rt2661.c revision 1.23 1 /* $NetBSD: rt2661.c,v 1.23 2008/04/08 12:07:27 cegger Exp $ */
2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */
4
5 /*-
6 * Copyright (c) 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24 * http://www.ralinktech.com/
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.23 2008/04/08 12:07:27 cegger Exp $");
29
30 #include "bpfilter.h"
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <sys/bus.h>
45 #include <machine/endian.h>
46 #include <sys/intr.h>
47
48 #if NBPFILTER > 0
49 #include <net/bpf.h>
50 #endif
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_ether.h>
57
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_rssadapt.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #include <dev/ic/rt2661reg.h>
68 #include <dev/ic/rt2661var.h>
69
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73
74 #include <dev/firmload.h>
75
76 #ifdef RAL_DEBUG
77 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0)
79 int rt2661_debug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 static int rt2661_alloc_tx_ring(struct rt2661_softc *,
86 struct rt2661_tx_ring *, int);
87 static void rt2661_reset_tx_ring(struct rt2661_softc *,
88 struct rt2661_tx_ring *);
89 static void rt2661_free_tx_ring(struct rt2661_softc *,
90 struct rt2661_tx_ring *);
91 static int rt2661_alloc_rx_ring(struct rt2661_softc *,
92 struct rt2661_rx_ring *, int);
93 static void rt2661_reset_rx_ring(struct rt2661_softc *,
94 struct rt2661_rx_ring *);
95 static void rt2661_free_rx_ring(struct rt2661_softc *,
96 struct rt2661_rx_ring *);
97 static struct ieee80211_node *
98 rt2661_node_alloc(struct ieee80211_node_table *);
99 static int rt2661_media_change(struct ifnet *);
100 static void rt2661_next_scan(void *);
101 static void rt2661_iter_func(void *, struct ieee80211_node *);
102 static void rt2661_rssadapt_updatestats(void *);
103 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
104 int);
105 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
106 static void rt2661_tx_intr(struct rt2661_softc *);
107 static void rt2661_tx_dma_intr(struct rt2661_softc *,
108 struct rt2661_tx_ring *);
109 static void rt2661_rx_intr(struct rt2661_softc *);
110 static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
111 static void rt2661_mcu_wakeup(struct rt2661_softc *);
112 static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
113 int rt2661_intr(void *);
114 #if NBPFILTER > 0
115 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
116 #endif
117 static int rt2661_ack_rate(struct ieee80211com *, int);
118 static uint16_t rt2661_txtime(int, int, uint32_t);
119 static uint8_t rt2661_plcp_signal(int);
120 static void rt2661_setup_tx_desc(struct rt2661_softc *,
121 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
122 const bus_dma_segment_t *, int, int);
123 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
124 struct ieee80211_node *);
125 static struct mbuf *
126 rt2661_get_rts(struct rt2661_softc *,
127 struct ieee80211_frame *, uint16_t);
128 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
129 struct ieee80211_node *, int);
130 static void rt2661_start(struct ifnet *);
131 static void rt2661_watchdog(struct ifnet *);
132 static int rt2661_reset(struct ifnet *);
133 static int rt2661_ioctl(struct ifnet *, u_long, void *);
134 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
135 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
136 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
137 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
138 static void rt2661_select_antenna(struct rt2661_softc *);
139 static void rt2661_enable_mrr(struct rt2661_softc *);
140 static void rt2661_set_txpreamble(struct rt2661_softc *);
141 static void rt2661_set_basicrates(struct rt2661_softc *,
142 const struct ieee80211_rateset *);
143 static void rt2661_select_band(struct rt2661_softc *,
144 struct ieee80211_channel *);
145 static void rt2661_set_chan(struct rt2661_softc *,
146 struct ieee80211_channel *);
147 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
148 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
149 static void rt2661_update_promisc(struct rt2661_softc *);
150 #if 0
151 static int rt2661_wme_update(struct ieee80211com *);
152 #endif
153
154 static void rt2661_update_slot(struct ifnet *);
155 static const char *
156 rt2661_get_rf(int);
157 static void rt2661_read_eeprom(struct rt2661_softc *);
158 static int rt2661_bbp_init(struct rt2661_softc *);
159 static int rt2661_init(struct ifnet *);
160 static void rt2661_stop(struct ifnet *, int);
161 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
162 int);
163 #ifdef notyet
164 static void rt2661_rx_tune(struct rt2661_softc *);
165 static void rt2661_radar_start(struct rt2661_softc *);
166 static int rt2661_radar_stop(struct rt2661_softc *);
167 #endif
168 static int rt2661_prepare_beacon(struct rt2661_softc *);
169 static void rt2661_enable_tsf_sync(struct rt2661_softc *);
170 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
171
172 /*
173 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174 */
175 static const struct ieee80211_rateset rt2661_rateset_11a =
176 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177
178 static const struct ieee80211_rateset rt2661_rateset_11b =
179 { 4, { 2, 4, 11, 22 } };
180
181 static const struct ieee80211_rateset rt2661_rateset_11g =
182 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183
184 /*
185 * Default values for MAC registers; values taken from the reference driver.
186 */
187 static const struct {
188 uint32_t reg;
189 uint32_t val;
190 } rt2661_def_mac[] = {
191 { RT2661_TXRX_CSR0, 0x0000b032 },
192 { RT2661_TXRX_CSR1, 0x9eb39eb3 },
193 { RT2661_TXRX_CSR2, 0x8a8b8c8d },
194 { RT2661_TXRX_CSR3, 0x00858687 },
195 { RT2661_TXRX_CSR7, 0x2e31353b },
196 { RT2661_TXRX_CSR8, 0x2a2a2a2c },
197 { RT2661_TXRX_CSR15, 0x0000000f },
198 { RT2661_MAC_CSR6, 0x00000fff },
199 { RT2661_MAC_CSR8, 0x016c030a },
200 { RT2661_MAC_CSR10, 0x00000718 },
201 { RT2661_MAC_CSR12, 0x00000004 },
202 { RT2661_MAC_CSR13, 0x0000e000 },
203 { RT2661_SEC_CSR0, 0x00000000 },
204 { RT2661_SEC_CSR1, 0x00000000 },
205 { RT2661_SEC_CSR5, 0x00000000 },
206 { RT2661_PHY_CSR1, 0x000023b0 },
207 { RT2661_PHY_CSR5, 0x060a100c },
208 { RT2661_PHY_CSR6, 0x00080606 },
209 { RT2661_PHY_CSR7, 0x00000a08 },
210 { RT2661_PCI_CFG_CSR, 0x3cca4808 },
211 { RT2661_AIFSN_CSR, 0x00002273 },
212 { RT2661_CWMIN_CSR, 0x00002344 },
213 { RT2661_CWMAX_CSR, 0x000034aa },
214 { RT2661_TEST_MODE_CSR, 0x00000200 },
215 { RT2661_M2H_CMD_DONE_CSR, 0xffffffff }
216 };
217
218 /*
219 * Default values for BBP registers; values taken from the reference driver.
220 */
221 static const struct {
222 uint8_t reg;
223 uint8_t val;
224 } rt2661_def_bbp[] = {
225 { 3, 0x00 },
226 { 15, 0x30 },
227 { 17, 0x20 },
228 { 21, 0xc8 },
229 { 22, 0x38 },
230 { 23, 0x06 },
231 { 24, 0xfe },
232 { 25, 0x0a },
233 { 26, 0x0d },
234 { 34, 0x12 },
235 { 37, 0x07 },
236 { 39, 0xf8 },
237 { 41, 0x60 },
238 { 53, 0x10 },
239 { 54, 0x18 },
240 { 60, 0x10 },
241 { 61, 0x04 },
242 { 62, 0x04 },
243 { 75, 0xfe },
244 { 86, 0xfe },
245 { 88, 0xfe },
246 { 90, 0x0f },
247 { 99, 0x00 },
248 { 102, 0x16 },
249 { 107, 0x04 }
250 };
251
252 /*
253 * Default settings for RF registers; values taken from the reference driver.
254 */
255 static const struct rfprog {
256 uint8_t chan;
257 uint32_t r1;
258 uint32_t r2;
259 uint32_t r3;
260 uint32_t r4;
261 } rt2661_rf5225_1[] = {
262 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
263 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
264 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
265 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
266 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
267 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
268 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
269 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
270 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
271 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
272 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
273 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
274 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
275 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
276
277 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 },
278 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 },
279 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 },
280 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
281 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
282 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
283 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
284 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
285
286 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
287 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
288 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
289 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
290 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
291 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
292 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
293 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
294 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
295 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
296 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
297
298 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
299 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
300 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
301 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
302 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
303
304 }, rt2661_rf5225_2[] = {
305 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
306 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
307 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
308 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
309 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
310 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
311 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
312 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
313 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
314 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
315 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
316 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
317 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
318 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
319
320 { 36, 0x00b35, 0x11206, 0x26014, 0x30280 },
321 { 40, 0x00b34, 0x111a0, 0x26014, 0x30280 },
322 { 44, 0x00b34, 0x111a1, 0x26014, 0x30286 },
323 { 48, 0x00b34, 0x111a3, 0x26014, 0x30282 },
324 { 52, 0x00b34, 0x111a4, 0x26014, 0x30288 },
325 { 56, 0x00b34, 0x111a6, 0x26014, 0x30284 },
326 { 60, 0x00b34, 0x111a8, 0x26014, 0x30280 },
327 { 64, 0x00b34, 0x111a9, 0x26014, 0x30286 },
328
329 { 100, 0x00b35, 0x11226, 0x2e014, 0x30280 },
330 { 104, 0x00b35, 0x11228, 0x2e014, 0x30280 },
331 { 108, 0x00b35, 0x1122a, 0x2e014, 0x30280 },
332 { 112, 0x00b35, 0x1122c, 0x2e014, 0x30280 },
333 { 116, 0x00b35, 0x1122e, 0x2e014, 0x30280 },
334 { 120, 0x00b34, 0x111c0, 0x2e014, 0x30280 },
335 { 124, 0x00b34, 0x111c1, 0x2e014, 0x30286 },
336 { 128, 0x00b34, 0x111c3, 0x2e014, 0x30282 },
337 { 132, 0x00b34, 0x111c4, 0x2e014, 0x30288 },
338 { 136, 0x00b34, 0x111c6, 0x2e014, 0x30284 },
339 { 140, 0x00b34, 0x111c8, 0x2e014, 0x30280 },
340
341 { 149, 0x00b34, 0x111cb, 0x2e014, 0x30286 },
342 { 153, 0x00b34, 0x111cd, 0x2e014, 0x30282 },
343 { 157, 0x00b35, 0x11242, 0x2e014, 0x30285 },
344 { 161, 0x00b35, 0x11244, 0x2e014, 0x30285 },
345 { 165, 0x00b35, 0x11246, 0x2e014, 0x30285 }
346 };
347
348 int
349 rt2661_attach(void *xsc, int id)
350 {
351 struct rt2661_softc *sc = xsc;
352 struct ieee80211com *ic = &sc->sc_ic;
353 struct ifnet *ifp = &sc->sc_if;
354 uint32_t val;
355 int error, i, ntries;
356
357 sc->sc_id = id;
358
359 callout_init(&sc->scan_ch, 0);
360 callout_init(&sc->rssadapt_ch, 0);
361
362 /* wait for NIC to initialize */
363 for (ntries = 0; ntries < 1000; ntries++) {
364 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
365 break;
366 DELAY(1000);
367 }
368 if (ntries == 1000) {
369 aprint_error_dev(&sc->sc_dev, "timeout waiting for NIC to initialize\n");
370 return EIO;
371 }
372
373 /* retrieve RF rev. no and various other things from EEPROM */
374 rt2661_read_eeprom(sc);
375 aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
376 ether_sprintf(ic->ic_myaddr));
377
378 aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
379 rt2661_get_rf(sc->rf_rev));
380
381 /*
382 * Allocate Tx and Rx rings.
383 */
384 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
385 if (error != 0) {
386 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 0\n");
387 goto fail1;
388 }
389
390 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
391 if (error != 0) {
392 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 1\n");
393 goto fail2;
394 }
395
396 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
397 if (error != 0) {
398 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 2\n");
399 goto fail3;
400 }
401
402 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
403 if (error != 0) {
404 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 3\n");
405 goto fail4;
406 }
407
408 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
409 if (error != 0) {
410 aprint_error_dev(&sc->sc_dev, "could not allocate Mgt ring\n");
411 goto fail5;
412 }
413
414 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
415 if (error != 0) {
416 aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n");
417 goto fail6;
418 }
419
420 ifp->if_softc = sc;
421 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
422 ifp->if_init = rt2661_init;
423 ifp->if_stop = rt2661_stop;
424 ifp->if_ioctl = rt2661_ioctl;
425 ifp->if_start = rt2661_start;
426 ifp->if_watchdog = rt2661_watchdog;
427 IFQ_SET_READY(&ifp->if_snd);
428 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
429
430 ic->ic_ifp = ifp;
431 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
432 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
433 ic->ic_state = IEEE80211_S_INIT;
434
435 /* set device capabilities */
436 ic->ic_caps =
437 IEEE80211_C_IBSS | /* IBSS mode supported */
438 IEEE80211_C_MONITOR | /* monitor mode supported */
439 IEEE80211_C_HOSTAP | /* HostAp mode supported */
440 IEEE80211_C_TXPMGT | /* tx power management */
441 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
442 IEEE80211_C_SHSLOT | /* short slot time supported */
443 IEEE80211_C_WPA; /* 802.11i */
444
445 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
446 /* set supported .11a rates */
447 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
448
449 /* set supported .11a channels */
450 for (i = 36; i <= 64; i += 4) {
451 ic->ic_channels[i].ic_freq =
452 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
453 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
454 }
455 for (i = 100; i <= 140; i += 4) {
456 ic->ic_channels[i].ic_freq =
457 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
458 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
459 }
460 for (i = 149; i <= 165; i += 4) {
461 ic->ic_channels[i].ic_freq =
462 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
463 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
464 }
465 }
466
467 /* set supported .11b and .11g rates */
468 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
469 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
470
471 /* set supported .11b and .11g channels (1 through 14) */
472 for (i = 1; i <= 14; i++) {
473 ic->ic_channels[i].ic_freq =
474 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
475 ic->ic_channels[i].ic_flags =
476 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
477 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
478 }
479
480 if_attach(ifp);
481 ieee80211_ifattach(ic);
482 ic->ic_node_alloc = rt2661_node_alloc;
483 ic->ic_updateslot = rt2661_update_slot;
484 ic->ic_reset = rt2661_reset;
485
486 /* override state transition machine */
487 sc->sc_newstate = ic->ic_newstate;
488 ic->ic_newstate = rt2661_newstate;
489 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
490
491 #if NBPFILTER > 0
492 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
493 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
494
495 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
496 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
497 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
498
499 sc->sc_txtap_len = sizeof sc->sc_txtapu;
500 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
501 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
502 #endif
503
504 ieee80211_announce(ic);
505
506 if (!pmf_device_register(&sc->sc_dev, NULL, NULL))
507 aprint_error_dev(&sc->sc_dev, "couldn't establish power handler\n");
508 else
509 pmf_class_network_register(&sc->sc_dev, ifp);
510
511 return 0;
512
513 fail6: rt2661_free_tx_ring(sc, &sc->mgtq);
514 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]);
515 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]);
516 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]);
517 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]);
518 fail1: return ENXIO;
519 }
520
521 int
522 rt2661_detach(void *xsc)
523 {
524 struct rt2661_softc *sc = xsc;
525 struct ifnet *ifp = &sc->sc_if;
526
527 callout_stop(&sc->scan_ch);
528 callout_stop(&sc->rssadapt_ch);
529
530 pmf_device_deregister(&sc->sc_dev);
531
532 ieee80211_ifdetach(&sc->sc_ic);
533 if_detach(ifp);
534
535 rt2661_free_tx_ring(sc, &sc->txq[0]);
536 rt2661_free_tx_ring(sc, &sc->txq[1]);
537 rt2661_free_tx_ring(sc, &sc->txq[2]);
538 rt2661_free_tx_ring(sc, &sc->txq[3]);
539 rt2661_free_tx_ring(sc, &sc->mgtq);
540 rt2661_free_rx_ring(sc, &sc->rxq);
541
542 return 0;
543 }
544
545 static int
546 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
547 int count)
548 {
549 int i, nsegs, error;
550
551 ring->count = count;
552 ring->queued = 0;
553 ring->cur = ring->next = ring->stat = 0;
554
555 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
556 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
557 if (error != 0) {
558 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
559 goto fail;
560 }
561
562 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
563 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
564 if (error != 0) {
565 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
566 goto fail;
567 }
568
569 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
570 count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
571 BUS_DMA_NOWAIT);
572 if (error != 0) {
573 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
574 goto fail;
575 }
576
577 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
578 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
579 if (error != 0) {
580 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
581 goto fail;
582 }
583
584 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
585 ring->physaddr = ring->map->dm_segs->ds_addr;
586
587 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
588 M_NOWAIT);
589 if (ring->data == NULL) {
590 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
591 error = ENOMEM;
592 goto fail;
593 }
594
595 memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
596 for (i = 0; i < count; i++) {
597 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
598 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
599 &ring->data[i].map);
600 if (error != 0) {
601 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
602 goto fail;
603 }
604 }
605
606 return 0;
607
608 fail: rt2661_free_tx_ring(sc, ring);
609 return error;
610 }
611
612 static void
613 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
614 {
615 struct rt2661_tx_desc *desc;
616 struct rt2661_tx_data *data;
617 int i;
618
619 for (i = 0; i < ring->count; i++) {
620 desc = &ring->desc[i];
621 data = &ring->data[i];
622
623 if (data->m != NULL) {
624 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
625 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
626 bus_dmamap_unload(sc->sc_dmat, data->map);
627 m_freem(data->m);
628 data->m = NULL;
629 }
630
631 if (data->ni != NULL) {
632 ieee80211_free_node(data->ni);
633 data->ni = NULL;
634 }
635
636 desc->flags = 0;
637 }
638
639 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
640 BUS_DMASYNC_PREWRITE);
641
642 ring->queued = 0;
643 ring->cur = ring->next = ring->stat = 0;
644 }
645
646
647 static void
648 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
649 {
650 struct rt2661_tx_data *data;
651 int i;
652
653 if (ring->desc != NULL) {
654 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
655 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
656 bus_dmamap_unload(sc->sc_dmat, ring->map);
657 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
658 ring->count * RT2661_TX_DESC_SIZE);
659 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
660 }
661
662 if (ring->data != NULL) {
663 for (i = 0; i < ring->count; i++) {
664 data = &ring->data[i];
665
666 if (data->m != NULL) {
667 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
668 data->map->dm_mapsize,
669 BUS_DMASYNC_POSTWRITE);
670 bus_dmamap_unload(sc->sc_dmat, data->map);
671 m_freem(data->m);
672 }
673
674 if (data->ni != NULL)
675 ieee80211_free_node(data->ni);
676
677 if (data->map != NULL)
678 bus_dmamap_destroy(sc->sc_dmat, data->map);
679 }
680 free(ring->data, M_DEVBUF);
681 }
682 }
683
684 static int
685 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
686 int count)
687 {
688 struct rt2661_rx_desc *desc;
689 struct rt2661_rx_data *data;
690 int i, nsegs, error;
691
692 ring->count = count;
693 ring->cur = ring->next = 0;
694
695 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
696 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
697 if (error != 0) {
698 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
699 goto fail;
700 }
701
702 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
703 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
704 if (error != 0) {
705 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
706 goto fail;
707 }
708
709 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
710 count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
711 BUS_DMA_NOWAIT);
712 if (error != 0) {
713 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
714 goto fail;
715 }
716
717 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
718 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
719 if (error != 0) {
720 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
721 goto fail;
722 }
723
724 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
725 ring->physaddr = ring->map->dm_segs->ds_addr;
726
727 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
728 M_NOWAIT);
729 if (ring->data == NULL) {
730 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
731 error = ENOMEM;
732 goto fail;
733 }
734
735 /*
736 * Pre-allocate Rx buffers and populate Rx ring.
737 */
738 memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
739 for (i = 0; i < count; i++) {
740 desc = &sc->rxq.desc[i];
741 data = &sc->rxq.data[i];
742
743 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
744 0, BUS_DMA_NOWAIT, &data->map);
745 if (error != 0) {
746 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
747 goto fail;
748 }
749
750 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
751 if (data->m == NULL) {
752 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
753 error = ENOMEM;
754 goto fail;
755 }
756
757 MCLGET(data->m, M_DONTWAIT);
758 if (!(data->m->m_flags & M_EXT)) {
759 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
760 error = ENOMEM;
761 goto fail;
762 }
763
764 error = bus_dmamap_load(sc->sc_dmat, data->map,
765 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
766 if (error != 0) {
767 aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map");
768 goto fail;
769 }
770
771 desc->flags = htole32(RT2661_RX_BUSY);
772 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
773 }
774
775 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
776 BUS_DMASYNC_PREWRITE);
777
778 return 0;
779
780 fail: rt2661_free_rx_ring(sc, ring);
781 return error;
782 }
783
784 static void
785 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
786 {
787 int i;
788
789 for (i = 0; i < ring->count; i++)
790 ring->desc[i].flags = htole32(RT2661_RX_BUSY);
791
792 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
793 BUS_DMASYNC_PREWRITE);
794
795 ring->cur = ring->next = 0;
796 }
797
798 static void
799 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
800 {
801 struct rt2661_rx_data *data;
802 int i;
803
804 if (ring->desc != NULL) {
805 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
806 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
807 bus_dmamap_unload(sc->sc_dmat, ring->map);
808 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
809 ring->count * RT2661_RX_DESC_SIZE);
810 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
811 }
812
813 if (ring->data != NULL) {
814 for (i = 0; i < ring->count; i++) {
815 data = &ring->data[i];
816
817 if (data->m != NULL) {
818 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
819 data->map->dm_mapsize,
820 BUS_DMASYNC_POSTREAD);
821 bus_dmamap_unload(sc->sc_dmat, data->map);
822 m_freem(data->m);
823 }
824
825 if (data->map != NULL)
826 bus_dmamap_destroy(sc->sc_dmat, data->map);
827 }
828 free(ring->data, M_DEVBUF);
829 }
830 }
831
832 static struct ieee80211_node *
833 rt2661_node_alloc(struct ieee80211_node_table *nt)
834 {
835 struct rt2661_node *rn;
836
837 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
838 M_NOWAIT | M_ZERO);
839
840 return (rn != NULL) ? &rn->ni : NULL;
841 }
842
843 static int
844 rt2661_media_change(struct ifnet *ifp)
845 {
846 int error;
847
848 error = ieee80211_media_change(ifp);
849 if (error != ENETRESET)
850 return error;
851
852 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
853 rt2661_init(ifp);
854
855 return 0;
856 }
857
858 /*
859 * This function is called periodically (every 200ms) during scanning to
860 * switch from one channel to another.
861 */
862 static void
863 rt2661_next_scan(void *arg)
864 {
865 struct rt2661_softc *sc = arg;
866 struct ieee80211com *ic = &sc->sc_ic;
867
868 if (ic->ic_state == IEEE80211_S_SCAN)
869 ieee80211_next_scan(ic);
870 }
871
872 /*
873 * This function is called for each neighbor node.
874 */
875 static void
876 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
877 {
878 struct rt2661_node *rn = (struct rt2661_node *)ni;
879
880 ieee80211_rssadapt_updatestats(&rn->rssadapt);
881 }
882
883 /*
884 * This function is called periodically (every 100ms) in RUN state to update
885 * the rate adaptation statistics.
886 */
887 static void
888 rt2661_rssadapt_updatestats(void *arg)
889 {
890 struct rt2661_softc *sc = arg;
891 struct ieee80211com *ic = &sc->sc_ic;
892
893 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
894
895 callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_rssadapt_updatestats,
896 sc);
897 }
898
899 static int
900 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
901 {
902 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
903 enum ieee80211_state ostate;
904 struct ieee80211_node *ni;
905 uint32_t tmp;
906 int error = 0;
907
908 ostate = ic->ic_state;
909 callout_stop(&sc->scan_ch);
910
911 switch (nstate) {
912 case IEEE80211_S_INIT:
913 callout_stop(&sc->rssadapt_ch);
914
915 if (ostate == IEEE80211_S_RUN) {
916 /* abort TSF synchronization */
917 tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
918 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
919 }
920 break;
921
922 case IEEE80211_S_SCAN:
923 rt2661_set_chan(sc, ic->ic_curchan);
924 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
925 break;
926
927 case IEEE80211_S_AUTH:
928 case IEEE80211_S_ASSOC:
929 rt2661_set_chan(sc, ic->ic_curchan);
930 break;
931
932 case IEEE80211_S_RUN:
933 rt2661_set_chan(sc, ic->ic_curchan);
934
935 ni = ic->ic_bss;
936
937 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
938 rt2661_enable_mrr(sc);
939 rt2661_set_txpreamble(sc);
940 rt2661_set_basicrates(sc, &ni->ni_rates);
941 rt2661_set_bssid(sc, ni->ni_bssid);
942 }
943
944 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
945 ic->ic_opmode == IEEE80211_M_IBSS) {
946 if ((error = rt2661_prepare_beacon(sc)) != 0)
947 break;
948 }
949
950 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
951 callout_reset(&sc->rssadapt_ch, hz / 10,
952 rt2661_rssadapt_updatestats, sc);
953 rt2661_enable_tsf_sync(sc);
954 }
955 break;
956 }
957
958 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
959 }
960
961 /*
962 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
963 * 93C66).
964 */
965 static uint16_t
966 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
967 {
968 uint32_t tmp;
969 uint16_t val;
970 int n;
971
972 /* clock C once before the first command */
973 RT2661_EEPROM_CTL(sc, 0);
974
975 RT2661_EEPROM_CTL(sc, RT2661_S);
976 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
977 RT2661_EEPROM_CTL(sc, RT2661_S);
978
979 /* write start bit (1) */
980 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
981 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
982
983 /* write READ opcode (10) */
984 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
985 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
986 RT2661_EEPROM_CTL(sc, RT2661_S);
987 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
988
989 /* write address (A5-A0 or A7-A0) */
990 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
991 for (; n >= 0; n--) {
992 RT2661_EEPROM_CTL(sc, RT2661_S |
993 (((addr >> n) & 1) << RT2661_SHIFT_D));
994 RT2661_EEPROM_CTL(sc, RT2661_S |
995 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
996 }
997
998 RT2661_EEPROM_CTL(sc, RT2661_S);
999
1000 /* read data Q15-Q0 */
1001 val = 0;
1002 for (n = 15; n >= 0; n--) {
1003 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1004 tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1005 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1006 RT2661_EEPROM_CTL(sc, RT2661_S);
1007 }
1008
1009 RT2661_EEPROM_CTL(sc, 0);
1010
1011 /* clear Chip Select and clock C */
1012 RT2661_EEPROM_CTL(sc, RT2661_S);
1013 RT2661_EEPROM_CTL(sc, 0);
1014 RT2661_EEPROM_CTL(sc, RT2661_C);
1015
1016 return val;
1017 }
1018
1019 static void
1020 rt2661_tx_intr(struct rt2661_softc *sc)
1021 {
1022 struct ieee80211com *ic = &sc->sc_ic;
1023 struct ifnet *ifp = &sc->sc_if;
1024 struct rt2661_tx_ring *txq;
1025 struct rt2661_tx_data *data;
1026 struct rt2661_node *rn;
1027 uint32_t val;
1028 int qid, retrycnt;
1029
1030 for (;;) {
1031 val = RAL_READ(sc, RT2661_STA_CSR4);
1032 if (!(val & RT2661_TX_STAT_VALID))
1033 break;
1034
1035 /* retrieve the queue in which this frame was sent */
1036 qid = RT2661_TX_QID(val);
1037 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
1038
1039 /* retrieve rate control algorithm context */
1040 data = &txq->data[txq->stat];
1041 rn = (struct rt2661_node *)data->ni;
1042
1043 /* if no frame has been sent, ignore */
1044 if (rn == NULL)
1045 continue;
1046
1047 switch (RT2661_TX_RESULT(val)) {
1048 case RT2661_TX_SUCCESS:
1049 retrycnt = RT2661_TX_RETRYCNT(val);
1050
1051 DPRINTFN(10, ("data frame sent successfully after "
1052 "%d retries\n", retrycnt));
1053 if (retrycnt == 0 && data->id.id_node != NULL) {
1054 ieee80211_rssadapt_raise_rate(ic,
1055 &rn->rssadapt, &data->id);
1056 }
1057 ifp->if_opackets++;
1058 break;
1059
1060 case RT2661_TX_RETRY_FAIL:
1061 DPRINTFN(9, ("sending data frame failed (too much "
1062 "retries)\n"));
1063 if (data->id.id_node != NULL) {
1064 ieee80211_rssadapt_lower_rate(ic, data->ni,
1065 &rn->rssadapt, &data->id);
1066 }
1067 ifp->if_oerrors++;
1068 break;
1069
1070 default:
1071 /* other failure */
1072 aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n", val);
1073 ifp->if_oerrors++;
1074 }
1075
1076 ieee80211_free_node(data->ni);
1077 data->ni = NULL;
1078
1079 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
1080
1081 txq->queued--;
1082 if (++txq->stat >= txq->count) /* faster than % count */
1083 txq->stat = 0;
1084 }
1085
1086 sc->sc_tx_timer = 0;
1087 ifp->if_flags &= ~IFF_OACTIVE;
1088 rt2661_start(ifp);
1089 }
1090
1091 static void
1092 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1093 {
1094 struct rt2661_tx_desc *desc;
1095 struct rt2661_tx_data *data;
1096
1097 for (;;) {
1098 desc = &txq->desc[txq->next];
1099 data = &txq->data[txq->next];
1100
1101 bus_dmamap_sync(sc->sc_dmat, txq->map,
1102 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1103 BUS_DMASYNC_POSTREAD);
1104
1105 if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1106 !(le32toh(desc->flags) & RT2661_TX_VALID))
1107 break;
1108
1109 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1110 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1111 bus_dmamap_unload(sc->sc_dmat, data->map);
1112 m_freem(data->m);
1113 data->m = NULL;
1114 /* node reference is released in rt2661_tx_intr() */
1115
1116 /* descriptor is no longer valid */
1117 desc->flags &= ~htole32(RT2661_TX_VALID);
1118
1119 bus_dmamap_sync(sc->sc_dmat, txq->map,
1120 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1121 BUS_DMASYNC_PREWRITE);
1122
1123 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1124
1125 if (++txq->next >= txq->count) /* faster than % count */
1126 txq->next = 0;
1127 }
1128 }
1129
1130 static void
1131 rt2661_rx_intr(struct rt2661_softc *sc)
1132 {
1133 struct ieee80211com *ic = &sc->sc_ic;
1134 struct ifnet *ifp = &sc->sc_if;
1135 struct rt2661_rx_desc *desc;
1136 struct rt2661_rx_data *data;
1137 struct rt2661_node *rn;
1138 struct ieee80211_frame *wh;
1139 struct ieee80211_node *ni;
1140 struct mbuf *mnew, *m;
1141 int error;
1142
1143 for (;;) {
1144 desc = &sc->rxq.desc[sc->rxq.cur];
1145 data = &sc->rxq.data[sc->rxq.cur];
1146
1147 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1148 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1149 BUS_DMASYNC_POSTREAD);
1150
1151 if (le32toh(desc->flags) & RT2661_RX_BUSY)
1152 break;
1153
1154 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1155 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1156 /*
1157 * This should not happen since we did not request
1158 * to receive those frames when we filled TXRX_CSR0.
1159 */
1160 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1161 le32toh(desc->flags)));
1162 ifp->if_ierrors++;
1163 goto skip;
1164 }
1165
1166 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1167 ifp->if_ierrors++;
1168 goto skip;
1169 }
1170
1171 /*
1172 * Try to allocate a new mbuf for this ring element and load it
1173 * before processing the current mbuf. If the ring element
1174 * cannot be loaded, drop the received packet and reuse the old
1175 * mbuf. In the unlikely case that the old mbuf can't be
1176 * reloaded either, explicitly panic.
1177 */
1178 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1179 if (mnew == NULL) {
1180 ifp->if_ierrors++;
1181 goto skip;
1182 }
1183
1184 MCLGET(mnew, M_DONTWAIT);
1185 if (!(mnew->m_flags & M_EXT)) {
1186 m_freem(mnew);
1187 ifp->if_ierrors++;
1188 goto skip;
1189 }
1190
1191 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1192 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1193 bus_dmamap_unload(sc->sc_dmat, data->map);
1194
1195 error = bus_dmamap_load(sc->sc_dmat, data->map,
1196 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1197 if (error != 0) {
1198 m_freem(mnew);
1199
1200 /* try to reload the old mbuf */
1201 error = bus_dmamap_load(sc->sc_dmat, data->map,
1202 mtod(data->m, void *), MCLBYTES, NULL,
1203 BUS_DMA_NOWAIT);
1204 if (error != 0) {
1205 /* very unlikely that it will fail... */
1206 panic("%s: could not load old rx mbuf",
1207 device_xname(&sc->sc_dev));
1208 }
1209 /* physical address may have changed */
1210 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1211 ifp->if_ierrors++;
1212 goto skip;
1213 }
1214
1215 /*
1216 * New mbuf successfully loaded, update Rx ring and continue
1217 * processing.
1218 */
1219 m = data->m;
1220 data->m = mnew;
1221 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1222
1223 /* finalize mbuf */
1224 m->m_pkthdr.rcvif = ifp;
1225 m->m_pkthdr.len = m->m_len =
1226 (le32toh(desc->flags) >> 16) & 0xfff;
1227
1228 #if NBPFILTER > 0
1229 if (sc->sc_drvbpf != NULL) {
1230 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1231 uint32_t tsf_lo, tsf_hi;
1232
1233 /* get timestamp (low and high 32 bits) */
1234 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1235 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1236
1237 tap->wr_tsf =
1238 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1239 tap->wr_flags = 0;
1240 tap->wr_rate = rt2661_rxrate(desc);
1241 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1242 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1243 tap->wr_antsignal = desc->rssi;
1244
1245 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1246 }
1247 #endif
1248
1249 wh = mtod(m, struct ieee80211_frame *);
1250 ni = ieee80211_find_rxnode(ic,
1251 (struct ieee80211_frame_min *)wh);
1252
1253 /* send the frame to the 802.11 layer */
1254 ieee80211_input(ic, m, ni, desc->rssi, 0);
1255
1256
1257 /* give rssi to the rate adatation algorithm */
1258 rn = (struct rt2661_node *)ni;
1259 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt,
1260 rt2661_get_rssi(sc, desc->rssi));
1261
1262 /* node is no longer needed */
1263 ieee80211_free_node(ni);
1264
1265 skip: desc->flags |= htole32(RT2661_RX_BUSY);
1266
1267 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1268 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1269 BUS_DMASYNC_PREWRITE);
1270
1271 DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1272
1273 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1274 }
1275
1276 /*
1277 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1278 * without calling if_start().
1279 */
1280 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1281 rt2661_start(ifp);
1282 }
1283
1284 /* ARGSUSED */
1285 static void
1286 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1287 {
1288 /* do nothing */
1289 }
1290
1291 static void
1292 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1293 {
1294 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1295
1296 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1297 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1298 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1299
1300 /* send wakeup command to MCU */
1301 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1302 }
1303
1304 static void
1305 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1306 {
1307 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1308 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1309 }
1310
1311 int
1312 rt2661_intr(void *arg)
1313 {
1314 struct rt2661_softc *sc = arg;
1315 struct ifnet *ifp = &sc->sc_if;
1316 uint32_t r1, r2;
1317
1318 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1319 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1320 if (r1 == 0 && r2 == 0)
1321 return 0; /* not for us */
1322
1323 /* disable MAC and MCU interrupts */
1324 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1325 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1326
1327 /* acknowledge interrupts */
1328 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1329 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1330
1331 /* don't re-enable interrupts if we're shutting down */
1332 if (!(ifp->if_flags & IFF_RUNNING))
1333 return 0;
1334
1335 if (r1 & RT2661_MGT_DONE)
1336 rt2661_tx_dma_intr(sc, &sc->mgtq);
1337
1338 if (r1 & RT2661_RX_DONE)
1339 rt2661_rx_intr(sc);
1340
1341 if (r1 & RT2661_TX0_DMA_DONE)
1342 rt2661_tx_dma_intr(sc, &sc->txq[0]);
1343
1344 if (r1 & RT2661_TX1_DMA_DONE)
1345 rt2661_tx_dma_intr(sc, &sc->txq[1]);
1346
1347 if (r1 & RT2661_TX2_DMA_DONE)
1348 rt2661_tx_dma_intr(sc, &sc->txq[2]);
1349
1350 if (r1 & RT2661_TX3_DMA_DONE)
1351 rt2661_tx_dma_intr(sc, &sc->txq[3]);
1352
1353 if (r1 & RT2661_TX_DONE)
1354 rt2661_tx_intr(sc);
1355
1356 if (r2 & RT2661_MCU_CMD_DONE)
1357 rt2661_mcu_cmd_intr(sc);
1358
1359 if (r2 & RT2661_MCU_BEACON_EXPIRE)
1360 rt2661_mcu_beacon_expire(sc);
1361
1362 if (r2 & RT2661_MCU_WAKEUP)
1363 rt2661_mcu_wakeup(sc);
1364
1365 /* re-enable MAC and MCU interrupts */
1366 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1367 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1368
1369 return 1;
1370 }
1371
1372 /* quickly determine if a given rate is CCK or OFDM */
1373 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1374
1375 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1376 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1377
1378 #define RAL_SIFS 10 /* us */
1379
1380 /*
1381 * This function is only used by the Rx radiotap code. It returns the rate at
1382 * which a given frame was received.
1383 */
1384 #if NBPFILTER > 0
1385 static uint8_t
1386 rt2661_rxrate(struct rt2661_rx_desc *desc)
1387 {
1388 if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1389 /* reverse function of rt2661_plcp_signal */
1390 switch (desc->rate & 0xf) {
1391 case 0xb: return 12;
1392 case 0xf: return 18;
1393 case 0xa: return 24;
1394 case 0xe: return 36;
1395 case 0x9: return 48;
1396 case 0xd: return 72;
1397 case 0x8: return 96;
1398 case 0xc: return 108;
1399 }
1400 } else {
1401 if (desc->rate == 10)
1402 return 2;
1403 if (desc->rate == 20)
1404 return 4;
1405 if (desc->rate == 55)
1406 return 11;
1407 if (desc->rate == 110)
1408 return 22;
1409 }
1410 return 2; /* should not get there */
1411 }
1412 #endif
1413
1414 /*
1415 * Return the expected ack rate for a frame transmitted at rate `rate'.
1416 * XXX: this should depend on the destination node basic rate set.
1417 */
1418 static int
1419 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1420 {
1421 switch (rate) {
1422 /* CCK rates */
1423 case 2:
1424 return 2;
1425 case 4:
1426 case 11:
1427 case 22:
1428 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1429
1430 /* OFDM rates */
1431 case 12:
1432 case 18:
1433 return 12;
1434 case 24:
1435 case 36:
1436 return 24;
1437 case 48:
1438 case 72:
1439 case 96:
1440 case 108:
1441 return 48;
1442 }
1443
1444 /* default to 1Mbps */
1445 return 2;
1446 }
1447
1448 /*
1449 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1450 * The function automatically determines the operating mode depending on the
1451 * given rate. `flags' indicates whether short preamble is in use or not.
1452 */
1453 static uint16_t
1454 rt2661_txtime(int len, int rate, uint32_t flags)
1455 {
1456 uint16_t txtime;
1457
1458 if (RAL_RATE_IS_OFDM(rate)) {
1459 /* IEEE Std 802.11a-1999, pp. 37 */
1460 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1461 txtime = 16 + 4 + 4 * txtime + 6;
1462 } else {
1463 /* IEEE Std 802.11b-1999, pp. 28 */
1464 txtime = (16 * len + rate - 1) / rate;
1465 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1466 txtime += 72 + 24;
1467 else
1468 txtime += 144 + 48;
1469 }
1470 return txtime;
1471 }
1472
1473 static uint8_t
1474 rt2661_plcp_signal(int rate)
1475 {
1476 switch (rate) {
1477 /* CCK rates (returned values are device-dependent) */
1478 case 2: return 0x0;
1479 case 4: return 0x1;
1480 case 11: return 0x2;
1481 case 22: return 0x3;
1482
1483 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1484 case 12: return 0xb;
1485 case 18: return 0xf;
1486 case 24: return 0xa;
1487 case 36: return 0xe;
1488 case 48: return 0x9;
1489 case 72: return 0xd;
1490 case 96: return 0x8;
1491 case 108: return 0xc;
1492
1493 /* unsupported rates (should not get there) */
1494 default: return 0xff;
1495 }
1496 }
1497
1498 static void
1499 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1500 uint32_t flags, uint16_t xflags, int len, int rate,
1501 const bus_dma_segment_t *segs, int nsegs, int ac)
1502 {
1503 struct ieee80211com *ic = &sc->sc_ic;
1504 uint16_t plcp_length;
1505 int i, remainder;
1506
1507 desc->flags = htole32(flags);
1508 desc->flags |= htole32(len << 16);
1509 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1510
1511 desc->xflags = htole16(xflags);
1512 desc->xflags |= htole16(nsegs << 13);
1513
1514 desc->wme = htole16(
1515 RT2661_QID(ac) |
1516 RT2661_AIFSN(2) |
1517 RT2661_LOGCWMIN(4) |
1518 RT2661_LOGCWMAX(10));
1519
1520 /*
1521 * Remember in which queue this frame was sent. This field is driver
1522 * private data only. It will be made available by the NIC in STA_CSR4
1523 * on Tx interrupts.
1524 */
1525 desc->qid = ac;
1526
1527 /* setup PLCP fields */
1528 desc->plcp_signal = rt2661_plcp_signal(rate);
1529 desc->plcp_service = 4;
1530
1531 len += IEEE80211_CRC_LEN;
1532 if (RAL_RATE_IS_OFDM(rate)) {
1533 desc->flags |= htole32(RT2661_TX_OFDM);
1534
1535 plcp_length = len & 0xfff;
1536 desc->plcp_length_hi = plcp_length >> 6;
1537 desc->plcp_length_lo = plcp_length & 0x3f;
1538 } else {
1539 plcp_length = (16 * len + rate - 1) / rate;
1540 if (rate == 22) {
1541 remainder = (16 * len) % 22;
1542 if (remainder != 0 && remainder < 7)
1543 desc->plcp_service |= RT2661_PLCP_LENGEXT;
1544 }
1545 desc->plcp_length_hi = plcp_length >> 8;
1546 desc->plcp_length_lo = plcp_length & 0xff;
1547
1548 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1549 desc->plcp_signal |= 0x08;
1550 }
1551
1552 /* RT2x61 supports scatter with up to 5 segments */
1553 for (i = 0; i < nsegs; i++) {
1554 desc->addr[i] = htole32(segs[i].ds_addr);
1555 desc->len [i] = htole16(segs[i].ds_len);
1556 }
1557 }
1558
1559 static int
1560 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1561 struct ieee80211_node *ni)
1562 {
1563 struct ieee80211com *ic = &sc->sc_ic;
1564 struct rt2661_tx_desc *desc;
1565 struct rt2661_tx_data *data;
1566 struct ieee80211_frame *wh;
1567 struct ieee80211_key *k;
1568 uint16_t dur;
1569 uint32_t flags = 0;
1570 int rate, error;
1571
1572 desc = &sc->mgtq.desc[sc->mgtq.cur];
1573 data = &sc->mgtq.data[sc->mgtq.cur];
1574
1575 /* send mgt frames at the lowest available rate */
1576 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1577
1578 wh = mtod(m0, struct ieee80211_frame *);
1579
1580 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1581 k = ieee80211_crypto_encap(ic, ni, m0);
1582 if (k == NULL) {
1583 m_freem(m0);
1584 return ENOBUFS;
1585 }
1586 }
1587
1588 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1589 BUS_DMA_NOWAIT);
1590 if (error != 0) {
1591 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1592 error);
1593 m_freem(m0);
1594 return error;
1595 }
1596
1597 #if NBPFILTER > 0
1598 if (sc->sc_drvbpf != NULL) {
1599 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1600
1601 tap->wt_flags = 0;
1602 tap->wt_rate = rate;
1603 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1604 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1605
1606 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1607 }
1608 #endif
1609
1610 data->m = m0;
1611 data->ni = ni;
1612
1613 wh = mtod(m0, struct ieee80211_frame *);
1614
1615 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1616 flags |= RT2661_TX_NEED_ACK;
1617
1618 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1619 RAL_SIFS;
1620 *(uint16_t *)wh->i_dur = htole16(dur);
1621
1622 /* tell hardware to add timestamp in probe responses */
1623 if ((wh->i_fc[0] &
1624 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1625 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1626 flags |= RT2661_TX_TIMESTAMP;
1627 }
1628
1629 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1630 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1631 RT2661_QID_MGT);
1632
1633 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1634 BUS_DMASYNC_PREWRITE);
1635 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1636 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1637 BUS_DMASYNC_PREWRITE);
1638
1639 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1640 m0->m_pkthdr.len, sc->mgtq.cur, rate));
1641
1642 /* kick mgt */
1643 sc->mgtq.queued++;
1644 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1645 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1646
1647 return 0;
1648 }
1649
1650 /*
1651 * Build a RTS control frame.
1652 */
1653 static struct mbuf *
1654 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1655 uint16_t dur)
1656 {
1657 struct ieee80211_frame_rts *rts;
1658 struct mbuf *m;
1659
1660 MGETHDR(m, M_DONTWAIT, MT_DATA);
1661 if (m == NULL) {
1662 sc->sc_ic.ic_stats.is_tx_nobuf++;
1663 aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n");
1664 return NULL;
1665 }
1666
1667 rts = mtod(m, struct ieee80211_frame_rts *);
1668
1669 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1670 IEEE80211_FC0_SUBTYPE_RTS;
1671 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1672 *(uint16_t *)rts->i_dur = htole16(dur);
1673 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1674 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1675
1676 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1677
1678 return m;
1679 }
1680
1681 static int
1682 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1683 struct ieee80211_node *ni, int ac)
1684 {
1685 struct ieee80211com *ic = &sc->sc_ic;
1686 struct rt2661_tx_ring *txq = &sc->txq[ac];
1687 struct rt2661_tx_desc *desc;
1688 struct rt2661_tx_data *data;
1689 struct rt2661_node *rn;
1690 struct ieee80211_rateset *rs;
1691 struct ieee80211_frame *wh;
1692 struct ieee80211_key *k;
1693 struct mbuf *mnew;
1694 uint16_t dur;
1695 uint32_t flags = 0;
1696 int rate, error;
1697
1698 wh = mtod(m0, struct ieee80211_frame *);
1699
1700 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1701 rs = &ic->ic_sup_rates[ic->ic_curmode];
1702 rate = rs->rs_rates[ic->ic_fixed_rate];
1703 } else {
1704 rs = &ni->ni_rates;
1705 rn = (struct rt2661_node *)ni;
1706 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1707 wh, m0->m_pkthdr.len, -1, NULL, 0);
1708 rate = rs->rs_rates[ni->ni_txrate];
1709 }
1710 rate &= IEEE80211_RATE_VAL;
1711
1712 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1713 k = ieee80211_crypto_encap(ic, ni, m0);
1714 if (k == NULL) {
1715 m_freem(m0);
1716 return ENOBUFS;
1717 }
1718
1719 /* packet header may have moved, reset our local pointer */
1720 wh = mtod(m0, struct ieee80211_frame *);
1721 }
1722
1723 /*
1724 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1725 * for directed frames only when the length of the MPDU is greater
1726 * than the length threshold indicated by [...]" ic_rtsthreshold.
1727 */
1728 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1729 m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1730 struct mbuf *m;
1731 int rtsrate, ackrate;
1732
1733 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1734 ackrate = rt2661_ack_rate(ic, rate);
1735
1736 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1737 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1738 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1739 3 * RAL_SIFS;
1740
1741 m = rt2661_get_rts(sc, wh, dur);
1742
1743 desc = &txq->desc[txq->cur];
1744 data = &txq->data[txq->cur];
1745
1746 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1747 BUS_DMA_NOWAIT);
1748 if (error != 0) {
1749 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1750 m_freem(m);
1751 m_freem(m0);
1752 return error;
1753 }
1754
1755 /* avoid multiple free() of the same node for each fragment */
1756 ieee80211_ref_node(ni);
1757
1758 data->m = m;
1759 data->ni = ni;
1760
1761 /* RTS frames are not taken into account for rssadapt */
1762 data->id.id_node = NULL;
1763
1764 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1765 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1766 data->map->dm_segs, data->map->dm_nsegs, ac);
1767
1768 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1769 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1770 bus_dmamap_sync(sc->sc_dmat, txq->map,
1771 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1772 BUS_DMASYNC_PREWRITE);
1773
1774 txq->queued++;
1775 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1776
1777 /*
1778 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1779 * asynchronous data frame shall be transmitted after the CTS
1780 * frame and a SIFS period.
1781 */
1782 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1783 }
1784
1785 data = &txq->data[txq->cur];
1786 desc = &txq->desc[txq->cur];
1787
1788 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1789 BUS_DMA_NOWAIT);
1790 if (error != 0 && error != EFBIG) {
1791 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1792 error);
1793 m_freem(m0);
1794 return error;
1795 }
1796 if (error != 0) {
1797 /* too many fragments, linearize */
1798
1799 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1800 if (mnew == NULL) {
1801 m_freem(m0);
1802 return ENOMEM;
1803 }
1804
1805 M_COPY_PKTHDR(mnew, m0);
1806 if (m0->m_pkthdr.len > MHLEN) {
1807 MCLGET(mnew, M_DONTWAIT);
1808 if (!(mnew->m_flags & M_EXT)) {
1809 m_freem(m0);
1810 m_freem(mnew);
1811 return ENOMEM;
1812 }
1813 }
1814
1815 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1816 m_freem(m0);
1817 mnew->m_len = mnew->m_pkthdr.len;
1818 m0 = mnew;
1819
1820 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1821 BUS_DMA_NOWAIT);
1822 if (error != 0) {
1823 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1824 m_freem(m0);
1825 return error;
1826 }
1827
1828 /* packet header have moved, reset our local pointer */
1829 wh = mtod(m0, struct ieee80211_frame *);
1830 }
1831
1832 #if NBPFILTER > 0
1833 if (sc->sc_drvbpf != NULL) {
1834 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1835
1836 tap->wt_flags = 0;
1837 tap->wt_rate = rate;
1838 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1839 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1840
1841 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1842 }
1843 #endif
1844
1845 data->m = m0;
1846 data->ni = ni;
1847
1848 /* remember link conditions for rate adaptation algorithm */
1849 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1850 data->id.id_len = m0->m_pkthdr.len;
1851 data->id.id_rateidx = ni->ni_txrate;
1852 data->id.id_node = ni;
1853 data->id.id_rssi = ni->ni_rssi;
1854 } else
1855 data->id.id_node = NULL;
1856
1857 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1858 flags |= RT2661_TX_NEED_ACK;
1859
1860 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1861 ic->ic_flags) + RAL_SIFS;
1862 *(uint16_t *)wh->i_dur = htole16(dur);
1863 }
1864
1865 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1866 data->map->dm_segs, data->map->dm_nsegs, ac);
1867
1868 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1869 BUS_DMASYNC_PREWRITE);
1870 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1871 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1872
1873 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1874 m0->m_pkthdr.len, txq->cur, rate));
1875
1876 /* kick Tx */
1877 txq->queued++;
1878 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1879 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1880
1881 return 0;
1882 }
1883
1884 static void
1885 rt2661_start(struct ifnet *ifp)
1886 {
1887 struct rt2661_softc *sc = ifp->if_softc;
1888 struct ieee80211com *ic = &sc->sc_ic;
1889 struct mbuf *m0;
1890 struct ether_header *eh;
1891 struct ieee80211_node *ni = NULL;
1892 int ac;
1893
1894 /*
1895 * net80211 may still try to send management frames even if the
1896 * IFF_RUNNING flag is not set...
1897 */
1898 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1899 return;
1900
1901 for (;;) {
1902 IF_POLL(&ic->ic_mgtq, m0);
1903 if (m0 != NULL) {
1904 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1905 ifp->if_flags |= IFF_OACTIVE;
1906 break;
1907 }
1908 IF_DEQUEUE(&ic->ic_mgtq, m0);
1909 if (m0 == NULL)
1910 break;
1911
1912 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1913 m0->m_pkthdr.rcvif = NULL;
1914 #if NBPFILTER > 0
1915 if (ic->ic_rawbpf != NULL)
1916 bpf_mtap(ic->ic_rawbpf, m0);
1917 #endif
1918 if (rt2661_tx_mgt(sc, m0, ni) != 0)
1919 break;
1920
1921 } else {
1922 if (ic->ic_state != IEEE80211_S_RUN)
1923 break;
1924 IFQ_DEQUEUE(&ifp->if_snd, m0);
1925 if (m0 == NULL)
1926 break;
1927
1928 if (m0->m_len < sizeof (struct ether_header) &&
1929 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1930 continue;
1931
1932 eh = mtod(m0, struct ether_header *);
1933 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1934 if (ni == NULL) {
1935 m_freem(m0);
1936 ifp->if_oerrors++;
1937 continue;
1938 }
1939
1940
1941 /* classify mbuf so we can find which tx ring to use */
1942 if (ieee80211_classify(ic, m0, ni) != 0) {
1943 m_freem(m0);
1944 ieee80211_free_node(ni);
1945 ifp->if_oerrors++;
1946 continue;
1947 }
1948
1949 /* no QoS encapsulation for EAPOL frames */
1950 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1951 M_WME_GETAC(m0) : WME_AC_BE;
1952
1953 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1954 /* there is no place left in this ring */
1955 ifp->if_flags |= IFF_OACTIVE;
1956 break;
1957 }
1958 #if NBPFILTER > 0
1959 if (ifp->if_bpf != NULL)
1960 bpf_mtap(ifp->if_bpf, m0);
1961 #endif
1962 m0 = ieee80211_encap(ic, m0, ni);
1963 if (m0 == NULL) {
1964 ieee80211_free_node(ni);
1965 ifp->if_oerrors++;
1966 continue;
1967 }
1968 #if NBPFILTER > 0
1969 if (ic->ic_rawbpf != NULL)
1970 bpf_mtap(ic->ic_rawbpf, m0);
1971 #endif
1972 if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1973 if (ni != NULL)
1974 ieee80211_free_node(ni);
1975 ifp->if_oerrors++;
1976 break;
1977 }
1978 }
1979
1980 sc->sc_tx_timer = 5;
1981 ifp->if_timer = 1;
1982 }
1983 }
1984
1985 static void
1986 rt2661_watchdog(struct ifnet *ifp)
1987 {
1988 struct rt2661_softc *sc = ifp->if_softc;
1989
1990 ifp->if_timer = 0;
1991
1992 if (sc->sc_tx_timer > 0) {
1993 if (--sc->sc_tx_timer == 0) {
1994 aprint_error_dev(&sc->sc_dev, "device timeout\n");
1995 rt2661_init(ifp);
1996 ifp->if_oerrors++;
1997 return;
1998 }
1999 ifp->if_timer = 1;
2000 }
2001
2002 ieee80211_watchdog(&sc->sc_ic);
2003 }
2004
2005 /*
2006 * This function allows for fast channel switching in monitor mode (used by
2007 * kismet). In IBSS mode, we must explicitly reset the interface to
2008 * generate a new beacon frame.
2009 */
2010 static int
2011 rt2661_reset(struct ifnet *ifp)
2012 {
2013 struct rt2661_softc *sc = ifp->if_softc;
2014 struct ieee80211com *ic = &sc->sc_ic;
2015
2016 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2017 return ENETRESET;
2018
2019 rt2661_set_chan(sc, ic->ic_curchan);
2020
2021 return 0;
2022 }
2023
2024 static int
2025 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2026 {
2027 struct rt2661_softc *sc = ifp->if_softc;
2028 struct ieee80211com *ic = &sc->sc_ic;
2029 int s, error = 0;
2030
2031 s = splnet();
2032
2033 switch (cmd) {
2034 case SIOCSIFFLAGS:
2035 if (ifp->if_flags & IFF_UP) {
2036 if (ifp->if_flags & IFF_RUNNING)
2037 rt2661_update_promisc(sc);
2038 else
2039 rt2661_init(ifp);
2040 } else {
2041 if (ifp->if_flags & IFF_RUNNING)
2042 rt2661_stop(ifp, 1);
2043 }
2044 break;
2045
2046 case SIOCADDMULTI:
2047 case SIOCDELMULTI:
2048 /* XXX no h/w multicast filter? --dyoung */
2049 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
2050 error = 0;
2051 break;
2052
2053 case SIOCS80211CHANNEL:
2054 /*
2055 * This allows for fast channel switching in monitor mode
2056 * (used by kismet). In IBSS mode, we must explicitly reset
2057 * the interface to generate a new beacon frame.
2058 */
2059 error = ieee80211_ioctl(ic, cmd, data);
2060 if (error == ENETRESET &&
2061 ic->ic_opmode == IEEE80211_M_MONITOR) {
2062 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2063 (IFF_UP | IFF_RUNNING))
2064 rt2661_set_chan(sc, ic->ic_ibss_chan);
2065 error = 0;
2066 }
2067 break;
2068
2069 default:
2070 error = ieee80211_ioctl(ic, cmd, data);
2071
2072 }
2073
2074 if (error == ENETRESET) {
2075 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2076 (IFF_UP | IFF_RUNNING))
2077 rt2661_init(ifp);
2078 error = 0;
2079 }
2080
2081 splx(s);
2082
2083 return error;
2084 }
2085
2086 static void
2087 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2088 {
2089 uint32_t tmp;
2090 int ntries;
2091
2092 for (ntries = 0; ntries < 100; ntries++) {
2093 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2094 break;
2095 DELAY(1);
2096 }
2097 if (ntries == 100) {
2098 aprint_error_dev(&sc->sc_dev, "could not write to BBP\n");
2099 return;
2100 }
2101
2102 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2103 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2104
2105 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2106 }
2107
2108 static uint8_t
2109 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2110 {
2111 uint32_t val;
2112 int ntries;
2113
2114 for (ntries = 0; ntries < 100; ntries++) {
2115 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2116 break;
2117 DELAY(1);
2118 }
2119 if (ntries == 100) {
2120 aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2121 return 0;
2122 }
2123
2124 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2125 RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2126
2127 for (ntries = 0; ntries < 100; ntries++) {
2128 val = RAL_READ(sc, RT2661_PHY_CSR3);
2129 if (!(val & RT2661_BBP_BUSY))
2130 return val & 0xff;
2131 DELAY(1);
2132 }
2133
2134 aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2135 return 0;
2136 }
2137
2138 static void
2139 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2140 {
2141 uint32_t tmp;
2142 int ntries;
2143
2144 for (ntries = 0; ntries < 100; ntries++) {
2145 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2146 break;
2147 DELAY(1);
2148 }
2149 if (ntries == 100) {
2150 aprint_error_dev(&sc->sc_dev, "could not write to RF\n");
2151 return;
2152 }
2153 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2154 (reg & 3);
2155 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2156
2157 /* remember last written value in sc */
2158 sc->rf_regs[reg] = val;
2159
2160 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2161 }
2162
2163 static int
2164 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2165 {
2166 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2167 return EIO; /* there is already a command pending */
2168
2169 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2170 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2171
2172 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2173
2174 return 0;
2175 }
2176
2177 static void
2178 rt2661_select_antenna(struct rt2661_softc *sc)
2179 {
2180 uint8_t bbp4, bbp77;
2181 uint32_t tmp;
2182
2183 bbp4 = rt2661_bbp_read(sc, 4);
2184 bbp77 = rt2661_bbp_read(sc, 77);
2185
2186 /* TBD */
2187
2188 /* make sure Rx is disabled before switching antenna */
2189 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2190 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2191
2192 rt2661_bbp_write(sc, 4, bbp4);
2193 rt2661_bbp_write(sc, 77, bbp77);
2194
2195 /* restore Rx filter */
2196 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2197 }
2198
2199 /*
2200 * Enable multi-rate retries for frames sent at OFDM rates.
2201 * In 802.11b/g mode, allow fallback to CCK rates.
2202 */
2203 static void
2204 rt2661_enable_mrr(struct rt2661_softc *sc)
2205 {
2206 struct ieee80211com *ic = &sc->sc_ic;
2207 uint32_t tmp;
2208
2209 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2210
2211 tmp &= ~RT2661_MRR_CCK_FALLBACK;
2212 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2213 tmp |= RT2661_MRR_CCK_FALLBACK;
2214 tmp |= RT2661_MRR_ENABLED;
2215
2216 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2217 }
2218
2219 static void
2220 rt2661_set_txpreamble(struct rt2661_softc *sc)
2221 {
2222 uint32_t tmp;
2223
2224 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2225
2226 tmp &= ~RT2661_SHORT_PREAMBLE;
2227 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2228 tmp |= RT2661_SHORT_PREAMBLE;
2229
2230 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2231 }
2232
2233 static void
2234 rt2661_set_basicrates(struct rt2661_softc *sc,
2235 const struct ieee80211_rateset *rs)
2236 {
2237 #define RV(r) ((r) & IEEE80211_RATE_VAL)
2238 uint32_t mask = 0;
2239 uint8_t rate;
2240 int i, j;
2241
2242 for (i = 0; i < rs->rs_nrates; i++) {
2243 rate = rs->rs_rates[i];
2244
2245 if (!(rate & IEEE80211_RATE_BASIC))
2246 continue;
2247
2248 /*
2249 * Find h/w rate index. We know it exists because the rate
2250 * set has already been negotiated.
2251 */
2252 for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2253
2254 mask |= 1 << j;
2255 }
2256
2257 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2258
2259 DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2260 #undef RV
2261 }
2262
2263 /*
2264 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
2265 * driver.
2266 */
2267 static void
2268 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2269 {
2270 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2271 uint32_t tmp;
2272
2273 /* update all BBP registers that depend on the band */
2274 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2275 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
2276 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2277 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2278 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
2279 }
2280 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2281 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2282 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2283 }
2284
2285 rt2661_bbp_write(sc, 17, bbp17);
2286 rt2661_bbp_write(sc, 96, bbp96);
2287 rt2661_bbp_write(sc, 104, bbp104);
2288
2289 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2290 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2291 rt2661_bbp_write(sc, 75, 0x80);
2292 rt2661_bbp_write(sc, 86, 0x80);
2293 rt2661_bbp_write(sc, 88, 0x80);
2294 }
2295
2296 rt2661_bbp_write(sc, 35, bbp35);
2297 rt2661_bbp_write(sc, 97, bbp97);
2298 rt2661_bbp_write(sc, 98, bbp98);
2299
2300 tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2301 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2302 if (IEEE80211_IS_CHAN_2GHZ(c))
2303 tmp |= RT2661_PA_PE_2GHZ;
2304 else
2305 tmp |= RT2661_PA_PE_5GHZ;
2306 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2307 }
2308
2309 static void
2310 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2311 {
2312 struct ieee80211com *ic = &sc->sc_ic;
2313 const struct rfprog *rfprog;
2314 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2315 int8_t power;
2316 u_int i, chan;
2317
2318 chan = ieee80211_chan2ieee(ic, c);
2319 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2320 return;
2321
2322 /* select the appropriate RF settings based on what EEPROM says */
2323 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2324
2325 /* find the settings for this channel (we know it exists) */
2326 for (i = 0; rfprog[i].chan != chan; i++);
2327
2328 power = sc->txpow[i];
2329 if (power < 0) {
2330 bbp94 += power;
2331 power = 0;
2332 } else if (power > 31) {
2333 bbp94 += power - 31;
2334 power = 31;
2335 }
2336
2337 /*
2338 * If we've yet to select a channel, or we are switching from the
2339 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2340 * be reprogrammed.
2341 */
2342 if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2343 rt2661_select_band(sc, c);
2344 rt2661_select_antenna(sc);
2345 }
2346 sc->sc_curchan = c;
2347
2348 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2349 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2350 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2351 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2352
2353 DELAY(200);
2354
2355 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2356 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2357 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2358 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2359
2360 DELAY(200);
2361
2362 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2363 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2364 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2365 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2366
2367 /* enable smart mode for MIMO-capable RFs */
2368 bbp3 = rt2661_bbp_read(sc, 3);
2369
2370 bbp3 &= ~RT2661_SMART_MODE;
2371 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2372 bbp3 |= RT2661_SMART_MODE;
2373
2374 rt2661_bbp_write(sc, 3, bbp3);
2375
2376 if (bbp94 != RT2661_BBPR94_DEFAULT)
2377 rt2661_bbp_write(sc, 94, bbp94);
2378
2379 /* 5GHz radio needs a 1ms delay here */
2380 if (IEEE80211_IS_CHAN_5GHZ(c))
2381 DELAY(1000);
2382 }
2383
2384 static void
2385 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2386 {
2387 uint32_t tmp;
2388
2389 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2390 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2391
2392 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2393 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2394 }
2395
2396 static void
2397 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2398 {
2399 uint32_t tmp;
2400
2401 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2402 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2403
2404 tmp = addr[4] | addr[5] << 8;
2405 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2406 }
2407
2408 static void
2409 rt2661_update_promisc(struct rt2661_softc *sc)
2410 {
2411 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2412 uint32_t tmp;
2413
2414 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2415
2416 tmp &= ~RT2661_DROP_NOT_TO_ME;
2417 if (!(ifp->if_flags & IFF_PROMISC))
2418 tmp |= RT2661_DROP_NOT_TO_ME;
2419
2420 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2421
2422 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2423 "entering" : "leaving"));
2424 }
2425
2426 #if 0
2427 /*
2428 * Update QoS (802.11e) settings for each h/w Tx ring.
2429 */
2430 static int
2431 rt2661_wme_update(struct ieee80211com *ic)
2432 {
2433 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2434 const struct wmeParams *wmep;
2435
2436 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2437
2438 /* XXX: not sure about shifts. */
2439 /* XXX: the reference driver plays with AC_VI settings too. */
2440
2441 /* update TxOp */
2442 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2443 wmep[WME_AC_BE].wmep_txopLimit << 16 |
2444 wmep[WME_AC_BK].wmep_txopLimit);
2445 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2446 wmep[WME_AC_VI].wmep_txopLimit << 16 |
2447 wmep[WME_AC_VO].wmep_txopLimit);
2448
2449 /* update CWmin */
2450 RAL_WRITE(sc, RT2661_CWMIN_CSR,
2451 wmep[WME_AC_BE].wmep_logcwmin << 12 |
2452 wmep[WME_AC_BK].wmep_logcwmin << 8 |
2453 wmep[WME_AC_VI].wmep_logcwmin << 4 |
2454 wmep[WME_AC_VO].wmep_logcwmin);
2455
2456 /* update CWmax */
2457 RAL_WRITE(sc, RT2661_CWMAX_CSR,
2458 wmep[WME_AC_BE].wmep_logcwmax << 12 |
2459 wmep[WME_AC_BK].wmep_logcwmax << 8 |
2460 wmep[WME_AC_VI].wmep_logcwmax << 4 |
2461 wmep[WME_AC_VO].wmep_logcwmax);
2462
2463 /* update Aifsn */
2464 RAL_WRITE(sc, RT2661_AIFSN_CSR,
2465 wmep[WME_AC_BE].wmep_aifsn << 12 |
2466 wmep[WME_AC_BK].wmep_aifsn << 8 |
2467 wmep[WME_AC_VI].wmep_aifsn << 4 |
2468 wmep[WME_AC_VO].wmep_aifsn);
2469
2470 return 0;
2471 }
2472 #endif
2473
2474 static void
2475 rt2661_update_slot(struct ifnet *ifp)
2476 {
2477 struct rt2661_softc *sc = ifp->if_softc;
2478 struct ieee80211com *ic = &sc->sc_ic;
2479 uint8_t slottime;
2480 uint32_t tmp;
2481
2482 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2483
2484 tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2485 tmp = (tmp & ~0xff) | slottime;
2486 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2487 }
2488
2489 static const char *
2490 rt2661_get_rf(int rev)
2491 {
2492 switch (rev) {
2493 case RT2661_RF_5225: return "RT5225";
2494 case RT2661_RF_5325: return "RT5325 (MIMO XR)";
2495 case RT2661_RF_2527: return "RT2527";
2496 case RT2661_RF_2529: return "RT2529 (MIMO XR)";
2497 default: return "unknown";
2498 }
2499 }
2500
2501 static void
2502 rt2661_read_eeprom(struct rt2661_softc *sc)
2503 {
2504 struct ieee80211com *ic = &sc->sc_ic;
2505 uint16_t val;
2506 int i;
2507
2508 /* read MAC address */
2509 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2510 ic->ic_myaddr[0] = val & 0xff;
2511 ic->ic_myaddr[1] = val >> 8;
2512
2513 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2514 ic->ic_myaddr[2] = val & 0xff;
2515 ic->ic_myaddr[3] = val >> 8;
2516
2517 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2518 ic->ic_myaddr[4] = val & 0xff;
2519 ic->ic_myaddr[5] = val >> 8;
2520
2521 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2522 /* XXX: test if different from 0xffff? */
2523 sc->rf_rev = (val >> 11) & 0x1f;
2524 sc->hw_radio = (val >> 10) & 0x1;
2525 sc->rx_ant = (val >> 4) & 0x3;
2526 sc->tx_ant = (val >> 2) & 0x3;
2527 sc->nb_ant = val & 0x3;
2528
2529 DPRINTF(("RF revision=%d\n", sc->rf_rev));
2530
2531 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2532 sc->ext_5ghz_lna = (val >> 6) & 0x1;
2533 sc->ext_2ghz_lna = (val >> 4) & 0x1;
2534
2535 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2536 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2537
2538 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2539 if ((val & 0xff) != 0xff)
2540 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
2541
2542 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2543 if ((val & 0xff) != 0xff)
2544 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
2545
2546 /* adjust RSSI correction for external low-noise amplifier */
2547 if (sc->ext_2ghz_lna)
2548 sc->rssi_2ghz_corr -= 14;
2549 if (sc->ext_5ghz_lna)
2550 sc->rssi_5ghz_corr -= 14;
2551
2552 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2553 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2554
2555 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2556 if ((val >> 8) != 0xff)
2557 sc->rfprog = (val >> 8) & 0x3;
2558 if ((val & 0xff) != 0xff)
2559 sc->rffreq = val & 0xff;
2560
2561 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2562
2563 /* read Tx power for all a/b/g channels */
2564 for (i = 0; i < 19; i++) {
2565 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2566 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
2567 DPRINTF(("Channel=%d Tx power=%d\n",
2568 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2569 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
2570 DPRINTF(("Channel=%d Tx power=%d\n",
2571 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2572 }
2573
2574 /* read vendor-specific BBP values */
2575 for (i = 0; i < 16; i++) {
2576 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2577 if (val == 0 || val == 0xffff)
2578 continue; /* skip invalid entries */
2579 sc->bbp_prom[i].reg = val >> 8;
2580 sc->bbp_prom[i].val = val & 0xff;
2581 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2582 sc->bbp_prom[i].val));
2583 }
2584 }
2585
2586 static int
2587 rt2661_bbp_init(struct rt2661_softc *sc)
2588 {
2589 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2590 int i, ntries;
2591 uint8_t val;
2592
2593 /* wait for BBP to be ready */
2594 for (ntries = 0; ntries < 100; ntries++) {
2595 val = rt2661_bbp_read(sc, 0);
2596 if (val != 0 && val != 0xff)
2597 break;
2598 DELAY(100);
2599 }
2600 if (ntries == 100) {
2601 aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n");
2602 return EIO;
2603 }
2604
2605 /* initialize BBP registers to default values */
2606 for (i = 0; i < N(rt2661_def_bbp); i++) {
2607 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2608 rt2661_def_bbp[i].val);
2609 }
2610
2611 /* write vendor-specific BBP values (from EEPROM) */
2612 for (i = 0; i < 16; i++) {
2613 if (sc->bbp_prom[i].reg == 0)
2614 continue;
2615 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2616 }
2617
2618 return 0;
2619 #undef N
2620 }
2621
2622 static int
2623 rt2661_init(struct ifnet *ifp)
2624 {
2625 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2626 struct rt2661_softc *sc = ifp->if_softc;
2627 struct ieee80211com *ic = &sc->sc_ic;
2628 const char *name = NULL; /* make lint happy */
2629 uint8_t *ucode;
2630 size_t size;
2631 uint32_t tmp, star[3];
2632 int i, ntries;
2633 firmware_handle_t fh;
2634
2635 /* for CardBus, power on the socket */
2636 if (!(sc->sc_flags & RT2661_ENABLED)) {
2637 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2638 aprint_error_dev(&sc->sc_dev, "could not enable device\n");
2639 return EIO;
2640 }
2641 sc->sc_flags |= RT2661_ENABLED;
2642 }
2643
2644 rt2661_stop(ifp, 0);
2645
2646 if (!(sc->sc_flags & RT2661_FWLOADED)) {
2647 switch (sc->sc_id) {
2648 case PCI_PRODUCT_RALINK_RT2561:
2649 name = "ral-rt2561";
2650 break;
2651 case PCI_PRODUCT_RALINK_RT2561S:
2652 name = "ral-rt2561s";
2653 break;
2654 case PCI_PRODUCT_RALINK_RT2661:
2655 name = "ral-rt2661";
2656 break;
2657 }
2658
2659 if (firmware_open("ral", name, &fh) != 0) {
2660 aprint_error_dev(&sc->sc_dev, "could not open microcode %s\n", name);
2661 rt2661_stop(ifp, 1);
2662 return EIO;
2663 }
2664
2665 size = firmware_get_size(fh);
2666 if (!(ucode = firmware_malloc(size))) {
2667 aprint_error_dev(&sc->sc_dev, "could not alloc microcode memory\n");
2668 firmware_close(fh);
2669 rt2661_stop(ifp, 1);
2670 return ENOMEM;
2671 }
2672
2673 if (firmware_read(fh, 0, ucode, size) != 0) {
2674 aprint_error_dev(&sc->sc_dev, "could not read microcode %s\n", name);
2675 firmware_free(ucode, 0);
2676 firmware_close(fh);
2677 rt2661_stop(ifp, 1);
2678 return EIO;
2679 }
2680
2681 if (rt2661_load_microcode(sc, ucode, size) != 0) {
2682 aprint_error_dev(&sc->sc_dev, "could not load 8051 microcode\n");
2683 firmware_free(ucode, 0);
2684 firmware_close(fh);
2685 rt2661_stop(ifp, 1);
2686 return EIO;
2687 }
2688
2689 firmware_free(ucode, 0);
2690 firmware_close(fh);
2691 sc->sc_flags |= RT2661_FWLOADED;
2692 }
2693
2694 /* initialize Tx rings */
2695 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2696 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2697 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2698 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2699
2700 /* initialize Mgt ring */
2701 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2702
2703 /* initialize Rx ring */
2704 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2705
2706 /* initialize Tx rings sizes */
2707 RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2708 RT2661_TX_RING_COUNT << 24 |
2709 RT2661_TX_RING_COUNT << 16 |
2710 RT2661_TX_RING_COUNT << 8 |
2711 RT2661_TX_RING_COUNT);
2712
2713 RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2714 RT2661_TX_DESC_WSIZE << 16 |
2715 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
2716 RT2661_MGT_RING_COUNT);
2717
2718 /* initialize Rx rings */
2719 RAL_WRITE(sc, RT2661_RX_RING_CSR,
2720 RT2661_RX_DESC_BACK << 16 |
2721 RT2661_RX_DESC_WSIZE << 8 |
2722 RT2661_RX_RING_COUNT);
2723
2724 /* XXX: some magic here */
2725 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2726
2727 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2728 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2729
2730 /* load base address of Rx ring */
2731 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2732
2733 /* initialize MAC registers to default values */
2734 for (i = 0; i < N(rt2661_def_mac); i++)
2735 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2736
2737 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2738 rt2661_set_macaddr(sc, ic->ic_myaddr);
2739
2740 /* set host ready */
2741 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2742 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2743
2744 /* wait for BBP/RF to wakeup */
2745 for (ntries = 0; ntries < 1000; ntries++) {
2746 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2747 break;
2748 DELAY(1000);
2749 }
2750 if (ntries == 1000) {
2751 printf("timeout waiting for BBP/RF to wakeup\n");
2752 rt2661_stop(ifp, 1);
2753 return EIO;
2754 }
2755
2756 if (rt2661_bbp_init(sc) != 0) {
2757 rt2661_stop(ifp, 1);
2758 return EIO;
2759 }
2760
2761 /* select default channel */
2762 sc->sc_curchan = ic->ic_curchan;
2763 rt2661_select_band(sc, sc->sc_curchan);
2764 rt2661_select_antenna(sc);
2765 rt2661_set_chan(sc, sc->sc_curchan);
2766
2767 /* update Rx filter */
2768 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2769
2770 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2771 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2772 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2773 RT2661_DROP_ACKCTS;
2774 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2775 tmp |= RT2661_DROP_TODS;
2776 if (!(ifp->if_flags & IFF_PROMISC))
2777 tmp |= RT2661_DROP_NOT_TO_ME;
2778 }
2779
2780 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2781
2782 /* clear STA registers */
2783 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2784
2785 /* initialize ASIC */
2786 RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2787
2788 /* clear any pending interrupt */
2789 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2790
2791 /* enable interrupts */
2792 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2793 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2794
2795 /* kick Rx */
2796 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2797
2798 ifp->if_flags &= ~IFF_OACTIVE;
2799 ifp->if_flags |= IFF_RUNNING;
2800
2801 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2802 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2803 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2804 } else
2805 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2806
2807 return 0;
2808 #undef N
2809 }
2810
2811 static void
2812 rt2661_stop(struct ifnet *ifp, int disable)
2813 {
2814 struct rt2661_softc *sc = ifp->if_softc;
2815 struct ieee80211com *ic = &sc->sc_ic;
2816 uint32_t tmp;
2817
2818 sc->sc_tx_timer = 0;
2819 ifp->if_timer = 0;
2820 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2821
2822 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2823
2824 /* abort Tx (for all 5 Tx rings) */
2825 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2826
2827 /* disable Rx (value remains after reset!) */
2828 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2829 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2830
2831 /* reset ASIC */
2832 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2833 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2834
2835 /* disable interrupts */
2836 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2837 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2838
2839 /* clear any pending interrupt */
2840 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2841 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2842
2843 /* reset Tx and Rx rings */
2844 rt2661_reset_tx_ring(sc, &sc->txq[0]);
2845 rt2661_reset_tx_ring(sc, &sc->txq[1]);
2846 rt2661_reset_tx_ring(sc, &sc->txq[2]);
2847 rt2661_reset_tx_ring(sc, &sc->txq[3]);
2848 rt2661_reset_tx_ring(sc, &sc->mgtq);
2849 rt2661_reset_rx_ring(sc, &sc->rxq);
2850
2851 /* for CardBus, power down the socket */
2852 if (disable && sc->sc_disable != NULL) {
2853 if (sc->sc_flags & RT2661_ENABLED) {
2854 (*sc->sc_disable)(sc);
2855 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2856 }
2857 }
2858 }
2859
2860 static int
2861 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2862 {
2863 int ntries;
2864
2865 /* reset 8051 */
2866 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2867
2868 /* cancel any pending Host to MCU command */
2869 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2870 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2871 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2872
2873 /* write 8051's microcode */
2874 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2875 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2876 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2877
2878 /* kick 8051's ass */
2879 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2880
2881 /* wait for 8051 to initialize */
2882 for (ntries = 0; ntries < 500; ntries++) {
2883 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2884 break;
2885 DELAY(100);
2886 }
2887 if (ntries == 500) {
2888 printf("timeout waiting for MCU to initialize\n");
2889 return EIO;
2890 }
2891 return 0;
2892 }
2893
2894 #ifdef notyet
2895 /*
2896 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2897 * false CCA count. This function is called periodically (every seconds) when
2898 * in the RUN state. Values taken from the reference driver.
2899 */
2900 static void
2901 rt2661_rx_tune(struct rt2661_softc *sc)
2902 {
2903 uint8_t bbp17;
2904 uint16_t cca;
2905 int lo, hi, dbm;
2906
2907 /*
2908 * Tuning range depends on operating band and on the presence of an
2909 * external low-noise amplifier.
2910 */
2911 lo = 0x20;
2912 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2913 lo += 0x08;
2914 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2915 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2916 lo += 0x10;
2917 hi = lo + 0x20;
2918
2919 /* retrieve false CCA count since last call (clear on read) */
2920 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2921
2922 if (dbm >= -35) {
2923 bbp17 = 0x60;
2924 } else if (dbm >= -58) {
2925 bbp17 = hi;
2926 } else if (dbm >= -66) {
2927 bbp17 = lo + 0x10;
2928 } else if (dbm >= -74) {
2929 bbp17 = lo + 0x08;
2930 } else {
2931 /* RSSI < -74dBm, tune using false CCA count */
2932
2933 bbp17 = sc->bbp17; /* current value */
2934
2935 hi -= 2 * (-74 - dbm);
2936 if (hi < lo)
2937 hi = lo;
2938
2939 if (bbp17 > hi) {
2940 bbp17 = hi;
2941
2942 } else if (cca > 512) {
2943 if (++bbp17 > hi)
2944 bbp17 = hi;
2945 } else if (cca < 100) {
2946 if (--bbp17 < lo)
2947 bbp17 = lo;
2948 }
2949 }
2950
2951 if (bbp17 != sc->bbp17) {
2952 rt2661_bbp_write(sc, 17, bbp17);
2953 sc->bbp17 = bbp17;
2954 }
2955 }
2956
2957 /*
2958 * Enter/Leave radar detection mode.
2959 * This is for 802.11h additional regulatory domains.
2960 */
2961 static void
2962 rt2661_radar_start(struct rt2661_softc *sc)
2963 {
2964 uint32_t tmp;
2965
2966 /* disable Rx */
2967 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2968 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2969
2970 rt2661_bbp_write(sc, 82, 0x20);
2971 rt2661_bbp_write(sc, 83, 0x00);
2972 rt2661_bbp_write(sc, 84, 0x40);
2973
2974 /* save current BBP registers values */
2975 sc->bbp18 = rt2661_bbp_read(sc, 18);
2976 sc->bbp21 = rt2661_bbp_read(sc, 21);
2977 sc->bbp22 = rt2661_bbp_read(sc, 22);
2978 sc->bbp16 = rt2661_bbp_read(sc, 16);
2979 sc->bbp17 = rt2661_bbp_read(sc, 17);
2980 sc->bbp64 = rt2661_bbp_read(sc, 64);
2981
2982 rt2661_bbp_write(sc, 18, 0xff);
2983 rt2661_bbp_write(sc, 21, 0x3f);
2984 rt2661_bbp_write(sc, 22, 0x3f);
2985 rt2661_bbp_write(sc, 16, 0xbd);
2986 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2987 rt2661_bbp_write(sc, 64, 0x21);
2988
2989 /* restore Rx filter */
2990 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2991 }
2992
2993 static int
2994 rt2661_radar_stop(struct rt2661_softc *sc)
2995 {
2996 uint8_t bbp66;
2997
2998 /* read radar detection result */
2999 bbp66 = rt2661_bbp_read(sc, 66);
3000
3001 /* restore BBP registers values */
3002 rt2661_bbp_write(sc, 16, sc->bbp16);
3003 rt2661_bbp_write(sc, 17, sc->bbp17);
3004 rt2661_bbp_write(sc, 18, sc->bbp18);
3005 rt2661_bbp_write(sc, 21, sc->bbp21);
3006 rt2661_bbp_write(sc, 22, sc->bbp22);
3007 rt2661_bbp_write(sc, 64, sc->bbp64);
3008
3009 return bbp66 == 1;
3010 }
3011 #endif
3012
3013 static int
3014 rt2661_prepare_beacon(struct rt2661_softc *sc)
3015 {
3016 struct ieee80211com *ic = &sc->sc_ic;
3017 struct rt2661_tx_desc desc;
3018 struct mbuf *m0;
3019 struct ieee80211_beacon_offsets bo;
3020 int rate;
3021
3022 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
3023
3024 if (m0 == NULL) {
3025 aprint_error_dev(&sc->sc_dev, "could not allocate beacon frame\n");
3026 return ENOBUFS;
3027 }
3028
3029 /* send beacons at the lowest available rate */
3030 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
3031
3032 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
3033 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
3034
3035 /* copy the first 24 bytes of Tx descriptor into NIC memory */
3036 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
3037
3038 /* copy beacon header and payload into NIC memory */
3039 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
3040 mtod(m0, uint8_t *), m0->m_pkthdr.len);
3041
3042 m_freem(m0);
3043
3044 return 0;
3045 }
3046
3047 /*
3048 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
3049 * and HostAP operating modes.
3050 */
3051 static void
3052 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3053 {
3054 struct ieee80211com *ic = &sc->sc_ic;
3055 uint32_t tmp;
3056
3057 if (ic->ic_opmode != IEEE80211_M_STA) {
3058 /*
3059 * Change default 16ms TBTT adjustment to 8ms.
3060 * Must be done before enabling beacon generation.
3061 */
3062 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3063 }
3064
3065 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3066
3067 /* set beacon interval (in 1/16ms unit) */
3068 tmp |= ic->ic_bss->ni_intval * 16;
3069
3070 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3071 if (ic->ic_opmode == IEEE80211_M_STA)
3072 tmp |= RT2661_TSF_MODE(1);
3073 else
3074 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3075
3076 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3077 }
3078
3079 /*
3080 * Retrieve the "Received Signal Strength Indicator" from the raw values
3081 * contained in Rx descriptors. The computation depends on which band the
3082 * frame was received. Correction values taken from the reference driver.
3083 */
3084 static int
3085 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3086 {
3087 int lna, agc, rssi;
3088
3089 lna = (raw >> 5) & 0x3;
3090 agc = raw & 0x1f;
3091
3092 rssi = 2 * agc;
3093
3094 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3095 rssi += sc->rssi_2ghz_corr;
3096
3097 if (lna == 1)
3098 rssi -= 64;
3099 else if (lna == 2)
3100 rssi -= 74;
3101 else if (lna == 3)
3102 rssi -= 90;
3103 } else {
3104 rssi += sc->rssi_5ghz_corr;
3105
3106 if (lna == 1)
3107 rssi -= 64;
3108 else if (lna == 2)
3109 rssi -= 86;
3110 else if (lna == 3)
3111 rssi -= 100;
3112 }
3113 return rssi;
3114 }
3115