 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1282 BUS_DMASYNC_PREWRITE);
1283
1284 DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1285
1286 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1287 }
1288
1289 /*
1290 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1291 * without calling if_start().
1292 */
1293 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1294 rt2661_start(ifp);
1295 }
1296
1297 /* ARGSUSED */
1298 static void
1299 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1300 {
1301 /* do nothing */
1302 }
1303
1304 static void
1305 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1306 {
1307 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1308
1309 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1310 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1311 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1312
1313 /* send wakeup command to MCU */
1314 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1315 }
1316
1317 static void
1318 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1319 {
1320 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1321 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1322 }
1323
1324 int
1325 rt2661_intr(void *arg)
1326 {
1327 struct rt2661_softc *sc = arg;
1328 struct ifnet *ifp = &sc->sc_if;
1329 uint32_t r1, r2;
1330
1331 /* disable MAC and MCU interrupts */
1332 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1333 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1334
1335 /* don't re-enable interrupts if we're shutting down */
1336 if (!(ifp->if_flags & IFF_RUNNING))
1337 return 0;
1338
1339 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1340 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1341
1342 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1343 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1344
1345 if (r1 & RT2661_MGT_DONE)
1346 rt2661_tx_dma_intr(sc, &sc->mgtq);
1347
1348 if (r1 & RT2661_RX_DONE)
1349 rt2661_rx_intr(sc);
1350
1351 if (r1 & RT2661_TX0_DMA_DONE)
1352 rt2661_tx_dma_intr(sc, &sc->txq[0]);
1353
1354 if (r1 & RT2661_TX1_DMA_DONE)
1355 rt2661_tx_dma_intr(sc, &sc->txq[1]);
1356
1357 if (r1 & RT2661_TX2_DMA_DONE)
1358 rt2661_tx_dma_intr(sc, &sc->txq[2]);
1359
1360 if (r1 & RT2661_TX3_DMA_DONE)
1361 rt2661_tx_dma_intr(sc, &sc->txq[3]);
1362
1363 if (r1 & RT2661_TX_DONE)
1364 rt2661_tx_intr(sc);
1365
1366 if (r2 & RT2661_MCU_CMD_DONE)
1367 rt2661_mcu_cmd_intr(sc);
1368
1369 if (r2 & RT2661_MCU_BEACON_EXPIRE)
1370 rt2661_mcu_beacon_expire(sc);
1371
1372 if (r2 & RT2661_MCU_WAKEUP)
1373 rt2661_mcu_wakeup(sc);
1374
1375 /* re-enable MAC and MCU interrupts */
1376 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1377 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1378
1379 return 1;
1380 }
1381
1382 /* quickly determine if a given rate is CCK or OFDM */
1383 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1384
1385 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1386 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1387
1388 #define RAL_SIFS 10 /* us */
1389
1390 /*
1391 * This function is only used by the Rx radiotap code. It returns the rate at
1392 * which a given frame was received.
1393 */
1394 #if NBPFILTER > 0
1395 static uint8_t
1396 rt2661_rxrate(struct rt2661_rx_desc *desc)
1397 {
1398 if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1399 /* reverse function of rt2661_plcp_signal */
1400 switch (desc->rate & 0xf) {
1401 case 0xb: return 12;
1402 case 0xf: return 18;
1403 case 0xa: return 24;
1404 case 0xe: return 36;
1405 case 0x9: return 48;
1406 case 0xd: return 72;
1407 case 0x8: return 96;
1408 case 0xc: return 108;
1409 }
1410 } else {
1411 if (desc->rate == 10)
1412 return 2;
1413 if (desc->rate == 20)
1414 return 4;
1415 if (desc->rate == 55)
1416 return 11;
1417 if (desc->rate == 110)
1418 return 22;
1419 }
1420 return 2; /* should not get there */
1421 }
1422 #endif
1423
1424 /*
1425 * Return the expected ack rate for a frame transmitted at rate `rate'.
1426 * XXX: this should depend on the destination node basic rate set.
1427 */
1428 static int
1429 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1430 {
1431 switch (rate) {
1432 /* CCK rates */
1433 case 2:
1434 return 2;
1435 case 4:
1436 case 11:
1437 case 22:
1438 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1439
1440 /* OFDM rates */
1441 case 12:
1442 case 18:
1443 return 12;
1444 case 24:
1445 case 36:
1446 return 24;
1447 case 48:
1448 case 72:
1449 case 96:
1450 case 108:
1451 return 48;
1452 }
1453
1454 /* default to 1Mbps */
1455 return 2;
1456 }
1457
1458 /*
1459 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1460 * The function automatically determines the operating mode depending on the
1461 * given rate. `flags' indicates whether short preamble is in use or not.
1462 */
1463 static uint16_t
1464 rt2661_txtime(int len, int rate, uint32_t flags)
1465 {
1466 uint16_t txtime;
1467
1468 if (RAL_RATE_IS_OFDM(rate)) {
1469 /* IEEE Std 802.11a-1999, pp. 37 */
1470 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1471 txtime = 16 + 4 + 4 * txtime + 6;
1472 } else {
1473 /* IEEE Std 802.11b-1999, pp. 28 */
1474 txtime = (16 * len + rate - 1) / rate;
1475 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1476 txtime += 72 + 24;
1477 else
1478 txtime += 144 + 48;
1479 }
1480 return txtime;
1481 }
1482
1483 static uint8_t
1484 rt2661_plcp_signal(int rate)
1485 {
1486 switch (rate) {
1487 /* CCK rates (returned values are device-dependent) */
1488 case 2: return 0x0;
1489 case 4: return 0x1;
1490 case 11: return 0x2;
1491 case 22: return 0x3;
1492
1493 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1494 case 12: return 0xb;
1495 case 18: return 0xf;
1496 case 24: return 0xa;
1497 case 36: return 0xe;
1498 case 48: return 0x9;
1499 case 72: return 0xd;
1500 case 96: return 0x8;
1501 case 108: return 0xc;
1502
1503 /* unsupported rates (should not get there) */
1504 default: return 0xff;
1505 }
1506 }
1507
1508 static void
1509 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1510 uint32_t flags, uint16_t xflags, int len, int rate,
1511 const bus_dma_segment_t *segs, int nsegs, int ac)
1512 {
1513 struct ieee80211com *ic = &sc->sc_ic;
1514 uint16_t plcp_length;
1515 int i, remainder;
1516
1517 desc->flags = htole32(flags);
1518 desc->flags |= htole32(len << 16);
1519 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1520
1521 desc->xflags = htole16(xflags);
1522 desc->xflags |= htole16(nsegs << 13);
1523
1524 desc->wme = htole16(
1525 RT2661_QID(ac) |
1526 RT2661_AIFSN(2) |
1527 RT2661_LOGCWMIN(4) |
1528 RT2661_LOGCWMAX(10));
1529
1530 /*
1531 * Remember in which queue this frame was sent. This field is driver
1532 * private data only. It will be made available by the NIC in STA_CSR4
1533 * on Tx interrupts.
1534 */
1535 desc->qid = ac;
1536
1537 /* setup PLCP fields */
1538 desc->plcp_signal = rt2661_plcp_signal(rate);
1539 desc->plcp_service = 4;
1540
1541 len += IEEE80211_CRC_LEN;
1542 if (RAL_RATE_IS_OFDM(rate)) {
1543 desc->flags |= htole32(RT2661_TX_OFDM);
1544
1545 plcp_length = len & 0xfff;
1546 desc->plcp_length_hi = plcp_length >> 6;
1547 desc->plcp_length_lo = plcp_length & 0x3f;
1548 } else {
1549 plcp_length = (16 * len + rate - 1) / rate;
1550 if (rate == 22) {
1551 remainder = (16 * len) % 22;
1552 if (remainder != 0 && remainder < 7)
1553 desc->plcp_service |= RT2661_PLCP_LENGEXT;
1554 }
1555 desc->plcp_length_hi = plcp_length >> 8;
1556 desc->plcp_length_lo = plcp_length & 0xff;
1557
1558 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1559 desc->plcp_signal |= 0x08;
1560 }
1561
1562 /* RT2x61 supports scatter with up to 5 segments */
1563 for (i = 0; i < nsegs; i++) {
1564 desc->addr[i] = htole32(segs[i].ds_addr);
1565 desc->len [i] = htole16(segs[i].ds_len);
1566 }
1567 }
1568
1569 static int
1570 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1571 struct ieee80211_node *ni)
1572 {
1573 struct ieee80211com *ic = &sc->sc_ic;
1574 struct rt2661_tx_desc *desc;
1575 struct rt2661_tx_data *data;
1576 struct ieee80211_frame *wh;
1577 uint16_t dur;
1578 uint32_t flags = 0;
1579 int rate, error;
1580
1581 desc = &sc->mgtq.desc[sc->mgtq.cur];
1582 data = &sc->mgtq.data[sc->mgtq.cur];
1583
1584 /* send mgt frames at the lowest available rate */
1585 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1586
1587 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1588 BUS_DMA_NOWAIT);
1589 if (error != 0) {
1590 printf("%s: could not map mbuf (error %d)\n",
1591 sc->sc_dev.dv_xname, error);
1592 m_freem(m0);
1593 return error;
1594 }
1595
1596 #if NBPFILTER > 0
1597 if (sc->sc_drvbpf != NULL) {
1598 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1599
1600 tap->wt_flags = 0;
1601 tap->wt_rate = rate;
1602 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1603 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1604
1605 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1606 }
1607 #endif
1608
1609 data->m = m0;
1610 data->ni = ni;
1611
1612 wh = mtod(m0, struct ieee80211_frame *);
1613
1614 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1615 flags |= RT2661_TX_NEED_ACK;
1616
1617 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1618 RAL_SIFS;
1619 *(uint16_t *)wh->i_dur = htole16(dur);
1620
1621 /* tell hardware to add timestamp in probe responses */
1622 if ((wh->i_fc[0] &
1623 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1624 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1625 flags |= RT2661_TX_TIMESTAMP;
1626 }
1627
1628 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1629 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1630 RT2661_QID_MGT);
1631
1632 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1633 BUS_DMASYNC_PREWRITE);
1634 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1635 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1636 BUS_DMASYNC_PREWRITE);
1637
1638 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1639 m0->m_pkthdr.len, sc->mgtq.cur, rate));
1640
1641 /* kick mgt */
1642 sc->mgtq.queued++;
1643 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1644 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1645
1646 return 0;
1647 }
1648
1649 /*
1650 * Build a RTS control frame.
1651 */
1652 static struct mbuf *
1653 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1654 uint16_t dur)
1655 {
1656 struct ieee80211_frame_rts *rts;
1657 struct mbuf *m;
1658
1659 MGETHDR(m, M_DONTWAIT, MT_DATA);
1660 if (m == NULL) {
1661 sc->sc_ic.ic_stats.is_tx_nobuf++;
1662 printf("%s: could not allocate RTS frame\n",
1663 sc->sc_dev.dv_xname);
1664 return NULL;
1665 }
1666
1667 rts = mtod(m, struct ieee80211_frame_rts *);
1668
1669 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1670 IEEE80211_FC0_SUBTYPE_RTS;
1671 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1672 *(uint16_t *)rts->i_dur = htole16(dur);
1673 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1674 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1675
1676 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1677
1678 return m;
1679 }
1680
1681 static int
1682 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1683 struct ieee80211_node *ni, int ac)
1684 {
1685 struct ieee80211com *ic = &sc->sc_ic;
1686 struct rt2661_tx_ring *txq = &sc->txq[ac];
1687 struct rt2661_tx_desc *desc;
1688 struct rt2661_tx_data *data;
1689 struct rt2661_node *rn;
1690 struct ieee80211_rateset *rs;
1691 struct ieee80211_frame *wh;
1692 struct ieee80211_key *k;
1693 struct mbuf *mnew;
1694 uint16_t dur;
1695 uint32_t flags = 0;
1696 int rate, error;
1697
1698 wh = mtod(m0, struct ieee80211_frame *);
1699
1700 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1701 rs = &ic->ic_sup_rates[ic->ic_curmode];
1702 rate = rs->rs_rates[ic->ic_fixed_rate];
1703 } else {
1704 rs = &ni->ni_rates;
1705 rn = (struct rt2661_node *)ni;
1706 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1707 wh, m0->m_pkthdr.len, -1, NULL, 0);
1708 rate = rs->rs_rates[ni->ni_txrate];
1709 }
1710 rate &= IEEE80211_RATE_VAL;
1711
1712 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1713 k = ieee80211_crypto_encap(ic, ni, m0);
1714 if (k == NULL) {
1715 m_freem(m0);
1716 return ENOBUFS;
1717 }
1718
1719 /* packet header may have moved, reset our local pointer */
1720 wh = mtod(m0, struct ieee80211_frame *);
1721 }
1722
1723 /*
1724 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1725 * for directed frames only when the length of the MPDU is greater
1726 * than the length threshold indicated by [...]" ic_rtsthreshold.
1727 */
1728 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1729 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1730 struct mbuf *m;
1731 int rtsrate, ackrate;
1732
1733 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1734 ackrate = rt2661_ack_rate(ic, rate);
1735
1736 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1737 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1738 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1739 3 * RAL_SIFS;
1740
1741 m = rt2661_get_rts(sc, wh, dur);
1742
1743 desc = &txq->desc[txq->cur];
1744 data = &txq->data[txq->cur];
1745
1746 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1747 BUS_DMA_NOWAIT);
1748 if (error != 0) {
1749 printf("%s: could not map mbuf (error %d)\n",
1750 sc->sc_dev.dv_xname, error);
1751 m_freem(m);
1752 m_freem(m0);
1753 return error;
1754 }
1755
1756 /* avoid multiple free() of the same node for each fragment */
1757 ieee80211_ref_node(ni);
1758
1759 data->m = m;
1760 data->ni = ni;
1761
1762 /* RTS frames are not taken into account for rssadapt */
1763 data->id.id_node = NULL;
1764
1765 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1766 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1767 data->map->dm_segs, data->map->dm_nsegs, ac);
1768
1769 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1770 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1771 bus_dmamap_sync(sc->sc_dmat, txq->map,
1772 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1773 BUS_DMASYNC_PREWRITE);
1774
1775 txq->queued++;
1776 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1777
1778 /*
1779 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1780 * asynchronous data frame shall be transmitted after the CTS
1781 * frame and a SIFS period.
1782 */
1783 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1784 }
1785
1786 data = &txq->data[txq->cur];
1787 desc = &txq->desc[txq->cur];
1788
1789 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1790 BUS_DMA_NOWAIT);
1791 if (error != 0 && error != EFBIG) {
1792 printf("%s: could not map mbuf (error %d)\n",
1793 sc->sc_dev.dv_xname, error);
1794 m_freem(m0);
1795 return error;
1796 }
1797 if (error != 0) {
1798 /* too many fragments, linearize */
1799
1800 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1801 if (mnew == NULL) {
1802 m_freem(m0);
1803 return ENOMEM;
1804 }
1805
1806 M_COPY_PKTHDR(mnew, m0);
1807 if (m0->m_pkthdr.len > MHLEN) {
1808 MCLGET(mnew, M_DONTWAIT);
1809 if (!(mnew->m_flags & M_EXT)) {
1810 m_freem(m0);
1811 m_freem(mnew);
1812 return ENOMEM;
1813 }
1814 }
1815
1816 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1817 m_freem(m0);
1818 mnew->m_len = mnew->m_pkthdr.len;
1819 m0 = mnew;
1820
1821 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1822 BUS_DMA_NOWAIT);
1823 if (error != 0) {
1824 printf("%s: could not map mbuf (error %d)\n",
1825 sc->sc_dev.dv_xname, error);
1826 m_freem(m0);
1827 return error;
1828 }
1829
1830 /* packet header have moved, reset our local pointer */
1831 wh = mtod(m0, struct ieee80211_frame *);
1832 }
1833
1834 #if NBPFILTER > 0
1835 if (sc->sc_drvbpf != NULL) {
1836 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1837
1838 tap->wt_flags = 0;
1839 tap->wt_rate = rate;
1840 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1841 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1842
1843 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1844 }
1845 #endif
1846
1847 data->m = m0;
1848 data->ni = ni;
1849
1850 /* remember link conditions for rate adaptation algorithm */
1851 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1852 data->id.id_len = m0->m_pkthdr.len;
1853 data->id.id_rateidx = ni->ni_txrate;
1854 data->id.id_node = ni;
1855 data->id.id_rssi = ni->ni_rssi;
1856 } else
1857 data->id.id_node = NULL;
1858
1859 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1860 flags |= RT2661_TX_NEED_ACK;
1861
1862 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1863 ic->ic_flags) + RAL_SIFS;
1864 *(uint16_t *)wh->i_dur = htole16(dur);
1865 }
1866
1867 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1868 data->map->dm_segs, data->map->dm_nsegs, ac);
1869
1870 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1871 BUS_DMASYNC_PREWRITE);
1872 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1873 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1874
1875 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1876 m0->m_pkthdr.len, txq->cur, rate));
1877
1878 /* kick Tx */
1879 txq->queued++;
1880 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1881 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1882
1883 return 0;
1884 }
1885
1886 static void
1887 rt2661_start(struct ifnet *ifp)
1888 {
1889 struct rt2661_softc *sc = ifp->if_softc;
1890 struct ieee80211com *ic = &sc->sc_ic;
1891 struct mbuf *m0;
1892 struct ether_header *eh;
1893 struct ieee80211_node *ni = NULL;
1894 int ac;
1895
1896 /*
1897 * net80211 may still try to send management frames even if the
1898 * IFF_RUNNING flag is not set...
1899 */
1900 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1901 return;
1902
1903 for (;;) {
1904 IF_POLL(&ic->ic_mgtq, m0);
1905 if (m0 != NULL) {
1906 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1907 ifp->if_flags |= IFF_OACTIVE;
1908 break;
1909 }
1910 IF_DEQUEUE(&ic->ic_mgtq, m0);
1911 if (m0 == NULL)
1912 break;
1913
1914 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1915 m0->m_pkthdr.rcvif = NULL;
1916 #if NBPFILTER > 0
1917 if (ic->ic_rawbpf != NULL)
1918 bpf_mtap(ic->ic_rawbpf, m0);
1919 #endif
1920 if (rt2661_tx_mgt(sc, m0, ni) != 0)
1921 break;
1922
1923 } else {
1924 if (ic->ic_state != IEEE80211_S_RUN)
1925 break;
1926 IFQ_DEQUEUE(&ifp->if_snd, m0);
1927 if (m0 == NULL)
1928 break;
1929
1930 if (m0->m_len < sizeof (struct ether_header) &&
1931 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1932 continue;
1933
1934 eh = mtod(m0, struct ether_header *);
1935 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1936 if (ni == NULL) {
1937 m_freem(m0);
1938 ifp->if_oerrors++;
1939 continue;
1940 }
1941
1942
1943 /* classify mbuf so we can find which tx ring to use */
1944 if (ieee80211_classify(ic, m0, ni) != 0) {
1945 m_freem(m0);
1946 ieee80211_free_node(ni);
1947 ifp->if_oerrors++;
1948 continue;
1949 }
1950
1951 /* no QoS encapsulation for EAPOL frames */
1952 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1953 M_WME_GETAC(m0) : WME_AC_BE;
1954
1955 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1956 /* there is no place left in this ring */
1957 ifp->if_flags |= IFF_OACTIVE;
1958 break;
1959 }
1960 #if NBPFILTER > 0
1961 if (ifp->if_bpf != NULL)
1962 bpf_mtap(ifp->if_bpf, m0);
1963 #endif
1964 m0 = ieee80211_encap(ic, m0, ni);
1965 if (m0 == NULL) {
1966 ieee80211_free_node(ni);
1967 ifp->if_oerrors++;
1968 continue;
1969 }
1970 #if NBPFILTER > 0
1971 if (ic->ic_rawbpf != NULL)
1972 bpf_mtap(ic->ic_rawbpf, m0);
1973 #endif
1974 if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1975 if (ni != NULL)
1976 ieee80211_free_node(ni);
1977 ifp->if_oerrors++;
1978 break;
1979 }
1980 }
1981
1982 sc->sc_tx_timer = 5;
1983 ifp->if_timer = 1;
1984 }
1985 }
1986
1987 static void
1988 rt2661_watchdog(struct ifnet *ifp)
1989 {
1990 struct rt2661_softc *sc = ifp->if_softc;
1991
1992 ifp->if_timer = 0;
1993
1994 if (sc->sc_tx_timer > 0) {
1995 if (--sc->sc_tx_timer == 0) {
1996 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1997 rt2661_init(ifp);
1998 ifp->if_oerrors++;
1999 return;
2000 }
2001 ifp->if_timer = 1;
2002 }
2003
2004 ieee80211_watchdog(&sc->sc_ic);
2005 }
2006
2007 /*
2008 * This function allows for fast channel switching in monitor mode (used by
2009 * kismet). In IBSS mode, we must explicitly reset the interface to
2010 * generate a new beacon frame.
2011 */
2012 static int
2013 rt2661_reset(struct ifnet *ifp)
2014 {
2015 struct rt2661_softc *sc = ifp->if_softc;
2016 struct ieee80211com *ic = &sc->sc_ic;
2017
2018 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2019 return ENETRESET;
2020
2021 rt2661_set_chan(sc, ic->ic_curchan);
2022
2023 return 0;
2024 }
2025
2026 static int
2027 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2028 {
2029 struct rt2661_softc *sc = ifp->if_softc;
2030 struct ieee80211com *ic = &sc->sc_ic;
2031 int s, error = 0;
2032
2033 s = splnet();
2034
2035 switch (cmd) {
2036 case SIOCSIFFLAGS:
2037 if (ifp->if_flags & IFF_UP) {
2038 if (ifp->if_flags & IFF_RUNNING)
2039 rt2661_update_promisc(sc);
2040 else
2041 rt2661_init(ifp);
2042 } else {
2043 if (ifp->if_flags & IFF_RUNNING)
2044 rt2661_stop(ifp, 1);
2045 }
2046 break;
2047
2048 case SIOCADDMULTI:
2049 case SIOCDELMULTI:
2050 /* XXX no h/w multicast filter? --dyoung */
2051 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2052 error = 0;
2053 break;
2054
2055 case SIOCS80211CHANNEL:
2056 /*
2057 * This allows for fast channel switching in monitor mode
2058 * (used by kismet). In IBSS mode, we must explicitly reset
2059 * the interface to generate a new beacon frame.
2060 */
2061 error = ieee80211_ioctl(ic, cmd, data);
2062 if (error == ENETRESET &&
2063 ic->ic_opmode == IEEE80211_M_MONITOR) {
2064 rt2661_set_chan(sc, ic->ic_ibss_chan);
2065 error = 0;
2066 }
2067 break;
2068
2069 default:
2070 error = ieee80211_ioctl(ic, cmd, data);
2071
2072 }
2073
2074 if (error == ENETRESET) {
2075 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2076 (IFF_UP | IFF_RUNNING))
2077 rt2661_init(ifp);
2078 error = 0;
2079 }
2080
2081 splx(s);
2082
2083 return error;
2084 }
2085
2086 static void
2087 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2088 {
2089 uint32_t tmp;
2090 int ntries;
2091
2092 for (ntries = 0; ntries < 100; ntries++) {
2093 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2094 break;
2095 DELAY(1);
2096 }
2097 if (ntries == 100) {
2098 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2099 return;
2100 }
2101
2102 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2103 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2104
2105 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2106 }
2107
2108 static uint8_t
2109 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2110 {
2111 uint32_t val;
2112 int ntries;
2113
2114 for (ntries = 0; ntries < 100; ntries++) {
2115 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2116 break;
2117 DELAY(1);
2118 }
2119 if (ntries == 100) {
2120 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2121 return 0;
2122 }
2123
2124 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2125 RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2126
2127 for (ntries = 0; ntries < 100; ntries++) {
2128 val = RAL_READ(sc, RT2661_PHY_CSR3);
2129 if (!(val & RT2661_BBP_BUSY))
2130 return val & 0xff;
2131 DELAY(1);
2132 }
2133
2134 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2135 return 0;
2136 }
2137
2138 static void
2139 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2140 {
2141 uint32_t tmp;
2142 int ntries;
2143
2144 for (ntries = 0; ntries < 100; ntries++) {
2145 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2146 break;
2147 DELAY(1);
2148 }
2149 if (ntries == 100) {
2150 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2151 return;
2152 }
2153
2154 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2155 (reg & 3);
2156 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2157
2158 /* remember last written value in sc */
2159 sc->rf_regs[reg] = val;
2160
2161 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2162 }
2163
2164 static int
2165 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2166 {
2167 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2168 return EIO; /* there is already a command pending */
2169
2170 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2171 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2172
2173 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2174
2175 return 0;
2176 }
2177
2178 static void
2179 rt2661_select_antenna(struct rt2661_softc *sc)
2180 {
2181 uint8_t bbp4, bbp77;
2182 uint32_t tmp;
2183
2184 bbp4 = rt2661_bbp_read(sc, 4);
2185 bbp77 = rt2661_bbp_read(sc, 77);
2186
2187 /* TBD */
2188
2189 /* make sure Rx is disabled before switching antenna */
2190 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2191 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2192
2193 rt2661_bbp_write(sc, 4, bbp4);
2194 rt2661_bbp_write(sc, 77, bbp77);
2195
2196 /* restore Rx filter */
2197 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2198 }
2199
2200 /*
2201 * Enable multi-rate retries for frames sent at OFDM rates.
2202 * In 802.11b/g mode, allow fallback to CCK rates.
2203 */
2204 static void
2205 rt2661_enable_mrr(struct rt2661_softc *sc)
2206 {
2207 struct ieee80211com *ic = &sc->sc_ic;
2208 uint32_t tmp;
2209
2210 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2211
2212 tmp &= ~RT2661_MRR_CCK_FALLBACK;
2213 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2214 tmp |= RT2661_MRR_CCK_FALLBACK;
2215 tmp |= RT2661_MRR_ENABLED;
2216
2217 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2218 }
2219
2220 static void
2221 rt2661_set_txpreamble(struct rt2661_softc *sc)
2222 {
2223 uint32_t tmp;
2224
2225 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2226
2227 tmp &= ~RT2661_SHORT_PREAMBLE;
2228 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2229 tmp |= RT2661_SHORT_PREAMBLE;
2230
2231 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2232 }
2233
2234 static void
2235 rt2661_set_basicrates(struct rt2661_softc *sc,
2236 const struct ieee80211_rateset *rs)
2237 {
2238 #define RV(r) ((r) & IEEE80211_RATE_VAL)
2239 uint32_t mask = 0;
2240 uint8_t rate;
2241 int i, j;
2242
2243 for (i = 0; i < rs->rs_nrates; i++) {
2244 rate = rs->rs_rates[i];
2245
2246 if (!(rate & IEEE80211_RATE_BASIC))
2247 continue;
2248
2249 /*
2250 * Find h/w rate index. We know it exists because the rate
2251 * set has already been negotiated.
2252 */
2253 for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2254
2255 mask |= 1 << j;
2256 }
2257
2258 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2259
2260 DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2261 #undef RV
2262 }
2263
2264 /*
2265 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
2266 * driver.
2267 */
2268 static void
2269 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2270 {
2271 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2272 uint32_t tmp;
2273
2274 /* update all BBP registers that depend on the band */
2275 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2276 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
2277 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2278 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2279 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
2280 }
2281 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2282 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2283 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2284 }
2285
2286 rt2661_bbp_write(sc, 17, bbp17);
2287 rt2661_bbp_write(sc, 96, bbp96);
2288 rt2661_bbp_write(sc, 104, bbp104);
2289
2290 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2291 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2292 rt2661_bbp_write(sc, 75, 0x80);
2293 rt2661_bbp_write(sc, 86, 0x80);
2294 rt2661_bbp_write(sc, 88, 0x80);
2295 }
2296
2297 rt2661_bbp_write(sc, 35, bbp35);
2298 rt2661_bbp_write(sc, 97, bbp97);
2299 rt2661_bbp_write(sc, 98, bbp98);
2300
2301 tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2302 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2303 if (IEEE80211_IS_CHAN_2GHZ(c))
2304 tmp |= RT2661_PA_PE_2GHZ;
2305 else
2306 tmp |= RT2661_PA_PE_5GHZ;
2307 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2308 }
2309
2310 static void
2311 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2312 {
2313 struct ieee80211com *ic = &sc->sc_ic;
2314 const struct rfprog *rfprog;
2315 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2316 int8_t power;
2317 u_int i, chan;
2318
2319 chan = ieee80211_chan2ieee(ic, c);
2320 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2321 return;
2322
2323 /* select the appropriate RF settings based on what EEPROM says */
2324 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2325
2326 /* find the settings for this channel (we know it exists) */
2327 for (i = 0; rfprog[i].chan != chan; i++);
2328
2329 power = sc->txpow[i];
2330 if (power < 0) {
2331 bbp94 += power;
2332 power = 0;
2333 } else if (power > 31) {
2334 bbp94 += power - 31;
2335 power = 31;
2336 }
2337
2338 /*
2339 * If we are switching from the 2GHz band to the 5GHz band or
2340 * vice-versa, BBP registers need to be reprogrammed.
2341 */
2342 if (c->ic_flags != sc->sc_curchan->ic_flags) {
2343 rt2661_select_band(sc, c);
2344 rt2661_select_antenna(sc);
2345 }
2346 sc->sc_curchan = c;
2347
2348 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2349 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2350 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2351 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2352
2353 DELAY(200);
2354
2355 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2356 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2357 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2358 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2359
2360 DELAY(200);
2361
2362 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2363 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2364 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2365 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2366
2367 /* enable smart mode for MIMO-capable RFs */
2368 bbp3 = rt2661_bbp_read(sc, 3);
2369
2370 bbp3 &= ~RT2661_SMART_MODE;
2371 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2372 bbp3 |= RT2661_SMART_MODE;
2373
2374 rt2661_bbp_write(sc, 3, bbp3);
2375
2376 if (bbp94 != RT2661_BBPR94_DEFAULT)
2377 rt2661_bbp_write(sc, 94, bbp94);
2378
2379 /* 5GHz radio needs a 1ms delay here */
2380 if (IEEE80211_IS_CHAN_5GHZ(c))
2381 DELAY(1000);
2382 }
2383
2384 static void
2385 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2386 {
2387 uint32_t tmp;
2388
2389 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2390 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2391
2392 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2393 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2394 }
2395
2396 static void
2397 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2398 {
2399 uint32_t tmp;
2400
2401 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2402 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2403
2404 tmp = addr[4] | addr[5] << 8;
2405 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2406 }
2407
2408 static void
2409 rt2661_update_promisc(struct rt2661_softc *sc)
2410 {
2411 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2412 uint32_t tmp;
2413
2414 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2415
2416 tmp &= ~RT2661_DROP_NOT_TO_ME;
2417 if (!(ifp->if_flags & IFF_PROMISC))
2418 tmp |= RT2661_DROP_NOT_TO_ME;
2419
2420 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2421
2422 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2423 "entering" : "leaving"));
2424 }
2425
2426 #if 0
2427 /*
2428 * Update QoS (802.11e) settings for each h/w Tx ring.
2429 */
2430 static int
2431 rt2661_wme_update(struct ieee80211com *ic)
2432 {
2433 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2434 const struct wmeParams *wmep;
2435
2436 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2437
2438 /* XXX: not sure about shifts. */
2439 /* XXX: the reference driver plays with AC_VI settings too. */
2440
2441 /* update TxOp */
2442 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2443 wmep[WME_AC_BE].wmep_txopLimit << 16 |
2444 wmep[WME_AC_BK].wmep_txopLimit);
2445 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2446 wmep[WME_AC_VI].wmep_txopLimit << 16 |
2447 wmep[WME_AC_VO].wmep_txopLimit);
2448
2449 /* update CWmin */
2450 RAL_WRITE(sc, RT2661_CWMIN_CSR,
2451 wmep[WME_AC_BE].wmep_logcwmin << 12 |
2452 wmep[WME_AC_BK].wmep_logcwmin << 8 |
2453 wmep[WME_AC_VI].wmep_logcwmin << 4 |
2454 wmep[WME_AC_VO].wmep_logcwmin);
2455
2456 /* update CWmax */
2457 RAL_WRITE(sc, RT2661_CWMAX_CSR,
2458 wmep[WME_AC_BE].wmep_logcwmax << 12 |
2459 wmep[WME_AC_BK].wmep_logcwmax << 8 |
2460 wmep[WME_AC_VI].wmep_logcwmax << 4 |
2461 wmep[WME_AC_VO].wmep_logcwmax);
2462
2463 /* update Aifsn */
2464 RAL_WRITE(sc, RT2661_AIFSN_CSR,
2465 wmep[WME_AC_BE].wmep_aifsn << 12 |
2466 wmep[WME_AC_BK].wmep_aifsn << 8 |
2467 wmep[WME_AC_VI].wmep_aifsn << 4 |
2468 wmep[WME_AC_VO].wmep_aifsn);
2469
2470 return 0;
2471 }
2472 #endif
2473
2474 static void
2475 rt2661_update_slot(struct ifnet *ifp)
2476 {
2477 struct rt2661_softc *sc = ifp->if_softc;
2478 struct ieee80211com *ic = &sc->sc_ic;
2479 uint8_t slottime;
2480 uint32_t tmp;
2481
2482 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2483
2484 tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2485 tmp = (tmp & ~0xff) | slottime;
2486 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2487 }
2488
2489 static const char *
2490 rt2661_get_rf(int rev)
2491 {
2492 switch (rev) {
2493 case RT2661_RF_5225: return "RT5225";
2494 case RT2661_RF_5325: return "RT5325 (MIMO XR)";
2495 case RT2661_RF_2527: return "RT2527";
2496 case RT2661_RF_2529: return "RT2529 (MIMO XR)";
2497 default: return "unknown";
2498 }
2499 }
2500
2501 static void
2502 rt2661_read_eeprom(struct rt2661_softc *sc)
2503 {
2504 struct ieee80211com *ic = &sc->sc_ic;
2505 uint16_t val;
2506 int i;
2507
2508 /* read MAC address */
2509 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2510 ic->ic_myaddr[0] = val & 0xff;
2511 ic->ic_myaddr[1] = val >> 8;
2512
2513 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2514 ic->ic_myaddr[2] = val & 0xff;
2515 ic->ic_myaddr[3] = val >> 8;
2516
2517 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2518 ic->ic_myaddr[4] = val & 0xff;
2519 ic->ic_myaddr[5] = val >> 8;
2520
2521 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2522 /* XXX: test if different from 0xffff? */
2523 sc->rf_rev = (val >> 11) & 0x1f;
2524 sc->hw_radio = (val >> 10) & 0x1;
2525 sc->rx_ant = (val >> 4) & 0x3;
2526 sc->tx_ant = (val >> 2) & 0x3;
2527 sc->nb_ant = val & 0x3;
2528
2529 DPRINTF(("RF revision=%d\n", sc->rf_rev));
2530
2531 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2532 sc->ext_5ghz_lna = (val >> 6) & 0x1;
2533 sc->ext_2ghz_lna = (val >> 4) & 0x1;
2534
2535 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2536 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2537
2538 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2539 if ((val & 0xff) != 0xff)
2540 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
2541
2542 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2543 if ((val & 0xff) != 0xff)
2544 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
2545
2546 /* adjust RSSI correction for external low-noise amplifier */
2547 if (sc->ext_2ghz_lna)
2548 sc->rssi_2ghz_corr -= 14;
2549 if (sc->ext_5ghz_lna)
2550 sc->rssi_5ghz_corr -= 14;
2551
2552 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2553 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2554
2555 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2556 if ((val >> 8) != 0xff)
2557 sc->rfprog = (val >> 8) & 0x3;
2558 if ((val & 0xff) != 0xff)
2559 sc->rffreq = val & 0xff;
2560
2561 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2562
2563 /* read Tx power for all a/b/g channels */
2564 for (i = 0; i < 19; i++) {
2565 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2566 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
2567 DPRINTF(("Channel=%d Tx power=%d\n",
2568 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2569 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
2570 DPRINTF(("Channel=%d Tx power=%d\n",
2571 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2572 }
2573
2574 /* read vendor-specific BBP values */
2575 for (i = 0; i < 16; i++) {
2576 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2577 if (val == 0 || val == 0xffff)
2578 continue; /* skip invalid entries */
2579 sc->bbp_prom[i].reg = val >> 8;
2580 sc->bbp_prom[i].val = val & 0xff;
2581 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2582 sc->bbp_prom[i].val));
2583 }
2584 }
2585
2586 static int
2587 rt2661_bbp_init(struct rt2661_softc *sc)
2588 {
2589 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2590 int i, ntries;
2591 uint8_t val;
2592
2593 /* wait for BBP to be ready */
2594 for (ntries = 0; ntries < 100; ntries++) {
2595 val = rt2661_bbp_read(sc, 0);
2596 if (val != 0 && val != 0xff)
2597 break;
2598 DELAY(100);
2599 }
2600 if (ntries == 100) {
2601 printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2602 return EIO;
2603 }
2604
2605 /* initialize BBP registers to default values */
2606 for (i = 0; i < N(rt2661_def_bbp); i++) {
2607 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2608 rt2661_def_bbp[i].val);
2609 }
2610
2611 /* write vendor-specific BBP values (from EEPROM) */
2612 for (i = 0; i < 16; i++) {
2613 if (sc->bbp_prom[i].reg == 0)
2614 continue;
2615 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2616 }
2617
2618 return 0;
2619 #undef N
2620 }
2621
2622 static int
2623 rt2661_init(struct ifnet *ifp)
2624 {
2625 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2626 struct rt2661_softc *sc = ifp->if_softc;
2627 struct ieee80211com *ic = &sc->sc_ic;
2628 const char *name = NULL; /* make lint happy */
2629 uint8_t *ucode;
2630 size_t size;
2631 uint32_t tmp, star[3];
2632 int i, ntries;
2633 firmware_handle_t fh;
2634
2635 /* for CardBus, power on the socket */
2636 if (!(sc->sc_flags & RT2661_ENABLED)) {
2637 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2638 printf("%s: could not enable device\n",
2639 sc->sc_dev.dv_xname);
2640 return EIO;
2641 }
2642 sc->sc_flags |= RT2661_ENABLED;
2643 }
2644
2645 rt2661_stop(ifp, 0);
2646
2647 if (!(sc->sc_flags & RT2661_FWLOADED)) {
2648 switch (sc->sc_id) {
2649 case PCI_PRODUCT_RALINK_RT2561:
2650 name = "ral-rt2561";
2651 break;
2652 case PCI_PRODUCT_RALINK_RT2561S:
2653 name = "ral-rt2561s";
2654 break;
2655 case PCI_PRODUCT_RALINK_RT2661:
2656 name = "ral-rt2661";
2657 break;
2658 }
2659
2660 if (firmware_open("ral", name, &fh) != 0) {
2661 printf("%s: could not open microcode %s\n",
2662 sc->sc_dev.dv_xname, name);
2663 rt2661_stop(ifp, 1);
2664 return EIO;
2665 }
2666
2667 size = firmware_get_size(fh);
2668 if (!(ucode = firmware_malloc(size))) {
2669 printf("%s: could not alloc microcode memory\n",
2670 sc->sc_dev.dv_xname);
2671 firmware_close(fh);
2672 rt2661_stop(ifp, 1);
2673 return ENOMEM;
2674 }
2675
2676 if (firmware_read(fh, 0, ucode, size) != 0) {
2677 printf("%s: could not read microcode %s\n",
2678 sc->sc_dev.dv_xname, name);
2679 firmware_free(ucode, 0);
2680 firmware_close(fh);
2681 rt2661_stop(ifp, 1);
2682 return EIO;
2683 }
2684
2685 if (rt2661_load_microcode(sc, ucode, size) != 0) {
2686 printf("%s: could not load 8051 microcode\n",
2687 sc->sc_dev.dv_xname);
2688 firmware_free(ucode, 0);
2689 firmware_close(fh);
2690 rt2661_stop(ifp, 1);
2691 return EIO;
2692 }
2693
2694 firmware_free(ucode, 0);
2695 firmware_close(fh);
2696 sc->sc_flags |= RT2661_FWLOADED;
2697 }
2698
2699 /* initialize Tx rings */
2700 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2701 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2702 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2703 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2704
2705 /* initialize Mgt ring */
2706 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2707
2708 /* initialize Rx ring */
2709 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2710
2711 /* initialize Tx rings sizes */
2712 RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2713 RT2661_TX_RING_COUNT << 24 |
2714 RT2661_TX_RING_COUNT << 16 |
2715 RT2661_TX_RING_COUNT << 8 |
2716 RT2661_TX_RING_COUNT);
2717
2718 RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2719 RT2661_TX_DESC_WSIZE << 16 |
2720 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
2721 RT2661_MGT_RING_COUNT);
2722
2723 /* initialize Rx rings */
2724 RAL_WRITE(sc, RT2661_RX_RING_CSR,
2725 RT2661_RX_DESC_BACK << 16 |
2726 RT2661_RX_DESC_WSIZE << 8 |
2727 RT2661_RX_RING_COUNT);
2728
2729 /* XXX: some magic here */
2730 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2731
2732 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2733 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2734
2735 /* load base address of Rx ring */
2736 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2737
2738 /* initialize MAC registers to default values */
2739 for (i = 0; i < N(rt2661_def_mac); i++)
2740 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2741
2742 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2743 rt2661_set_macaddr(sc, ic->ic_myaddr);
2744
2745 /* set host ready */
2746 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2747 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2748
2749 /* wait for BBP/RF to wakeup */
2750 for (ntries = 0; ntries < 1000; ntries++) {
2751 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2752 break;
2753 DELAY(1000);
2754 }
2755 if (ntries == 1000) {
2756 printf("timeout waiting for BBP/RF to wakeup\n");
2757 rt2661_stop(ifp, 1);
2758 return EIO;
2759 }
2760
2761 if (rt2661_bbp_init(sc) != 0) {
2762 rt2661_stop(ifp, 1);
2763 return EIO;
2764 }
2765
2766 /* select default channel */
2767 sc->sc_curchan = ic->ic_curchan;
2768 rt2661_select_band(sc, sc->sc_curchan);
2769 rt2661_select_antenna(sc);
2770 rt2661_set_chan(sc, sc->sc_curchan);
2771
2772 /* update Rx filter */
2773 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2774
2775 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2776 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2777 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2778 RT2661_DROP_ACKCTS;
2779 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2780 tmp |= RT2661_DROP_TODS;
2781 if (!(ifp->if_flags & IFF_PROMISC))
2782 tmp |= RT2661_DROP_NOT_TO_ME;
2783 }
2784
2785 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2786
2787 /* clear STA registers */
2788 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2789
2790 /* initialize ASIC */
2791 RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2792
2793 /* clear any pending interrupt */
2794 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2795
2796 /* enable interrupts */
2797 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2798 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2799
2800 /* kick Rx */
2801 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2802
2803 ifp->if_flags &= ~IFF_OACTIVE;
2804 ifp->if_flags |= IFF_RUNNING;
2805
2806 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2807 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2808 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2809 } else
2810 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2811
2812 return 0;
2813 #undef N
2814 }
2815
2816 static void
2817 rt2661_stop(struct ifnet *ifp, int disable)
2818 {
2819 struct rt2661_softc *sc = ifp->if_softc;
2820 struct ieee80211com *ic = &sc->sc_ic;
2821 uint32_t tmp;
2822
2823 sc->sc_tx_timer = 0;
2824 ifp->if_timer = 0;
2825 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2826
2827 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2828
2829 /* abort Tx (for all 5 Tx rings) */
2830 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2831
2832 /* disable Rx (value remains after reset!) */
2833 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2834 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2835
2836 /* reset ASIC */
2837 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2838 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2839
2840 /* disable interrupts */
2841 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2842 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2843
2844 /* clear any pending interrupt */
2845 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2846 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2847
2848 /* reset Tx and Rx rings */
2849 rt2661_reset_tx_ring(sc, &sc->txq[0]);
2850 rt2661_reset_tx_ring(sc, &sc->txq[1]);
2851 rt2661_reset_tx_ring(sc, &sc->txq[2]);
2852 rt2661_reset_tx_ring(sc, &sc->txq[3]);
2853 rt2661_reset_tx_ring(sc, &sc->mgtq);
2854 rt2661_reset_rx_ring(sc, &sc->rxq);
2855
2856 /* for CardBus, power down the socket */
2857 if (disable && sc->sc_disable != NULL) {
2858 if (sc->sc_flags & RT2661_ENABLED) {
2859 (*sc->sc_disable)(sc);
2860 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2861 }
2862 }
2863 }
2864
2865 static int
2866 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2867 {
2868 int ntries;
2869
2870 /* reset 8051 */
2871 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2872
2873 /* cancel any pending Host to MCU command */
2874 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2875 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2876 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2877
2878 /* write 8051's microcode */
2879 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2880 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2881 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2882
2883 /* kick 8051's ass */
2884 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2885
2886 /* wait for 8051 to initialize */
2887 for (ntries = 0; ntries < 500; ntries++) {
2888 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2889 break;
2890 DELAY(100);
2891 }
2892 if (ntries == 500) {
2893 printf("timeout waiting for MCU to initialize\n");
2894 return EIO;
2895 }
2896 return 0;
2897 }
2898
2899 #ifdef notyet
2900 /*
2901 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2902 * false CCA count. This function is called periodically (every seconds) when
2903 * in the RUN state. Values taken from the reference driver.
2904 */
2905 static void
2906 rt2661_rx_tune(struct rt2661_softc *sc)
2907 {
2908 uint8_t bbp17;
2909 uint16_t cca;
2910 int lo, hi, dbm;
2911
2912 /*
2913 * Tuning range depends on operating band and on the presence of an
2914 * external low-noise amplifier.
2915 */
2916 lo = 0x20;
2917 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2918 lo += 0x08;
2919 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2920 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2921 lo += 0x10;
2922 hi = lo + 0x20;
2923
2924 /* retrieve false CCA count since last call (clear on read) */
2925 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2926
2927 if (dbm >= -35) {
2928 bbp17 = 0x60;
2929 } else if (dbm >= -58) {
2930 bbp17 = hi;
2931 } else if (dbm >= -66) {
2932 bbp17 = lo + 0x10;
2933 } else if (dbm >= -74) {
2934 bbp17 = lo + 0x08;
2935 } else {
2936 /* RSSI < -74dBm, tune using false CCA count */
2937
2938 bbp17 = sc->bbp17; /* current value */
2939
2940 hi -= 2 * (-74 - dbm);
2941 if (hi < lo)
2942 hi = lo;
2943
2944 if (bbp17 > hi) {
2945 bbp17 = hi;
2946
2947 } else if (cca > 512) {
2948 if (++bbp17 > hi)
2949 bbp17 = hi;
2950 } else if (cca < 100) {
2951 if (--bbp17 < lo)
2952 bbp17 = lo;
2953 }
2954 }
2955
2956 if (bbp17 != sc->bbp17) {
2957 rt2661_bbp_write(sc, 17, bbp17);
2958 sc->bbp17 = bbp17;
2959 }
2960 }
2961
2962 /*
2963 * Enter/Leave radar detection mode.
2964 * This is for 802.11h additional regulatory domains.
2965 */
2966 static void
2967 rt2661_radar_start(struct rt2661_softc *sc)
2968 {
2969 uint32_t tmp;
2970
2971 /* disable Rx */
2972 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2973 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2974
2975 rt2661_bbp_write(sc, 82, 0x20);
2976 rt2661_bbp_write(sc, 83, 0x00);
2977 rt2661_bbp_write(sc, 84, 0x40);
2978
2979 /* save current BBP registers values */
2980 sc->bbp18 = rt2661_bbp_read(sc, 18);
2981 sc->bbp21 = rt2661_bbp_read(sc, 21);
2982 sc->bbp22 = rt2661_bbp_read(sc, 22);
2983 sc->bbp16 = rt2661_bbp_read(sc, 16);
2984 sc->bbp17 = rt2661_bbp_read(sc, 17);
2985 sc->bbp64 = rt2661_bbp_read(sc, 64);
2986
2987 rt2661_bbp_write(sc, 18, 0xff);
2988 rt2661_bbp_write(sc, 21, 0x3f);
2989 rt2661_bbp_write(sc, 22, 0x3f);
2990 rt2661_bbp_write(sc, 16, 0xbd);
2991 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2992 rt2661_bbp_write(sc, 64, 0x21);
2993
2994 /* restore Rx filter */
2995 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2996 }
2997
2998 static int
2999 rt2661_radar_stop(struct rt2661_softc *sc)
3000 {
3001 uint8_t bbp66;
3002
3003 /* read radar detection result */
3004 bbp66 = rt2661_bbp_read(sc, 66);
3005
3006 /* restore BBP registers values */
3007 rt2661_bbp_write(sc, 16, sc->bbp16);
3008 rt2661_bbp_write(sc, 17, sc->bbp17);
3009 rt2661_bbp_write(sc, 18, sc->bbp18);
3010 rt2661_bbp_write(sc, 21, sc->bbp21);
3011 rt2661_bbp_write(sc, 22, sc->bbp22);
3012 rt2661_bbp_write(sc, 64, sc->bbp64);
3013
3014 return bbp66 == 1;
3015 }
3016 #endif
3017
3018 static int
3019 rt2661_prepare_beacon(struct rt2661_softc *sc)
3020 {
3021 struct ieee80211com *ic = &sc->sc_ic;
3022 struct rt2661_tx_desc desc;
3023 struct mbuf *m0;
3024 struct ieee80211_beacon_offsets bo;
3025 int rate;
3026
3027 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
3028
3029 if (m0 == NULL) {
3030 printf("%s: could not allocate beacon frame\n",
3031 sc->sc_dev.dv_xname);
3032 return ENOBUFS;
3033 }
3034
3035 /* send beacons at the lowest available rate */
3036 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
3037
3038 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
3039 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
3040
3041 /* copy the first 24 bytes of Tx descriptor into NIC memory */
3042 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
3043
3044 /* copy beacon header and payload into NIC memory */
3045 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
3046 mtod(m0, uint8_t *), m0->m_pkthdr.len);
3047
3048 m_freem(m0);
3049
3050 return 0;
3051 }
3052
3053 /*
3054 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
3055 * and HostAP operating modes.
3056 */
3057 static void
3058 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3059 {
3060 struct ieee80211com *ic = &sc->sc_ic;
3061 uint32_t tmp;
3062
3063 if (ic->ic_opmode != IEEE80211_M_STA) {
3064 /*
3065 * Change default 16ms TBTT adjustment to 8ms.
3066 * Must be done before enabling beacon generation.
3067 */
3068 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3069 }
3070
3071 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3072
3073 /* set beacon interval (in 1/16ms unit) */
3074 tmp |= ic->ic_bss->ni_intval * 16;
3075
3076 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3077 if (ic->ic_opmode == IEEE80211_M_STA)
3078 tmp |= RT2661_TSF_MODE(1);
3079 else
3080 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3081
3082 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3083 }
3084
3085 /*
3086 * Retrieve the "Received Signal Strength Indicator" from the raw values
3087 * contained in Rx descriptors. The computation depends on which band the
3088 * frame was received. Correction values taken from the reference driver.
3089 */
3090 static int
3091 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3092 {
3093 int lna, agc, rssi;
3094
3095 lna = (raw >> 5) & 0x3;
3096 agc = raw & 0x1f;
3097
3098 rssi = 2 * agc;
3099
3100 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3101 rssi += sc->rssi_2ghz_corr;
3102
3103 if (lna == 1)
3104 rssi -= 64;
3105 else if (lna == 2)
3106 rssi -= 74;
3107 else if (lna == 3)
3108 rssi -= 90;
3109 } else {
3110 rssi += sc->rssi_5ghz_corr;
3111
3112 if (lna == 1)
3113 rssi -= 64;
3114 else if (lna == 2)
3115 rssi -= 86;
3116 else if (lna == 3)
3117 rssi -= 100;
3118 }
3119 return rssi;
3120 }
3121