Home | History | Annotate | Line # | Download | only in ic
rt2661.c revision 1.32
      1 /*	$NetBSD: rt2661.c,v 1.32 2016/05/26 05:04:46 ozaki-r Exp $	*/
      2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
      3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2006
      7  *	Damien Bergamini <damien.bergamini (at) free.fr>
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*-
     23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
     24  * http://www.ralinktech.com/
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.32 2016/05/26 05:04:46 ozaki-r Exp $");
     29 
     30 
     31 #include <sys/param.h>
     32 #include <sys/sockio.h>
     33 #include <sys/sysctl.h>
     34 #include <sys/mbuf.h>
     35 #include <sys/kernel.h>
     36 #include <sys/socket.h>
     37 #include <sys/systm.h>
     38 #include <sys/malloc.h>
     39 #include <sys/callout.h>
     40 #include <sys/conf.h>
     41 #include <sys/device.h>
     42 
     43 #include <sys/bus.h>
     44 #include <machine/endian.h>
     45 #include <sys/intr.h>
     46 
     47 #include <net/bpf.h>
     48 #include <net/if.h>
     49 #include <net/if_arp.h>
     50 #include <net/if_dl.h>
     51 #include <net/if_media.h>
     52 #include <net/if_types.h>
     53 #include <net/if_ether.h>
     54 
     55 #include <netinet/in.h>
     56 #include <netinet/in_systm.h>
     57 #include <netinet/in_var.h>
     58 #include <netinet/ip.h>
     59 
     60 #include <net80211/ieee80211_var.h>
     61 #include <net80211/ieee80211_amrr.h>
     62 #include <net80211/ieee80211_radiotap.h>
     63 
     64 #include <dev/ic/rt2661reg.h>
     65 #include <dev/ic/rt2661var.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/firmload.h>
     72 
     73 #ifdef RAL_DEBUG
     74 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
     75 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
     76 int rt2661_debug = 0;
     77 #else
     78 #define DPRINTF(x)
     79 #define DPRINTFN(n, x)
     80 #endif
     81 
     82 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
     83 		    struct rt2661_tx_ring *, int);
     84 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
     85 		    struct rt2661_tx_ring *);
     86 static void	rt2661_free_tx_ring(struct rt2661_softc *,
     87 		    struct rt2661_tx_ring *);
     88 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
     89 		    struct rt2661_rx_ring *, int);
     90 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
     91 		    struct rt2661_rx_ring *);
     92 static void	rt2661_free_rx_ring(struct rt2661_softc *,
     93 		    struct rt2661_rx_ring *);
     94 static struct ieee80211_node *
     95 		rt2661_node_alloc(struct ieee80211_node_table *);
     96 static int	rt2661_media_change(struct ifnet *);
     97 static void	rt2661_next_scan(void *);
     98 static void	rt2661_iter_func(void *, struct ieee80211_node *);
     99 static void	rt2661_updatestats(void *);
    100 static void	rt2661_newassoc(struct ieee80211_node *, int);
    101 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
    102 		    int);
    103 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
    104 static void	rt2661_tx_intr(struct rt2661_softc *);
    105 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
    106 		    struct rt2661_tx_ring *);
    107 static void	rt2661_rx_intr(struct rt2661_softc *);
    108 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
    109 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
    110 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
    111 int		rt2661_intr(void *);
    112 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
    113 static int	rt2661_ack_rate(struct ieee80211com *, int);
    114 static uint16_t	rt2661_txtime(int, int, uint32_t);
    115 static uint8_t	rt2661_plcp_signal(int);
    116 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
    117 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
    118 		    const bus_dma_segment_t *, int, int);
    119 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
    120 		    struct ieee80211_node *);
    121 static struct mbuf *
    122 		rt2661_get_rts(struct rt2661_softc *,
    123 		    struct ieee80211_frame *, uint16_t);
    124 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
    125 		    struct ieee80211_node *, int);
    126 static void	rt2661_start(struct ifnet *);
    127 static void	rt2661_watchdog(struct ifnet *);
    128 static int	rt2661_reset(struct ifnet *);
    129 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
    130 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
    131 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
    132 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
    133 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
    134 static void	rt2661_select_antenna(struct rt2661_softc *);
    135 static void	rt2661_enable_mrr(struct rt2661_softc *);
    136 static void	rt2661_set_txpreamble(struct rt2661_softc *);
    137 static void	rt2661_set_basicrates(struct rt2661_softc *,
    138 			const struct ieee80211_rateset *);
    139 static void	rt2661_select_band(struct rt2661_softc *,
    140 		    struct ieee80211_channel *);
    141 static void	rt2661_set_chan(struct rt2661_softc *,
    142 		    struct ieee80211_channel *);
    143 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
    144 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
    145 static void	rt2661_update_promisc(struct rt2661_softc *);
    146 #if 0
    147 static int	rt2661_wme_update(struct ieee80211com *);
    148 #endif
    149 
    150 static void	rt2661_updateslot(struct ifnet *);
    151 static void	rt2661_set_slottime(struct rt2661_softc *);
    152 static const char *
    153 		rt2661_get_rf(int);
    154 static void	rt2661_read_eeprom(struct rt2661_softc *);
    155 static int	rt2661_bbp_init(struct rt2661_softc *);
    156 static int     	rt2661_init(struct ifnet *);
    157 static void	rt2661_stop(struct ifnet *, int);
    158 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
    159 		    int);
    160 static void	rt2661_rx_tune(struct rt2661_softc *);
    161 #ifdef notyet
    162 static void	rt2661_radar_start(struct rt2661_softc *);
    163 static int	rt2661_radar_stop(struct rt2661_softc *);
    164 #endif
    165 static int	rt2661_prepare_beacon(struct rt2661_softc *);
    166 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
    167 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
    168 
    169 /*
    170  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    171  */
    172 static const struct ieee80211_rateset rt2661_rateset_11a =
    173 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    174 
    175 static const struct ieee80211_rateset rt2661_rateset_11b =
    176 	{ 4, { 2, 4, 11, 22 } };
    177 
    178 static const struct ieee80211_rateset rt2661_rateset_11g =
    179 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    180 
    181 static const struct {
    182 	uint32_t	reg;
    183 	uint32_t	val;
    184 } rt2661_def_mac[] = {
    185 	RT2661_DEF_MAC
    186 };
    187 
    188 static const struct {
    189 	uint8_t	reg;
    190 	uint8_t	val;
    191 } rt2661_def_bbp[] = {
    192 	RT2661_DEF_BBP
    193 };
    194 
    195 static const struct rfprog {
    196 	uint8_t		chan;
    197 	uint32_t	r1, r2, r3, r4;
    198 } rt2661_rf5225_1[] = {
    199 	RT2661_RF5225_1
    200 }, rt2661_rf5225_2[] = {
    201 	RT2661_RF5225_2
    202 };
    203 
    204 int
    205 rt2661_attach(void *xsc, int id)
    206 {
    207 	struct rt2661_softc *sc = xsc;
    208 	struct ieee80211com *ic = &sc->sc_ic;
    209 	struct ifnet *ifp = &sc->sc_if;
    210 	uint32_t val;
    211 	int error, i, ntries;
    212 
    213 	sc->sc_id = id;
    214 
    215 	sc->amrr.amrr_min_success_threshold =  1;
    216 	sc->amrr.amrr_max_success_threshold = 15;
    217 	callout_init(&sc->scan_ch, 0);
    218 	callout_init(&sc->amrr_ch, 0);
    219 
    220 	/* wait for NIC to initialize */
    221 	for (ntries = 0; ntries < 1000; ntries++) {
    222 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
    223 			break;
    224 		DELAY(1000);
    225 	}
    226 	if (ntries == 1000) {
    227 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
    228 		return EIO;
    229 	}
    230 
    231 	/* retrieve RF rev. no and various other things from EEPROM */
    232 	rt2661_read_eeprom(sc);
    233 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
    234 	    ether_sprintf(ic->ic_myaddr));
    235 
    236 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
    237 	    rt2661_get_rf(sc->rf_rev));
    238 
    239 	/*
    240 	 * Allocate Tx and Rx rings.
    241 	 */
    242 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
    243 	if (error != 0) {
    244 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
    245 		goto fail1;
    246 	}
    247 
    248 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
    249 	if (error != 0) {
    250 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
    251 		goto fail2;
    252 	}
    253 
    254 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
    255 	if (error != 0) {
    256 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
    257 		goto fail3;
    258 	}
    259 
    260 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
    261 	if (error != 0) {
    262 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
    263 		goto fail4;
    264 	}
    265 
    266 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
    267 	if (error != 0) {
    268 		aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
    269 		goto fail5;
    270 	}
    271 
    272 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
    273 	if (error != 0) {
    274 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
    275 		goto fail6;
    276 	}
    277 
    278 	ifp->if_softc = sc;
    279 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    280 	ifp->if_init = rt2661_init;
    281 	ifp->if_stop = rt2661_stop;
    282 	ifp->if_ioctl = rt2661_ioctl;
    283 	ifp->if_start = rt2661_start;
    284 	ifp->if_watchdog = rt2661_watchdog;
    285 	IFQ_SET_READY(&ifp->if_snd);
    286 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    287 
    288 	ic->ic_ifp = ifp;
    289 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    290 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    291 	ic->ic_state = IEEE80211_S_INIT;
    292 
    293 	/* set device capabilities */
    294 	ic->ic_caps =
    295 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    296 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    297 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
    298 	    IEEE80211_C_TXPMGT |	/* tx power management */
    299 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    300 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    301 	    IEEE80211_C_WPA;		/* 802.11i */
    302 
    303 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
    304 		/* set supported .11a rates */
    305 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
    306 
    307 		/* set supported .11a channels */
    308 		for (i = 36; i <= 64; i += 4) {
    309 			ic->ic_channels[i].ic_freq =
    310 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    311 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    312 		}
    313 		for (i = 100; i <= 140; i += 4) {
    314 			ic->ic_channels[i].ic_freq =
    315 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    317 		}
    318 		for (i = 149; i <= 165; i += 4) {
    319 			ic->ic_channels[i].ic_freq =
    320 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    321 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    322 		}
    323 	}
    324 
    325 	/* set supported .11b and .11g rates */
    326 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
    327 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
    328 
    329 	/* set supported .11b and .11g channels (1 through 14) */
    330 	for (i = 1; i <= 14; i++) {
    331 		ic->ic_channels[i].ic_freq =
    332 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    333 		ic->ic_channels[i].ic_flags =
    334 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    335 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    336 	}
    337 
    338 	if_attach(ifp);
    339 	ieee80211_ifattach(ic);
    340 	ic->ic_node_alloc = rt2661_node_alloc;
    341 	ic->ic_newassoc = rt2661_newassoc;
    342 	ic->ic_updateslot = rt2661_updateslot;
    343 	ic->ic_reset = rt2661_reset;
    344 
    345 	/* override state transition machine */
    346 	sc->sc_newstate = ic->ic_newstate;
    347 	ic->ic_newstate = rt2661_newstate;
    348 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
    349 
    350 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    351 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
    352 	    &sc->sc_drvbpf);
    353 
    354 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
    355 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    356 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
    357 
    358 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
    359 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    360 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
    361 
    362 	ieee80211_announce(ic);
    363 
    364 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    365 		pmf_class_network_register(sc->sc_dev, ifp);
    366 	else
    367 		aprint_error_dev(sc->sc_dev,
    368 		    "couldn't establish power handler\n");
    369 
    370 	return 0;
    371 
    372 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
    373 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
    374 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
    375 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
    376 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
    377 fail1:	return ENXIO;
    378 }
    379 
    380 int
    381 rt2661_detach(void *xsc)
    382 {
    383 	struct rt2661_softc *sc = xsc;
    384 	struct ifnet *ifp = &sc->sc_if;
    385 
    386 	callout_stop(&sc->scan_ch);
    387 	callout_stop(&sc->amrr_ch);
    388 
    389 	pmf_device_deregister(sc->sc_dev);
    390 
    391 	ieee80211_ifdetach(&sc->sc_ic);
    392 	if_detach(ifp);
    393 
    394 	rt2661_free_tx_ring(sc, &sc->txq[0]);
    395 	rt2661_free_tx_ring(sc, &sc->txq[1]);
    396 	rt2661_free_tx_ring(sc, &sc->txq[2]);
    397 	rt2661_free_tx_ring(sc, &sc->txq[3]);
    398 	rt2661_free_tx_ring(sc, &sc->mgtq);
    399 	rt2661_free_rx_ring(sc, &sc->rxq);
    400 
    401 	return 0;
    402 }
    403 
    404 static int
    405 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
    406     int count)
    407 {
    408 	int i, nsegs, error;
    409 
    410 	ring->count = count;
    411 	ring->queued = 0;
    412 	ring->cur = ring->next = ring->stat = 0;
    413 
    414 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
    415 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    416 	if (error != 0) {
    417 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
    418 		goto fail;
    419 	}
    420 
    421 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
    422 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    423 	if (error != 0) {
    424 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
    425 		goto fail;
    426 	}
    427 
    428 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    429 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
    430 	    BUS_DMA_NOWAIT);
    431 	if (error != 0) {
    432 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
    433 		goto fail;
    434 	}
    435 
    436 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    437 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    438 	if (error != 0) {
    439 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
    440 		goto fail;
    441 	}
    442 
    443 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
    444 	ring->physaddr = ring->map->dm_segs->ds_addr;
    445 
    446 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
    447 	    M_NOWAIT);
    448 	if (ring->data == NULL) {
    449 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
    450 		error = ENOMEM;
    451 		goto fail;
    452 	}
    453 
    454 	memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
    455 	for (i = 0; i < count; i++) {
    456 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    457 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
    458 		    &ring->data[i].map);
    459 		if (error != 0) {
    460 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
    461 			goto fail;
    462 		}
    463 	}
    464 
    465 	return 0;
    466 
    467 fail:	rt2661_free_tx_ring(sc, ring);
    468 	return error;
    469 }
    470 
    471 static void
    472 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
    473 {
    474 	struct rt2661_tx_desc *desc;
    475 	struct rt2661_tx_data *data;
    476 	int i;
    477 
    478 	for (i = 0; i < ring->count; i++) {
    479 		desc = &ring->desc[i];
    480 		data = &ring->data[i];
    481 
    482 		if (data->m != NULL) {
    483 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    484 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    485 			bus_dmamap_unload(sc->sc_dmat, data->map);
    486 			m_freem(data->m);
    487 			data->m = NULL;
    488 		}
    489 
    490 		if (data->ni != NULL) {
    491 			ieee80211_free_node(data->ni);
    492 			data->ni = NULL;
    493 		}
    494 
    495 		desc->flags = 0;
    496 	}
    497 
    498 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    499 	    BUS_DMASYNC_PREWRITE);
    500 
    501 	ring->queued = 0;
    502 	ring->cur = ring->next = ring->stat = 0;
    503 }
    504 
    505 
    506 static void
    507 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
    508 {
    509 	struct rt2661_tx_data *data;
    510 	int i;
    511 
    512 	if (ring->desc != NULL) {
    513 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    514 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    515 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    516 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    517 		    ring->count * RT2661_TX_DESC_SIZE);
    518 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    519 	}
    520 
    521 	if (ring->data != NULL) {
    522 		for (i = 0; i < ring->count; i++) {
    523 			data = &ring->data[i];
    524 
    525 			if (data->m != NULL) {
    526 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    527 				    data->map->dm_mapsize,
    528 				    BUS_DMASYNC_POSTWRITE);
    529 				bus_dmamap_unload(sc->sc_dmat, data->map);
    530 				m_freem(data->m);
    531 			}
    532 
    533 			if (data->ni != NULL)
    534 				ieee80211_free_node(data->ni);
    535 
    536 			if (data->map != NULL)
    537 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    538 		}
    539 		free(ring->data, M_DEVBUF);
    540 	}
    541 }
    542 
    543 static int
    544 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
    545     int count)
    546 {
    547 	struct rt2661_rx_desc *desc;
    548 	struct rt2661_rx_data *data;
    549 	int i, nsegs, error;
    550 
    551 	ring->count = count;
    552 	ring->cur = ring->next = 0;
    553 
    554 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
    555 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    556 	if (error != 0) {
    557 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
    558 		goto fail;
    559 	}
    560 
    561 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
    562 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    563 	if (error != 0) {
    564 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
    565 		goto fail;
    566 	}
    567 
    568 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    569 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
    570 	    BUS_DMA_NOWAIT);
    571 	if (error != 0) {
    572 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
    573 		goto fail;
    574 	}
    575 
    576 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    577 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    578 	if (error != 0) {
    579 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
    580 		goto fail;
    581 	}
    582 
    583 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
    584 	ring->physaddr = ring->map->dm_segs->ds_addr;
    585 
    586 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
    587 	    M_NOWAIT);
    588 	if (ring->data == NULL) {
    589 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
    590 		error = ENOMEM;
    591 		goto fail;
    592 	}
    593 
    594 	/*
    595 	 * Pre-allocate Rx buffers and populate Rx ring.
    596 	 */
    597 	memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
    598 	for (i = 0; i < count; i++) {
    599 		desc = &sc->rxq.desc[i];
    600 		data = &sc->rxq.data[i];
    601 
    602 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    603 		    0, BUS_DMA_NOWAIT, &data->map);
    604 		if (error != 0) {
    605 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
    606 			goto fail;
    607 		}
    608 
    609 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    610 		if (data->m == NULL) {
    611 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    612 			error = ENOMEM;
    613 			goto fail;
    614 		}
    615 
    616 		MCLGET(data->m, M_DONTWAIT);
    617 		if (!(data->m->m_flags & M_EXT)) {
    618 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
    619 			error = ENOMEM;
    620 			goto fail;
    621 		}
    622 
    623 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    624 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
    625 		if (error != 0) {
    626 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
    627 			goto fail;
    628 		}
    629 
    630 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
    631 		desc->flags = htole32(RT2661_RX_BUSY);
    632 	}
    633 
    634 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    635 	    BUS_DMASYNC_PREWRITE);
    636 
    637 	return 0;
    638 
    639 fail:	rt2661_free_rx_ring(sc, ring);
    640 	return error;
    641 }
    642 
    643 static void
    644 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
    645 {
    646 	int i;
    647 
    648 	for (i = 0; i < ring->count; i++)
    649 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
    650 
    651 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    652 	    BUS_DMASYNC_PREWRITE);
    653 
    654 	ring->cur = ring->next = 0;
    655 }
    656 
    657 static void
    658 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
    659 {
    660 	struct rt2661_rx_data *data;
    661 	int i;
    662 
    663 	if (ring->desc != NULL) {
    664 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    665 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    666 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    667 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    668 		    ring->count * RT2661_RX_DESC_SIZE);
    669 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    670 	}
    671 
    672 	if (ring->data != NULL) {
    673 		for (i = 0; i < ring->count; i++) {
    674 			data = &ring->data[i];
    675 
    676 			if (data->m != NULL) {
    677 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    678 				    data->map->dm_mapsize,
    679 				    BUS_DMASYNC_POSTREAD);
    680 				bus_dmamap_unload(sc->sc_dmat, data->map);
    681 				m_freem(data->m);
    682 			}
    683 
    684 			if (data->map != NULL)
    685 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    686 		}
    687 		free(ring->data, M_DEVBUF);
    688 	}
    689 }
    690 
    691 static struct ieee80211_node *
    692 rt2661_node_alloc(struct ieee80211_node_table *nt)
    693 {
    694 	struct rt2661_node *rn;
    695 
    696 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
    697 	    M_NOWAIT | M_ZERO);
    698 
    699 	return (rn != NULL) ? &rn->ni : NULL;
    700 }
    701 
    702 static int
    703 rt2661_media_change(struct ifnet *ifp)
    704 {
    705 	int error;
    706 
    707 	error = ieee80211_media_change(ifp);
    708 	if (error != ENETRESET)
    709 		return error;
    710 
    711 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    712 		rt2661_init(ifp);
    713 
    714 	return 0;
    715 }
    716 
    717 /*
    718  * This function is called periodically (every 200ms) during scanning to
    719  * switch from one channel to another.
    720  */
    721 static void
    722 rt2661_next_scan(void *arg)
    723 {
    724 	struct rt2661_softc *sc = arg;
    725 	struct ieee80211com *ic = &sc->sc_ic;
    726 	int s;
    727 
    728 	s = splnet();
    729 	if (ic->ic_state == IEEE80211_S_SCAN)
    730 		ieee80211_next_scan(ic);
    731 	splx(s);
    732 }
    733 
    734 /*
    735  * This function is called for each neighbor node.
    736  */
    737 static void
    738 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
    739 {
    740 	struct rt2661_softc *sc = arg;
    741 	struct rt2661_node *rn = (struct rt2661_node *)ni;
    742 
    743 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
    744 }
    745 
    746 /*
    747  * This function is called periodically (every 500ms) in RUN state to update
    748  * various settings like rate control statistics or Rx sensitivity.
    749  */
    750 static void
    751 rt2661_updatestats(void *arg)
    752 {
    753 	struct rt2661_softc *sc = arg;
    754 	struct ieee80211com *ic = &sc->sc_ic;
    755 	int s;
    756 
    757 	s = splnet();
    758 	if (ic->ic_opmode == IEEE80211_M_STA)
    759 		rt2661_iter_func(sc, ic->ic_bss);
    760 	else
    761 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
    762 
    763 	/* update rx sensitivity every 1 sec */
    764 	if (++sc->ncalls & 1)
    765 		rt2661_rx_tune(sc);
    766 	splx(s);
    767 
    768 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
    769 }
    770 
    771 static void
    772 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
    773 {
    774 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    775 	int i;
    776 
    777 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
    778 
    779 	/* set rate to some reasonable initial value */
    780 	for (i = ni->ni_rates.rs_nrates - 1;
    781 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    782 	     i--);
    783 	ni->ni_txrate = i;
    784 }
    785 
    786 static int
    787 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    788 {
    789 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
    790 	enum ieee80211_state ostate;
    791 	struct ieee80211_node *ni;
    792 	uint32_t tmp;
    793 
    794 	ostate = ic->ic_state;
    795 	callout_stop(&sc->scan_ch);
    796 
    797 	switch (nstate) {
    798 	case IEEE80211_S_INIT:
    799 		callout_stop(&sc->amrr_ch);
    800 
    801 		if (ostate == IEEE80211_S_RUN) {
    802 			/* abort TSF synchronization */
    803 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
    804 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
    805 		}
    806 		break;
    807 
    808 	case IEEE80211_S_SCAN:
    809 		rt2661_set_chan(sc, ic->ic_curchan);
    810 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
    811 		break;
    812 
    813 	case IEEE80211_S_AUTH:
    814 	case IEEE80211_S_ASSOC:
    815 		rt2661_set_chan(sc, ic->ic_curchan);
    816 		break;
    817 
    818 	case IEEE80211_S_RUN:
    819 		rt2661_set_chan(sc, ic->ic_curchan);
    820 
    821 		ni = ic->ic_bss;
    822 
    823 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    824 			rt2661_set_slottime(sc);
    825 			rt2661_enable_mrr(sc);
    826 			rt2661_set_txpreamble(sc);
    827 			rt2661_set_basicrates(sc, &ni->ni_rates);
    828 			rt2661_set_bssid(sc, ni->ni_bssid);
    829 		}
    830 
    831 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    832 		    ic->ic_opmode == IEEE80211_M_IBSS)
    833 			rt2661_prepare_beacon(sc);
    834 
    835 		if (ic->ic_opmode == IEEE80211_M_STA) {
    836 			/* fake a join to init the tx rate */
    837 			rt2661_newassoc(ni, 1);
    838 		}
    839 
    840 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    841 			sc->ncalls = 0;
    842 			sc->avg_rssi = -95;	/* reset EMA */
    843 			callout_reset(&sc->amrr_ch, hz / 2,
    844 			    rt2661_updatestats, sc);
    845 			rt2661_enable_tsf_sync(sc);
    846 		}
    847 		break;
    848 	}
    849 
    850 	return sc->sc_newstate(ic, nstate, arg);
    851 }
    852 
    853 /*
    854  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
    855  * 93C66).
    856  */
    857 static uint16_t
    858 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
    859 {
    860 	uint32_t tmp;
    861 	uint16_t val;
    862 	int n;
    863 
    864 	/* clock C once before the first command */
    865 	RT2661_EEPROM_CTL(sc, 0);
    866 
    867 	RT2661_EEPROM_CTL(sc, RT2661_S);
    868 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
    869 	RT2661_EEPROM_CTL(sc, RT2661_S);
    870 
    871 	/* write start bit (1) */
    872 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
    873 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
    874 
    875 	/* write READ opcode (10) */
    876 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
    877 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
    878 	RT2661_EEPROM_CTL(sc, RT2661_S);
    879 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
    880 
    881 	/* write address (A5-A0 or A7-A0) */
    882 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
    883 	for (; n >= 0; n--) {
    884 		RT2661_EEPROM_CTL(sc, RT2661_S |
    885 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
    886 		RT2661_EEPROM_CTL(sc, RT2661_S |
    887 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
    888 	}
    889 
    890 	RT2661_EEPROM_CTL(sc, RT2661_S);
    891 
    892 	/* read data Q15-Q0 */
    893 	val = 0;
    894 	for (n = 15; n >= 0; n--) {
    895 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
    896 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
    897 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
    898 		RT2661_EEPROM_CTL(sc, RT2661_S);
    899 	}
    900 
    901 	RT2661_EEPROM_CTL(sc, 0);
    902 
    903 	/* clear Chip Select and clock C */
    904 	RT2661_EEPROM_CTL(sc, RT2661_S);
    905 	RT2661_EEPROM_CTL(sc, 0);
    906 	RT2661_EEPROM_CTL(sc, RT2661_C);
    907 
    908 	return val;
    909 }
    910 
    911 static void
    912 rt2661_tx_intr(struct rt2661_softc *sc)
    913 {
    914 	struct ifnet *ifp = &sc->sc_if;
    915 	struct rt2661_tx_ring *txq;
    916 	struct rt2661_tx_data *data;
    917 	struct rt2661_node *rn;
    918 	uint32_t val;
    919 	int qid, retrycnt;
    920 
    921 	for (;;) {
    922 		val = RAL_READ(sc, RT2661_STA_CSR4);
    923 		if (!(val & RT2661_TX_STAT_VALID))
    924 			break;
    925 
    926 		/* retrieve the queue in which this frame was sent */
    927 		qid = RT2661_TX_QID(val);
    928 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
    929 
    930 		/* retrieve rate control algorithm context */
    931 		data = &txq->data[txq->stat];
    932 		rn = (struct rt2661_node *)data->ni;
    933 
    934 		/* if no frame has been sent, ignore */
    935 		if (rn == NULL)
    936 			continue;
    937 
    938 		switch (RT2661_TX_RESULT(val)) {
    939 		case RT2661_TX_SUCCESS:
    940 			retrycnt = RT2661_TX_RETRYCNT(val);
    941 
    942 			DPRINTFN(10, ("data frame sent successfully after "
    943 			    "%d retries\n", retrycnt));
    944 			rn->amn.amn_txcnt++;
    945 			if (retrycnt > 0)
    946 				rn->amn.amn_retrycnt++;
    947 			ifp->if_opackets++;
    948 			break;
    949 
    950 		case RT2661_TX_RETRY_FAIL:
    951 			DPRINTFN(9, ("sending data frame failed (too much "
    952 			    "retries)\n"));
    953 			rn->amn.amn_txcnt++;
    954 			rn->amn.amn_retrycnt++;
    955 			ifp->if_oerrors++;
    956 			break;
    957 
    958 		default:
    959 			/* other failure */
    960 			aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
    961 			ifp->if_oerrors++;
    962 		}
    963 
    964 		ieee80211_free_node(data->ni);
    965 		data->ni = NULL;
    966 
    967 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
    968 
    969 		txq->queued--;
    970 		if (++txq->stat >= txq->count)	/* faster than % count */
    971 			txq->stat = 0;
    972 	}
    973 
    974 	sc->sc_tx_timer = 0;
    975 	ifp->if_flags &= ~IFF_OACTIVE;
    976 	rt2661_start(ifp);
    977 }
    978 
    979 static void
    980 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
    981 {
    982 	struct rt2661_tx_desc *desc;
    983 	struct rt2661_tx_data *data;
    984 
    985 	for (;;) {
    986 		desc = &txq->desc[txq->next];
    987 		data = &txq->data[txq->next];
    988 
    989 		bus_dmamap_sync(sc->sc_dmat, txq->map,
    990 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
    991 		    BUS_DMASYNC_POSTREAD);
    992 
    993 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
    994 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
    995 			break;
    996 
    997 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    998 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    999 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1000 		m_freem(data->m);
   1001 		data->m = NULL;
   1002 		/* node reference is released in rt2661_tx_intr() */
   1003 
   1004 		/* descriptor is no longer valid */
   1005 		desc->flags &= ~htole32(RT2661_TX_VALID);
   1006 
   1007 		bus_dmamap_sync(sc->sc_dmat, txq->map,
   1008 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1009 		    BUS_DMASYNC_PREWRITE);
   1010 
   1011 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
   1012 
   1013 		if (++txq->next >= txq->count)	/* faster than % count */
   1014 			txq->next = 0;
   1015 	}
   1016 }
   1017 
   1018 static void
   1019 rt2661_rx_intr(struct rt2661_softc *sc)
   1020 {
   1021 	struct ieee80211com *ic = &sc->sc_ic;
   1022 	struct ifnet *ifp = &sc->sc_if;
   1023 	struct rt2661_rx_desc *desc;
   1024 	struct rt2661_rx_data *data;
   1025 	struct ieee80211_frame *wh;
   1026 	struct ieee80211_node *ni;
   1027 	struct mbuf *mnew, *m;
   1028 	int error, rssi;
   1029 
   1030 	for (;;) {
   1031 		desc = &sc->rxq.desc[sc->rxq.cur];
   1032 		data = &sc->rxq.data[sc->rxq.cur];
   1033 
   1034 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1035 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
   1036 		    BUS_DMASYNC_POSTREAD);
   1037 
   1038 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
   1039 			break;
   1040 
   1041 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
   1042 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
   1043 			/*
   1044 			 * This should not happen since we did not request
   1045 			 * to receive those frames when we filled TXRX_CSR0.
   1046 			 */
   1047 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
   1048 			    le32toh(desc->flags)));
   1049 			ifp->if_ierrors++;
   1050 			goto skip;
   1051 		}
   1052 
   1053 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
   1054 			ifp->if_ierrors++;
   1055 			goto skip;
   1056 		}
   1057 
   1058 		/*
   1059 		 * Try to allocate a new mbuf for this ring element and load it
   1060 		 * before processing the current mbuf. If the ring element
   1061 		 * cannot be loaded, drop the received packet and reuse the old
   1062 		 * mbuf. In the unlikely case that the old mbuf can't be
   1063 		 * reloaded either, explicitly panic.
   1064 		 */
   1065 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1066 		if (mnew == NULL) {
   1067 			ifp->if_ierrors++;
   1068 			goto skip;
   1069 		}
   1070 
   1071 		MCLGET(mnew, M_DONTWAIT);
   1072 		if (!(mnew->m_flags & M_EXT)) {
   1073 			m_freem(mnew);
   1074 			ifp->if_ierrors++;
   1075 			goto skip;
   1076 		}
   1077 
   1078 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1079 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1080 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1081 
   1082 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1083 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
   1084 		if (error != 0) {
   1085 			m_freem(mnew);
   1086 
   1087 			/* try to reload the old mbuf */
   1088 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1089 			    mtod(data->m, void *), MCLBYTES, NULL,
   1090 			    BUS_DMA_NOWAIT);
   1091 			if (error != 0) {
   1092 				/* very unlikely that it will fail... */
   1093 				panic("%s: could not load old rx mbuf",
   1094 				    device_xname(sc->sc_dev));
   1095 			}
   1096 			/* physical address may have changed */
   1097 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1098 			ifp->if_ierrors++;
   1099 			goto skip;
   1100 		}
   1101 
   1102 		/*
   1103 	 	 * New mbuf successfully loaded, update Rx ring and continue
   1104 		 * processing.
   1105 		 */
   1106 		m = data->m;
   1107 		data->m = mnew;
   1108 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1109 
   1110 		/* finalize mbuf */
   1111 		m->m_pkthdr.rcvif = ifp;
   1112 		m->m_pkthdr.len = m->m_len =
   1113 		    (le32toh(desc->flags) >> 16) & 0xfff;
   1114 
   1115 		if (sc->sc_drvbpf != NULL) {
   1116 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
   1117 			uint32_t tsf_lo, tsf_hi;
   1118 
   1119 			/* get timestamp (low and high 32 bits) */
   1120 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
   1121 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
   1122 
   1123 			tap->wr_tsf =
   1124 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
   1125 			tap->wr_flags = 0;
   1126 			tap->wr_rate = rt2661_rxrate(desc);
   1127 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
   1128 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
   1129 			tap->wr_antsignal = desc->rssi;
   1130 
   1131 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1132 		}
   1133 
   1134 		wh = mtod(m, struct ieee80211_frame *);
   1135 		ni = ieee80211_find_rxnode(ic,
   1136 		    (struct ieee80211_frame_min *)wh);
   1137 
   1138 		/* send the frame to the 802.11 layer */
   1139 		ieee80211_input(ic, m, ni, desc->rssi, 0);
   1140 
   1141 		/*-
   1142 		 * Keep track of the average RSSI using an Exponential Moving
   1143 		 * Average (EMA) of 8 Wilder's days:
   1144 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
   1145 		 */
   1146 		rssi = rt2661_get_rssi(sc, desc->rssi);
   1147 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
   1148 
   1149 		/* node is no longer needed */
   1150 		ieee80211_free_node(ni);
   1151 
   1152 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
   1153 
   1154 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1155 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
   1156 		    BUS_DMASYNC_PREWRITE);
   1157 
   1158 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
   1159 
   1160 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
   1161 	}
   1162 
   1163 	/*
   1164 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
   1165 	 * without calling if_start().
   1166 	 */
   1167 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
   1168 		rt2661_start(ifp);
   1169 }
   1170 
   1171 /*
   1172  * This function is called in HostAP or IBSS modes when it's time to send a
   1173  * new beacon (every ni_intval milliseconds).
   1174  */
   1175 static void
   1176 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
   1177 {
   1178 	struct ieee80211com *ic = &sc->sc_ic;
   1179 
   1180 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
   1181 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
   1182 		sc->sc_flags |= RT2661_SET_SLOTTIME;
   1183 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
   1184 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
   1185 		rt2661_set_slottime(sc);
   1186 	}
   1187 
   1188 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1189 		/* update ERP Information Element */
   1190 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
   1191 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
   1192 	}
   1193 
   1194 	DPRINTFN(15, ("beacon expired\n"));
   1195 }
   1196 
   1197 static void
   1198 rt2661_mcu_wakeup(struct rt2661_softc *sc)
   1199 {
   1200 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
   1201 
   1202 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
   1203 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
   1204 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
   1205 
   1206 	/* send wakeup command to MCU */
   1207 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
   1208 }
   1209 
   1210 static void
   1211 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
   1212 {
   1213 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
   1214 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
   1215 }
   1216 
   1217 int
   1218 rt2661_intr(void *arg)
   1219 {
   1220 	struct rt2661_softc *sc = arg;
   1221 	struct ifnet *ifp = &sc->sc_if;
   1222 	uint32_t r1, r2;
   1223 	int rv = 0;
   1224 
   1225 	/* don't re-enable interrupts if we're shutting down */
   1226 	if (!(ifp->if_flags & IFF_RUNNING)) {
   1227 		/* disable MAC and MCU interrupts */
   1228 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
   1229 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
   1230 		return 0;
   1231 	}
   1232 
   1233 	for (;;) {
   1234 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
   1235 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
   1236 
   1237 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
   1238 		    (r2 & RT2661_MCU_INT_ALL) == 0)
   1239 			break;
   1240 
   1241 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
   1242 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
   1243 
   1244 		rv = 1;
   1245 
   1246 		if (r1 & RT2661_MGT_DONE)
   1247 			rt2661_tx_dma_intr(sc, &sc->mgtq);
   1248 
   1249 		if (r1 & RT2661_RX_DONE)
   1250 			rt2661_rx_intr(sc);
   1251 
   1252 		if (r1 & RT2661_TX0_DMA_DONE)
   1253 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
   1254 
   1255 		if (r1 & RT2661_TX1_DMA_DONE)
   1256 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
   1257 
   1258 		if (r1 & RT2661_TX2_DMA_DONE)
   1259 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
   1260 
   1261 		if (r1 & RT2661_TX3_DMA_DONE)
   1262 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
   1263 
   1264 		if (r1 & RT2661_TX_DONE)
   1265 			rt2661_tx_intr(sc);
   1266 
   1267 		if (r2 & RT2661_MCU_CMD_DONE)
   1268 			rt2661_mcu_cmd_intr(sc);
   1269 
   1270 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
   1271 			rt2661_mcu_beacon_expire(sc);
   1272 
   1273 		if (r2 & RT2661_MCU_WAKEUP)
   1274 			rt2661_mcu_wakeup(sc);
   1275 	}
   1276 
   1277 	return rv;
   1278 }
   1279 
   1280 /* quickly determine if a given rate is CCK or OFDM */
   1281 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1282 
   1283 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
   1284 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
   1285 
   1286 /*
   1287  * This function is only used by the Rx radiotap code. It returns the rate at
   1288  * which a given frame was received.
   1289  */
   1290 static uint8_t
   1291 rt2661_rxrate(struct rt2661_rx_desc *desc)
   1292 {
   1293 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
   1294 		/* reverse function of rt2661_plcp_signal */
   1295 		switch (desc->rate & 0xf) {
   1296 		case 0xb:	return 12;
   1297 		case 0xf:	return 18;
   1298 		case 0xa:	return 24;
   1299 		case 0xe:	return 36;
   1300 		case 0x9:	return 48;
   1301 		case 0xd:	return 72;
   1302 		case 0x8:	return 96;
   1303 		case 0xc:	return 108;
   1304 		}
   1305 	} else {
   1306 		if (desc->rate == 10)
   1307 			return 2;
   1308 		if (desc->rate == 20)
   1309 			return 4;
   1310 		if (desc->rate == 55)
   1311 			return 11;
   1312 		if (desc->rate == 110)
   1313 			return 22;
   1314 	}
   1315 	return 2;	/* should not get there */
   1316 }
   1317 
   1318 /*
   1319  * Return the expected ack rate for a frame transmitted at rate `rate'.
   1320  * XXX: this should depend on the destination node basic rate set.
   1321  */
   1322 static int
   1323 rt2661_ack_rate(struct ieee80211com *ic, int rate)
   1324 {
   1325 	switch (rate) {
   1326 	/* CCK rates */
   1327 	case 2:
   1328 		return 2;
   1329 	case 4:
   1330 	case 11:
   1331 	case 22:
   1332 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
   1333 
   1334 	/* OFDM rates */
   1335 	case 12:
   1336 	case 18:
   1337 		return 12;
   1338 	case 24:
   1339 	case 36:
   1340 		return 24;
   1341 	case 48:
   1342 	case 72:
   1343 	case 96:
   1344 	case 108:
   1345 		return 48;
   1346 	}
   1347 
   1348 	/* default to 1Mbps */
   1349 	return 2;
   1350 }
   1351 
   1352 /*
   1353  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
   1354  * The function automatically determines the operating mode depending on the
   1355  * given rate. `flags' indicates whether short preamble is in use or not.
   1356  */
   1357 static uint16_t
   1358 rt2661_txtime(int len, int rate, uint32_t flags)
   1359 {
   1360 	uint16_t txtime;
   1361 
   1362 	if (RAL_RATE_IS_OFDM(rate)) {
   1363 		/* IEEE Std 802.11g-2003, pp. 44 */
   1364 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
   1365 		txtime = 16 + 4 + 4 * txtime + 6;
   1366 	} else {
   1367 		/* IEEE Std 802.11b-1999, pp. 28 */
   1368 		txtime = (16 * len + rate - 1) / rate;
   1369 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
   1370 			txtime +=  72 + 24;
   1371 		else
   1372 			txtime += 144 + 48;
   1373 	}
   1374 	return txtime;
   1375 }
   1376 
   1377 static uint8_t
   1378 rt2661_plcp_signal(int rate)
   1379 {
   1380 	switch (rate) {
   1381 	/* CCK rates (returned values are device-dependent) */
   1382 	case 2:		return 0x0;
   1383 	case 4:		return 0x1;
   1384 	case 11:	return 0x2;
   1385 	case 22:	return 0x3;
   1386 
   1387 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1388 	case 12:	return 0xb;
   1389 	case 18:	return 0xf;
   1390 	case 24:	return 0xa;
   1391 	case 36:	return 0xe;
   1392 	case 48:	return 0x9;
   1393 	case 72:	return 0xd;
   1394 	case 96:	return 0x8;
   1395 	case 108:	return 0xc;
   1396 
   1397 	/* unsupported rates (should not get there) */
   1398 	default:	return 0xff;
   1399 	}
   1400 }
   1401 
   1402 static void
   1403 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
   1404     uint32_t flags, uint16_t xflags, int len, int rate,
   1405     const bus_dma_segment_t *segs, int nsegs, int ac)
   1406 {
   1407 	struct ieee80211com *ic = &sc->sc_ic;
   1408 	uint16_t plcp_length;
   1409 	int i, remainder;
   1410 
   1411 	desc->flags = htole32(flags);
   1412 	desc->flags |= htole32(len << 16);
   1413 
   1414 	desc->xflags = htole16(xflags);
   1415 	desc->xflags |= htole16(nsegs << 13);
   1416 
   1417 	desc->wme = htole16(
   1418 	    RT2661_QID(ac) |
   1419 	    RT2661_AIFSN(2) |
   1420 	    RT2661_LOGCWMIN(4) |
   1421 	    RT2661_LOGCWMAX(10));
   1422 
   1423 	/*
   1424 	 * Remember in which queue this frame was sent. This field is driver
   1425 	 * private data only. It will be made available by the NIC in STA_CSR4
   1426 	 * on Tx interrupts.
   1427 	 */
   1428 	desc->qid = ac;
   1429 
   1430 	/* setup PLCP fields */
   1431 	desc->plcp_signal  = rt2661_plcp_signal(rate);
   1432 	desc->plcp_service = 4;
   1433 
   1434 	len += IEEE80211_CRC_LEN;
   1435 	if (RAL_RATE_IS_OFDM(rate)) {
   1436 		desc->flags |= htole32(RT2661_TX_OFDM);
   1437 
   1438 		plcp_length = len & 0xfff;
   1439 		desc->plcp_length_hi = plcp_length >> 6;
   1440 		desc->plcp_length_lo = plcp_length & 0x3f;
   1441 	} else {
   1442 		plcp_length = (16 * len + rate - 1) / rate;
   1443 		if (rate == 22) {
   1444 			remainder = (16 * len) % 22;
   1445 			if (remainder != 0 && remainder < 7)
   1446 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
   1447 		}
   1448 		desc->plcp_length_hi = plcp_length >> 8;
   1449 		desc->plcp_length_lo = plcp_length & 0xff;
   1450 
   1451 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1452 			desc->plcp_signal |= 0x08;
   1453 	}
   1454 
   1455 	/* RT2x61 supports scatter with up to 5 segments */
   1456 	for (i = 0; i < nsegs; i++) {
   1457 		desc->addr[i] = htole32(segs[i].ds_addr);
   1458 		desc->len [i] = htole16(segs[i].ds_len);
   1459 	}
   1460 
   1461 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
   1462 }
   1463 
   1464 static int
   1465 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
   1466     struct ieee80211_node *ni)
   1467 {
   1468 	struct ieee80211com *ic = &sc->sc_ic;
   1469 	struct rt2661_tx_desc *desc;
   1470 	struct rt2661_tx_data *data;
   1471 	struct ieee80211_frame *wh;
   1472 	uint16_t dur;
   1473 	uint32_t flags = 0;
   1474 	int rate, error;
   1475 
   1476 	desc = &sc->mgtq.desc[sc->mgtq.cur];
   1477 	data = &sc->mgtq.data[sc->mgtq.cur];
   1478 
   1479 	/* send mgt frames at the lowest available rate */
   1480 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   1481 
   1482 	wh = mtod(m0, struct ieee80211_frame *);
   1483 
   1484 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1485 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
   1486 			m_freem(m0);
   1487 			return ENOBUFS;
   1488 		}
   1489 
   1490 		/* packet header may have moved, reset our local pointer */
   1491 		wh = mtod(m0, struct ieee80211_frame *);
   1492 	}
   1493 
   1494 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1495 	    BUS_DMA_NOWAIT);
   1496 	if (error != 0) {
   1497 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1498 		    error);
   1499 		m_freem(m0);
   1500 		return error;
   1501 	}
   1502 
   1503 	if (sc->sc_drvbpf != NULL) {
   1504 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
   1505 
   1506 		tap->wt_flags = 0;
   1507 		tap->wt_rate = rate;
   1508 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
   1509 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
   1510 
   1511 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1512 	}
   1513 
   1514 	data->m = m0;
   1515 	data->ni = ni;
   1516 
   1517 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1518 		flags |= RT2661_TX_NEED_ACK;
   1519 
   1520 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
   1521 		    sc->sifs;
   1522 		*(uint16_t *)wh->i_dur = htole16(dur);
   1523 
   1524 		/* tell hardware to set timestamp in probe responses */
   1525 		if ((wh->i_fc[0] &
   1526 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1527 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1528 			flags |= RT2661_TX_TIMESTAMP;
   1529 	}
   1530 
   1531 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
   1532 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
   1533 	    RT2661_QID_MGT);
   1534 
   1535 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1536 	    BUS_DMASYNC_PREWRITE);
   1537 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
   1538 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1539 	    BUS_DMASYNC_PREWRITE);
   1540 
   1541 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
   1542 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
   1543 
   1544 	/* kick mgt */
   1545 	sc->mgtq.queued++;
   1546 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
   1547 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
   1548 
   1549 	return 0;
   1550 }
   1551 
   1552 /*
   1553  * Build a RTS control frame.
   1554  */
   1555 static struct mbuf *
   1556 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
   1557     uint16_t dur)
   1558 {
   1559 	struct ieee80211_frame_rts *rts;
   1560 	struct mbuf *m;
   1561 
   1562 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1563 	if (m == NULL) {
   1564 		sc->sc_ic.ic_stats.is_tx_nobuf++;
   1565 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
   1566 		return NULL;
   1567 	}
   1568 
   1569 	rts = mtod(m, struct ieee80211_frame_rts *);
   1570 
   1571 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1572 	    IEEE80211_FC0_SUBTYPE_RTS;
   1573 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1574 	*(uint16_t *)rts->i_dur = htole16(dur);
   1575 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1576 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1577 
   1578 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
   1579 
   1580 	return m;
   1581 }
   1582 
   1583 static int
   1584 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
   1585     struct ieee80211_node *ni, int ac)
   1586 {
   1587 	struct ieee80211com *ic = &sc->sc_ic;
   1588 	struct rt2661_tx_ring *txq = &sc->txq[ac];
   1589 	struct rt2661_tx_desc *desc;
   1590 	struct rt2661_tx_data *data;
   1591 	struct ieee80211_frame *wh;
   1592 	struct ieee80211_key *k;
   1593 	struct mbuf *mnew;
   1594 	uint16_t dur;
   1595 	uint32_t flags = 0;
   1596 	int rate, useprot, error, tid;
   1597 
   1598 	wh = mtod(m0, struct ieee80211_frame *);
   1599 
   1600 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1601 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1602 		    rs_rates[ic->ic_fixed_rate];
   1603 	} else
   1604 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1605 	rate &= IEEE80211_RATE_VAL;
   1606 	if (rate == 0)
   1607 		rate = 2;	/* XXX should not happen */
   1608 
   1609 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1610 		k = ieee80211_crypto_encap(ic, ni, m0);
   1611 		if (k == NULL) {
   1612 			m_freem(m0);
   1613 			return ENOBUFS;
   1614 		}
   1615 
   1616 		/* packet header may have moved, reset our local pointer */
   1617 		wh = mtod(m0, struct ieee80211_frame *);
   1618 	}
   1619 
   1620 	/*
   1621 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
   1622 	 * chance to contend for the wireless medium.
   1623 	 */
   1624 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
   1625 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
   1626 		flags |= RT2661_TX_IFS_SIFS;
   1627 
   1628 	/*
   1629 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
   1630 	 * for directed frames only when the length of the MPDU is greater
   1631 	 * than the length threshold indicated by" ic_rtsthreshold.
   1632 	 *
   1633 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
   1634 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
   1635 	 * type Data or an MMPDU".
   1636 	 */
   1637 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
   1638 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
   1639 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
   1640 	if (useprot) {
   1641 		struct mbuf *m;
   1642 		int rtsrate, ackrate;
   1643 
   1644 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   1645 		ackrate = rt2661_ack_rate(ic, rate);
   1646 
   1647 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
   1648 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
   1649 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
   1650 		      3 * sc->sifs;
   1651 
   1652 		m = rt2661_get_rts(sc, wh, dur);
   1653 		if (m == NULL) {
   1654 			aprint_error_dev(sc->sc_dev, "could not allocate RTS "
   1655 			    "frame\n");
   1656 			m_freem(m0);
   1657 			return ENOBUFS;
   1658 		}
   1659 
   1660 		desc = &txq->desc[txq->cur];
   1661 		data = &txq->data[txq->cur];
   1662 
   1663 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   1664 		    BUS_DMA_NOWAIT);
   1665 		if (error != 0) {
   1666 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1667 			m_freem(m);
   1668 			m_freem(m0);
   1669 			return error;
   1670 		}
   1671 
   1672 		/* avoid multiple free() of the same node for each fragment */
   1673 		ieee80211_ref_node(ni);
   1674 
   1675 		data->m = m;
   1676 		data->ni = ni;
   1677 
   1678 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
   1679 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
   1680 		    data->map->dm_segs, data->map->dm_nsegs, ac);
   1681 
   1682 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1683 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1684 		bus_dmamap_sync(sc->sc_dmat, txq->map,
   1685 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1686 		    BUS_DMASYNC_PREWRITE);
   1687 
   1688 		txq->queued++;
   1689 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
   1690 
   1691 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
   1692 	}
   1693 
   1694 	data = &txq->data[txq->cur];
   1695 	desc = &txq->desc[txq->cur];
   1696 
   1697 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1698 	    BUS_DMA_NOWAIT);
   1699 	if (error != 0 && error != EFBIG) {
   1700 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1701 		    error);
   1702 		m_freem(m0);
   1703 		return error;
   1704 	}
   1705 	if (error != 0) {
   1706 		/* too many fragments, linearize */
   1707 
   1708 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1709 		if (mnew == NULL) {
   1710 			m_freem(m0);
   1711 			return ENOMEM;
   1712 		}
   1713 
   1714 		M_COPY_PKTHDR(mnew, m0);
   1715 		if (m0->m_pkthdr.len > MHLEN) {
   1716 			MCLGET(mnew, M_DONTWAIT);
   1717 			if (!(mnew->m_flags & M_EXT)) {
   1718 				m_freem(m0);
   1719 				m_freem(mnew);
   1720 				return ENOMEM;
   1721 			}
   1722 		}
   1723 
   1724 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1725 		m_freem(m0);
   1726 		mnew->m_len = mnew->m_pkthdr.len;
   1727 		m0 = mnew;
   1728 
   1729 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1730 		    BUS_DMA_NOWAIT);
   1731 		if (error != 0) {
   1732 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1733 			m_freem(m0);
   1734 			return error;
   1735 		}
   1736 
   1737 		/* packet header have moved, reset our local pointer */
   1738 		wh = mtod(m0, struct ieee80211_frame *);
   1739 	}
   1740 
   1741 	if (sc->sc_drvbpf != NULL) {
   1742 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
   1743 
   1744 		tap->wt_flags = 0;
   1745 		tap->wt_rate = rate;
   1746 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
   1747 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
   1748 
   1749 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1750 	}
   1751 
   1752 	data->m = m0;
   1753 	data->ni = ni;
   1754 
   1755 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1756 		flags |= RT2661_TX_NEED_ACK;
   1757 
   1758 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
   1759 		    ic->ic_flags) + sc->sifs;
   1760 		*(uint16_t *)wh->i_dur = htole16(dur);
   1761 	}
   1762 
   1763 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
   1764 	    data->map->dm_segs, data->map->dm_nsegs, ac);
   1765 
   1766 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1767 	    BUS_DMASYNC_PREWRITE);
   1768 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
   1769 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1770 
   1771 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
   1772 	    m0->m_pkthdr.len, txq->cur, rate));
   1773 
   1774 	/* kick Tx */
   1775 	txq->queued++;
   1776 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
   1777 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
   1778 
   1779 	return 0;
   1780 }
   1781 
   1782 static void
   1783 rt2661_start(struct ifnet *ifp)
   1784 {
   1785 	struct rt2661_softc *sc = ifp->if_softc;
   1786 	struct ieee80211com *ic = &sc->sc_ic;
   1787 	struct mbuf *m0;
   1788 	struct ether_header *eh;
   1789 	struct ieee80211_node *ni = NULL;
   1790 
   1791 	/*
   1792 	 * net80211 may still try to send management frames even if the
   1793 	 * IFF_RUNNING flag is not set...
   1794 	 */
   1795 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1796 		return;
   1797 
   1798 	for (;;) {
   1799 		IF_POLL(&ic->ic_mgtq, m0);
   1800 		if (m0 != NULL) {
   1801 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
   1802 				ifp->if_flags |= IFF_OACTIVE;
   1803 				break;
   1804 			}
   1805 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1806 			if (m0 == NULL)
   1807 				break;
   1808 
   1809 			ni = M_GETCTX(m0, struct ieee80211_node *);
   1810 			M_CLEARCTX(m0);
   1811 			bpf_mtap3(ic->ic_rawbpf, m0);
   1812 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
   1813 				break;
   1814 
   1815 		} else {
   1816 			IF_POLL(&ifp->if_snd, m0);
   1817 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
   1818 				break;
   1819 
   1820 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
   1821 				/* there is no place left in this ring */
   1822 				ifp->if_flags |= IFF_OACTIVE;
   1823 				break;
   1824 			}
   1825 
   1826 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1827 
   1828 			if (m0->m_len < sizeof (struct ether_header) &&
   1829 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
   1830 				continue;
   1831 
   1832 			eh = mtod(m0, struct ether_header *);
   1833 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1834 			if (ni == NULL) {
   1835 				m_freem(m0);
   1836 				ifp->if_oerrors++;
   1837 				continue;
   1838 			}
   1839 
   1840 			bpf_mtap3(ifp->if_bpf, m0);
   1841 			m0 = ieee80211_encap(ic, m0, ni);
   1842 			if (m0 == NULL) {
   1843 				ieee80211_free_node(ni);
   1844 				ifp->if_oerrors++;
   1845 				continue;
   1846 			}
   1847 			bpf_mtap3(ic->ic_rawbpf, m0);
   1848 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
   1849 				if (ni != NULL)
   1850 					ieee80211_free_node(ni);
   1851 				ifp->if_oerrors++;
   1852 				break;
   1853 			}
   1854 		}
   1855 
   1856 		sc->sc_tx_timer = 5;
   1857 		ifp->if_timer = 1;
   1858 	}
   1859 }
   1860 
   1861 static void
   1862 rt2661_watchdog(struct ifnet *ifp)
   1863 {
   1864 	struct rt2661_softc *sc = ifp->if_softc;
   1865 
   1866 	ifp->if_timer = 0;
   1867 
   1868 	if (sc->sc_tx_timer > 0) {
   1869 		if (--sc->sc_tx_timer == 0) {
   1870 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   1871 			rt2661_init(ifp);
   1872 			ifp->if_oerrors++;
   1873 			return;
   1874 		}
   1875 		ifp->if_timer = 1;
   1876 	}
   1877 
   1878 	ieee80211_watchdog(&sc->sc_ic);
   1879 }
   1880 
   1881 /*
   1882  * This function allows for fast channel switching in monitor mode (used by
   1883  * kismet). In IBSS mode, we must explicitly reset the interface to
   1884  * generate a new beacon frame.
   1885  */
   1886 static int
   1887 rt2661_reset(struct ifnet *ifp)
   1888 {
   1889 	struct rt2661_softc *sc = ifp->if_softc;
   1890 	struct ieee80211com *ic = &sc->sc_ic;
   1891 
   1892 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1893 		return ENETRESET;
   1894 
   1895 	rt2661_set_chan(sc, ic->ic_curchan);
   1896 
   1897 	return 0;
   1898 }
   1899 
   1900 static int
   1901 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1902 {
   1903 	struct rt2661_softc *sc = ifp->if_softc;
   1904 	struct ieee80211com *ic = &sc->sc_ic;
   1905 	int s, error = 0;
   1906 
   1907 	s = splnet();
   1908 
   1909 	switch (cmd) {
   1910 	case SIOCSIFFLAGS:
   1911 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1912 			break;
   1913 		if (ifp->if_flags & IFF_UP) {
   1914 			if (ifp->if_flags & IFF_RUNNING)
   1915 				rt2661_update_promisc(sc);
   1916 			else
   1917 				rt2661_init(ifp);
   1918 		} else {
   1919 			if (ifp->if_flags & IFF_RUNNING)
   1920 				rt2661_stop(ifp, 1);
   1921 		}
   1922 		break;
   1923 
   1924 	case SIOCADDMULTI:
   1925 	case SIOCDELMULTI:
   1926 		/* XXX no h/w multicast filter? --dyoung */
   1927 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
   1928 			error = 0;
   1929 		break;
   1930 
   1931 	case SIOCS80211CHANNEL:
   1932 		/*
   1933 		 * This allows for fast channel switching in monitor mode
   1934 		 * (used by kismet). In IBSS mode, we must explicitly reset
   1935 		 * the interface to generate a new beacon frame.
   1936 		 */
   1937 		error = ieee80211_ioctl(ic, cmd, data);
   1938 		if (error == ENETRESET &&
   1939 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
   1940 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1941 			     (IFF_UP | IFF_RUNNING))
   1942 				rt2661_set_chan(sc, ic->ic_ibss_chan);
   1943 			error = 0;
   1944 		}
   1945 		break;
   1946 
   1947 	default:
   1948 		error = ieee80211_ioctl(ic, cmd, data);
   1949 
   1950 	}
   1951 
   1952 	if (error == ENETRESET) {
   1953 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1954 		    (IFF_UP | IFF_RUNNING))
   1955 			rt2661_init(ifp);
   1956 		error = 0;
   1957 	}
   1958 
   1959 	splx(s);
   1960 
   1961 	return error;
   1962 }
   1963 
   1964 static void
   1965 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
   1966 {
   1967 	uint32_t tmp;
   1968 	int ntries;
   1969 
   1970 	for (ntries = 0; ntries < 100; ntries++) {
   1971 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
   1972 			break;
   1973 		DELAY(1);
   1974 	}
   1975 	if (ntries == 100) {
   1976 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
   1977 		return;
   1978 	}
   1979 
   1980 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
   1981 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
   1982 
   1983 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
   1984 }
   1985 
   1986 static uint8_t
   1987 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
   1988 {
   1989 	uint32_t val;
   1990 	int ntries;
   1991 
   1992 	for (ntries = 0; ntries < 100; ntries++) {
   1993 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
   1994 			break;
   1995 		DELAY(1);
   1996 	}
   1997 	if (ntries == 100) {
   1998 		aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
   1999 		return 0;
   2000 	}
   2001 
   2002 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
   2003 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
   2004 
   2005 	for (ntries = 0; ntries < 100; ntries++) {
   2006 		val = RAL_READ(sc, RT2661_PHY_CSR3);
   2007 		if (!(val & RT2661_BBP_BUSY))
   2008 			return val & 0xff;
   2009 		DELAY(1);
   2010 	}
   2011 
   2012 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
   2013 	return 0;
   2014 }
   2015 
   2016 static void
   2017 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
   2018 {
   2019 	uint32_t tmp;
   2020 	int ntries;
   2021 
   2022 	for (ntries = 0; ntries < 100; ntries++) {
   2023 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
   2024 			break;
   2025 		DELAY(1);
   2026 	}
   2027 	if (ntries == 100) {
   2028 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
   2029 		return;
   2030 	}
   2031 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
   2032 	    (reg & 3);
   2033 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
   2034 
   2035 	/* remember last written value in sc */
   2036 	sc->rf_regs[reg] = val;
   2037 
   2038 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
   2039 }
   2040 
   2041 static int
   2042 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
   2043 {
   2044 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
   2045 		return EIO;	/* there is already a command pending */
   2046 
   2047 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
   2048 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
   2049 
   2050 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
   2051 
   2052 	return 0;
   2053 }
   2054 
   2055 static void
   2056 rt2661_select_antenna(struct rt2661_softc *sc)
   2057 {
   2058 	uint8_t bbp4, bbp77;
   2059 	uint32_t tmp;
   2060 
   2061 	bbp4  = rt2661_bbp_read(sc,  4);
   2062 	bbp77 = rt2661_bbp_read(sc, 77);
   2063 
   2064 	/* TBD */
   2065 
   2066 	/* make sure Rx is disabled before switching antenna */
   2067 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2068 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
   2069 
   2070 	rt2661_bbp_write(sc,  4, bbp4);
   2071 	rt2661_bbp_write(sc, 77, bbp77);
   2072 
   2073 	/* restore Rx filter */
   2074 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2075 }
   2076 
   2077 /*
   2078  * Enable multi-rate retries for frames sent at OFDM rates.
   2079  * In 802.11b/g mode, allow fallback to CCK rates.
   2080  */
   2081 static void
   2082 rt2661_enable_mrr(struct rt2661_softc *sc)
   2083 {
   2084 	struct ieee80211com *ic = &sc->sc_ic;
   2085 	uint32_t tmp;
   2086 
   2087 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
   2088 
   2089 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
   2090 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
   2091 		tmp |= RT2661_MRR_CCK_FALLBACK;
   2092 	tmp |= RT2661_MRR_ENABLED;
   2093 
   2094 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
   2095 }
   2096 
   2097 static void
   2098 rt2661_set_txpreamble(struct rt2661_softc *sc)
   2099 {
   2100 	uint32_t tmp;
   2101 
   2102 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
   2103 
   2104 	tmp &= ~RT2661_SHORT_PREAMBLE;
   2105 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   2106 		tmp |= RT2661_SHORT_PREAMBLE;
   2107 
   2108 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
   2109 }
   2110 
   2111 static void
   2112 rt2661_set_basicrates(struct rt2661_softc *sc,
   2113     const struct ieee80211_rateset *rs)
   2114 {
   2115 #define RV(r)	((r) & IEEE80211_RATE_VAL)
   2116 	uint32_t mask = 0;
   2117 	uint8_t rate;
   2118 	int i, j;
   2119 
   2120 	for (i = 0; i < rs->rs_nrates; i++) {
   2121 		rate = rs->rs_rates[i];
   2122 
   2123 		if (!(rate & IEEE80211_RATE_BASIC))
   2124 			continue;
   2125 
   2126 		/*
   2127 		 * Find h/w rate index.  We know it exists because the rate
   2128 		 * set has already been negotiated.
   2129 		 */
   2130 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
   2131 
   2132 		mask |= 1 << j;
   2133 	}
   2134 
   2135 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
   2136 
   2137 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
   2138 #undef RV
   2139 }
   2140 
   2141 /*
   2142  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   2143  * driver.
   2144  */
   2145 static void
   2146 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
   2147 {
   2148 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   2149 	uint32_t tmp;
   2150 
   2151 	/* update all BBP registers that depend on the band */
   2152 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   2153 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   2154 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2155 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   2156 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   2157 	}
   2158 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   2159 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   2160 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   2161 	}
   2162 
   2163 	sc->bbp17 = bbp17;
   2164 	rt2661_bbp_write(sc,  17, bbp17);
   2165 	rt2661_bbp_write(sc,  96, bbp96);
   2166 	rt2661_bbp_write(sc, 104, bbp104);
   2167 
   2168 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   2169 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   2170 		rt2661_bbp_write(sc, 75, 0x80);
   2171 		rt2661_bbp_write(sc, 86, 0x80);
   2172 		rt2661_bbp_write(sc, 88, 0x80);
   2173 	}
   2174 
   2175 	rt2661_bbp_write(sc, 35, bbp35);
   2176 	rt2661_bbp_write(sc, 97, bbp97);
   2177 	rt2661_bbp_write(sc, 98, bbp98);
   2178 
   2179 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
   2180 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
   2181 	if (IEEE80211_IS_CHAN_2GHZ(c))
   2182 		tmp |= RT2661_PA_PE_2GHZ;
   2183 	else
   2184 		tmp |= RT2661_PA_PE_5GHZ;
   2185 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
   2186 
   2187 	/* 802.11a uses a 16 microseconds short interframe space */
   2188 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   2189 }
   2190 
   2191 static void
   2192 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
   2193 {
   2194 	struct ieee80211com *ic = &sc->sc_ic;
   2195 	const struct rfprog *rfprog;
   2196 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
   2197 	int8_t power;
   2198 	u_int i, chan;
   2199 
   2200 	chan = ieee80211_chan2ieee(ic, c);
   2201 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   2202 		return;
   2203 
   2204 	/* select the appropriate RF settings based on what EEPROM says */
   2205 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
   2206 
   2207 	/* find the settings for this channel (we know it exists) */
   2208 	for (i = 0; rfprog[i].chan != chan; i++);
   2209 
   2210 	power = sc->txpow[i];
   2211 	if (power < 0) {
   2212 		bbp94 += power;
   2213 		power = 0;
   2214 	} else if (power > 31) {
   2215 		bbp94 += power - 31;
   2216 		power = 31;
   2217 	}
   2218 
   2219 	/*
   2220 	 * If we've yet to select a channel, or we are switching from the
   2221 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
   2222 	 * be reprogrammed.
   2223 	 */
   2224 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
   2225 		rt2661_select_band(sc, c);
   2226 		rt2661_select_antenna(sc);
   2227 	}
   2228 	sc->sc_curchan = c;
   2229 
   2230 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
   2231 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
   2232 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
   2233 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
   2234 
   2235 	DELAY(200);
   2236 
   2237 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
   2238 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
   2239 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
   2240 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
   2241 
   2242 	DELAY(200);
   2243 
   2244 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
   2245 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
   2246 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
   2247 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
   2248 
   2249 	/* enable smart mode for MIMO-capable RFs */
   2250 	bbp3 = rt2661_bbp_read(sc, 3);
   2251 
   2252 	bbp3 &= ~RT2661_SMART_MODE;
   2253 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
   2254 		bbp3 |= RT2661_SMART_MODE;
   2255 
   2256 	rt2661_bbp_write(sc, 3, bbp3);
   2257 
   2258 	if (bbp94 != RT2661_BBPR94_DEFAULT)
   2259 		rt2661_bbp_write(sc, 94, bbp94);
   2260 
   2261 	/* 5GHz radio needs a 1ms delay here */
   2262 	if (IEEE80211_IS_CHAN_5GHZ(c))
   2263 		DELAY(1000);
   2264 }
   2265 
   2266 static void
   2267 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
   2268 {
   2269 	uint32_t tmp;
   2270 
   2271 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   2272 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
   2273 
   2274 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
   2275 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
   2276 }
   2277 
   2278 static void
   2279 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
   2280 {
   2281 	uint32_t tmp;
   2282 
   2283 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   2284 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
   2285 
   2286 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   2287 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
   2288 }
   2289 
   2290 static void
   2291 rt2661_update_promisc(struct rt2661_softc *sc)
   2292 {
   2293 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2294 	uint32_t tmp;
   2295 
   2296 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2297 
   2298 	tmp &= ~RT2661_DROP_NOT_TO_ME;
   2299 	if (!(ifp->if_flags & IFF_PROMISC))
   2300 		tmp |= RT2661_DROP_NOT_TO_ME;
   2301 
   2302 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2303 
   2304 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   2305 	    "entering" : "leaving"));
   2306 }
   2307 
   2308 #if 0
   2309 /*
   2310  * Update QoS (802.11e) settings for each h/w Tx ring.
   2311  */
   2312 static int
   2313 rt2661_wme_update(struct ieee80211com *ic)
   2314 {
   2315 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
   2316 	const struct wmeParams *wmep;
   2317 
   2318 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
   2319 
   2320 	/* XXX: not sure about shifts. */
   2321 	/* XXX: the reference driver plays with AC_VI settings too. */
   2322 
   2323 	/* update TxOp */
   2324 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
   2325 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
   2326 	    wmep[WME_AC_BK].wmep_txopLimit);
   2327 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
   2328 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
   2329 	    wmep[WME_AC_VO].wmep_txopLimit);
   2330 
   2331 	/* update CWmin */
   2332 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
   2333 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
   2334 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
   2335 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
   2336 	    wmep[WME_AC_VO].wmep_logcwmin);
   2337 
   2338 	/* update CWmax */
   2339 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
   2340 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
   2341 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
   2342 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
   2343 	    wmep[WME_AC_VO].wmep_logcwmax);
   2344 
   2345 	/* update Aifsn */
   2346 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
   2347 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
   2348 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
   2349 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
   2350 	    wmep[WME_AC_VO].wmep_aifsn);
   2351 
   2352 	return 0;
   2353 }
   2354 #endif
   2355 
   2356 static void
   2357 rt2661_updateslot(struct ifnet *ifp)
   2358 {
   2359 	struct rt2661_softc *sc = ifp->if_softc;
   2360 	struct ieee80211com *ic = &sc->sc_ic;
   2361 
   2362 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2363 		/*
   2364 		 * In HostAP mode, we defer setting of new slot time until
   2365 		 * updated ERP Information Element has propagated to all
   2366 		 * associated STAs.
   2367 		 */
   2368 		sc->sc_flags |= RT2661_UPDATE_SLOT;
   2369 	} else
   2370 		rt2661_set_slottime(sc);
   2371 }
   2372 
   2373 static void
   2374 rt2661_set_slottime(struct rt2661_softc *sc)
   2375 {
   2376 	struct ieee80211com *ic = &sc->sc_ic;
   2377 	uint8_t slottime;
   2378 	uint32_t tmp;
   2379 
   2380 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   2381 
   2382 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
   2383 	tmp = (tmp & ~0xff) | slottime;
   2384 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
   2385 
   2386 	DPRINTF(("setting slot time to %uus\n", slottime));
   2387 }
   2388 
   2389 static const char *
   2390 rt2661_get_rf(int rev)
   2391 {
   2392 	switch (rev) {
   2393 	case RT2661_RF_5225:	return "RT5225";
   2394 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
   2395 	case RT2661_RF_2527:	return "RT2527";
   2396 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
   2397 	default:		return "unknown";
   2398 	}
   2399 }
   2400 
   2401 static void
   2402 rt2661_read_eeprom(struct rt2661_softc *sc)
   2403 {
   2404 	struct ieee80211com *ic = &sc->sc_ic;
   2405 	uint16_t val;
   2406 	int i;
   2407 
   2408 	/* read MAC address */
   2409 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
   2410 	ic->ic_myaddr[0] = val & 0xff;
   2411 	ic->ic_myaddr[1] = val >> 8;
   2412 
   2413 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
   2414 	ic->ic_myaddr[2] = val & 0xff;
   2415 	ic->ic_myaddr[3] = val >> 8;
   2416 
   2417 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
   2418 	ic->ic_myaddr[4] = val & 0xff;
   2419 	ic->ic_myaddr[5] = val >> 8;
   2420 
   2421 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
   2422 	/* XXX: test if different from 0xffff? */
   2423 	sc->rf_rev   = (val >> 11) & 0x1f;
   2424 	sc->hw_radio = (val >> 10) & 0x1;
   2425 	sc->rx_ant   = (val >> 4)  & 0x3;
   2426 	sc->tx_ant   = (val >> 2)  & 0x3;
   2427 	sc->nb_ant   = val & 0x3;
   2428 
   2429 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   2430 
   2431 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
   2432 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   2433 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   2434 
   2435 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   2436 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   2437 
   2438 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
   2439 	if ((val & 0xff) != 0xff)
   2440 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   2441 
   2442 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
   2443 	if ((val & 0xff) != 0xff)
   2444 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   2445 
   2446 	/* adjust RSSI correction for external low-noise amplifier */
   2447 	if (sc->ext_2ghz_lna)
   2448 		sc->rssi_2ghz_corr -= 14;
   2449 	if (sc->ext_5ghz_lna)
   2450 		sc->rssi_5ghz_corr -= 14;
   2451 
   2452 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   2453 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   2454 
   2455 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
   2456 	if ((val >> 8) != 0xff)
   2457 		sc->rfprog = (val >> 8) & 0x3;
   2458 	if ((val & 0xff) != 0xff)
   2459 		sc->rffreq = val & 0xff;
   2460 
   2461 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
   2462 
   2463 	/* read Tx power for all a/b/g channels */
   2464 	for (i = 0; i < 19; i++) {
   2465 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
   2466 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
   2467 		DPRINTF(("Channel=%d Tx power=%d\n",
   2468 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
   2469 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
   2470 		DPRINTF(("Channel=%d Tx power=%d\n",
   2471 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
   2472 	}
   2473 
   2474 	/* read vendor-specific BBP values */
   2475 	for (i = 0; i < 16; i++) {
   2476 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
   2477 		if (val == 0 || val == 0xffff)
   2478 			continue;	/* skip invalid entries */
   2479 		sc->bbp_prom[i].reg = val >> 8;
   2480 		sc->bbp_prom[i].val = val & 0xff;
   2481 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   2482 		    sc->bbp_prom[i].val));
   2483 	}
   2484 }
   2485 
   2486 static int
   2487 rt2661_bbp_init(struct rt2661_softc *sc)
   2488 {
   2489 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2490 	int i, ntries;
   2491 	uint8_t val;
   2492 
   2493 	/* wait for BBP to be ready */
   2494 	for (ntries = 0; ntries < 100; ntries++) {
   2495 		val = rt2661_bbp_read(sc, 0);
   2496 		if (val != 0 && val != 0xff)
   2497 			break;
   2498 		DELAY(100);
   2499 	}
   2500 	if (ntries == 100) {
   2501 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
   2502 		return EIO;
   2503 	}
   2504 
   2505 	/* initialize BBP registers to default values */
   2506 	for (i = 0; i < N(rt2661_def_bbp); i++) {
   2507 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
   2508 		    rt2661_def_bbp[i].val);
   2509 	}
   2510 
   2511 	/* write vendor-specific BBP values (from EEPROM) */
   2512 	for (i = 0; i < 16; i++) {
   2513 		if (sc->bbp_prom[i].reg == 0)
   2514 			continue;
   2515 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   2516 	}
   2517 
   2518 	return 0;
   2519 #undef N
   2520 }
   2521 
   2522 static int
   2523 rt2661_init(struct ifnet *ifp)
   2524 {
   2525 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2526 	struct rt2661_softc *sc = ifp->if_softc;
   2527 	struct ieee80211com *ic = &sc->sc_ic;
   2528 	const char *name = NULL;	/* make lint happy */
   2529 	uint8_t *ucode;
   2530 	size_t size;
   2531 	uint32_t tmp, star[3];
   2532 	int i, ntries;
   2533 	firmware_handle_t fh;
   2534 
   2535 	/* for CardBus, power on the socket */
   2536 	if (!(sc->sc_flags & RT2661_ENABLED)) {
   2537 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
   2538 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
   2539 			return EIO;
   2540 		}
   2541 		sc->sc_flags |= RT2661_ENABLED;
   2542 	}
   2543 
   2544 	rt2661_stop(ifp, 0);
   2545 
   2546 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
   2547 		switch (sc->sc_id) {
   2548 		case PCI_PRODUCT_RALINK_RT2561:
   2549 			name = "ral-rt2561";
   2550 			break;
   2551 		case PCI_PRODUCT_RALINK_RT2561S:
   2552 			name = "ral-rt2561s";
   2553 			break;
   2554 		case PCI_PRODUCT_RALINK_RT2661:
   2555 			name = "ral-rt2661";
   2556 			break;
   2557 		}
   2558 
   2559 		if (firmware_open("ral", name, &fh) != 0) {
   2560 			aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
   2561 			rt2661_stop(ifp, 1);
   2562 			return EIO;
   2563 		}
   2564 
   2565 		size = firmware_get_size(fh);
   2566 		if (!(ucode = firmware_malloc(size))) {
   2567 			aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
   2568 			firmware_close(fh);
   2569 			rt2661_stop(ifp, 1);
   2570 			return ENOMEM;
   2571 		}
   2572 
   2573 		if (firmware_read(fh, 0, ucode, size) != 0) {
   2574 			aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
   2575 			firmware_free(ucode, size);
   2576 			firmware_close(fh);
   2577 			rt2661_stop(ifp, 1);
   2578 			return EIO;
   2579 		}
   2580 
   2581 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
   2582 			aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
   2583 			firmware_free(ucode, size);
   2584 			firmware_close(fh);
   2585 			rt2661_stop(ifp, 1);
   2586 			return EIO;
   2587 		}
   2588 
   2589 		firmware_free(ucode, size);
   2590 		firmware_close(fh);
   2591 		sc->sc_flags |= RT2661_FWLOADED;
   2592 	}
   2593 
   2594 	/* initialize Tx rings */
   2595 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
   2596 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
   2597 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
   2598 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
   2599 
   2600 	/* initialize Mgt ring */
   2601 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
   2602 
   2603 	/* initialize Rx ring */
   2604 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
   2605 
   2606 	/* initialize Tx rings sizes */
   2607 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
   2608 	    RT2661_TX_RING_COUNT << 24 |
   2609 	    RT2661_TX_RING_COUNT << 16 |
   2610 	    RT2661_TX_RING_COUNT <<  8 |
   2611 	    RT2661_TX_RING_COUNT);
   2612 
   2613 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
   2614 	    RT2661_TX_DESC_WSIZE << 16 |
   2615 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
   2616 	    RT2661_MGT_RING_COUNT);
   2617 
   2618 	/* initialize Rx rings */
   2619 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
   2620 	    RT2661_RX_DESC_BACK  << 16 |
   2621 	    RT2661_RX_DESC_WSIZE <<  8 |
   2622 	    RT2661_RX_RING_COUNT);
   2623 
   2624 	/* XXX: some magic here */
   2625 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
   2626 
   2627 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
   2628 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
   2629 
   2630 	/* load base address of Rx ring */
   2631 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
   2632 
   2633 	/* initialize MAC registers to default values */
   2634 	for (i = 0; i < N(rt2661_def_mac); i++)
   2635 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
   2636 
   2637 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2638 	rt2661_set_macaddr(sc, ic->ic_myaddr);
   2639 
   2640 	/* set host ready */
   2641 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
   2642 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
   2643 
   2644 	/* wait for BBP/RF to wakeup */
   2645 	for (ntries = 0; ntries < 1000; ntries++) {
   2646 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
   2647 			break;
   2648 		DELAY(1000);
   2649 	}
   2650 	if (ntries == 1000) {
   2651 		printf("timeout waiting for BBP/RF to wakeup\n");
   2652 		rt2661_stop(ifp, 1);
   2653 		return EIO;
   2654 	}
   2655 
   2656 	if (rt2661_bbp_init(sc) != 0) {
   2657 		rt2661_stop(ifp, 1);
   2658 		return EIO;
   2659 	}
   2660 
   2661 	/* select default channel */
   2662 	sc->sc_curchan = ic->ic_curchan;
   2663 	rt2661_select_band(sc, sc->sc_curchan);
   2664 	rt2661_select_antenna(sc);
   2665 	rt2661_set_chan(sc, sc->sc_curchan);
   2666 
   2667 	/* update Rx filter */
   2668 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
   2669 
   2670 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
   2671 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2672 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
   2673 		       RT2661_DROP_ACKCTS;
   2674 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2675 			tmp |= RT2661_DROP_TODS;
   2676 		if (!(ifp->if_flags & IFF_PROMISC))
   2677 			tmp |= RT2661_DROP_NOT_TO_ME;
   2678 	}
   2679 
   2680 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2681 
   2682 	/* clear STA registers */
   2683 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
   2684 
   2685 	/* initialize ASIC */
   2686 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
   2687 
   2688 	/* clear any pending interrupt */
   2689 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
   2690 
   2691 	/* enable interrupts */
   2692 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
   2693 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
   2694 
   2695 	/* kick Rx */
   2696 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
   2697 
   2698 	ifp->if_flags &= ~IFF_OACTIVE;
   2699 	ifp->if_flags |= IFF_RUNNING;
   2700 
   2701 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2702 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   2703 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2704 	} else
   2705 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2706 
   2707 	return 0;
   2708 #undef N
   2709 }
   2710 
   2711 static void
   2712 rt2661_stop(struct ifnet *ifp, int disable)
   2713 {
   2714 	struct rt2661_softc *sc = ifp->if_softc;
   2715 	struct ieee80211com *ic = &sc->sc_ic;
   2716 	uint32_t tmp;
   2717 
   2718 	sc->sc_tx_timer = 0;
   2719 	ifp->if_timer = 0;
   2720 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2721 
   2722 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2723 
   2724 	/* abort Tx (for all 5 Tx rings) */
   2725 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
   2726 
   2727 	/* disable Rx (value remains after reset!) */
   2728 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2729 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
   2730 
   2731 	/* reset ASIC */
   2732 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
   2733 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
   2734 
   2735 	/* disable interrupts */
   2736 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
   2737 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
   2738 
   2739 	/* clear any pending interrupt */
   2740 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
   2741 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
   2742 
   2743 	/* reset Tx and Rx rings */
   2744 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
   2745 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
   2746 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
   2747 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
   2748 	rt2661_reset_tx_ring(sc, &sc->mgtq);
   2749 	rt2661_reset_rx_ring(sc, &sc->rxq);
   2750 
   2751 	/* for CardBus, power down the socket */
   2752 	if (disable && sc->sc_disable != NULL) {
   2753 		if (sc->sc_flags & RT2661_ENABLED) {
   2754 			(*sc->sc_disable)(sc);
   2755 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
   2756 		}
   2757 	}
   2758 }
   2759 
   2760 static int
   2761 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
   2762 {
   2763 	int ntries;
   2764 
   2765 	/* reset 8051 */
   2766 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
   2767 
   2768 	/* cancel any pending Host to MCU command */
   2769 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
   2770 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
   2771 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
   2772 
   2773 	/* write 8051's microcode */
   2774 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
   2775 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
   2776 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
   2777 
   2778 	/* kick 8051's ass */
   2779 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
   2780 
   2781 	/* wait for 8051 to initialize */
   2782 	for (ntries = 0; ntries < 500; ntries++) {
   2783 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
   2784 			break;
   2785 		DELAY(100);
   2786 	}
   2787 	if (ntries == 500) {
   2788 		printf("timeout waiting for MCU to initialize\n");
   2789 		return EIO;
   2790 	}
   2791 	return 0;
   2792 }
   2793 
   2794 /*
   2795  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
   2796  * false CCA count.  This function is called periodically (every seconds) when
   2797  * in the RUN state.  Values taken from the reference driver.
   2798  */
   2799 static void
   2800 rt2661_rx_tune(struct rt2661_softc *sc)
   2801 {
   2802 	uint8_t bbp17;
   2803 	uint16_t cca;
   2804 	int lo, hi, dbm;
   2805 
   2806 	/*
   2807 	 * Tuning range depends on operating band and on the presence of an
   2808 	 * external low-noise amplifier.
   2809 	 */
   2810 	lo = 0x20;
   2811 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
   2812 		lo += 0x08;
   2813 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
   2814 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
   2815 		lo += 0x10;
   2816 	hi = lo + 0x20;
   2817 
   2818 	dbm = sc->avg_rssi;
   2819 	/* retrieve false CCA count since last call (clear on read) */
   2820 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
   2821 
   2822 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
   2823 
   2824 	if (dbm < -74) {
   2825 		/* very bad RSSI, tune using false CCA count */
   2826 		bbp17 = sc->bbp17; /* current value */
   2827 
   2828 		hi -= 2 * (-74 - dbm);
   2829 		if (hi < lo)
   2830 			hi = lo;
   2831 
   2832 		if (bbp17 > hi)
   2833 			bbp17 = hi;
   2834 		else if (cca > 512)
   2835 			bbp17 = min(bbp17 + 1, hi);
   2836 		else if (cca < 100)
   2837 			bbp17 = max(bbp17 - 1, lo);
   2838 
   2839 	} else if (dbm < -66) {
   2840 		bbp17 = lo + 0x08;
   2841 	} else if (dbm < -58) {
   2842 		bbp17 = lo + 0x10;
   2843 	} else if (dbm < -35) {
   2844 		bbp17 = hi;
   2845 	} else {	/* very good RSSI >= -35dBm */
   2846 		bbp17 = 0x60;	/* very low sensitivity */
   2847 	}
   2848 
   2849 	if (bbp17 != sc->bbp17) {
   2850 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
   2851 		rt2661_bbp_write(sc, 17, bbp17);
   2852 		sc->bbp17 = bbp17;
   2853 	}
   2854 }
   2855 
   2856 #ifdef notyet
   2857 /*
   2858  * Enter/Leave radar detection mode.
   2859  * This is for 802.11h additional regulatory domains.
   2860  */
   2861 static void
   2862 rt2661_radar_start(struct rt2661_softc *sc)
   2863 {
   2864 	uint32_t tmp;
   2865 
   2866 	/* disable Rx */
   2867 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2868 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
   2869 
   2870 	rt2661_bbp_write(sc, 82, 0x20);
   2871 	rt2661_bbp_write(sc, 83, 0x00);
   2872 	rt2661_bbp_write(sc, 84, 0x40);
   2873 
   2874 	/* save current BBP registers values */
   2875 	sc->bbp18 = rt2661_bbp_read(sc, 18);
   2876 	sc->bbp21 = rt2661_bbp_read(sc, 21);
   2877 	sc->bbp22 = rt2661_bbp_read(sc, 22);
   2878 	sc->bbp16 = rt2661_bbp_read(sc, 16);
   2879 	sc->bbp17 = rt2661_bbp_read(sc, 17);
   2880 	sc->bbp64 = rt2661_bbp_read(sc, 64);
   2881 
   2882 	rt2661_bbp_write(sc, 18, 0xff);
   2883 	rt2661_bbp_write(sc, 21, 0x3f);
   2884 	rt2661_bbp_write(sc, 22, 0x3f);
   2885 	rt2661_bbp_write(sc, 16, 0xbd);
   2886 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
   2887 	rt2661_bbp_write(sc, 64, 0x21);
   2888 
   2889 	/* restore Rx filter */
   2890 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2891 }
   2892 
   2893 static int
   2894 rt2661_radar_stop(struct rt2661_softc *sc)
   2895 {
   2896 	uint8_t bbp66;
   2897 
   2898 	/* read radar detection result */
   2899 	bbp66 = rt2661_bbp_read(sc, 66);
   2900 
   2901 	/* restore BBP registers values */
   2902 	rt2661_bbp_write(sc, 16, sc->bbp16);
   2903 	rt2661_bbp_write(sc, 17, sc->bbp17);
   2904 	rt2661_bbp_write(sc, 18, sc->bbp18);
   2905 	rt2661_bbp_write(sc, 21, sc->bbp21);
   2906 	rt2661_bbp_write(sc, 22, sc->bbp22);
   2907 	rt2661_bbp_write(sc, 64, sc->bbp64);
   2908 
   2909 	return bbp66 == 1;
   2910 }
   2911 #endif
   2912 
   2913 static int
   2914 rt2661_prepare_beacon(struct rt2661_softc *sc)
   2915 {
   2916 	struct ieee80211com *ic = &sc->sc_ic;
   2917 	struct ieee80211_node *ni = ic->ic_bss;
   2918 	struct rt2661_tx_desc desc;
   2919 	struct mbuf *m0;
   2920 	struct ieee80211_beacon_offsets bo;
   2921 	int rate;
   2922 
   2923 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2924 	if (m0 == NULL) {
   2925 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2926 		return ENOBUFS;
   2927 	}
   2928 
   2929 	/* send beacons at the lowest available rate */
   2930 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   2931 
   2932 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
   2933 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
   2934 
   2935 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2936 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2937 
   2938 	/* copy beacon header and payload into NIC memory */
   2939 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
   2940 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
   2941 
   2942 	m_freem(m0);
   2943 
   2944 	/*
   2945 	 * Store offset of ERP Information Element so that we can update it
   2946 	 * dynamically when the slot time changes.
   2947 	 * XXX: this is ugly since it depends on how net80211 builds beacon
   2948 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
   2949 	 */
   2950 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   2951 		sc->erp_csr =
   2952 		    RT2661_HW_BEACON_BASE0 + 24 +
   2953 		    sizeof (struct ieee80211_frame) +
   2954 		    8 + 2 + 2 + 2 + ni->ni_esslen +
   2955 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
   2956 		    2 + 1 +
   2957 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
   2958 		    2;
   2959 	}
   2960 
   2961 	return 0;
   2962 }
   2963 
   2964 /*
   2965  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   2966  * and HostAP operating modes.
   2967  */
   2968 static void
   2969 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
   2970 {
   2971 	struct ieee80211com *ic = &sc->sc_ic;
   2972 	uint32_t tmp;
   2973 
   2974 	if (ic->ic_opmode != IEEE80211_M_STA) {
   2975 		/*
   2976 		 * Change default 16ms TBTT adjustment to 8ms.
   2977 		 * Must be done before enabling beacon generation.
   2978 		 */
   2979 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
   2980 	}
   2981 
   2982 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
   2983 
   2984 	/* set beacon interval (in 1/16ms unit) */
   2985 	tmp |= ic->ic_bss->ni_intval * 16;
   2986 
   2987 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
   2988 	if (ic->ic_opmode == IEEE80211_M_STA)
   2989 		tmp |= RT2661_TSF_MODE(1);
   2990 	else
   2991 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
   2992 
   2993 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
   2994 }
   2995 
   2996 /*
   2997  * Retrieve the "Received Signal Strength Indicator" from the raw values
   2998  * contained in Rx descriptors.  The computation depends on which band the
   2999  * frame was received.  Correction values taken from the reference driver.
   3000  */
   3001 static int
   3002 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
   3003 {
   3004 	int lna, agc, rssi;
   3005 
   3006 	lna = (raw >> 5) & 0x3;
   3007 	agc = raw & 0x1f;
   3008 
   3009 	rssi = 2 * agc;
   3010 
   3011 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
   3012 		rssi += sc->rssi_2ghz_corr;
   3013 
   3014 		if (lna == 1)
   3015 			rssi -= 64;
   3016 		else if (lna == 2)
   3017 			rssi -= 74;
   3018 		else if (lna == 3)
   3019 			rssi -= 90;
   3020 	} else {
   3021 		rssi += sc->rssi_5ghz_corr;
   3022 
   3023 		if (lna == 1)
   3024 			rssi -= 64;
   3025 		else if (lna == 2)
   3026 			rssi -= 86;
   3027 		else if (lna == 3)
   3028 			rssi -= 100;
   3029 	}
   3030 	return rssi;
   3031 }
   3032