rt2661.c revision 1.27 1 /* $NetBSD: rt2661.c,v 1.27 2010/01/19 22:06:25 pooka Exp $ */
2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */
4
5 /*-
6 * Copyright (c) 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24 * http://www.ralinktech.com/
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.27 2010/01/19 22:06:25 pooka Exp $");
29
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/callout.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_ether.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63
64 #include <dev/ic/rt2661reg.h>
65 #include <dev/ic/rt2661var.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/firmload.h>
72
73 #ifdef RAL_DEBUG
74 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0)
76 int rt2661_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static int rt2661_alloc_tx_ring(struct rt2661_softc *,
83 struct rt2661_tx_ring *, int);
84 static void rt2661_reset_tx_ring(struct rt2661_softc *,
85 struct rt2661_tx_ring *);
86 static void rt2661_free_tx_ring(struct rt2661_softc *,
87 struct rt2661_tx_ring *);
88 static int rt2661_alloc_rx_ring(struct rt2661_softc *,
89 struct rt2661_rx_ring *, int);
90 static void rt2661_reset_rx_ring(struct rt2661_softc *,
91 struct rt2661_rx_ring *);
92 static void rt2661_free_rx_ring(struct rt2661_softc *,
93 struct rt2661_rx_ring *);
94 static struct ieee80211_node *
95 rt2661_node_alloc(struct ieee80211_node_table *);
96 static int rt2661_media_change(struct ifnet *);
97 static void rt2661_next_scan(void *);
98 static void rt2661_iter_func(void *, struct ieee80211_node *);
99 static void rt2661_updatestats(void *);
100 static void rt2661_newassoc(struct ieee80211_node *, int);
101 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
102 int);
103 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
104 static void rt2661_tx_intr(struct rt2661_softc *);
105 static void rt2661_tx_dma_intr(struct rt2661_softc *,
106 struct rt2661_tx_ring *);
107 static void rt2661_rx_intr(struct rt2661_softc *);
108 static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 static void rt2661_mcu_wakeup(struct rt2661_softc *);
110 static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
111 int rt2661_intr(void *);
112 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
113 static int rt2661_ack_rate(struct ieee80211com *, int);
114 static uint16_t rt2661_txtime(int, int, uint32_t);
115 static uint8_t rt2661_plcp_signal(int);
116 static void rt2661_setup_tx_desc(struct rt2661_softc *,
117 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
118 const bus_dma_segment_t *, int, int);
119 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
120 struct ieee80211_node *);
121 static struct mbuf *
122 rt2661_get_rts(struct rt2661_softc *,
123 struct ieee80211_frame *, uint16_t);
124 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 struct ieee80211_node *, int);
126 static void rt2661_start(struct ifnet *);
127 static void rt2661_watchdog(struct ifnet *);
128 static int rt2661_reset(struct ifnet *);
129 static int rt2661_ioctl(struct ifnet *, u_long, void *);
130 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
131 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
132 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
133 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
134 static void rt2661_select_antenna(struct rt2661_softc *);
135 static void rt2661_enable_mrr(struct rt2661_softc *);
136 static void rt2661_set_txpreamble(struct rt2661_softc *);
137 static void rt2661_set_basicrates(struct rt2661_softc *,
138 const struct ieee80211_rateset *);
139 static void rt2661_select_band(struct rt2661_softc *,
140 struct ieee80211_channel *);
141 static void rt2661_set_chan(struct rt2661_softc *,
142 struct ieee80211_channel *);
143 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
144 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
145 static void rt2661_update_promisc(struct rt2661_softc *);
146 #if 0
147 static int rt2661_wme_update(struct ieee80211com *);
148 #endif
149
150 static void rt2661_updateslot(struct ifnet *);
151 static void rt2661_set_slottime(struct rt2661_softc *);
152 static const char *
153 rt2661_get_rf(int);
154 static void rt2661_read_eeprom(struct rt2661_softc *);
155 static int rt2661_bbp_init(struct rt2661_softc *);
156 static int rt2661_init(struct ifnet *);
157 static void rt2661_stop(struct ifnet *, int);
158 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
159 int);
160 static void rt2661_rx_tune(struct rt2661_softc *);
161 #ifdef notyet
162 static void rt2661_radar_start(struct rt2661_softc *);
163 static int rt2661_radar_stop(struct rt2661_softc *);
164 #endif
165 static int rt2661_prepare_beacon(struct rt2661_softc *);
166 static void rt2661_enable_tsf_sync(struct rt2661_softc *);
167 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
168
169 /*
170 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
171 */
172 static const struct ieee80211_rateset rt2661_rateset_11a =
173 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
174
175 static const struct ieee80211_rateset rt2661_rateset_11b =
176 { 4, { 2, 4, 11, 22 } };
177
178 static const struct ieee80211_rateset rt2661_rateset_11g =
179 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
180
181 static const struct {
182 uint32_t reg;
183 uint32_t val;
184 } rt2661_def_mac[] = {
185 RT2661_DEF_MAC
186 };
187
188 static const struct {
189 uint8_t reg;
190 uint8_t val;
191 } rt2661_def_bbp[] = {
192 RT2661_DEF_BBP
193 };
194
195 static const struct rfprog {
196 uint8_t chan;
197 uint32_t r1, r2, r3, r4;
198 } rt2661_rf5225_1[] = {
199 RT2661_RF5225_1
200 }, rt2661_rf5225_2[] = {
201 RT2661_RF5225_2
202 };
203
204 int
205 rt2661_attach(void *xsc, int id)
206 {
207 struct rt2661_softc *sc = xsc;
208 struct ieee80211com *ic = &sc->sc_ic;
209 struct ifnet *ifp = &sc->sc_if;
210 uint32_t val;
211 int error, i, ntries;
212
213 sc->sc_id = id;
214
215 sc->amrr.amrr_min_success_threshold = 1;
216 sc->amrr.amrr_max_success_threshold = 15;
217 callout_init(&sc->scan_ch, 0);
218 callout_init(&sc->amrr_ch, 0);
219
220 /* wait for NIC to initialize */
221 for (ntries = 0; ntries < 1000; ntries++) {
222 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
223 break;
224 DELAY(1000);
225 }
226 if (ntries == 1000) {
227 aprint_error_dev(&sc->sc_dev, "timeout waiting for NIC to initialize\n");
228 return EIO;
229 }
230
231 /* retrieve RF rev. no and various other things from EEPROM */
232 rt2661_read_eeprom(sc);
233 aprint_normal_dev(&sc->sc_dev, "802.11 address %s\n",
234 ether_sprintf(ic->ic_myaddr));
235
236 aprint_normal_dev(&sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
237 rt2661_get_rf(sc->rf_rev));
238
239 /*
240 * Allocate Tx and Rx rings.
241 */
242 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
243 if (error != 0) {
244 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 0\n");
245 goto fail1;
246 }
247
248 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
249 if (error != 0) {
250 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 1\n");
251 goto fail2;
252 }
253
254 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
255 if (error != 0) {
256 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 2\n");
257 goto fail3;
258 }
259
260 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
261 if (error != 0) {
262 aprint_error_dev(&sc->sc_dev, "could not allocate Tx ring 3\n");
263 goto fail4;
264 }
265
266 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
267 if (error != 0) {
268 aprint_error_dev(&sc->sc_dev, "could not allocate Mgt ring\n");
269 goto fail5;
270 }
271
272 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
273 if (error != 0) {
274 aprint_error_dev(&sc->sc_dev, "could not allocate Rx ring\n");
275 goto fail6;
276 }
277
278 ifp->if_softc = sc;
279 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
280 ifp->if_init = rt2661_init;
281 ifp->if_stop = rt2661_stop;
282 ifp->if_ioctl = rt2661_ioctl;
283 ifp->if_start = rt2661_start;
284 ifp->if_watchdog = rt2661_watchdog;
285 IFQ_SET_READY(&ifp->if_snd);
286 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
287
288 ic->ic_ifp = ifp;
289 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
290 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
291 ic->ic_state = IEEE80211_S_INIT;
292
293 /* set device capabilities */
294 ic->ic_caps =
295 IEEE80211_C_IBSS | /* IBSS mode supported */
296 IEEE80211_C_MONITOR | /* monitor mode supported */
297 IEEE80211_C_HOSTAP | /* HostAP mode supported */
298 IEEE80211_C_TXPMGT | /* tx power management */
299 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
300 IEEE80211_C_SHSLOT | /* short slot time supported */
301 IEEE80211_C_WPA; /* 802.11i */
302
303 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
304 /* set supported .11a rates */
305 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
306
307 /* set supported .11a channels */
308 for (i = 36; i <= 64; i += 4) {
309 ic->ic_channels[i].ic_freq =
310 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
311 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
312 }
313 for (i = 100; i <= 140; i += 4) {
314 ic->ic_channels[i].ic_freq =
315 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 }
318 for (i = 149; i <= 165; i += 4) {
319 ic->ic_channels[i].ic_freq =
320 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
321 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
322 }
323 }
324
325 /* set supported .11b and .11g rates */
326 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
327 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
328
329 /* set supported .11b and .11g channels (1 through 14) */
330 for (i = 1; i <= 14; i++) {
331 ic->ic_channels[i].ic_freq =
332 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
333 ic->ic_channels[i].ic_flags =
334 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
335 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
336 }
337
338 if_attach(ifp);
339 ieee80211_ifattach(ic);
340 ic->ic_node_alloc = rt2661_node_alloc;
341 ic->ic_newassoc = rt2661_newassoc;
342 ic->ic_updateslot = rt2661_updateslot;
343 ic->ic_reset = rt2661_reset;
344
345 /* override state transition machine */
346 sc->sc_newstate = ic->ic_newstate;
347 ic->ic_newstate = rt2661_newstate;
348 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
349
350 bpf_ops->bpf_attach(ifp, DLT_IEEE802_11_RADIO,
351 sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
352 &sc->sc_drvbpf);
353
354 sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
355 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
356 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
357
358 sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
359 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
360 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
361
362 ieee80211_announce(ic);
363
364 if (pmf_device_register(&sc->sc_dev, NULL, NULL))
365 pmf_class_network_register(&sc->sc_dev, ifp);
366 else
367 aprint_error_dev(&sc->sc_dev,
368 "couldn't establish power handler\n");
369
370 return 0;
371
372 fail6: rt2661_free_tx_ring(sc, &sc->mgtq);
373 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]);
374 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]);
375 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]);
376 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]);
377 fail1: return ENXIO;
378 }
379
380 int
381 rt2661_detach(void *xsc)
382 {
383 struct rt2661_softc *sc = xsc;
384 struct ifnet *ifp = &sc->sc_if;
385
386 callout_stop(&sc->scan_ch);
387 callout_stop(&sc->amrr_ch);
388
389 pmf_device_deregister(&sc->sc_dev);
390
391 ieee80211_ifdetach(&sc->sc_ic);
392 if_detach(ifp);
393
394 rt2661_free_tx_ring(sc, &sc->txq[0]);
395 rt2661_free_tx_ring(sc, &sc->txq[1]);
396 rt2661_free_tx_ring(sc, &sc->txq[2]);
397 rt2661_free_tx_ring(sc, &sc->txq[3]);
398 rt2661_free_tx_ring(sc, &sc->mgtq);
399 rt2661_free_rx_ring(sc, &sc->rxq);
400
401 return 0;
402 }
403
404 static int
405 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
406 int count)
407 {
408 int i, nsegs, error;
409
410 ring->count = count;
411 ring->queued = 0;
412 ring->cur = ring->next = ring->stat = 0;
413
414 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
415 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
416 if (error != 0) {
417 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
418 goto fail;
419 }
420
421 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
422 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
423 if (error != 0) {
424 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
425 goto fail;
426 }
427
428 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
429 count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
430 BUS_DMA_NOWAIT);
431 if (error != 0) {
432 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
433 goto fail;
434 }
435
436 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
437 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
438 if (error != 0) {
439 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
440 goto fail;
441 }
442
443 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
444 ring->physaddr = ring->map->dm_segs->ds_addr;
445
446 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
447 M_NOWAIT);
448 if (ring->data == NULL) {
449 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
450 error = ENOMEM;
451 goto fail;
452 }
453
454 memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
455 for (i = 0; i < count; i++) {
456 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
457 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
458 &ring->data[i].map);
459 if (error != 0) {
460 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
461 goto fail;
462 }
463 }
464
465 return 0;
466
467 fail: rt2661_free_tx_ring(sc, ring);
468 return error;
469 }
470
471 static void
472 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
473 {
474 struct rt2661_tx_desc *desc;
475 struct rt2661_tx_data *data;
476 int i;
477
478 for (i = 0; i < ring->count; i++) {
479 desc = &ring->desc[i];
480 data = &ring->data[i];
481
482 if (data->m != NULL) {
483 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
484 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
485 bus_dmamap_unload(sc->sc_dmat, data->map);
486 m_freem(data->m);
487 data->m = NULL;
488 }
489
490 if (data->ni != NULL) {
491 ieee80211_free_node(data->ni);
492 data->ni = NULL;
493 }
494
495 desc->flags = 0;
496 }
497
498 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
499 BUS_DMASYNC_PREWRITE);
500
501 ring->queued = 0;
502 ring->cur = ring->next = ring->stat = 0;
503 }
504
505
506 static void
507 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
508 {
509 struct rt2661_tx_data *data;
510 int i;
511
512 if (ring->desc != NULL) {
513 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
514 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
515 bus_dmamap_unload(sc->sc_dmat, ring->map);
516 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
517 ring->count * RT2661_TX_DESC_SIZE);
518 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
519 }
520
521 if (ring->data != NULL) {
522 for (i = 0; i < ring->count; i++) {
523 data = &ring->data[i];
524
525 if (data->m != NULL) {
526 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
527 data->map->dm_mapsize,
528 BUS_DMASYNC_POSTWRITE);
529 bus_dmamap_unload(sc->sc_dmat, data->map);
530 m_freem(data->m);
531 }
532
533 if (data->ni != NULL)
534 ieee80211_free_node(data->ni);
535
536 if (data->map != NULL)
537 bus_dmamap_destroy(sc->sc_dmat, data->map);
538 }
539 free(ring->data, M_DEVBUF);
540 }
541 }
542
543 static int
544 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
545 int count)
546 {
547 struct rt2661_rx_desc *desc;
548 struct rt2661_rx_data *data;
549 int i, nsegs, error;
550
551 ring->count = count;
552 ring->cur = ring->next = 0;
553
554 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
555 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
556 if (error != 0) {
557 aprint_error_dev(&sc->sc_dev, "could not create desc DMA map\n");
558 goto fail;
559 }
560
561 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
562 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
563 if (error != 0) {
564 aprint_error_dev(&sc->sc_dev, "could not allocate DMA memory\n");
565 goto fail;
566 }
567
568 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
569 count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
570 BUS_DMA_NOWAIT);
571 if (error != 0) {
572 aprint_error_dev(&sc->sc_dev, "could not map desc DMA memory\n");
573 goto fail;
574 }
575
576 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
577 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
578 if (error != 0) {
579 aprint_error_dev(&sc->sc_dev, "could not load desc DMA map\n");
580 goto fail;
581 }
582
583 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
584 ring->physaddr = ring->map->dm_segs->ds_addr;
585
586 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
587 M_NOWAIT);
588 if (ring->data == NULL) {
589 aprint_error_dev(&sc->sc_dev, "could not allocate soft data\n");
590 error = ENOMEM;
591 goto fail;
592 }
593
594 /*
595 * Pre-allocate Rx buffers and populate Rx ring.
596 */
597 memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
598 for (i = 0; i < count; i++) {
599 desc = &sc->rxq.desc[i];
600 data = &sc->rxq.data[i];
601
602 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
603 0, BUS_DMA_NOWAIT, &data->map);
604 if (error != 0) {
605 aprint_error_dev(&sc->sc_dev, "could not create DMA map\n");
606 goto fail;
607 }
608
609 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
610 if (data->m == NULL) {
611 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf\n");
612 error = ENOMEM;
613 goto fail;
614 }
615
616 MCLGET(data->m, M_DONTWAIT);
617 if (!(data->m->m_flags & M_EXT)) {
618 aprint_error_dev(&sc->sc_dev, "could not allocate rx mbuf cluster\n");
619 error = ENOMEM;
620 goto fail;
621 }
622
623 error = bus_dmamap_load(sc->sc_dmat, data->map,
624 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
625 if (error != 0) {
626 aprint_error_dev(&sc->sc_dev, "could not load rx buf DMA map");
627 goto fail;
628 }
629
630 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
631 desc->flags = htole32(RT2661_RX_BUSY);
632 }
633
634 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
635 BUS_DMASYNC_PREWRITE);
636
637 return 0;
638
639 fail: rt2661_free_rx_ring(sc, ring);
640 return error;
641 }
642
643 static void
644 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
645 {
646 int i;
647
648 for (i = 0; i < ring->count; i++)
649 ring->desc[i].flags = htole32(RT2661_RX_BUSY);
650
651 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
652 BUS_DMASYNC_PREWRITE);
653
654 ring->cur = ring->next = 0;
655 }
656
657 static void
658 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
659 {
660 struct rt2661_rx_data *data;
661 int i;
662
663 if (ring->desc != NULL) {
664 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
665 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
666 bus_dmamap_unload(sc->sc_dmat, ring->map);
667 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
668 ring->count * RT2661_RX_DESC_SIZE);
669 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
670 }
671
672 if (ring->data != NULL) {
673 for (i = 0; i < ring->count; i++) {
674 data = &ring->data[i];
675
676 if (data->m != NULL) {
677 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
678 data->map->dm_mapsize,
679 BUS_DMASYNC_POSTREAD);
680 bus_dmamap_unload(sc->sc_dmat, data->map);
681 m_freem(data->m);
682 }
683
684 if (data->map != NULL)
685 bus_dmamap_destroy(sc->sc_dmat, data->map);
686 }
687 free(ring->data, M_DEVBUF);
688 }
689 }
690
691 static struct ieee80211_node *
692 rt2661_node_alloc(struct ieee80211_node_table *nt)
693 {
694 struct rt2661_node *rn;
695
696 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
697 M_NOWAIT | M_ZERO);
698
699 return (rn != NULL) ? &rn->ni : NULL;
700 }
701
702 static int
703 rt2661_media_change(struct ifnet *ifp)
704 {
705 int error;
706
707 error = ieee80211_media_change(ifp);
708 if (error != ENETRESET)
709 return error;
710
711 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
712 rt2661_init(ifp);
713
714 return 0;
715 }
716
717 /*
718 * This function is called periodically (every 200ms) during scanning to
719 * switch from one channel to another.
720 */
721 static void
722 rt2661_next_scan(void *arg)
723 {
724 struct rt2661_softc *sc = arg;
725 struct ieee80211com *ic = &sc->sc_ic;
726 int s;
727
728 s = splnet();
729 if (ic->ic_state == IEEE80211_S_SCAN)
730 ieee80211_next_scan(ic);
731 splx(s);
732 }
733
734 /*
735 * This function is called for each neighbor node.
736 */
737 static void
738 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
739 {
740 struct rt2661_softc *sc = arg;
741 struct rt2661_node *rn = (struct rt2661_node *)ni;
742
743 ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
744 }
745
746 /*
747 * This function is called periodically (every 500ms) in RUN state to update
748 * various settings like rate control statistics or Rx sensitivity.
749 */
750 static void
751 rt2661_updatestats(void *arg)
752 {
753 struct rt2661_softc *sc = arg;
754 struct ieee80211com *ic = &sc->sc_ic;
755 int s;
756
757 s = splnet();
758 if (ic->ic_opmode == IEEE80211_M_STA)
759 rt2661_iter_func(sc, ic->ic_bss);
760 else
761 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
762
763 /* update rx sensitivity every 1 sec */
764 if (++sc->ncalls & 1)
765 rt2661_rx_tune(sc);
766 splx(s);
767
768 callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
769 }
770
771 static void
772 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
773 {
774 struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
775 int i;
776
777 ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
778
779 /* set rate to some reasonable initial value */
780 for (i = ni->ni_rates.rs_nrates - 1;
781 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
782 i--);
783 ni->ni_txrate = i;
784 }
785
786 static int
787 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
788 {
789 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
790 enum ieee80211_state ostate;
791 struct ieee80211_node *ni;
792 uint32_t tmp;
793
794 ostate = ic->ic_state;
795 callout_stop(&sc->scan_ch);
796
797 switch (nstate) {
798 case IEEE80211_S_INIT:
799 callout_stop(&sc->amrr_ch);
800
801 if (ostate == IEEE80211_S_RUN) {
802 /* abort TSF synchronization */
803 tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
804 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
805 }
806 break;
807
808 case IEEE80211_S_SCAN:
809 rt2661_set_chan(sc, ic->ic_curchan);
810 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
811 break;
812
813 case IEEE80211_S_AUTH:
814 case IEEE80211_S_ASSOC:
815 rt2661_set_chan(sc, ic->ic_curchan);
816 break;
817
818 case IEEE80211_S_RUN:
819 rt2661_set_chan(sc, ic->ic_curchan);
820
821 ni = ic->ic_bss;
822
823 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
824 rt2661_set_slottime(sc);
825 rt2661_enable_mrr(sc);
826 rt2661_set_txpreamble(sc);
827 rt2661_set_basicrates(sc, &ni->ni_rates);
828 rt2661_set_bssid(sc, ni->ni_bssid);
829 }
830
831 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
832 ic->ic_opmode == IEEE80211_M_IBSS)
833 rt2661_prepare_beacon(sc);
834
835 if (ic->ic_opmode == IEEE80211_M_STA) {
836 /* fake a join to init the tx rate */
837 rt2661_newassoc(ni, 1);
838 }
839
840 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
841 sc->ncalls = 0;
842 sc->avg_rssi = -95; /* reset EMA */
843 callout_reset(&sc->amrr_ch, hz / 2,
844 rt2661_updatestats, sc);
845 rt2661_enable_tsf_sync(sc);
846 }
847 break;
848 }
849
850 return sc->sc_newstate(ic, nstate, arg);
851 }
852
853 /*
854 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
855 * 93C66).
856 */
857 static uint16_t
858 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
859 {
860 uint32_t tmp;
861 uint16_t val;
862 int n;
863
864 /* clock C once before the first command */
865 RT2661_EEPROM_CTL(sc, 0);
866
867 RT2661_EEPROM_CTL(sc, RT2661_S);
868 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
869 RT2661_EEPROM_CTL(sc, RT2661_S);
870
871 /* write start bit (1) */
872 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
873 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
874
875 /* write READ opcode (10) */
876 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
877 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
878 RT2661_EEPROM_CTL(sc, RT2661_S);
879 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
880
881 /* write address (A5-A0 or A7-A0) */
882 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
883 for (; n >= 0; n--) {
884 RT2661_EEPROM_CTL(sc, RT2661_S |
885 (((addr >> n) & 1) << RT2661_SHIFT_D));
886 RT2661_EEPROM_CTL(sc, RT2661_S |
887 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
888 }
889
890 RT2661_EEPROM_CTL(sc, RT2661_S);
891
892 /* read data Q15-Q0 */
893 val = 0;
894 for (n = 15; n >= 0; n--) {
895 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
896 tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
897 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
898 RT2661_EEPROM_CTL(sc, RT2661_S);
899 }
900
901 RT2661_EEPROM_CTL(sc, 0);
902
903 /* clear Chip Select and clock C */
904 RT2661_EEPROM_CTL(sc, RT2661_S);
905 RT2661_EEPROM_CTL(sc, 0);
906 RT2661_EEPROM_CTL(sc, RT2661_C);
907
908 return val;
909 }
910
911 static void
912 rt2661_tx_intr(struct rt2661_softc *sc)
913 {
914 struct ifnet *ifp = &sc->sc_if;
915 struct rt2661_tx_ring *txq;
916 struct rt2661_tx_data *data;
917 struct rt2661_node *rn;
918 uint32_t val;
919 int qid, retrycnt;
920
921 for (;;) {
922 val = RAL_READ(sc, RT2661_STA_CSR4);
923 if (!(val & RT2661_TX_STAT_VALID))
924 break;
925
926 /* retrieve the queue in which this frame was sent */
927 qid = RT2661_TX_QID(val);
928 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
929
930 /* retrieve rate control algorithm context */
931 data = &txq->data[txq->stat];
932 rn = (struct rt2661_node *)data->ni;
933
934 /* if no frame has been sent, ignore */
935 if (rn == NULL)
936 continue;
937
938 switch (RT2661_TX_RESULT(val)) {
939 case RT2661_TX_SUCCESS:
940 retrycnt = RT2661_TX_RETRYCNT(val);
941
942 DPRINTFN(10, ("data frame sent successfully after "
943 "%d retries\n", retrycnt));
944 rn->amn.amn_txcnt++;
945 if (retrycnt > 0)
946 rn->amn.amn_retrycnt++;
947 ifp->if_opackets++;
948 break;
949
950 case RT2661_TX_RETRY_FAIL:
951 DPRINTFN(9, ("sending data frame failed (too much "
952 "retries)\n"));
953 rn->amn.amn_txcnt++;
954 rn->amn.amn_retrycnt++;
955 ifp->if_oerrors++;
956 break;
957
958 default:
959 /* other failure */
960 aprint_error_dev(&sc->sc_dev, "sending data frame failed 0x%08x\n", val);
961 ifp->if_oerrors++;
962 }
963
964 ieee80211_free_node(data->ni);
965 data->ni = NULL;
966
967 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
968
969 txq->queued--;
970 if (++txq->stat >= txq->count) /* faster than % count */
971 txq->stat = 0;
972 }
973
974 sc->sc_tx_timer = 0;
975 ifp->if_flags &= ~IFF_OACTIVE;
976 rt2661_start(ifp);
977 }
978
979 static void
980 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
981 {
982 struct rt2661_tx_desc *desc;
983 struct rt2661_tx_data *data;
984
985 for (;;) {
986 desc = &txq->desc[txq->next];
987 data = &txq->data[txq->next];
988
989 bus_dmamap_sync(sc->sc_dmat, txq->map,
990 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
991 BUS_DMASYNC_POSTREAD);
992
993 if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
994 !(le32toh(desc->flags) & RT2661_TX_VALID))
995 break;
996
997 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
998 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
999 bus_dmamap_unload(sc->sc_dmat, data->map);
1000 m_freem(data->m);
1001 data->m = NULL;
1002 /* node reference is released in rt2661_tx_intr() */
1003
1004 /* descriptor is no longer valid */
1005 desc->flags &= ~htole32(RT2661_TX_VALID);
1006
1007 bus_dmamap_sync(sc->sc_dmat, txq->map,
1008 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1009 BUS_DMASYNC_PREWRITE);
1010
1011 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1012
1013 if (++txq->next >= txq->count) /* faster than % count */
1014 txq->next = 0;
1015 }
1016 }
1017
1018 static void
1019 rt2661_rx_intr(struct rt2661_softc *sc)
1020 {
1021 struct ieee80211com *ic = &sc->sc_ic;
1022 struct ifnet *ifp = &sc->sc_if;
1023 struct rt2661_rx_desc *desc;
1024 struct rt2661_rx_data *data;
1025 struct ieee80211_frame *wh;
1026 struct ieee80211_node *ni;
1027 struct mbuf *mnew, *m;
1028 int error, rssi;
1029
1030 for (;;) {
1031 desc = &sc->rxq.desc[sc->rxq.cur];
1032 data = &sc->rxq.data[sc->rxq.cur];
1033
1034 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1035 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1036 BUS_DMASYNC_POSTREAD);
1037
1038 if (le32toh(desc->flags) & RT2661_RX_BUSY)
1039 break;
1040
1041 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1042 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1043 /*
1044 * This should not happen since we did not request
1045 * to receive those frames when we filled TXRX_CSR0.
1046 */
1047 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1048 le32toh(desc->flags)));
1049 ifp->if_ierrors++;
1050 goto skip;
1051 }
1052
1053 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1054 ifp->if_ierrors++;
1055 goto skip;
1056 }
1057
1058 /*
1059 * Try to allocate a new mbuf for this ring element and load it
1060 * before processing the current mbuf. If the ring element
1061 * cannot be loaded, drop the received packet and reuse the old
1062 * mbuf. In the unlikely case that the old mbuf can't be
1063 * reloaded either, explicitly panic.
1064 */
1065 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1066 if (mnew == NULL) {
1067 ifp->if_ierrors++;
1068 goto skip;
1069 }
1070
1071 MCLGET(mnew, M_DONTWAIT);
1072 if (!(mnew->m_flags & M_EXT)) {
1073 m_freem(mnew);
1074 ifp->if_ierrors++;
1075 goto skip;
1076 }
1077
1078 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1079 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1080 bus_dmamap_unload(sc->sc_dmat, data->map);
1081
1082 error = bus_dmamap_load(sc->sc_dmat, data->map,
1083 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1084 if (error != 0) {
1085 m_freem(mnew);
1086
1087 /* try to reload the old mbuf */
1088 error = bus_dmamap_load(sc->sc_dmat, data->map,
1089 mtod(data->m, void *), MCLBYTES, NULL,
1090 BUS_DMA_NOWAIT);
1091 if (error != 0) {
1092 /* very unlikely that it will fail... */
1093 panic("%s: could not load old rx mbuf",
1094 device_xname(&sc->sc_dev));
1095 }
1096 /* physical address may have changed */
1097 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1098 ifp->if_ierrors++;
1099 goto skip;
1100 }
1101
1102 /*
1103 * New mbuf successfully loaded, update Rx ring and continue
1104 * processing.
1105 */
1106 m = data->m;
1107 data->m = mnew;
1108 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1109
1110 /* finalize mbuf */
1111 m->m_pkthdr.rcvif = ifp;
1112 m->m_pkthdr.len = m->m_len =
1113 (le32toh(desc->flags) >> 16) & 0xfff;
1114
1115 if (sc->sc_drvbpf != NULL) {
1116 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1117 uint32_t tsf_lo, tsf_hi;
1118
1119 /* get timestamp (low and high 32 bits) */
1120 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1121 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1122
1123 tap->wr_tsf =
1124 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1125 tap->wr_flags = 0;
1126 tap->wr_rate = rt2661_rxrate(desc);
1127 tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1128 tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1129 tap->wr_antsignal = desc->rssi;
1130
1131 bpf_ops->bpf_mtap2(sc->sc_drvbpf,
1132 tap, sc->sc_rxtap_len, m);
1133 }
1134
1135 wh = mtod(m, struct ieee80211_frame *);
1136 ni = ieee80211_find_rxnode(ic,
1137 (struct ieee80211_frame_min *)wh);
1138
1139 /* send the frame to the 802.11 layer */
1140 ieee80211_input(ic, m, ni, desc->rssi, 0);
1141
1142 /*-
1143 * Keep track of the average RSSI using an Exponential Moving
1144 * Average (EMA) of 8 Wilder's days:
1145 * avg = (1 / N) x rssi + ((N - 1) / N) x avg
1146 */
1147 rssi = rt2661_get_rssi(sc, desc->rssi);
1148 sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1149
1150 /* node is no longer needed */
1151 ieee80211_free_node(ni);
1152
1153 skip: desc->flags |= htole32(RT2661_RX_BUSY);
1154
1155 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1156 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1157 BUS_DMASYNC_PREWRITE);
1158
1159 DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1160
1161 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1162 }
1163
1164 /*
1165 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1166 * without calling if_start().
1167 */
1168 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1169 rt2661_start(ifp);
1170 }
1171
1172 /*
1173 * This function is called in HostAP or IBSS modes when it's time to send a
1174 * new beacon (every ni_intval milliseconds).
1175 */
1176 static void
1177 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1178 {
1179 struct ieee80211com *ic = &sc->sc_ic;
1180
1181 if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1182 sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1183 sc->sc_flags |= RT2661_SET_SLOTTIME;
1184 } else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1185 sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1186 rt2661_set_slottime(sc);
1187 }
1188
1189 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1190 /* update ERP Information Element */
1191 RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1192 RAL_RW_BARRIER_1(sc, sc->erp_csr);
1193 }
1194
1195 DPRINTFN(15, ("beacon expired\n"));
1196 }
1197
1198 static void
1199 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1200 {
1201 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1202
1203 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1204 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1205 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1206
1207 /* send wakeup command to MCU */
1208 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1209 }
1210
1211 static void
1212 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1213 {
1214 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1215 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1216 }
1217
1218 int
1219 rt2661_intr(void *arg)
1220 {
1221 struct rt2661_softc *sc = arg;
1222 struct ifnet *ifp = &sc->sc_if;
1223 uint32_t r1, r2;
1224 int rv = 0;
1225
1226 /* don't re-enable interrupts if we're shutting down */
1227 if (!(ifp->if_flags & IFF_RUNNING)) {
1228 /* disable MAC and MCU interrupts */
1229 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1230 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1231 return 0;
1232 }
1233
1234 for (;;) {
1235 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1236 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1237
1238 if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1239 (r2 & RT2661_MCU_INT_ALL) == 0)
1240 break;
1241
1242 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1243 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1244
1245 rv = 1;
1246
1247 if (r1 & RT2661_MGT_DONE)
1248 rt2661_tx_dma_intr(sc, &sc->mgtq);
1249
1250 if (r1 & RT2661_RX_DONE)
1251 rt2661_rx_intr(sc);
1252
1253 if (r1 & RT2661_TX0_DMA_DONE)
1254 rt2661_tx_dma_intr(sc, &sc->txq[0]);
1255
1256 if (r1 & RT2661_TX1_DMA_DONE)
1257 rt2661_tx_dma_intr(sc, &sc->txq[1]);
1258
1259 if (r1 & RT2661_TX2_DMA_DONE)
1260 rt2661_tx_dma_intr(sc, &sc->txq[2]);
1261
1262 if (r1 & RT2661_TX3_DMA_DONE)
1263 rt2661_tx_dma_intr(sc, &sc->txq[3]);
1264
1265 if (r1 & RT2661_TX_DONE)
1266 rt2661_tx_intr(sc);
1267
1268 if (r2 & RT2661_MCU_CMD_DONE)
1269 rt2661_mcu_cmd_intr(sc);
1270
1271 if (r2 & RT2661_MCU_BEACON_EXPIRE)
1272 rt2661_mcu_beacon_expire(sc);
1273
1274 if (r2 & RT2661_MCU_WAKEUP)
1275 rt2661_mcu_wakeup(sc);
1276 }
1277
1278 return rv;
1279 }
1280
1281 /* quickly determine if a given rate is CCK or OFDM */
1282 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1283
1284 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1285 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1286
1287 /*
1288 * This function is only used by the Rx radiotap code. It returns the rate at
1289 * which a given frame was received.
1290 */
1291 static uint8_t
1292 rt2661_rxrate(struct rt2661_rx_desc *desc)
1293 {
1294 if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1295 /* reverse function of rt2661_plcp_signal */
1296 switch (desc->rate & 0xf) {
1297 case 0xb: return 12;
1298 case 0xf: return 18;
1299 case 0xa: return 24;
1300 case 0xe: return 36;
1301 case 0x9: return 48;
1302 case 0xd: return 72;
1303 case 0x8: return 96;
1304 case 0xc: return 108;
1305 }
1306 } else {
1307 if (desc->rate == 10)
1308 return 2;
1309 if (desc->rate == 20)
1310 return 4;
1311 if (desc->rate == 55)
1312 return 11;
1313 if (desc->rate == 110)
1314 return 22;
1315 }
1316 return 2; /* should not get there */
1317 }
1318
1319 /*
1320 * Return the expected ack rate for a frame transmitted at rate `rate'.
1321 * XXX: this should depend on the destination node basic rate set.
1322 */
1323 static int
1324 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1325 {
1326 switch (rate) {
1327 /* CCK rates */
1328 case 2:
1329 return 2;
1330 case 4:
1331 case 11:
1332 case 22:
1333 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1334
1335 /* OFDM rates */
1336 case 12:
1337 case 18:
1338 return 12;
1339 case 24:
1340 case 36:
1341 return 24;
1342 case 48:
1343 case 72:
1344 case 96:
1345 case 108:
1346 return 48;
1347 }
1348
1349 /* default to 1Mbps */
1350 return 2;
1351 }
1352
1353 /*
1354 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1355 * The function automatically determines the operating mode depending on the
1356 * given rate. `flags' indicates whether short preamble is in use or not.
1357 */
1358 static uint16_t
1359 rt2661_txtime(int len, int rate, uint32_t flags)
1360 {
1361 uint16_t txtime;
1362
1363 if (RAL_RATE_IS_OFDM(rate)) {
1364 /* IEEE Std 802.11g-2003, pp. 44 */
1365 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1366 txtime = 16 + 4 + 4 * txtime + 6;
1367 } else {
1368 /* IEEE Std 802.11b-1999, pp. 28 */
1369 txtime = (16 * len + rate - 1) / rate;
1370 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1371 txtime += 72 + 24;
1372 else
1373 txtime += 144 + 48;
1374 }
1375 return txtime;
1376 }
1377
1378 static uint8_t
1379 rt2661_plcp_signal(int rate)
1380 {
1381 switch (rate) {
1382 /* CCK rates (returned values are device-dependent) */
1383 case 2: return 0x0;
1384 case 4: return 0x1;
1385 case 11: return 0x2;
1386 case 22: return 0x3;
1387
1388 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1389 case 12: return 0xb;
1390 case 18: return 0xf;
1391 case 24: return 0xa;
1392 case 36: return 0xe;
1393 case 48: return 0x9;
1394 case 72: return 0xd;
1395 case 96: return 0x8;
1396 case 108: return 0xc;
1397
1398 /* unsupported rates (should not get there) */
1399 default: return 0xff;
1400 }
1401 }
1402
1403 static void
1404 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1405 uint32_t flags, uint16_t xflags, int len, int rate,
1406 const bus_dma_segment_t *segs, int nsegs, int ac)
1407 {
1408 struct ieee80211com *ic = &sc->sc_ic;
1409 uint16_t plcp_length;
1410 int i, remainder;
1411
1412 desc->flags = htole32(flags);
1413 desc->flags |= htole32(len << 16);
1414
1415 desc->xflags = htole16(xflags);
1416 desc->xflags |= htole16(nsegs << 13);
1417
1418 desc->wme = htole16(
1419 RT2661_QID(ac) |
1420 RT2661_AIFSN(2) |
1421 RT2661_LOGCWMIN(4) |
1422 RT2661_LOGCWMAX(10));
1423
1424 /*
1425 * Remember in which queue this frame was sent. This field is driver
1426 * private data only. It will be made available by the NIC in STA_CSR4
1427 * on Tx interrupts.
1428 */
1429 desc->qid = ac;
1430
1431 /* setup PLCP fields */
1432 desc->plcp_signal = rt2661_plcp_signal(rate);
1433 desc->plcp_service = 4;
1434
1435 len += IEEE80211_CRC_LEN;
1436 if (RAL_RATE_IS_OFDM(rate)) {
1437 desc->flags |= htole32(RT2661_TX_OFDM);
1438
1439 plcp_length = len & 0xfff;
1440 desc->plcp_length_hi = plcp_length >> 6;
1441 desc->plcp_length_lo = plcp_length & 0x3f;
1442 } else {
1443 plcp_length = (16 * len + rate - 1) / rate;
1444 if (rate == 22) {
1445 remainder = (16 * len) % 22;
1446 if (remainder != 0 && remainder < 7)
1447 desc->plcp_service |= RT2661_PLCP_LENGEXT;
1448 }
1449 desc->plcp_length_hi = plcp_length >> 8;
1450 desc->plcp_length_lo = plcp_length & 0xff;
1451
1452 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1453 desc->plcp_signal |= 0x08;
1454 }
1455
1456 /* RT2x61 supports scatter with up to 5 segments */
1457 for (i = 0; i < nsegs; i++) {
1458 desc->addr[i] = htole32(segs[i].ds_addr);
1459 desc->len [i] = htole16(segs[i].ds_len);
1460 }
1461
1462 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1463 }
1464
1465 static int
1466 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1467 struct ieee80211_node *ni)
1468 {
1469 struct ieee80211com *ic = &sc->sc_ic;
1470 struct rt2661_tx_desc *desc;
1471 struct rt2661_tx_data *data;
1472 struct ieee80211_frame *wh;
1473 uint16_t dur;
1474 uint32_t flags = 0;
1475 int rate, error;
1476
1477 desc = &sc->mgtq.desc[sc->mgtq.cur];
1478 data = &sc->mgtq.data[sc->mgtq.cur];
1479
1480 /* send mgt frames at the lowest available rate */
1481 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1482
1483 wh = mtod(m0, struct ieee80211_frame *);
1484
1485 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1486 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1487 m_freem(m0);
1488 return ENOBUFS;
1489 }
1490
1491 /* packet header may have moved, reset our local pointer */
1492 wh = mtod(m0, struct ieee80211_frame *);
1493 }
1494
1495 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1496 BUS_DMA_NOWAIT);
1497 if (error != 0) {
1498 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1499 error);
1500 m_freem(m0);
1501 return error;
1502 }
1503
1504 if (sc->sc_drvbpf != NULL) {
1505 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1506
1507 tap->wt_flags = 0;
1508 tap->wt_rate = rate;
1509 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1510 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1511
1512 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1513 }
1514
1515 data->m = m0;
1516 data->ni = ni;
1517
1518 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1519 flags |= RT2661_TX_NEED_ACK;
1520
1521 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1522 sc->sifs;
1523 *(uint16_t *)wh->i_dur = htole16(dur);
1524
1525 /* tell hardware to set timestamp in probe responses */
1526 if ((wh->i_fc[0] &
1527 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1528 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1529 flags |= RT2661_TX_TIMESTAMP;
1530 }
1531
1532 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1533 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1534 RT2661_QID_MGT);
1535
1536 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1537 BUS_DMASYNC_PREWRITE);
1538 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1539 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1540 BUS_DMASYNC_PREWRITE);
1541
1542 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1543 m0->m_pkthdr.len, sc->mgtq.cur, rate));
1544
1545 /* kick mgt */
1546 sc->mgtq.queued++;
1547 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1548 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1549
1550 return 0;
1551 }
1552
1553 /*
1554 * Build a RTS control frame.
1555 */
1556 static struct mbuf *
1557 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1558 uint16_t dur)
1559 {
1560 struct ieee80211_frame_rts *rts;
1561 struct mbuf *m;
1562
1563 MGETHDR(m, M_DONTWAIT, MT_DATA);
1564 if (m == NULL) {
1565 sc->sc_ic.ic_stats.is_tx_nobuf++;
1566 aprint_error_dev(&sc->sc_dev, "could not allocate RTS frame\n");
1567 return NULL;
1568 }
1569
1570 rts = mtod(m, struct ieee80211_frame_rts *);
1571
1572 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1573 IEEE80211_FC0_SUBTYPE_RTS;
1574 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1575 *(uint16_t *)rts->i_dur = htole16(dur);
1576 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1577 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1578
1579 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1580
1581 return m;
1582 }
1583
1584 static int
1585 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1586 struct ieee80211_node *ni, int ac)
1587 {
1588 struct ieee80211com *ic = &sc->sc_ic;
1589 struct rt2661_tx_ring *txq = &sc->txq[ac];
1590 struct rt2661_tx_desc *desc;
1591 struct rt2661_tx_data *data;
1592 struct ieee80211_frame *wh;
1593 struct ieee80211_key *k;
1594 struct mbuf *mnew;
1595 uint16_t dur;
1596 uint32_t flags = 0;
1597 int rate, useprot, error, tid;
1598
1599 wh = mtod(m0, struct ieee80211_frame *);
1600
1601 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1602 rate = ic->ic_sup_rates[ic->ic_curmode].
1603 rs_rates[ic->ic_fixed_rate];
1604 } else
1605 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1606 rate &= IEEE80211_RATE_VAL;
1607 if (rate == 0)
1608 rate = 2; /* XXX should not happen */
1609
1610 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1611 k = ieee80211_crypto_encap(ic, ni, m0);
1612 if (k == NULL) {
1613 m_freem(m0);
1614 return ENOBUFS;
1615 }
1616
1617 /* packet header may have moved, reset our local pointer */
1618 wh = mtod(m0, struct ieee80211_frame *);
1619 }
1620
1621 /*
1622 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1623 * chance to contend for the wireless medium.
1624 */
1625 tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1626 if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1627 flags |= RT2661_TX_IFS_SIFS;
1628
1629 /*
1630 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1631 * for directed frames only when the length of the MPDU is greater
1632 * than the length threshold indicated by" ic_rtsthreshold.
1633 *
1634 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1635 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1636 * type Data or an MMPDU".
1637 */
1638 useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1639 (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1640 ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1641 if (useprot) {
1642 struct mbuf *m;
1643 int rtsrate, ackrate;
1644
1645 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1646 ackrate = rt2661_ack_rate(ic, rate);
1647
1648 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1649 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1650 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1651 3 * sc->sifs;
1652
1653 m = rt2661_get_rts(sc, wh, dur);
1654 if (m == NULL) {
1655 aprint_error_dev(&sc->sc_dev, "could not allocate RTS "
1656 "frame\n");
1657 m_freem(m0);
1658 return ENOBUFS;
1659 }
1660
1661 desc = &txq->desc[txq->cur];
1662 data = &txq->data[txq->cur];
1663
1664 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1665 BUS_DMA_NOWAIT);
1666 if (error != 0) {
1667 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1668 m_freem(m);
1669 m_freem(m0);
1670 return error;
1671 }
1672
1673 /* avoid multiple free() of the same node for each fragment */
1674 ieee80211_ref_node(ni);
1675
1676 data->m = m;
1677 data->ni = ni;
1678
1679 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1680 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1681 data->map->dm_segs, data->map->dm_nsegs, ac);
1682
1683 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1684 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1685 bus_dmamap_sync(sc->sc_dmat, txq->map,
1686 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1687 BUS_DMASYNC_PREWRITE);
1688
1689 txq->queued++;
1690 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1691
1692 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1693 }
1694
1695 data = &txq->data[txq->cur];
1696 desc = &txq->desc[txq->cur];
1697
1698 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1699 BUS_DMA_NOWAIT);
1700 if (error != 0 && error != EFBIG) {
1701 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n",
1702 error);
1703 m_freem(m0);
1704 return error;
1705 }
1706 if (error != 0) {
1707 /* too many fragments, linearize */
1708
1709 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1710 if (mnew == NULL) {
1711 m_freem(m0);
1712 return ENOMEM;
1713 }
1714
1715 M_COPY_PKTHDR(mnew, m0);
1716 if (m0->m_pkthdr.len > MHLEN) {
1717 MCLGET(mnew, M_DONTWAIT);
1718 if (!(mnew->m_flags & M_EXT)) {
1719 m_freem(m0);
1720 m_freem(mnew);
1721 return ENOMEM;
1722 }
1723 }
1724
1725 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1726 m_freem(m0);
1727 mnew->m_len = mnew->m_pkthdr.len;
1728 m0 = mnew;
1729
1730 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1731 BUS_DMA_NOWAIT);
1732 if (error != 0) {
1733 aprint_error_dev(&sc->sc_dev, "could not map mbuf (error %d)\n", error);
1734 m_freem(m0);
1735 return error;
1736 }
1737
1738 /* packet header have moved, reset our local pointer */
1739 wh = mtod(m0, struct ieee80211_frame *);
1740 }
1741
1742 if (sc->sc_drvbpf != NULL) {
1743 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1744
1745 tap->wt_flags = 0;
1746 tap->wt_rate = rate;
1747 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1748 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1749
1750 bpf_ops->bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1751 }
1752
1753 data->m = m0;
1754 data->ni = ni;
1755
1756 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1757 flags |= RT2661_TX_NEED_ACK;
1758
1759 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1760 ic->ic_flags) + sc->sifs;
1761 *(uint16_t *)wh->i_dur = htole16(dur);
1762 }
1763
1764 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1765 data->map->dm_segs, data->map->dm_nsegs, ac);
1766
1767 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1768 BUS_DMASYNC_PREWRITE);
1769 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1770 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1771
1772 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1773 m0->m_pkthdr.len, txq->cur, rate));
1774
1775 /* kick Tx */
1776 txq->queued++;
1777 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1778 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1779
1780 return 0;
1781 }
1782
1783 static void
1784 rt2661_start(struct ifnet *ifp)
1785 {
1786 struct rt2661_softc *sc = ifp->if_softc;
1787 struct ieee80211com *ic = &sc->sc_ic;
1788 struct mbuf *m0;
1789 struct ether_header *eh;
1790 struct ieee80211_node *ni = NULL;
1791
1792 /*
1793 * net80211 may still try to send management frames even if the
1794 * IFF_RUNNING flag is not set...
1795 */
1796 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1797 return;
1798
1799 for (;;) {
1800 IF_POLL(&ic->ic_mgtq, m0);
1801 if (m0 != NULL) {
1802 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1803 ifp->if_flags |= IFF_OACTIVE;
1804 break;
1805 }
1806 IF_DEQUEUE(&ic->ic_mgtq, m0);
1807 if (m0 == NULL)
1808 break;
1809
1810 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1811 m0->m_pkthdr.rcvif = NULL;
1812 if (ic->ic_rawbpf != NULL)
1813 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
1814 if (rt2661_tx_mgt(sc, m0, ni) != 0)
1815 break;
1816
1817 } else {
1818 IF_POLL(&ifp->if_snd, m0);
1819 if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1820 break;
1821
1822 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1823 /* there is no place left in this ring */
1824 ifp->if_flags |= IFF_OACTIVE;
1825 break;
1826 }
1827
1828 IFQ_DEQUEUE(&ifp->if_snd, m0);
1829
1830 if (m0->m_len < sizeof (struct ether_header) &&
1831 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1832 continue;
1833
1834 eh = mtod(m0, struct ether_header *);
1835 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1836 if (ni == NULL) {
1837 m_freem(m0);
1838 ifp->if_oerrors++;
1839 continue;
1840 }
1841
1842 if (ifp->if_bpf != NULL)
1843 bpf_ops->bpf_mtap(ifp->if_bpf, m0);
1844 m0 = ieee80211_encap(ic, m0, ni);
1845 if (m0 == NULL) {
1846 ieee80211_free_node(ni);
1847 ifp->if_oerrors++;
1848 continue;
1849 }
1850 if (ic->ic_rawbpf != NULL)
1851 bpf_ops->bpf_mtap(ic->ic_rawbpf, m0);
1852 if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1853 if (ni != NULL)
1854 ieee80211_free_node(ni);
1855 ifp->if_oerrors++;
1856 break;
1857 }
1858 }
1859
1860 sc->sc_tx_timer = 5;
1861 ifp->if_timer = 1;
1862 }
1863 }
1864
1865 static void
1866 rt2661_watchdog(struct ifnet *ifp)
1867 {
1868 struct rt2661_softc *sc = ifp->if_softc;
1869
1870 ifp->if_timer = 0;
1871
1872 if (sc->sc_tx_timer > 0) {
1873 if (--sc->sc_tx_timer == 0) {
1874 aprint_error_dev(&sc->sc_dev, "device timeout\n");
1875 rt2661_init(ifp);
1876 ifp->if_oerrors++;
1877 return;
1878 }
1879 ifp->if_timer = 1;
1880 }
1881
1882 ieee80211_watchdog(&sc->sc_ic);
1883 }
1884
1885 /*
1886 * This function allows for fast channel switching in monitor mode (used by
1887 * kismet). In IBSS mode, we must explicitly reset the interface to
1888 * generate a new beacon frame.
1889 */
1890 static int
1891 rt2661_reset(struct ifnet *ifp)
1892 {
1893 struct rt2661_softc *sc = ifp->if_softc;
1894 struct ieee80211com *ic = &sc->sc_ic;
1895
1896 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1897 return ENETRESET;
1898
1899 rt2661_set_chan(sc, ic->ic_curchan);
1900
1901 return 0;
1902 }
1903
1904 static int
1905 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1906 {
1907 struct rt2661_softc *sc = ifp->if_softc;
1908 struct ieee80211com *ic = &sc->sc_ic;
1909 int s, error = 0;
1910
1911 s = splnet();
1912
1913 switch (cmd) {
1914 case SIOCSIFFLAGS:
1915 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1916 break;
1917 if (ifp->if_flags & IFF_UP) {
1918 if (ifp->if_flags & IFF_RUNNING)
1919 rt2661_update_promisc(sc);
1920 else
1921 rt2661_init(ifp);
1922 } else {
1923 if (ifp->if_flags & IFF_RUNNING)
1924 rt2661_stop(ifp, 1);
1925 }
1926 break;
1927
1928 case SIOCADDMULTI:
1929 case SIOCDELMULTI:
1930 /* XXX no h/w multicast filter? --dyoung */
1931 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1932 error = 0;
1933 break;
1934
1935 case SIOCS80211CHANNEL:
1936 /*
1937 * This allows for fast channel switching in monitor mode
1938 * (used by kismet). In IBSS mode, we must explicitly reset
1939 * the interface to generate a new beacon frame.
1940 */
1941 error = ieee80211_ioctl(ic, cmd, data);
1942 if (error == ENETRESET &&
1943 ic->ic_opmode == IEEE80211_M_MONITOR) {
1944 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1945 (IFF_UP | IFF_RUNNING))
1946 rt2661_set_chan(sc, ic->ic_ibss_chan);
1947 error = 0;
1948 }
1949 break;
1950
1951 default:
1952 error = ieee80211_ioctl(ic, cmd, data);
1953
1954 }
1955
1956 if (error == ENETRESET) {
1957 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1958 (IFF_UP | IFF_RUNNING))
1959 rt2661_init(ifp);
1960 error = 0;
1961 }
1962
1963 splx(s);
1964
1965 return error;
1966 }
1967
1968 static void
1969 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1970 {
1971 uint32_t tmp;
1972 int ntries;
1973
1974 for (ntries = 0; ntries < 100; ntries++) {
1975 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1976 break;
1977 DELAY(1);
1978 }
1979 if (ntries == 100) {
1980 aprint_error_dev(&sc->sc_dev, "could not write to BBP\n");
1981 return;
1982 }
1983
1984 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
1985 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
1986
1987 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
1988 }
1989
1990 static uint8_t
1991 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
1992 {
1993 uint32_t val;
1994 int ntries;
1995
1996 for (ntries = 0; ntries < 100; ntries++) {
1997 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1998 break;
1999 DELAY(1);
2000 }
2001 if (ntries == 100) {
2002 aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2003 return 0;
2004 }
2005
2006 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2007 RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2008
2009 for (ntries = 0; ntries < 100; ntries++) {
2010 val = RAL_READ(sc, RT2661_PHY_CSR3);
2011 if (!(val & RT2661_BBP_BUSY))
2012 return val & 0xff;
2013 DELAY(1);
2014 }
2015
2016 aprint_error_dev(&sc->sc_dev, "could not read from BBP\n");
2017 return 0;
2018 }
2019
2020 static void
2021 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2022 {
2023 uint32_t tmp;
2024 int ntries;
2025
2026 for (ntries = 0; ntries < 100; ntries++) {
2027 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2028 break;
2029 DELAY(1);
2030 }
2031 if (ntries == 100) {
2032 aprint_error_dev(&sc->sc_dev, "could not write to RF\n");
2033 return;
2034 }
2035 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2036 (reg & 3);
2037 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2038
2039 /* remember last written value in sc */
2040 sc->rf_regs[reg] = val;
2041
2042 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2043 }
2044
2045 static int
2046 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2047 {
2048 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2049 return EIO; /* there is already a command pending */
2050
2051 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2052 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2053
2054 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2055
2056 return 0;
2057 }
2058
2059 static void
2060 rt2661_select_antenna(struct rt2661_softc *sc)
2061 {
2062 uint8_t bbp4, bbp77;
2063 uint32_t tmp;
2064
2065 bbp4 = rt2661_bbp_read(sc, 4);
2066 bbp77 = rt2661_bbp_read(sc, 77);
2067
2068 /* TBD */
2069
2070 /* make sure Rx is disabled before switching antenna */
2071 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2072 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2073
2074 rt2661_bbp_write(sc, 4, bbp4);
2075 rt2661_bbp_write(sc, 77, bbp77);
2076
2077 /* restore Rx filter */
2078 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2079 }
2080
2081 /*
2082 * Enable multi-rate retries for frames sent at OFDM rates.
2083 * In 802.11b/g mode, allow fallback to CCK rates.
2084 */
2085 static void
2086 rt2661_enable_mrr(struct rt2661_softc *sc)
2087 {
2088 struct ieee80211com *ic = &sc->sc_ic;
2089 uint32_t tmp;
2090
2091 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2092
2093 tmp &= ~RT2661_MRR_CCK_FALLBACK;
2094 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2095 tmp |= RT2661_MRR_CCK_FALLBACK;
2096 tmp |= RT2661_MRR_ENABLED;
2097
2098 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2099 }
2100
2101 static void
2102 rt2661_set_txpreamble(struct rt2661_softc *sc)
2103 {
2104 uint32_t tmp;
2105
2106 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2107
2108 tmp &= ~RT2661_SHORT_PREAMBLE;
2109 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2110 tmp |= RT2661_SHORT_PREAMBLE;
2111
2112 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2113 }
2114
2115 static void
2116 rt2661_set_basicrates(struct rt2661_softc *sc,
2117 const struct ieee80211_rateset *rs)
2118 {
2119 #define RV(r) ((r) & IEEE80211_RATE_VAL)
2120 uint32_t mask = 0;
2121 uint8_t rate;
2122 int i, j;
2123
2124 for (i = 0; i < rs->rs_nrates; i++) {
2125 rate = rs->rs_rates[i];
2126
2127 if (!(rate & IEEE80211_RATE_BASIC))
2128 continue;
2129
2130 /*
2131 * Find h/w rate index. We know it exists because the rate
2132 * set has already been negotiated.
2133 */
2134 for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2135
2136 mask |= 1 << j;
2137 }
2138
2139 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2140
2141 DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2142 #undef RV
2143 }
2144
2145 /*
2146 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
2147 * driver.
2148 */
2149 static void
2150 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2151 {
2152 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2153 uint32_t tmp;
2154
2155 /* update all BBP registers that depend on the band */
2156 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2157 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
2158 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2159 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2160 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
2161 }
2162 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2163 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2164 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2165 }
2166
2167 sc->bbp17 = bbp17;
2168 rt2661_bbp_write(sc, 17, bbp17);
2169 rt2661_bbp_write(sc, 96, bbp96);
2170 rt2661_bbp_write(sc, 104, bbp104);
2171
2172 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2173 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2174 rt2661_bbp_write(sc, 75, 0x80);
2175 rt2661_bbp_write(sc, 86, 0x80);
2176 rt2661_bbp_write(sc, 88, 0x80);
2177 }
2178
2179 rt2661_bbp_write(sc, 35, bbp35);
2180 rt2661_bbp_write(sc, 97, bbp97);
2181 rt2661_bbp_write(sc, 98, bbp98);
2182
2183 tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2184 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2185 if (IEEE80211_IS_CHAN_2GHZ(c))
2186 tmp |= RT2661_PA_PE_2GHZ;
2187 else
2188 tmp |= RT2661_PA_PE_5GHZ;
2189 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2190
2191 /* 802.11a uses a 16 microseconds short interframe space */
2192 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2193 }
2194
2195 static void
2196 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2197 {
2198 struct ieee80211com *ic = &sc->sc_ic;
2199 const struct rfprog *rfprog;
2200 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2201 int8_t power;
2202 u_int i, chan;
2203
2204 chan = ieee80211_chan2ieee(ic, c);
2205 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2206 return;
2207
2208 /* select the appropriate RF settings based on what EEPROM says */
2209 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2210
2211 /* find the settings for this channel (we know it exists) */
2212 for (i = 0; rfprog[i].chan != chan; i++);
2213
2214 power = sc->txpow[i];
2215 if (power < 0) {
2216 bbp94 += power;
2217 power = 0;
2218 } else if (power > 31) {
2219 bbp94 += power - 31;
2220 power = 31;
2221 }
2222
2223 /*
2224 * If we've yet to select a channel, or we are switching from the
2225 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2226 * be reprogrammed.
2227 */
2228 if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2229 rt2661_select_band(sc, c);
2230 rt2661_select_antenna(sc);
2231 }
2232 sc->sc_curchan = c;
2233
2234 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2235 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2236 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2237 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2238
2239 DELAY(200);
2240
2241 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2242 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2243 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2244 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2245
2246 DELAY(200);
2247
2248 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2249 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2250 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2251 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2252
2253 /* enable smart mode for MIMO-capable RFs */
2254 bbp3 = rt2661_bbp_read(sc, 3);
2255
2256 bbp3 &= ~RT2661_SMART_MODE;
2257 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2258 bbp3 |= RT2661_SMART_MODE;
2259
2260 rt2661_bbp_write(sc, 3, bbp3);
2261
2262 if (bbp94 != RT2661_BBPR94_DEFAULT)
2263 rt2661_bbp_write(sc, 94, bbp94);
2264
2265 /* 5GHz radio needs a 1ms delay here */
2266 if (IEEE80211_IS_CHAN_5GHZ(c))
2267 DELAY(1000);
2268 }
2269
2270 static void
2271 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2272 {
2273 uint32_t tmp;
2274
2275 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2276 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2277
2278 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2279 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2280 }
2281
2282 static void
2283 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2284 {
2285 uint32_t tmp;
2286
2287 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2288 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2289
2290 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2291 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2292 }
2293
2294 static void
2295 rt2661_update_promisc(struct rt2661_softc *sc)
2296 {
2297 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2298 uint32_t tmp;
2299
2300 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2301
2302 tmp &= ~RT2661_DROP_NOT_TO_ME;
2303 if (!(ifp->if_flags & IFF_PROMISC))
2304 tmp |= RT2661_DROP_NOT_TO_ME;
2305
2306 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2307
2308 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2309 "entering" : "leaving"));
2310 }
2311
2312 #if 0
2313 /*
2314 * Update QoS (802.11e) settings for each h/w Tx ring.
2315 */
2316 static int
2317 rt2661_wme_update(struct ieee80211com *ic)
2318 {
2319 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2320 const struct wmeParams *wmep;
2321
2322 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2323
2324 /* XXX: not sure about shifts. */
2325 /* XXX: the reference driver plays with AC_VI settings too. */
2326
2327 /* update TxOp */
2328 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2329 wmep[WME_AC_BE].wmep_txopLimit << 16 |
2330 wmep[WME_AC_BK].wmep_txopLimit);
2331 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2332 wmep[WME_AC_VI].wmep_txopLimit << 16 |
2333 wmep[WME_AC_VO].wmep_txopLimit);
2334
2335 /* update CWmin */
2336 RAL_WRITE(sc, RT2661_CWMIN_CSR,
2337 wmep[WME_AC_BE].wmep_logcwmin << 12 |
2338 wmep[WME_AC_BK].wmep_logcwmin << 8 |
2339 wmep[WME_AC_VI].wmep_logcwmin << 4 |
2340 wmep[WME_AC_VO].wmep_logcwmin);
2341
2342 /* update CWmax */
2343 RAL_WRITE(sc, RT2661_CWMAX_CSR,
2344 wmep[WME_AC_BE].wmep_logcwmax << 12 |
2345 wmep[WME_AC_BK].wmep_logcwmax << 8 |
2346 wmep[WME_AC_VI].wmep_logcwmax << 4 |
2347 wmep[WME_AC_VO].wmep_logcwmax);
2348
2349 /* update Aifsn */
2350 RAL_WRITE(sc, RT2661_AIFSN_CSR,
2351 wmep[WME_AC_BE].wmep_aifsn << 12 |
2352 wmep[WME_AC_BK].wmep_aifsn << 8 |
2353 wmep[WME_AC_VI].wmep_aifsn << 4 |
2354 wmep[WME_AC_VO].wmep_aifsn);
2355
2356 return 0;
2357 }
2358 #endif
2359
2360 static void
2361 rt2661_updateslot(struct ifnet *ifp)
2362 {
2363 struct rt2661_softc *sc = ifp->if_softc;
2364 struct ieee80211com *ic = &sc->sc_ic;
2365
2366 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2367 /*
2368 * In HostAP mode, we defer setting of new slot time until
2369 * updated ERP Information Element has propagated to all
2370 * associated STAs.
2371 */
2372 sc->sc_flags |= RT2661_UPDATE_SLOT;
2373 } else
2374 rt2661_set_slottime(sc);
2375 }
2376
2377 static void
2378 rt2661_set_slottime(struct rt2661_softc *sc)
2379 {
2380 struct ieee80211com *ic = &sc->sc_ic;
2381 uint8_t slottime;
2382 uint32_t tmp;
2383
2384 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2385
2386 tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2387 tmp = (tmp & ~0xff) | slottime;
2388 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2389
2390 DPRINTF(("setting slot time to %uus\n", slottime));
2391 }
2392
2393 static const char *
2394 rt2661_get_rf(int rev)
2395 {
2396 switch (rev) {
2397 case RT2661_RF_5225: return "RT5225";
2398 case RT2661_RF_5325: return "RT5325 (MIMO XR)";
2399 case RT2661_RF_2527: return "RT2527";
2400 case RT2661_RF_2529: return "RT2529 (MIMO XR)";
2401 default: return "unknown";
2402 }
2403 }
2404
2405 static void
2406 rt2661_read_eeprom(struct rt2661_softc *sc)
2407 {
2408 struct ieee80211com *ic = &sc->sc_ic;
2409 uint16_t val;
2410 int i;
2411
2412 /* read MAC address */
2413 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2414 ic->ic_myaddr[0] = val & 0xff;
2415 ic->ic_myaddr[1] = val >> 8;
2416
2417 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2418 ic->ic_myaddr[2] = val & 0xff;
2419 ic->ic_myaddr[3] = val >> 8;
2420
2421 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2422 ic->ic_myaddr[4] = val & 0xff;
2423 ic->ic_myaddr[5] = val >> 8;
2424
2425 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2426 /* XXX: test if different from 0xffff? */
2427 sc->rf_rev = (val >> 11) & 0x1f;
2428 sc->hw_radio = (val >> 10) & 0x1;
2429 sc->rx_ant = (val >> 4) & 0x3;
2430 sc->tx_ant = (val >> 2) & 0x3;
2431 sc->nb_ant = val & 0x3;
2432
2433 DPRINTF(("RF revision=%d\n", sc->rf_rev));
2434
2435 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2436 sc->ext_5ghz_lna = (val >> 6) & 0x1;
2437 sc->ext_2ghz_lna = (val >> 4) & 0x1;
2438
2439 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2440 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2441
2442 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2443 if ((val & 0xff) != 0xff)
2444 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
2445
2446 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2447 if ((val & 0xff) != 0xff)
2448 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
2449
2450 /* adjust RSSI correction for external low-noise amplifier */
2451 if (sc->ext_2ghz_lna)
2452 sc->rssi_2ghz_corr -= 14;
2453 if (sc->ext_5ghz_lna)
2454 sc->rssi_5ghz_corr -= 14;
2455
2456 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2457 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2458
2459 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2460 if ((val >> 8) != 0xff)
2461 sc->rfprog = (val >> 8) & 0x3;
2462 if ((val & 0xff) != 0xff)
2463 sc->rffreq = val & 0xff;
2464
2465 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2466
2467 /* read Tx power for all a/b/g channels */
2468 for (i = 0; i < 19; i++) {
2469 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2470 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
2471 DPRINTF(("Channel=%d Tx power=%d\n",
2472 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2473 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
2474 DPRINTF(("Channel=%d Tx power=%d\n",
2475 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2476 }
2477
2478 /* read vendor-specific BBP values */
2479 for (i = 0; i < 16; i++) {
2480 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2481 if (val == 0 || val == 0xffff)
2482 continue; /* skip invalid entries */
2483 sc->bbp_prom[i].reg = val >> 8;
2484 sc->bbp_prom[i].val = val & 0xff;
2485 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2486 sc->bbp_prom[i].val));
2487 }
2488 }
2489
2490 static int
2491 rt2661_bbp_init(struct rt2661_softc *sc)
2492 {
2493 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2494 int i, ntries;
2495 uint8_t val;
2496
2497 /* wait for BBP to be ready */
2498 for (ntries = 0; ntries < 100; ntries++) {
2499 val = rt2661_bbp_read(sc, 0);
2500 if (val != 0 && val != 0xff)
2501 break;
2502 DELAY(100);
2503 }
2504 if (ntries == 100) {
2505 aprint_error_dev(&sc->sc_dev, "timeout waiting for BBP\n");
2506 return EIO;
2507 }
2508
2509 /* initialize BBP registers to default values */
2510 for (i = 0; i < N(rt2661_def_bbp); i++) {
2511 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2512 rt2661_def_bbp[i].val);
2513 }
2514
2515 /* write vendor-specific BBP values (from EEPROM) */
2516 for (i = 0; i < 16; i++) {
2517 if (sc->bbp_prom[i].reg == 0)
2518 continue;
2519 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2520 }
2521
2522 return 0;
2523 #undef N
2524 }
2525
2526 static int
2527 rt2661_init(struct ifnet *ifp)
2528 {
2529 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2530 struct rt2661_softc *sc = ifp->if_softc;
2531 struct ieee80211com *ic = &sc->sc_ic;
2532 const char *name = NULL; /* make lint happy */
2533 uint8_t *ucode;
2534 size_t size;
2535 uint32_t tmp, star[3];
2536 int i, ntries;
2537 firmware_handle_t fh;
2538
2539 /* for CardBus, power on the socket */
2540 if (!(sc->sc_flags & RT2661_ENABLED)) {
2541 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2542 aprint_error_dev(&sc->sc_dev, "could not enable device\n");
2543 return EIO;
2544 }
2545 sc->sc_flags |= RT2661_ENABLED;
2546 }
2547
2548 rt2661_stop(ifp, 0);
2549
2550 if (!(sc->sc_flags & RT2661_FWLOADED)) {
2551 switch (sc->sc_id) {
2552 case PCI_PRODUCT_RALINK_RT2561:
2553 name = "ral-rt2561";
2554 break;
2555 case PCI_PRODUCT_RALINK_RT2561S:
2556 name = "ral-rt2561s";
2557 break;
2558 case PCI_PRODUCT_RALINK_RT2661:
2559 name = "ral-rt2661";
2560 break;
2561 }
2562
2563 if (firmware_open("ral", name, &fh) != 0) {
2564 aprint_error_dev(&sc->sc_dev, "could not open microcode %s\n", name);
2565 rt2661_stop(ifp, 1);
2566 return EIO;
2567 }
2568
2569 size = firmware_get_size(fh);
2570 if (!(ucode = firmware_malloc(size))) {
2571 aprint_error_dev(&sc->sc_dev, "could not alloc microcode memory\n");
2572 firmware_close(fh);
2573 rt2661_stop(ifp, 1);
2574 return ENOMEM;
2575 }
2576
2577 if (firmware_read(fh, 0, ucode, size) != 0) {
2578 aprint_error_dev(&sc->sc_dev, "could not read microcode %s\n", name);
2579 firmware_free(ucode, 0);
2580 firmware_close(fh);
2581 rt2661_stop(ifp, 1);
2582 return EIO;
2583 }
2584
2585 if (rt2661_load_microcode(sc, ucode, size) != 0) {
2586 aprint_error_dev(&sc->sc_dev, "could not load 8051 microcode\n");
2587 firmware_free(ucode, 0);
2588 firmware_close(fh);
2589 rt2661_stop(ifp, 1);
2590 return EIO;
2591 }
2592
2593 firmware_free(ucode, 0);
2594 firmware_close(fh);
2595 sc->sc_flags |= RT2661_FWLOADED;
2596 }
2597
2598 /* initialize Tx rings */
2599 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2600 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2601 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2602 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2603
2604 /* initialize Mgt ring */
2605 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2606
2607 /* initialize Rx ring */
2608 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2609
2610 /* initialize Tx rings sizes */
2611 RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2612 RT2661_TX_RING_COUNT << 24 |
2613 RT2661_TX_RING_COUNT << 16 |
2614 RT2661_TX_RING_COUNT << 8 |
2615 RT2661_TX_RING_COUNT);
2616
2617 RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2618 RT2661_TX_DESC_WSIZE << 16 |
2619 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
2620 RT2661_MGT_RING_COUNT);
2621
2622 /* initialize Rx rings */
2623 RAL_WRITE(sc, RT2661_RX_RING_CSR,
2624 RT2661_RX_DESC_BACK << 16 |
2625 RT2661_RX_DESC_WSIZE << 8 |
2626 RT2661_RX_RING_COUNT);
2627
2628 /* XXX: some magic here */
2629 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2630
2631 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2632 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2633
2634 /* load base address of Rx ring */
2635 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2636
2637 /* initialize MAC registers to default values */
2638 for (i = 0; i < N(rt2661_def_mac); i++)
2639 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2640
2641 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2642 rt2661_set_macaddr(sc, ic->ic_myaddr);
2643
2644 /* set host ready */
2645 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2646 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2647
2648 /* wait for BBP/RF to wakeup */
2649 for (ntries = 0; ntries < 1000; ntries++) {
2650 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2651 break;
2652 DELAY(1000);
2653 }
2654 if (ntries == 1000) {
2655 printf("timeout waiting for BBP/RF to wakeup\n");
2656 rt2661_stop(ifp, 1);
2657 return EIO;
2658 }
2659
2660 if (rt2661_bbp_init(sc) != 0) {
2661 rt2661_stop(ifp, 1);
2662 return EIO;
2663 }
2664
2665 /* select default channel */
2666 sc->sc_curchan = ic->ic_curchan;
2667 rt2661_select_band(sc, sc->sc_curchan);
2668 rt2661_select_antenna(sc);
2669 rt2661_set_chan(sc, sc->sc_curchan);
2670
2671 /* update Rx filter */
2672 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2673
2674 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2675 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2676 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2677 RT2661_DROP_ACKCTS;
2678 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2679 tmp |= RT2661_DROP_TODS;
2680 if (!(ifp->if_flags & IFF_PROMISC))
2681 tmp |= RT2661_DROP_NOT_TO_ME;
2682 }
2683
2684 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2685
2686 /* clear STA registers */
2687 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2688
2689 /* initialize ASIC */
2690 RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2691
2692 /* clear any pending interrupt */
2693 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2694
2695 /* enable interrupts */
2696 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2697 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2698
2699 /* kick Rx */
2700 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2701
2702 ifp->if_flags &= ~IFF_OACTIVE;
2703 ifp->if_flags |= IFF_RUNNING;
2704
2705 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2706 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2707 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2708 } else
2709 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2710
2711 return 0;
2712 #undef N
2713 }
2714
2715 static void
2716 rt2661_stop(struct ifnet *ifp, int disable)
2717 {
2718 struct rt2661_softc *sc = ifp->if_softc;
2719 struct ieee80211com *ic = &sc->sc_ic;
2720 uint32_t tmp;
2721
2722 sc->sc_tx_timer = 0;
2723 ifp->if_timer = 0;
2724 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2725
2726 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2727
2728 /* abort Tx (for all 5 Tx rings) */
2729 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2730
2731 /* disable Rx (value remains after reset!) */
2732 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2733 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2734
2735 /* reset ASIC */
2736 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2737 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2738
2739 /* disable interrupts */
2740 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2741 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2742
2743 /* clear any pending interrupt */
2744 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2745 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2746
2747 /* reset Tx and Rx rings */
2748 rt2661_reset_tx_ring(sc, &sc->txq[0]);
2749 rt2661_reset_tx_ring(sc, &sc->txq[1]);
2750 rt2661_reset_tx_ring(sc, &sc->txq[2]);
2751 rt2661_reset_tx_ring(sc, &sc->txq[3]);
2752 rt2661_reset_tx_ring(sc, &sc->mgtq);
2753 rt2661_reset_rx_ring(sc, &sc->rxq);
2754
2755 /* for CardBus, power down the socket */
2756 if (disable && sc->sc_disable != NULL) {
2757 if (sc->sc_flags & RT2661_ENABLED) {
2758 (*sc->sc_disable)(sc);
2759 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2760 }
2761 }
2762 }
2763
2764 static int
2765 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2766 {
2767 int ntries;
2768
2769 /* reset 8051 */
2770 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2771
2772 /* cancel any pending Host to MCU command */
2773 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2774 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2775 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2776
2777 /* write 8051's microcode */
2778 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2779 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2780 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2781
2782 /* kick 8051's ass */
2783 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2784
2785 /* wait for 8051 to initialize */
2786 for (ntries = 0; ntries < 500; ntries++) {
2787 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2788 break;
2789 DELAY(100);
2790 }
2791 if (ntries == 500) {
2792 printf("timeout waiting for MCU to initialize\n");
2793 return EIO;
2794 }
2795 return 0;
2796 }
2797
2798 /*
2799 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2800 * false CCA count. This function is called periodically (every seconds) when
2801 * in the RUN state. Values taken from the reference driver.
2802 */
2803 static void
2804 rt2661_rx_tune(struct rt2661_softc *sc)
2805 {
2806 uint8_t bbp17;
2807 uint16_t cca;
2808 int lo, hi, dbm;
2809
2810 /*
2811 * Tuning range depends on operating band and on the presence of an
2812 * external low-noise amplifier.
2813 */
2814 lo = 0x20;
2815 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2816 lo += 0x08;
2817 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2818 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2819 lo += 0x10;
2820 hi = lo + 0x20;
2821
2822 dbm = sc->avg_rssi;
2823 /* retrieve false CCA count since last call (clear on read) */
2824 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2825
2826 DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2827
2828 if (dbm < -74) {
2829 /* very bad RSSI, tune using false CCA count */
2830 bbp17 = sc->bbp17; /* current value */
2831
2832 hi -= 2 * (-74 - dbm);
2833 if (hi < lo)
2834 hi = lo;
2835
2836 if (bbp17 > hi)
2837 bbp17 = hi;
2838 else if (cca > 512)
2839 bbp17 = min(bbp17 + 1, hi);
2840 else if (cca < 100)
2841 bbp17 = max(bbp17 - 1, lo);
2842
2843 } else if (dbm < -66) {
2844 bbp17 = lo + 0x08;
2845 } else if (dbm < -58) {
2846 bbp17 = lo + 0x10;
2847 } else if (dbm < -35) {
2848 bbp17 = hi;
2849 } else { /* very good RSSI >= -35dBm */
2850 bbp17 = 0x60; /* very low sensitivity */
2851 }
2852
2853 if (bbp17 != sc->bbp17) {
2854 DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2855 rt2661_bbp_write(sc, 17, bbp17);
2856 sc->bbp17 = bbp17;
2857 }
2858 }
2859
2860 #ifdef notyet
2861 /*
2862 * Enter/Leave radar detection mode.
2863 * This is for 802.11h additional regulatory domains.
2864 */
2865 static void
2866 rt2661_radar_start(struct rt2661_softc *sc)
2867 {
2868 uint32_t tmp;
2869
2870 /* disable Rx */
2871 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2872 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2873
2874 rt2661_bbp_write(sc, 82, 0x20);
2875 rt2661_bbp_write(sc, 83, 0x00);
2876 rt2661_bbp_write(sc, 84, 0x40);
2877
2878 /* save current BBP registers values */
2879 sc->bbp18 = rt2661_bbp_read(sc, 18);
2880 sc->bbp21 = rt2661_bbp_read(sc, 21);
2881 sc->bbp22 = rt2661_bbp_read(sc, 22);
2882 sc->bbp16 = rt2661_bbp_read(sc, 16);
2883 sc->bbp17 = rt2661_bbp_read(sc, 17);
2884 sc->bbp64 = rt2661_bbp_read(sc, 64);
2885
2886 rt2661_bbp_write(sc, 18, 0xff);
2887 rt2661_bbp_write(sc, 21, 0x3f);
2888 rt2661_bbp_write(sc, 22, 0x3f);
2889 rt2661_bbp_write(sc, 16, 0xbd);
2890 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2891 rt2661_bbp_write(sc, 64, 0x21);
2892
2893 /* restore Rx filter */
2894 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2895 }
2896
2897 static int
2898 rt2661_radar_stop(struct rt2661_softc *sc)
2899 {
2900 uint8_t bbp66;
2901
2902 /* read radar detection result */
2903 bbp66 = rt2661_bbp_read(sc, 66);
2904
2905 /* restore BBP registers values */
2906 rt2661_bbp_write(sc, 16, sc->bbp16);
2907 rt2661_bbp_write(sc, 17, sc->bbp17);
2908 rt2661_bbp_write(sc, 18, sc->bbp18);
2909 rt2661_bbp_write(sc, 21, sc->bbp21);
2910 rt2661_bbp_write(sc, 22, sc->bbp22);
2911 rt2661_bbp_write(sc, 64, sc->bbp64);
2912
2913 return bbp66 == 1;
2914 }
2915 #endif
2916
2917 static int
2918 rt2661_prepare_beacon(struct rt2661_softc *sc)
2919 {
2920 struct ieee80211com *ic = &sc->sc_ic;
2921 struct ieee80211_node *ni = ic->ic_bss;
2922 struct rt2661_tx_desc desc;
2923 struct mbuf *m0;
2924 struct ieee80211_beacon_offsets bo;
2925 int rate;
2926
2927 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2928 if (m0 == NULL) {
2929 aprint_error_dev(&sc->sc_dev, "could not allocate beacon frame\n");
2930 return ENOBUFS;
2931 }
2932
2933 /* send beacons at the lowest available rate */
2934 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2935
2936 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2937 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2938
2939 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2940 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2941
2942 /* copy beacon header and payload into NIC memory */
2943 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2944 mtod(m0, uint8_t *), m0->m_pkthdr.len);
2945
2946 m_freem(m0);
2947
2948 /*
2949 * Store offset of ERP Information Element so that we can update it
2950 * dynamically when the slot time changes.
2951 * XXX: this is ugly since it depends on how net80211 builds beacon
2952 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2953 */
2954 if (ic->ic_curmode == IEEE80211_MODE_11G) {
2955 sc->erp_csr =
2956 RT2661_HW_BEACON_BASE0 + 24 +
2957 sizeof (struct ieee80211_frame) +
2958 8 + 2 + 2 + 2 + ni->ni_esslen +
2959 2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2960 2 + 1 +
2961 ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2962 2;
2963 }
2964
2965 return 0;
2966 }
2967
2968 /*
2969 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2970 * and HostAP operating modes.
2971 */
2972 static void
2973 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2974 {
2975 struct ieee80211com *ic = &sc->sc_ic;
2976 uint32_t tmp;
2977
2978 if (ic->ic_opmode != IEEE80211_M_STA) {
2979 /*
2980 * Change default 16ms TBTT adjustment to 8ms.
2981 * Must be done before enabling beacon generation.
2982 */
2983 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2984 }
2985
2986 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2987
2988 /* set beacon interval (in 1/16ms unit) */
2989 tmp |= ic->ic_bss->ni_intval * 16;
2990
2991 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
2992 if (ic->ic_opmode == IEEE80211_M_STA)
2993 tmp |= RT2661_TSF_MODE(1);
2994 else
2995 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
2996
2997 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
2998 }
2999
3000 /*
3001 * Retrieve the "Received Signal Strength Indicator" from the raw values
3002 * contained in Rx descriptors. The computation depends on which band the
3003 * frame was received. Correction values taken from the reference driver.
3004 */
3005 static int
3006 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3007 {
3008 int lna, agc, rssi;
3009
3010 lna = (raw >> 5) & 0x3;
3011 agc = raw & 0x1f;
3012
3013 rssi = 2 * agc;
3014
3015 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3016 rssi += sc->rssi_2ghz_corr;
3017
3018 if (lna == 1)
3019 rssi -= 64;
3020 else if (lna == 2)
3021 rssi -= 74;
3022 else if (lna == 3)
3023 rssi -= 90;
3024 } else {
3025 rssi += sc->rssi_5ghz_corr;
3026
3027 if (lna == 1)
3028 rssi -= 64;
3029 else if (lna == 2)
3030 rssi -= 86;
3031 else if (lna == 3)
3032 rssi -= 100;
3033 }
3034 return rssi;
3035 }
3036