Home | History | Annotate | Line # | Download | only in ic
rt2661.c revision 1.34
      1 /*	$NetBSD: rt2661.c,v 1.34 2017/02/02 10:05:35 nonaka Exp $	*/
      2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
      3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2006
      7  *	Damien Bergamini <damien.bergamini (at) free.fr>
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*-
     23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
     24  * http://www.ralinktech.com/
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.34 2017/02/02 10:05:35 nonaka Exp $");
     29 
     30 
     31 #include <sys/param.h>
     32 #include <sys/sockio.h>
     33 #include <sys/sysctl.h>
     34 #include <sys/mbuf.h>
     35 #include <sys/kernel.h>
     36 #include <sys/socket.h>
     37 #include <sys/systm.h>
     38 #include <sys/malloc.h>
     39 #include <sys/callout.h>
     40 #include <sys/conf.h>
     41 #include <sys/device.h>
     42 
     43 #include <sys/bus.h>
     44 #include <machine/endian.h>
     45 #include <sys/intr.h>
     46 
     47 #include <net/bpf.h>
     48 #include <net/if.h>
     49 #include <net/if_arp.h>
     50 #include <net/if_dl.h>
     51 #include <net/if_media.h>
     52 #include <net/if_types.h>
     53 #include <net/if_ether.h>
     54 
     55 #include <netinet/in.h>
     56 #include <netinet/in_systm.h>
     57 #include <netinet/in_var.h>
     58 #include <netinet/ip.h>
     59 
     60 #include <net80211/ieee80211_var.h>
     61 #include <net80211/ieee80211_amrr.h>
     62 #include <net80211/ieee80211_radiotap.h>
     63 
     64 #include <dev/ic/rt2661reg.h>
     65 #include <dev/ic/rt2661var.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/firmload.h>
     72 
     73 #ifdef RAL_DEBUG
     74 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
     75 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
     76 int rt2661_debug = 0;
     77 #else
     78 #define DPRINTF(x)
     79 #define DPRINTFN(n, x)
     80 #endif
     81 
     82 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
     83 		    struct rt2661_tx_ring *, int);
     84 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
     85 		    struct rt2661_tx_ring *);
     86 static void	rt2661_free_tx_ring(struct rt2661_softc *,
     87 		    struct rt2661_tx_ring *);
     88 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
     89 		    struct rt2661_rx_ring *, int);
     90 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
     91 		    struct rt2661_rx_ring *);
     92 static void	rt2661_free_rx_ring(struct rt2661_softc *,
     93 		    struct rt2661_rx_ring *);
     94 static struct ieee80211_node *
     95 		rt2661_node_alloc(struct ieee80211_node_table *);
     96 static int	rt2661_media_change(struct ifnet *);
     97 static void	rt2661_next_scan(void *);
     98 static void	rt2661_iter_func(void *, struct ieee80211_node *);
     99 static void	rt2661_updatestats(void *);
    100 static void	rt2661_newassoc(struct ieee80211_node *, int);
    101 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
    102 		    int);
    103 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
    104 static void	rt2661_tx_intr(struct rt2661_softc *);
    105 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
    106 		    struct rt2661_tx_ring *);
    107 static void	rt2661_rx_intr(struct rt2661_softc *);
    108 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
    109 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
    110 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
    111 int		rt2661_intr(void *);
    112 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
    113 static int	rt2661_ack_rate(struct ieee80211com *, int);
    114 static uint16_t	rt2661_txtime(int, int, uint32_t);
    115 static uint8_t	rt2661_plcp_signal(int);
    116 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
    117 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
    118 		    const bus_dma_segment_t *, int, int);
    119 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
    120 		    struct ieee80211_node *);
    121 static struct mbuf *
    122 		rt2661_get_rts(struct rt2661_softc *,
    123 		    struct ieee80211_frame *, uint16_t);
    124 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
    125 		    struct ieee80211_node *, int);
    126 static void	rt2661_start(struct ifnet *);
    127 static void	rt2661_watchdog(struct ifnet *);
    128 static int	rt2661_reset(struct ifnet *);
    129 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
    130 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
    131 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
    132 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
    133 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
    134 static void	rt2661_select_antenna(struct rt2661_softc *);
    135 static void	rt2661_enable_mrr(struct rt2661_softc *);
    136 static void	rt2661_set_txpreamble(struct rt2661_softc *);
    137 static void	rt2661_set_basicrates(struct rt2661_softc *,
    138 			const struct ieee80211_rateset *);
    139 static void	rt2661_select_band(struct rt2661_softc *,
    140 		    struct ieee80211_channel *);
    141 static void	rt2661_set_chan(struct rt2661_softc *,
    142 		    struct ieee80211_channel *);
    143 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
    144 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
    145 static void	rt2661_update_promisc(struct rt2661_softc *);
    146 #if 0
    147 static int	rt2661_wme_update(struct ieee80211com *);
    148 #endif
    149 
    150 static void	rt2661_updateslot(struct ifnet *);
    151 static void	rt2661_set_slottime(struct rt2661_softc *);
    152 static const char *
    153 		rt2661_get_rf(int);
    154 static void	rt2661_read_eeprom(struct rt2661_softc *);
    155 static int	rt2661_bbp_init(struct rt2661_softc *);
    156 static int     	rt2661_init(struct ifnet *);
    157 static void	rt2661_stop(struct ifnet *, int);
    158 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
    159 		    int);
    160 static void	rt2661_rx_tune(struct rt2661_softc *);
    161 #ifdef notyet
    162 static void	rt2661_radar_start(struct rt2661_softc *);
    163 static int	rt2661_radar_stop(struct rt2661_softc *);
    164 #endif
    165 static int	rt2661_prepare_beacon(struct rt2661_softc *);
    166 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
    167 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
    168 static void	rt2661_softintr(void *);
    169 
    170 /*
    171  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
    172  */
    173 static const struct ieee80211_rateset rt2661_rateset_11a =
    174 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
    175 
    176 static const struct ieee80211_rateset rt2661_rateset_11b =
    177 	{ 4, { 2, 4, 11, 22 } };
    178 
    179 static const struct ieee80211_rateset rt2661_rateset_11g =
    180 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
    181 
    182 static const struct {
    183 	uint32_t	reg;
    184 	uint32_t	val;
    185 } rt2661_def_mac[] = {
    186 	RT2661_DEF_MAC
    187 };
    188 
    189 static const struct {
    190 	uint8_t	reg;
    191 	uint8_t	val;
    192 } rt2661_def_bbp[] = {
    193 	RT2661_DEF_BBP
    194 };
    195 
    196 static const struct rfprog {
    197 	uint8_t		chan;
    198 	uint32_t	r1, r2, r3, r4;
    199 } rt2661_rf5225_1[] = {
    200 	RT2661_RF5225_1
    201 }, rt2661_rf5225_2[] = {
    202 	RT2661_RF5225_2
    203 };
    204 
    205 int
    206 rt2661_attach(void *xsc, int id)
    207 {
    208 	struct rt2661_softc *sc = xsc;
    209 	struct ieee80211com *ic = &sc->sc_ic;
    210 	struct ifnet *ifp = &sc->sc_if;
    211 	uint32_t val;
    212 	int error, i, ntries;
    213 
    214 	sc->sc_id = id;
    215 
    216 	sc->amrr.amrr_min_success_threshold =  1;
    217 	sc->amrr.amrr_max_success_threshold = 15;
    218 	callout_init(&sc->scan_ch, 0);
    219 	callout_init(&sc->amrr_ch, 0);
    220 
    221 	/* wait for NIC to initialize */
    222 	for (ntries = 0; ntries < 1000; ntries++) {
    223 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
    224 			break;
    225 		DELAY(1000);
    226 	}
    227 	if (ntries == 1000) {
    228 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
    229 		return EIO;
    230 	}
    231 
    232 	/* retrieve RF rev. no and various other things from EEPROM */
    233 	rt2661_read_eeprom(sc);
    234 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
    235 	    ether_sprintf(ic->ic_myaddr));
    236 
    237 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
    238 	    rt2661_get_rf(sc->rf_rev));
    239 
    240 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
    241 	if (sc->sc_soft_ih == NULL) {
    242 		aprint_error_dev(sc->sc_dev, "could not establish softint\n");
    243 		goto fail0;
    244 	}
    245 
    246 	/*
    247 	 * Allocate Tx and Rx rings.
    248 	 */
    249 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
    250 	if (error != 0) {
    251 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
    252 		goto fail1;
    253 	}
    254 
    255 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
    256 	if (error != 0) {
    257 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
    258 		goto fail2;
    259 	}
    260 
    261 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
    262 	if (error != 0) {
    263 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
    264 		goto fail3;
    265 	}
    266 
    267 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
    268 	if (error != 0) {
    269 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
    270 		goto fail4;
    271 	}
    272 
    273 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
    274 	if (error != 0) {
    275 		aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
    276 		goto fail5;
    277 	}
    278 
    279 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
    280 	if (error != 0) {
    281 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
    282 		goto fail6;
    283 	}
    284 
    285 	ifp->if_softc = sc;
    286 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    287 	ifp->if_init = rt2661_init;
    288 	ifp->if_stop = rt2661_stop;
    289 	ifp->if_ioctl = rt2661_ioctl;
    290 	ifp->if_start = rt2661_start;
    291 	ifp->if_watchdog = rt2661_watchdog;
    292 	IFQ_SET_READY(&ifp->if_snd);
    293 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    294 
    295 	ic->ic_ifp = ifp;
    296 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    297 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    298 	ic->ic_state = IEEE80211_S_INIT;
    299 
    300 	/* set device capabilities */
    301 	ic->ic_caps =
    302 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    303 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    304 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
    305 	    IEEE80211_C_TXPMGT |	/* tx power management */
    306 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    307 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    308 	    IEEE80211_C_WPA;		/* 802.11i */
    309 
    310 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
    311 		/* set supported .11a rates */
    312 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
    313 
    314 		/* set supported .11a channels */
    315 		for (i = 36; i <= 64; i += 4) {
    316 			ic->ic_channels[i].ic_freq =
    317 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    318 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    319 		}
    320 		for (i = 100; i <= 140; i += 4) {
    321 			ic->ic_channels[i].ic_freq =
    322 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    323 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    324 		}
    325 		for (i = 149; i <= 165; i += 4) {
    326 			ic->ic_channels[i].ic_freq =
    327 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    328 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    329 		}
    330 	}
    331 
    332 	/* set supported .11b and .11g rates */
    333 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
    334 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
    335 
    336 	/* set supported .11b and .11g channels (1 through 14) */
    337 	for (i = 1; i <= 14; i++) {
    338 		ic->ic_channels[i].ic_freq =
    339 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    340 		ic->ic_channels[i].ic_flags =
    341 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    342 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    343 	}
    344 
    345 	if_initialize(ifp);
    346 	ieee80211_ifattach(ic);
    347 	/* Use common softint-based if_input */
    348 	ifp->if_percpuq = if_percpuq_create(ifp);
    349 	if_register(ifp);
    350 
    351 	ic->ic_node_alloc = rt2661_node_alloc;
    352 	ic->ic_newassoc = rt2661_newassoc;
    353 	ic->ic_updateslot = rt2661_updateslot;
    354 	ic->ic_reset = rt2661_reset;
    355 
    356 	/* override state transition machine */
    357 	sc->sc_newstate = ic->ic_newstate;
    358 	ic->ic_newstate = rt2661_newstate;
    359 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
    360 
    361 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    362 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
    363 	    &sc->sc_drvbpf);
    364 
    365 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
    366 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    367 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
    368 
    369 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
    370 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    371 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
    372 
    373 	ieee80211_announce(ic);
    374 
    375 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    376 		pmf_class_network_register(sc->sc_dev, ifp);
    377 	else
    378 		aprint_error_dev(sc->sc_dev,
    379 		    "couldn't establish power handler\n");
    380 
    381 	return 0;
    382 
    383 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
    384 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
    385 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
    386 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
    387 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
    388 fail1:	softint_disestablish(sc->sc_soft_ih);
    389 	sc->sc_soft_ih = NULL;
    390 fail0:	return ENXIO;
    391 }
    392 
    393 int
    394 rt2661_detach(void *xsc)
    395 {
    396 	struct rt2661_softc *sc = xsc;
    397 	struct ifnet *ifp = &sc->sc_if;
    398 
    399 	callout_stop(&sc->scan_ch);
    400 	callout_stop(&sc->amrr_ch);
    401 
    402 	pmf_device_deregister(sc->sc_dev);
    403 
    404 	ieee80211_ifdetach(&sc->sc_ic);
    405 	if_detach(ifp);
    406 
    407 	rt2661_free_tx_ring(sc, &sc->txq[0]);
    408 	rt2661_free_tx_ring(sc, &sc->txq[1]);
    409 	rt2661_free_tx_ring(sc, &sc->txq[2]);
    410 	rt2661_free_tx_ring(sc, &sc->txq[3]);
    411 	rt2661_free_tx_ring(sc, &sc->mgtq);
    412 	rt2661_free_rx_ring(sc, &sc->rxq);
    413 
    414 	if (sc->sc_soft_ih != NULL) {
    415 		softint_disestablish(sc->sc_soft_ih);
    416 		sc->sc_soft_ih = NULL;
    417 	}
    418 
    419 	return 0;
    420 }
    421 
    422 static int
    423 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
    424     int count)
    425 {
    426 	int i, nsegs, error;
    427 
    428 	ring->count = count;
    429 	ring->queued = 0;
    430 	ring->cur = ring->next = ring->stat = 0;
    431 
    432 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
    433 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    434 	if (error != 0) {
    435 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
    436 		goto fail;
    437 	}
    438 
    439 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
    440 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    441 	if (error != 0) {
    442 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
    443 		goto fail;
    444 	}
    445 
    446 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    447 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
    448 	    BUS_DMA_NOWAIT);
    449 	if (error != 0) {
    450 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
    451 		goto fail;
    452 	}
    453 
    454 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    455 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    456 	if (error != 0) {
    457 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
    458 		goto fail;
    459 	}
    460 
    461 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
    462 	ring->physaddr = ring->map->dm_segs->ds_addr;
    463 
    464 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
    465 	    M_NOWAIT);
    466 	if (ring->data == NULL) {
    467 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
    468 		error = ENOMEM;
    469 		goto fail;
    470 	}
    471 
    472 	memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
    473 	for (i = 0; i < count; i++) {
    474 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    475 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
    476 		    &ring->data[i].map);
    477 		if (error != 0) {
    478 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
    479 			goto fail;
    480 		}
    481 	}
    482 
    483 	return 0;
    484 
    485 fail:	rt2661_free_tx_ring(sc, ring);
    486 	return error;
    487 }
    488 
    489 static void
    490 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
    491 {
    492 	struct rt2661_tx_desc *desc;
    493 	struct rt2661_tx_data *data;
    494 	int i;
    495 
    496 	for (i = 0; i < ring->count; i++) {
    497 		desc = &ring->desc[i];
    498 		data = &ring->data[i];
    499 
    500 		if (data->m != NULL) {
    501 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    502 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    503 			bus_dmamap_unload(sc->sc_dmat, data->map);
    504 			m_freem(data->m);
    505 			data->m = NULL;
    506 		}
    507 
    508 		if (data->ni != NULL) {
    509 			ieee80211_free_node(data->ni);
    510 			data->ni = NULL;
    511 		}
    512 
    513 		desc->flags = 0;
    514 	}
    515 
    516 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    517 	    BUS_DMASYNC_PREWRITE);
    518 
    519 	ring->queued = 0;
    520 	ring->cur = ring->next = ring->stat = 0;
    521 }
    522 
    523 
    524 static void
    525 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
    526 {
    527 	struct rt2661_tx_data *data;
    528 	int i;
    529 
    530 	if (ring->desc != NULL) {
    531 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    532 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    533 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    534 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    535 		    ring->count * RT2661_TX_DESC_SIZE);
    536 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    537 	}
    538 
    539 	if (ring->data != NULL) {
    540 		for (i = 0; i < ring->count; i++) {
    541 			data = &ring->data[i];
    542 
    543 			if (data->m != NULL) {
    544 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    545 				    data->map->dm_mapsize,
    546 				    BUS_DMASYNC_POSTWRITE);
    547 				bus_dmamap_unload(sc->sc_dmat, data->map);
    548 				m_freem(data->m);
    549 			}
    550 
    551 			if (data->ni != NULL)
    552 				ieee80211_free_node(data->ni);
    553 
    554 			if (data->map != NULL)
    555 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    556 		}
    557 		free(ring->data, M_DEVBUF);
    558 	}
    559 }
    560 
    561 static int
    562 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
    563     int count)
    564 {
    565 	struct rt2661_rx_desc *desc;
    566 	struct rt2661_rx_data *data;
    567 	int i, nsegs, error;
    568 
    569 	ring->count = count;
    570 	ring->cur = ring->next = 0;
    571 
    572 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
    573 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    574 	if (error != 0) {
    575 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
    576 		goto fail;
    577 	}
    578 
    579 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
    580 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    581 	if (error != 0) {
    582 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
    583 		goto fail;
    584 	}
    585 
    586 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    587 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
    588 	    BUS_DMA_NOWAIT);
    589 	if (error != 0) {
    590 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
    591 		goto fail;
    592 	}
    593 
    594 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    595 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    596 	if (error != 0) {
    597 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
    598 		goto fail;
    599 	}
    600 
    601 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
    602 	ring->physaddr = ring->map->dm_segs->ds_addr;
    603 
    604 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
    605 	    M_NOWAIT);
    606 	if (ring->data == NULL) {
    607 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
    608 		error = ENOMEM;
    609 		goto fail;
    610 	}
    611 
    612 	/*
    613 	 * Pre-allocate Rx buffers and populate Rx ring.
    614 	 */
    615 	memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
    616 	for (i = 0; i < count; i++) {
    617 		desc = &sc->rxq.desc[i];
    618 		data = &sc->rxq.data[i];
    619 
    620 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    621 		    0, BUS_DMA_NOWAIT, &data->map);
    622 		if (error != 0) {
    623 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
    624 			goto fail;
    625 		}
    626 
    627 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    628 		if (data->m == NULL) {
    629 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    630 			error = ENOMEM;
    631 			goto fail;
    632 		}
    633 
    634 		MCLGET(data->m, M_DONTWAIT);
    635 		if (!(data->m->m_flags & M_EXT)) {
    636 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
    637 			error = ENOMEM;
    638 			goto fail;
    639 		}
    640 
    641 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    642 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
    643 		if (error != 0) {
    644 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
    645 			goto fail;
    646 		}
    647 
    648 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
    649 		desc->flags = htole32(RT2661_RX_BUSY);
    650 	}
    651 
    652 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    653 	    BUS_DMASYNC_PREWRITE);
    654 
    655 	return 0;
    656 
    657 fail:	rt2661_free_rx_ring(sc, ring);
    658 	return error;
    659 }
    660 
    661 static void
    662 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
    663 {
    664 	int i;
    665 
    666 	for (i = 0; i < ring->count; i++)
    667 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
    668 
    669 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    670 	    BUS_DMASYNC_PREWRITE);
    671 
    672 	ring->cur = ring->next = 0;
    673 }
    674 
    675 static void
    676 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
    677 {
    678 	struct rt2661_rx_data *data;
    679 	int i;
    680 
    681 	if (ring->desc != NULL) {
    682 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    683 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    684 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    685 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    686 		    ring->count * RT2661_RX_DESC_SIZE);
    687 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    688 	}
    689 
    690 	if (ring->data != NULL) {
    691 		for (i = 0; i < ring->count; i++) {
    692 			data = &ring->data[i];
    693 
    694 			if (data->m != NULL) {
    695 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    696 				    data->map->dm_mapsize,
    697 				    BUS_DMASYNC_POSTREAD);
    698 				bus_dmamap_unload(sc->sc_dmat, data->map);
    699 				m_freem(data->m);
    700 			}
    701 
    702 			if (data->map != NULL)
    703 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    704 		}
    705 		free(ring->data, M_DEVBUF);
    706 	}
    707 }
    708 
    709 static struct ieee80211_node *
    710 rt2661_node_alloc(struct ieee80211_node_table *nt)
    711 {
    712 	struct rt2661_node *rn;
    713 
    714 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
    715 	    M_NOWAIT | M_ZERO);
    716 
    717 	return (rn != NULL) ? &rn->ni : NULL;
    718 }
    719 
    720 static int
    721 rt2661_media_change(struct ifnet *ifp)
    722 {
    723 	int error;
    724 
    725 	error = ieee80211_media_change(ifp);
    726 	if (error != ENETRESET)
    727 		return error;
    728 
    729 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    730 		rt2661_init(ifp);
    731 
    732 	return 0;
    733 }
    734 
    735 /*
    736  * This function is called periodically (every 200ms) during scanning to
    737  * switch from one channel to another.
    738  */
    739 static void
    740 rt2661_next_scan(void *arg)
    741 {
    742 	struct rt2661_softc *sc = arg;
    743 	struct ieee80211com *ic = &sc->sc_ic;
    744 	int s;
    745 
    746 	s = splnet();
    747 	if (ic->ic_state == IEEE80211_S_SCAN)
    748 		ieee80211_next_scan(ic);
    749 	splx(s);
    750 }
    751 
    752 /*
    753  * This function is called for each neighbor node.
    754  */
    755 static void
    756 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
    757 {
    758 	struct rt2661_softc *sc = arg;
    759 	struct rt2661_node *rn = (struct rt2661_node *)ni;
    760 
    761 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
    762 }
    763 
    764 /*
    765  * This function is called periodically (every 500ms) in RUN state to update
    766  * various settings like rate control statistics or Rx sensitivity.
    767  */
    768 static void
    769 rt2661_updatestats(void *arg)
    770 {
    771 	struct rt2661_softc *sc = arg;
    772 	struct ieee80211com *ic = &sc->sc_ic;
    773 	int s;
    774 
    775 	s = splnet();
    776 	if (ic->ic_opmode == IEEE80211_M_STA)
    777 		rt2661_iter_func(sc, ic->ic_bss);
    778 	else
    779 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
    780 
    781 	/* update rx sensitivity every 1 sec */
    782 	if (++sc->ncalls & 1)
    783 		rt2661_rx_tune(sc);
    784 	splx(s);
    785 
    786 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
    787 }
    788 
    789 static void
    790 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
    791 {
    792 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    793 	int i;
    794 
    795 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
    796 
    797 	/* set rate to some reasonable initial value */
    798 	for (i = ni->ni_rates.rs_nrates - 1;
    799 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    800 	     i--);
    801 	ni->ni_txrate = i;
    802 }
    803 
    804 static int
    805 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    806 {
    807 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
    808 	enum ieee80211_state ostate;
    809 	struct ieee80211_node *ni;
    810 	uint32_t tmp;
    811 
    812 	ostate = ic->ic_state;
    813 	callout_stop(&sc->scan_ch);
    814 
    815 	switch (nstate) {
    816 	case IEEE80211_S_INIT:
    817 		callout_stop(&sc->amrr_ch);
    818 
    819 		if (ostate == IEEE80211_S_RUN) {
    820 			/* abort TSF synchronization */
    821 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
    822 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
    823 		}
    824 		break;
    825 
    826 	case IEEE80211_S_SCAN:
    827 		rt2661_set_chan(sc, ic->ic_curchan);
    828 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
    829 		break;
    830 
    831 	case IEEE80211_S_AUTH:
    832 	case IEEE80211_S_ASSOC:
    833 		rt2661_set_chan(sc, ic->ic_curchan);
    834 		break;
    835 
    836 	case IEEE80211_S_RUN:
    837 		rt2661_set_chan(sc, ic->ic_curchan);
    838 
    839 		ni = ic->ic_bss;
    840 
    841 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    842 			rt2661_set_slottime(sc);
    843 			rt2661_enable_mrr(sc);
    844 			rt2661_set_txpreamble(sc);
    845 			rt2661_set_basicrates(sc, &ni->ni_rates);
    846 			rt2661_set_bssid(sc, ni->ni_bssid);
    847 		}
    848 
    849 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    850 		    ic->ic_opmode == IEEE80211_M_IBSS)
    851 			rt2661_prepare_beacon(sc);
    852 
    853 		if (ic->ic_opmode == IEEE80211_M_STA) {
    854 			/* fake a join to init the tx rate */
    855 			rt2661_newassoc(ni, 1);
    856 		}
    857 
    858 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    859 			sc->ncalls = 0;
    860 			sc->avg_rssi = -95;	/* reset EMA */
    861 			callout_reset(&sc->amrr_ch, hz / 2,
    862 			    rt2661_updatestats, sc);
    863 			rt2661_enable_tsf_sync(sc);
    864 		}
    865 		break;
    866 	}
    867 
    868 	return sc->sc_newstate(ic, nstate, arg);
    869 }
    870 
    871 /*
    872  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
    873  * 93C66).
    874  */
    875 static uint16_t
    876 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
    877 {
    878 	uint32_t tmp;
    879 	uint16_t val;
    880 	int n;
    881 
    882 	/* clock C once before the first command */
    883 	RT2661_EEPROM_CTL(sc, 0);
    884 
    885 	RT2661_EEPROM_CTL(sc, RT2661_S);
    886 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
    887 	RT2661_EEPROM_CTL(sc, RT2661_S);
    888 
    889 	/* write start bit (1) */
    890 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
    891 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
    892 
    893 	/* write READ opcode (10) */
    894 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
    895 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
    896 	RT2661_EEPROM_CTL(sc, RT2661_S);
    897 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
    898 
    899 	/* write address (A5-A0 or A7-A0) */
    900 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
    901 	for (; n >= 0; n--) {
    902 		RT2661_EEPROM_CTL(sc, RT2661_S |
    903 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
    904 		RT2661_EEPROM_CTL(sc, RT2661_S |
    905 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
    906 	}
    907 
    908 	RT2661_EEPROM_CTL(sc, RT2661_S);
    909 
    910 	/* read data Q15-Q0 */
    911 	val = 0;
    912 	for (n = 15; n >= 0; n--) {
    913 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
    914 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
    915 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
    916 		RT2661_EEPROM_CTL(sc, RT2661_S);
    917 	}
    918 
    919 	RT2661_EEPROM_CTL(sc, 0);
    920 
    921 	/* clear Chip Select and clock C */
    922 	RT2661_EEPROM_CTL(sc, RT2661_S);
    923 	RT2661_EEPROM_CTL(sc, 0);
    924 	RT2661_EEPROM_CTL(sc, RT2661_C);
    925 
    926 	return val;
    927 }
    928 
    929 static void
    930 rt2661_tx_intr(struct rt2661_softc *sc)
    931 {
    932 	struct ifnet *ifp = &sc->sc_if;
    933 	struct rt2661_tx_ring *txq;
    934 	struct rt2661_tx_data *data;
    935 	struct rt2661_node *rn;
    936 	uint32_t val;
    937 	int qid, retrycnt, s;
    938 
    939 	s = splnet();
    940 
    941 	for (;;) {
    942 		val = RAL_READ(sc, RT2661_STA_CSR4);
    943 		if (!(val & RT2661_TX_STAT_VALID))
    944 			break;
    945 
    946 		/* retrieve the queue in which this frame was sent */
    947 		qid = RT2661_TX_QID(val);
    948 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
    949 
    950 		/* retrieve rate control algorithm context */
    951 		data = &txq->data[txq->stat];
    952 		rn = (struct rt2661_node *)data->ni;
    953 
    954 		/* if no frame has been sent, ignore */
    955 		if (rn == NULL)
    956 			continue;
    957 
    958 		switch (RT2661_TX_RESULT(val)) {
    959 		case RT2661_TX_SUCCESS:
    960 			retrycnt = RT2661_TX_RETRYCNT(val);
    961 
    962 			DPRINTFN(10, ("data frame sent successfully after "
    963 			    "%d retries\n", retrycnt));
    964 			rn->amn.amn_txcnt++;
    965 			if (retrycnt > 0)
    966 				rn->amn.amn_retrycnt++;
    967 			ifp->if_opackets++;
    968 			break;
    969 
    970 		case RT2661_TX_RETRY_FAIL:
    971 			DPRINTFN(9, ("sending data frame failed (too much "
    972 			    "retries)\n"));
    973 			rn->amn.amn_txcnt++;
    974 			rn->amn.amn_retrycnt++;
    975 			ifp->if_oerrors++;
    976 			break;
    977 
    978 		default:
    979 			/* other failure */
    980 			aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
    981 			ifp->if_oerrors++;
    982 		}
    983 
    984 		ieee80211_free_node(data->ni);
    985 		data->ni = NULL;
    986 
    987 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
    988 
    989 		txq->queued--;
    990 		if (++txq->stat >= txq->count)	/* faster than % count */
    991 			txq->stat = 0;
    992 	}
    993 
    994 	sc->sc_tx_timer = 0;
    995 	ifp->if_flags &= ~IFF_OACTIVE;
    996 	rt2661_start(ifp);
    997 
    998 	splx(s);
    999 }
   1000 
   1001 static void
   1002 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
   1003 {
   1004 	struct rt2661_tx_desc *desc;
   1005 	struct rt2661_tx_data *data;
   1006 
   1007 	for (;;) {
   1008 		desc = &txq->desc[txq->next];
   1009 		data = &txq->data[txq->next];
   1010 
   1011 		bus_dmamap_sync(sc->sc_dmat, txq->map,
   1012 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1013 		    BUS_DMASYNC_POSTREAD);
   1014 
   1015 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
   1016 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
   1017 			break;
   1018 
   1019 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1020 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1021 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1022 		m_freem(data->m);
   1023 		data->m = NULL;
   1024 		/* node reference is released in rt2661_tx_intr() */
   1025 
   1026 		/* descriptor is no longer valid */
   1027 		desc->flags &= ~htole32(RT2661_TX_VALID);
   1028 
   1029 		bus_dmamap_sync(sc->sc_dmat, txq->map,
   1030 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1031 		    BUS_DMASYNC_PREWRITE);
   1032 
   1033 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
   1034 
   1035 		if (++txq->next >= txq->count)	/* faster than % count */
   1036 			txq->next = 0;
   1037 	}
   1038 }
   1039 
   1040 static void
   1041 rt2661_rx_intr(struct rt2661_softc *sc)
   1042 {
   1043 	struct ieee80211com *ic = &sc->sc_ic;
   1044 	struct ifnet *ifp = &sc->sc_if;
   1045 	struct rt2661_rx_desc *desc;
   1046 	struct rt2661_rx_data *data;
   1047 	struct ieee80211_frame *wh;
   1048 	struct ieee80211_node *ni;
   1049 	struct mbuf *mnew, *m;
   1050 	int error, rssi, s;
   1051 
   1052 	for (;;) {
   1053 		desc = &sc->rxq.desc[sc->rxq.cur];
   1054 		data = &sc->rxq.data[sc->rxq.cur];
   1055 
   1056 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1057 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
   1058 		    BUS_DMASYNC_POSTREAD);
   1059 
   1060 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
   1061 			break;
   1062 
   1063 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
   1064 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
   1065 			/*
   1066 			 * This should not happen since we did not request
   1067 			 * to receive those frames when we filled TXRX_CSR0.
   1068 			 */
   1069 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
   1070 			    le32toh(desc->flags)));
   1071 			ifp->if_ierrors++;
   1072 			goto skip;
   1073 		}
   1074 
   1075 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
   1076 			ifp->if_ierrors++;
   1077 			goto skip;
   1078 		}
   1079 
   1080 		/*
   1081 		 * Try to allocate a new mbuf for this ring element and load it
   1082 		 * before processing the current mbuf. If the ring element
   1083 		 * cannot be loaded, drop the received packet and reuse the old
   1084 		 * mbuf. In the unlikely case that the old mbuf can't be
   1085 		 * reloaded either, explicitly panic.
   1086 		 */
   1087 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1088 		if (mnew == NULL) {
   1089 			ifp->if_ierrors++;
   1090 			goto skip;
   1091 		}
   1092 
   1093 		MCLGET(mnew, M_DONTWAIT);
   1094 		if (!(mnew->m_flags & M_EXT)) {
   1095 			m_freem(mnew);
   1096 			ifp->if_ierrors++;
   1097 			goto skip;
   1098 		}
   1099 
   1100 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1101 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1102 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1103 
   1104 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1105 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
   1106 		if (error != 0) {
   1107 			m_freem(mnew);
   1108 
   1109 			/* try to reload the old mbuf */
   1110 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1111 			    mtod(data->m, void *), MCLBYTES, NULL,
   1112 			    BUS_DMA_NOWAIT);
   1113 			if (error != 0) {
   1114 				/* very unlikely that it will fail... */
   1115 				panic("%s: could not load old rx mbuf",
   1116 				    device_xname(sc->sc_dev));
   1117 			}
   1118 			/* physical address may have changed */
   1119 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1120 			ifp->if_ierrors++;
   1121 			goto skip;
   1122 		}
   1123 
   1124 		/*
   1125 	 	 * New mbuf successfully loaded, update Rx ring and continue
   1126 		 * processing.
   1127 		 */
   1128 		m = data->m;
   1129 		data->m = mnew;
   1130 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1131 
   1132 		/* finalize mbuf */
   1133 		m_set_rcvif(m, ifp);
   1134 		m->m_pkthdr.len = m->m_len =
   1135 		    (le32toh(desc->flags) >> 16) & 0xfff;
   1136 
   1137 		s = splnet();
   1138 
   1139 		if (sc->sc_drvbpf != NULL) {
   1140 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
   1141 			uint32_t tsf_lo, tsf_hi;
   1142 
   1143 			/* get timestamp (low and high 32 bits) */
   1144 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
   1145 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
   1146 
   1147 			tap->wr_tsf =
   1148 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
   1149 			tap->wr_flags = 0;
   1150 			tap->wr_rate = rt2661_rxrate(desc);
   1151 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
   1152 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
   1153 			tap->wr_antsignal = desc->rssi;
   1154 
   1155 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
   1156 		}
   1157 
   1158 		wh = mtod(m, struct ieee80211_frame *);
   1159 		ni = ieee80211_find_rxnode(ic,
   1160 		    (struct ieee80211_frame_min *)wh);
   1161 
   1162 		/* send the frame to the 802.11 layer */
   1163 		ieee80211_input(ic, m, ni, desc->rssi, 0);
   1164 
   1165 		/*-
   1166 		 * Keep track of the average RSSI using an Exponential Moving
   1167 		 * Average (EMA) of 8 Wilder's days:
   1168 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
   1169 		 */
   1170 		rssi = rt2661_get_rssi(sc, desc->rssi);
   1171 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
   1172 
   1173 		/* node is no longer needed */
   1174 		ieee80211_free_node(ni);
   1175 
   1176 		splx(s);
   1177 
   1178 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
   1179 
   1180 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1181 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
   1182 		    BUS_DMASYNC_PREWRITE);
   1183 
   1184 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
   1185 
   1186 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
   1187 	}
   1188 
   1189 	/*
   1190 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
   1191 	 * without calling if_start().
   1192 	 */
   1193 	s = splnet();
   1194 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
   1195 		rt2661_start(ifp);
   1196 	splx(s);
   1197 }
   1198 
   1199 /*
   1200  * This function is called in HostAP or IBSS modes when it's time to send a
   1201  * new beacon (every ni_intval milliseconds).
   1202  */
   1203 static void
   1204 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
   1205 {
   1206 	struct ieee80211com *ic = &sc->sc_ic;
   1207 
   1208 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
   1209 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
   1210 		sc->sc_flags |= RT2661_SET_SLOTTIME;
   1211 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
   1212 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
   1213 		rt2661_set_slottime(sc);
   1214 	}
   1215 
   1216 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1217 		/* update ERP Information Element */
   1218 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
   1219 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
   1220 	}
   1221 
   1222 	DPRINTFN(15, ("beacon expired\n"));
   1223 }
   1224 
   1225 static void
   1226 rt2661_mcu_wakeup(struct rt2661_softc *sc)
   1227 {
   1228 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
   1229 
   1230 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
   1231 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
   1232 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
   1233 
   1234 	/* send wakeup command to MCU */
   1235 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
   1236 }
   1237 
   1238 static void
   1239 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
   1240 {
   1241 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
   1242 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
   1243 }
   1244 
   1245 int
   1246 rt2661_intr(void *arg)
   1247 {
   1248 	struct rt2661_softc *sc = arg;
   1249 	struct ifnet *ifp = &sc->sc_if;
   1250 	uint32_t r1, r2;
   1251 
   1252 	/* don't re-enable interrupts if we're shutting down */
   1253 	if (!(ifp->if_flags & IFF_RUNNING)) {
   1254 		/* disable MAC and MCU interrupts */
   1255 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
   1256 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
   1257 		return 0;
   1258 	}
   1259 
   1260 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
   1261 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
   1262 
   1263 	if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
   1264 		return 0;
   1265 
   1266 	/* disable interrupts */
   1267 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
   1268 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
   1269 
   1270 	softint_schedule(sc->sc_soft_ih);
   1271 	return 1;
   1272 }
   1273 
   1274 static void
   1275 rt2661_softintr(void *arg)
   1276 {
   1277 	struct rt2661_softc *sc = arg;
   1278 	uint32_t r1, r2;
   1279 
   1280 	for (;;) {
   1281 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
   1282 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
   1283 
   1284 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
   1285 		    (r2 & RT2661_MCU_INT_ALL) == 0)
   1286 			break;
   1287 
   1288 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
   1289 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
   1290 
   1291 		if (r1 & RT2661_MGT_DONE)
   1292 			rt2661_tx_dma_intr(sc, &sc->mgtq);
   1293 
   1294 		if (r1 & RT2661_RX_DONE)
   1295 			rt2661_rx_intr(sc);
   1296 
   1297 		if (r1 & RT2661_TX0_DMA_DONE)
   1298 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
   1299 
   1300 		if (r1 & RT2661_TX1_DMA_DONE)
   1301 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
   1302 
   1303 		if (r1 & RT2661_TX2_DMA_DONE)
   1304 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
   1305 
   1306 		if (r1 & RT2661_TX3_DMA_DONE)
   1307 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
   1308 
   1309 		if (r1 & RT2661_TX_DONE)
   1310 			rt2661_tx_intr(sc);
   1311 
   1312 		if (r2 & RT2661_MCU_CMD_DONE)
   1313 			rt2661_mcu_cmd_intr(sc);
   1314 
   1315 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
   1316 			rt2661_mcu_beacon_expire(sc);
   1317 
   1318 		if (r2 & RT2661_MCU_WAKEUP)
   1319 			rt2661_mcu_wakeup(sc);
   1320 	}
   1321 
   1322 	/* enable interrupts */
   1323 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
   1324 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
   1325 }
   1326 
   1327 /* quickly determine if a given rate is CCK or OFDM */
   1328 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1329 
   1330 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
   1331 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
   1332 
   1333 /*
   1334  * This function is only used by the Rx radiotap code. It returns the rate at
   1335  * which a given frame was received.
   1336  */
   1337 static uint8_t
   1338 rt2661_rxrate(struct rt2661_rx_desc *desc)
   1339 {
   1340 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
   1341 		/* reverse function of rt2661_plcp_signal */
   1342 		switch (desc->rate & 0xf) {
   1343 		case 0xb:	return 12;
   1344 		case 0xf:	return 18;
   1345 		case 0xa:	return 24;
   1346 		case 0xe:	return 36;
   1347 		case 0x9:	return 48;
   1348 		case 0xd:	return 72;
   1349 		case 0x8:	return 96;
   1350 		case 0xc:	return 108;
   1351 		}
   1352 	} else {
   1353 		if (desc->rate == 10)
   1354 			return 2;
   1355 		if (desc->rate == 20)
   1356 			return 4;
   1357 		if (desc->rate == 55)
   1358 			return 11;
   1359 		if (desc->rate == 110)
   1360 			return 22;
   1361 	}
   1362 	return 2;	/* should not get there */
   1363 }
   1364 
   1365 /*
   1366  * Return the expected ack rate for a frame transmitted at rate `rate'.
   1367  * XXX: this should depend on the destination node basic rate set.
   1368  */
   1369 static int
   1370 rt2661_ack_rate(struct ieee80211com *ic, int rate)
   1371 {
   1372 	switch (rate) {
   1373 	/* CCK rates */
   1374 	case 2:
   1375 		return 2;
   1376 	case 4:
   1377 	case 11:
   1378 	case 22:
   1379 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
   1380 
   1381 	/* OFDM rates */
   1382 	case 12:
   1383 	case 18:
   1384 		return 12;
   1385 	case 24:
   1386 	case 36:
   1387 		return 24;
   1388 	case 48:
   1389 	case 72:
   1390 	case 96:
   1391 	case 108:
   1392 		return 48;
   1393 	}
   1394 
   1395 	/* default to 1Mbps */
   1396 	return 2;
   1397 }
   1398 
   1399 /*
   1400  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
   1401  * The function automatically determines the operating mode depending on the
   1402  * given rate. `flags' indicates whether short preamble is in use or not.
   1403  */
   1404 static uint16_t
   1405 rt2661_txtime(int len, int rate, uint32_t flags)
   1406 {
   1407 	uint16_t txtime;
   1408 
   1409 	if (RAL_RATE_IS_OFDM(rate)) {
   1410 		/* IEEE Std 802.11g-2003, pp. 44 */
   1411 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
   1412 		txtime = 16 + 4 + 4 * txtime + 6;
   1413 	} else {
   1414 		/* IEEE Std 802.11b-1999, pp. 28 */
   1415 		txtime = (16 * len + rate - 1) / rate;
   1416 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
   1417 			txtime +=  72 + 24;
   1418 		else
   1419 			txtime += 144 + 48;
   1420 	}
   1421 	return txtime;
   1422 }
   1423 
   1424 static uint8_t
   1425 rt2661_plcp_signal(int rate)
   1426 {
   1427 	switch (rate) {
   1428 	/* CCK rates (returned values are device-dependent) */
   1429 	case 2:		return 0x0;
   1430 	case 4:		return 0x1;
   1431 	case 11:	return 0x2;
   1432 	case 22:	return 0x3;
   1433 
   1434 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1435 	case 12:	return 0xb;
   1436 	case 18:	return 0xf;
   1437 	case 24:	return 0xa;
   1438 	case 36:	return 0xe;
   1439 	case 48:	return 0x9;
   1440 	case 72:	return 0xd;
   1441 	case 96:	return 0x8;
   1442 	case 108:	return 0xc;
   1443 
   1444 	/* unsupported rates (should not get there) */
   1445 	default:	return 0xff;
   1446 	}
   1447 }
   1448 
   1449 static void
   1450 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
   1451     uint32_t flags, uint16_t xflags, int len, int rate,
   1452     const bus_dma_segment_t *segs, int nsegs, int ac)
   1453 {
   1454 	struct ieee80211com *ic = &sc->sc_ic;
   1455 	uint16_t plcp_length;
   1456 	int i, remainder;
   1457 
   1458 	desc->flags = htole32(flags);
   1459 	desc->flags |= htole32(len << 16);
   1460 
   1461 	desc->xflags = htole16(xflags);
   1462 	desc->xflags |= htole16(nsegs << 13);
   1463 
   1464 	desc->wme = htole16(
   1465 	    RT2661_QID(ac) |
   1466 	    RT2661_AIFSN(2) |
   1467 	    RT2661_LOGCWMIN(4) |
   1468 	    RT2661_LOGCWMAX(10));
   1469 
   1470 	/*
   1471 	 * Remember in which queue this frame was sent. This field is driver
   1472 	 * private data only. It will be made available by the NIC in STA_CSR4
   1473 	 * on Tx interrupts.
   1474 	 */
   1475 	desc->qid = ac;
   1476 
   1477 	/* setup PLCP fields */
   1478 	desc->plcp_signal  = rt2661_plcp_signal(rate);
   1479 	desc->plcp_service = 4;
   1480 
   1481 	len += IEEE80211_CRC_LEN;
   1482 	if (RAL_RATE_IS_OFDM(rate)) {
   1483 		desc->flags |= htole32(RT2661_TX_OFDM);
   1484 
   1485 		plcp_length = len & 0xfff;
   1486 		desc->plcp_length_hi = plcp_length >> 6;
   1487 		desc->plcp_length_lo = plcp_length & 0x3f;
   1488 	} else {
   1489 		plcp_length = (16 * len + rate - 1) / rate;
   1490 		if (rate == 22) {
   1491 			remainder = (16 * len) % 22;
   1492 			if (remainder != 0 && remainder < 7)
   1493 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
   1494 		}
   1495 		desc->plcp_length_hi = plcp_length >> 8;
   1496 		desc->plcp_length_lo = plcp_length & 0xff;
   1497 
   1498 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1499 			desc->plcp_signal |= 0x08;
   1500 	}
   1501 
   1502 	/* RT2x61 supports scatter with up to 5 segments */
   1503 	for (i = 0; i < nsegs; i++) {
   1504 		desc->addr[i] = htole32(segs[i].ds_addr);
   1505 		desc->len [i] = htole16(segs[i].ds_len);
   1506 	}
   1507 
   1508 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
   1509 }
   1510 
   1511 static int
   1512 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
   1513     struct ieee80211_node *ni)
   1514 {
   1515 	struct ieee80211com *ic = &sc->sc_ic;
   1516 	struct rt2661_tx_desc *desc;
   1517 	struct rt2661_tx_data *data;
   1518 	struct ieee80211_frame *wh;
   1519 	uint16_t dur;
   1520 	uint32_t flags = 0;
   1521 	int rate, error;
   1522 
   1523 	desc = &sc->mgtq.desc[sc->mgtq.cur];
   1524 	data = &sc->mgtq.data[sc->mgtq.cur];
   1525 
   1526 	/* send mgt frames at the lowest available rate */
   1527 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   1528 
   1529 	wh = mtod(m0, struct ieee80211_frame *);
   1530 
   1531 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1532 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
   1533 			m_freem(m0);
   1534 			return ENOBUFS;
   1535 		}
   1536 
   1537 		/* packet header may have moved, reset our local pointer */
   1538 		wh = mtod(m0, struct ieee80211_frame *);
   1539 	}
   1540 
   1541 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1542 	    BUS_DMA_NOWAIT);
   1543 	if (error != 0) {
   1544 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1545 		    error);
   1546 		m_freem(m0);
   1547 		return error;
   1548 	}
   1549 
   1550 	if (sc->sc_drvbpf != NULL) {
   1551 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
   1552 
   1553 		tap->wt_flags = 0;
   1554 		tap->wt_rate = rate;
   1555 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
   1556 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
   1557 
   1558 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1559 	}
   1560 
   1561 	data->m = m0;
   1562 	data->ni = ni;
   1563 
   1564 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1565 		flags |= RT2661_TX_NEED_ACK;
   1566 
   1567 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
   1568 		    sc->sifs;
   1569 		*(uint16_t *)wh->i_dur = htole16(dur);
   1570 
   1571 		/* tell hardware to set timestamp in probe responses */
   1572 		if ((wh->i_fc[0] &
   1573 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1574 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1575 			flags |= RT2661_TX_TIMESTAMP;
   1576 	}
   1577 
   1578 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
   1579 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
   1580 	    RT2661_QID_MGT);
   1581 
   1582 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1583 	    BUS_DMASYNC_PREWRITE);
   1584 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
   1585 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1586 	    BUS_DMASYNC_PREWRITE);
   1587 
   1588 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
   1589 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
   1590 
   1591 	/* kick mgt */
   1592 	sc->mgtq.queued++;
   1593 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
   1594 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
   1595 
   1596 	return 0;
   1597 }
   1598 
   1599 /*
   1600  * Build a RTS control frame.
   1601  */
   1602 static struct mbuf *
   1603 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
   1604     uint16_t dur)
   1605 {
   1606 	struct ieee80211_frame_rts *rts;
   1607 	struct mbuf *m;
   1608 
   1609 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1610 	if (m == NULL) {
   1611 		sc->sc_ic.ic_stats.is_tx_nobuf++;
   1612 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
   1613 		return NULL;
   1614 	}
   1615 
   1616 	rts = mtod(m, struct ieee80211_frame_rts *);
   1617 
   1618 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1619 	    IEEE80211_FC0_SUBTYPE_RTS;
   1620 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1621 	*(uint16_t *)rts->i_dur = htole16(dur);
   1622 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1623 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1624 
   1625 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
   1626 
   1627 	return m;
   1628 }
   1629 
   1630 static int
   1631 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
   1632     struct ieee80211_node *ni, int ac)
   1633 {
   1634 	struct ieee80211com *ic = &sc->sc_ic;
   1635 	struct rt2661_tx_ring *txq = &sc->txq[ac];
   1636 	struct rt2661_tx_desc *desc;
   1637 	struct rt2661_tx_data *data;
   1638 	struct ieee80211_frame *wh;
   1639 	struct ieee80211_key *k;
   1640 	struct mbuf *mnew;
   1641 	uint16_t dur;
   1642 	uint32_t flags = 0;
   1643 	int rate, useprot, error, tid;
   1644 
   1645 	wh = mtod(m0, struct ieee80211_frame *);
   1646 
   1647 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1648 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1649 		    rs_rates[ic->ic_fixed_rate];
   1650 	} else
   1651 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1652 	rate &= IEEE80211_RATE_VAL;
   1653 	if (rate == 0)
   1654 		rate = 2;	/* XXX should not happen */
   1655 
   1656 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1657 		k = ieee80211_crypto_encap(ic, ni, m0);
   1658 		if (k == NULL) {
   1659 			m_freem(m0);
   1660 			return ENOBUFS;
   1661 		}
   1662 
   1663 		/* packet header may have moved, reset our local pointer */
   1664 		wh = mtod(m0, struct ieee80211_frame *);
   1665 	}
   1666 
   1667 	/*
   1668 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
   1669 	 * chance to contend for the wireless medium.
   1670 	 */
   1671 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
   1672 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
   1673 		flags |= RT2661_TX_IFS_SIFS;
   1674 
   1675 	/*
   1676 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
   1677 	 * for directed frames only when the length of the MPDU is greater
   1678 	 * than the length threshold indicated by" ic_rtsthreshold.
   1679 	 *
   1680 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
   1681 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
   1682 	 * type Data or an MMPDU".
   1683 	 */
   1684 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
   1685 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
   1686 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
   1687 	if (useprot) {
   1688 		struct mbuf *m;
   1689 		int rtsrate, ackrate;
   1690 
   1691 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   1692 		ackrate = rt2661_ack_rate(ic, rate);
   1693 
   1694 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
   1695 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
   1696 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
   1697 		      3 * sc->sifs;
   1698 
   1699 		m = rt2661_get_rts(sc, wh, dur);
   1700 		if (m == NULL) {
   1701 			aprint_error_dev(sc->sc_dev, "could not allocate RTS "
   1702 			    "frame\n");
   1703 			m_freem(m0);
   1704 			return ENOBUFS;
   1705 		}
   1706 
   1707 		desc = &txq->desc[txq->cur];
   1708 		data = &txq->data[txq->cur];
   1709 
   1710 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   1711 		    BUS_DMA_NOWAIT);
   1712 		if (error != 0) {
   1713 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1714 			m_freem(m);
   1715 			m_freem(m0);
   1716 			return error;
   1717 		}
   1718 
   1719 		/* avoid multiple free() of the same node for each fragment */
   1720 		ieee80211_ref_node(ni);
   1721 
   1722 		data->m = m;
   1723 		data->ni = ni;
   1724 
   1725 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
   1726 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
   1727 		    data->map->dm_segs, data->map->dm_nsegs, ac);
   1728 
   1729 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1730 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1731 		bus_dmamap_sync(sc->sc_dmat, txq->map,
   1732 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1733 		    BUS_DMASYNC_PREWRITE);
   1734 
   1735 		txq->queued++;
   1736 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
   1737 
   1738 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
   1739 	}
   1740 
   1741 	data = &txq->data[txq->cur];
   1742 	desc = &txq->desc[txq->cur];
   1743 
   1744 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1745 	    BUS_DMA_NOWAIT);
   1746 	if (error != 0 && error != EFBIG) {
   1747 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1748 		    error);
   1749 		m_freem(m0);
   1750 		return error;
   1751 	}
   1752 	if (error != 0) {
   1753 		/* too many fragments, linearize */
   1754 
   1755 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1756 		if (mnew == NULL) {
   1757 			m_freem(m0);
   1758 			return ENOMEM;
   1759 		}
   1760 
   1761 		M_COPY_PKTHDR(mnew, m0);
   1762 		if (m0->m_pkthdr.len > MHLEN) {
   1763 			MCLGET(mnew, M_DONTWAIT);
   1764 			if (!(mnew->m_flags & M_EXT)) {
   1765 				m_freem(m0);
   1766 				m_freem(mnew);
   1767 				return ENOMEM;
   1768 			}
   1769 		}
   1770 
   1771 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1772 		m_freem(m0);
   1773 		mnew->m_len = mnew->m_pkthdr.len;
   1774 		m0 = mnew;
   1775 
   1776 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1777 		    BUS_DMA_NOWAIT);
   1778 		if (error != 0) {
   1779 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1780 			m_freem(m0);
   1781 			return error;
   1782 		}
   1783 
   1784 		/* packet header have moved, reset our local pointer */
   1785 		wh = mtod(m0, struct ieee80211_frame *);
   1786 	}
   1787 
   1788 	if (sc->sc_drvbpf != NULL) {
   1789 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
   1790 
   1791 		tap->wt_flags = 0;
   1792 		tap->wt_rate = rate;
   1793 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
   1794 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
   1795 
   1796 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
   1797 	}
   1798 
   1799 	data->m = m0;
   1800 	data->ni = ni;
   1801 
   1802 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1803 		flags |= RT2661_TX_NEED_ACK;
   1804 
   1805 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
   1806 		    ic->ic_flags) + sc->sifs;
   1807 		*(uint16_t *)wh->i_dur = htole16(dur);
   1808 	}
   1809 
   1810 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
   1811 	    data->map->dm_segs, data->map->dm_nsegs, ac);
   1812 
   1813 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1814 	    BUS_DMASYNC_PREWRITE);
   1815 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
   1816 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1817 
   1818 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
   1819 	    m0->m_pkthdr.len, txq->cur, rate));
   1820 
   1821 	/* kick Tx */
   1822 	txq->queued++;
   1823 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
   1824 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
   1825 
   1826 	return 0;
   1827 }
   1828 
   1829 static void
   1830 rt2661_start(struct ifnet *ifp)
   1831 {
   1832 	struct rt2661_softc *sc = ifp->if_softc;
   1833 	struct ieee80211com *ic = &sc->sc_ic;
   1834 	struct mbuf *m0;
   1835 	struct ether_header *eh;
   1836 	struct ieee80211_node *ni = NULL;
   1837 
   1838 	/*
   1839 	 * net80211 may still try to send management frames even if the
   1840 	 * IFF_RUNNING flag is not set...
   1841 	 */
   1842 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1843 		return;
   1844 
   1845 	for (;;) {
   1846 		IF_POLL(&ic->ic_mgtq, m0);
   1847 		if (m0 != NULL) {
   1848 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
   1849 				ifp->if_flags |= IFF_OACTIVE;
   1850 				break;
   1851 			}
   1852 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1853 			if (m0 == NULL)
   1854 				break;
   1855 
   1856 			ni = M_GETCTX(m0, struct ieee80211_node *);
   1857 			M_CLEARCTX(m0);
   1858 			bpf_mtap3(ic->ic_rawbpf, m0);
   1859 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
   1860 				break;
   1861 
   1862 		} else {
   1863 			IF_POLL(&ifp->if_snd, m0);
   1864 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
   1865 				break;
   1866 
   1867 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
   1868 				/* there is no place left in this ring */
   1869 				ifp->if_flags |= IFF_OACTIVE;
   1870 				break;
   1871 			}
   1872 
   1873 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1874 
   1875 			if (m0->m_len < sizeof (struct ether_header) &&
   1876 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
   1877 				continue;
   1878 
   1879 			eh = mtod(m0, struct ether_header *);
   1880 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1881 			if (ni == NULL) {
   1882 				m_freem(m0);
   1883 				ifp->if_oerrors++;
   1884 				continue;
   1885 			}
   1886 
   1887 			bpf_mtap3(ifp->if_bpf, m0);
   1888 			m0 = ieee80211_encap(ic, m0, ni);
   1889 			if (m0 == NULL) {
   1890 				ieee80211_free_node(ni);
   1891 				ifp->if_oerrors++;
   1892 				continue;
   1893 			}
   1894 			bpf_mtap3(ic->ic_rawbpf, m0);
   1895 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
   1896 				if (ni != NULL)
   1897 					ieee80211_free_node(ni);
   1898 				ifp->if_oerrors++;
   1899 				break;
   1900 			}
   1901 		}
   1902 
   1903 		sc->sc_tx_timer = 5;
   1904 		ifp->if_timer = 1;
   1905 	}
   1906 }
   1907 
   1908 static void
   1909 rt2661_watchdog(struct ifnet *ifp)
   1910 {
   1911 	struct rt2661_softc *sc = ifp->if_softc;
   1912 
   1913 	ifp->if_timer = 0;
   1914 
   1915 	if (sc->sc_tx_timer > 0) {
   1916 		if (--sc->sc_tx_timer == 0) {
   1917 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   1918 			rt2661_init(ifp);
   1919 			ifp->if_oerrors++;
   1920 			return;
   1921 		}
   1922 		ifp->if_timer = 1;
   1923 	}
   1924 
   1925 	ieee80211_watchdog(&sc->sc_ic);
   1926 }
   1927 
   1928 /*
   1929  * This function allows for fast channel switching in monitor mode (used by
   1930  * kismet). In IBSS mode, we must explicitly reset the interface to
   1931  * generate a new beacon frame.
   1932  */
   1933 static int
   1934 rt2661_reset(struct ifnet *ifp)
   1935 {
   1936 	struct rt2661_softc *sc = ifp->if_softc;
   1937 	struct ieee80211com *ic = &sc->sc_ic;
   1938 
   1939 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1940 		return ENETRESET;
   1941 
   1942 	rt2661_set_chan(sc, ic->ic_curchan);
   1943 
   1944 	return 0;
   1945 }
   1946 
   1947 static int
   1948 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1949 {
   1950 	struct rt2661_softc *sc = ifp->if_softc;
   1951 	struct ieee80211com *ic = &sc->sc_ic;
   1952 	int s, error = 0;
   1953 
   1954 	s = splnet();
   1955 
   1956 	switch (cmd) {
   1957 	case SIOCSIFFLAGS:
   1958 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1959 			break;
   1960 		if (ifp->if_flags & IFF_UP) {
   1961 			if (ifp->if_flags & IFF_RUNNING)
   1962 				rt2661_update_promisc(sc);
   1963 			else
   1964 				rt2661_init(ifp);
   1965 		} else {
   1966 			if (ifp->if_flags & IFF_RUNNING)
   1967 				rt2661_stop(ifp, 1);
   1968 		}
   1969 		break;
   1970 
   1971 	case SIOCADDMULTI:
   1972 	case SIOCDELMULTI:
   1973 		/* XXX no h/w multicast filter? --dyoung */
   1974 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
   1975 			error = 0;
   1976 		break;
   1977 
   1978 	case SIOCS80211CHANNEL:
   1979 		/*
   1980 		 * This allows for fast channel switching in monitor mode
   1981 		 * (used by kismet). In IBSS mode, we must explicitly reset
   1982 		 * the interface to generate a new beacon frame.
   1983 		 */
   1984 		error = ieee80211_ioctl(ic, cmd, data);
   1985 		if (error == ENETRESET &&
   1986 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
   1987 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1988 			     (IFF_UP | IFF_RUNNING))
   1989 				rt2661_set_chan(sc, ic->ic_ibss_chan);
   1990 			error = 0;
   1991 		}
   1992 		break;
   1993 
   1994 	default:
   1995 		error = ieee80211_ioctl(ic, cmd, data);
   1996 
   1997 	}
   1998 
   1999 	if (error == ENETRESET) {
   2000 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   2001 		    (IFF_UP | IFF_RUNNING))
   2002 			rt2661_init(ifp);
   2003 		error = 0;
   2004 	}
   2005 
   2006 	splx(s);
   2007 
   2008 	return error;
   2009 }
   2010 
   2011 static void
   2012 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
   2013 {
   2014 	uint32_t tmp;
   2015 	int ntries;
   2016 
   2017 	for (ntries = 0; ntries < 100; ntries++) {
   2018 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
   2019 			break;
   2020 		DELAY(1);
   2021 	}
   2022 	if (ntries == 100) {
   2023 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
   2024 		return;
   2025 	}
   2026 
   2027 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
   2028 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
   2029 
   2030 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
   2031 }
   2032 
   2033 static uint8_t
   2034 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
   2035 {
   2036 	uint32_t val;
   2037 	int ntries;
   2038 
   2039 	for (ntries = 0; ntries < 100; ntries++) {
   2040 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
   2041 			break;
   2042 		DELAY(1);
   2043 	}
   2044 	if (ntries == 100) {
   2045 		aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
   2046 		return 0;
   2047 	}
   2048 
   2049 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
   2050 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
   2051 
   2052 	for (ntries = 0; ntries < 100; ntries++) {
   2053 		val = RAL_READ(sc, RT2661_PHY_CSR3);
   2054 		if (!(val & RT2661_BBP_BUSY))
   2055 			return val & 0xff;
   2056 		DELAY(1);
   2057 	}
   2058 
   2059 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
   2060 	return 0;
   2061 }
   2062 
   2063 static void
   2064 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
   2065 {
   2066 	uint32_t tmp;
   2067 	int ntries;
   2068 
   2069 	for (ntries = 0; ntries < 100; ntries++) {
   2070 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
   2071 			break;
   2072 		DELAY(1);
   2073 	}
   2074 	if (ntries == 100) {
   2075 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
   2076 		return;
   2077 	}
   2078 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
   2079 	    (reg & 3);
   2080 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
   2081 
   2082 	/* remember last written value in sc */
   2083 	sc->rf_regs[reg] = val;
   2084 
   2085 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
   2086 }
   2087 
   2088 static int
   2089 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
   2090 {
   2091 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
   2092 		return EIO;	/* there is already a command pending */
   2093 
   2094 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
   2095 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
   2096 
   2097 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
   2098 
   2099 	return 0;
   2100 }
   2101 
   2102 static void
   2103 rt2661_select_antenna(struct rt2661_softc *sc)
   2104 {
   2105 	uint8_t bbp4, bbp77;
   2106 	uint32_t tmp;
   2107 
   2108 	bbp4  = rt2661_bbp_read(sc,  4);
   2109 	bbp77 = rt2661_bbp_read(sc, 77);
   2110 
   2111 	/* TBD */
   2112 
   2113 	/* make sure Rx is disabled before switching antenna */
   2114 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2115 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
   2116 
   2117 	rt2661_bbp_write(sc,  4, bbp4);
   2118 	rt2661_bbp_write(sc, 77, bbp77);
   2119 
   2120 	/* restore Rx filter */
   2121 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2122 }
   2123 
   2124 /*
   2125  * Enable multi-rate retries for frames sent at OFDM rates.
   2126  * In 802.11b/g mode, allow fallback to CCK rates.
   2127  */
   2128 static void
   2129 rt2661_enable_mrr(struct rt2661_softc *sc)
   2130 {
   2131 	struct ieee80211com *ic = &sc->sc_ic;
   2132 	uint32_t tmp;
   2133 
   2134 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
   2135 
   2136 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
   2137 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
   2138 		tmp |= RT2661_MRR_CCK_FALLBACK;
   2139 	tmp |= RT2661_MRR_ENABLED;
   2140 
   2141 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
   2142 }
   2143 
   2144 static void
   2145 rt2661_set_txpreamble(struct rt2661_softc *sc)
   2146 {
   2147 	uint32_t tmp;
   2148 
   2149 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
   2150 
   2151 	tmp &= ~RT2661_SHORT_PREAMBLE;
   2152 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   2153 		tmp |= RT2661_SHORT_PREAMBLE;
   2154 
   2155 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
   2156 }
   2157 
   2158 static void
   2159 rt2661_set_basicrates(struct rt2661_softc *sc,
   2160     const struct ieee80211_rateset *rs)
   2161 {
   2162 #define RV(r)	((r) & IEEE80211_RATE_VAL)
   2163 	uint32_t mask = 0;
   2164 	uint8_t rate;
   2165 	int i, j;
   2166 
   2167 	for (i = 0; i < rs->rs_nrates; i++) {
   2168 		rate = rs->rs_rates[i];
   2169 
   2170 		if (!(rate & IEEE80211_RATE_BASIC))
   2171 			continue;
   2172 
   2173 		/*
   2174 		 * Find h/w rate index.  We know it exists because the rate
   2175 		 * set has already been negotiated.
   2176 		 */
   2177 		for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
   2178 
   2179 		mask |= 1 << j;
   2180 	}
   2181 
   2182 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
   2183 
   2184 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
   2185 #undef RV
   2186 }
   2187 
   2188 /*
   2189  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   2190  * driver.
   2191  */
   2192 static void
   2193 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
   2194 {
   2195 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   2196 	uint32_t tmp;
   2197 
   2198 	/* update all BBP registers that depend on the band */
   2199 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   2200 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   2201 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2202 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   2203 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   2204 	}
   2205 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   2206 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   2207 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   2208 	}
   2209 
   2210 	sc->bbp17 = bbp17;
   2211 	rt2661_bbp_write(sc,  17, bbp17);
   2212 	rt2661_bbp_write(sc,  96, bbp96);
   2213 	rt2661_bbp_write(sc, 104, bbp104);
   2214 
   2215 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   2216 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   2217 		rt2661_bbp_write(sc, 75, 0x80);
   2218 		rt2661_bbp_write(sc, 86, 0x80);
   2219 		rt2661_bbp_write(sc, 88, 0x80);
   2220 	}
   2221 
   2222 	rt2661_bbp_write(sc, 35, bbp35);
   2223 	rt2661_bbp_write(sc, 97, bbp97);
   2224 	rt2661_bbp_write(sc, 98, bbp98);
   2225 
   2226 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
   2227 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
   2228 	if (IEEE80211_IS_CHAN_2GHZ(c))
   2229 		tmp |= RT2661_PA_PE_2GHZ;
   2230 	else
   2231 		tmp |= RT2661_PA_PE_5GHZ;
   2232 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
   2233 
   2234 	/* 802.11a uses a 16 microseconds short interframe space */
   2235 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   2236 }
   2237 
   2238 static void
   2239 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
   2240 {
   2241 	struct ieee80211com *ic = &sc->sc_ic;
   2242 	const struct rfprog *rfprog;
   2243 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
   2244 	int8_t power;
   2245 	u_int i, chan;
   2246 
   2247 	chan = ieee80211_chan2ieee(ic, c);
   2248 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   2249 		return;
   2250 
   2251 	/* select the appropriate RF settings based on what EEPROM says */
   2252 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
   2253 
   2254 	/* find the settings for this channel (we know it exists) */
   2255 	for (i = 0; rfprog[i].chan != chan; i++);
   2256 
   2257 	power = sc->txpow[i];
   2258 	if (power < 0) {
   2259 		bbp94 += power;
   2260 		power = 0;
   2261 	} else if (power > 31) {
   2262 		bbp94 += power - 31;
   2263 		power = 31;
   2264 	}
   2265 
   2266 	/*
   2267 	 * If we've yet to select a channel, or we are switching from the
   2268 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
   2269 	 * be reprogrammed.
   2270 	 */
   2271 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
   2272 		rt2661_select_band(sc, c);
   2273 		rt2661_select_antenna(sc);
   2274 	}
   2275 	sc->sc_curchan = c;
   2276 
   2277 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
   2278 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
   2279 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
   2280 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
   2281 
   2282 	DELAY(200);
   2283 
   2284 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
   2285 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
   2286 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
   2287 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
   2288 
   2289 	DELAY(200);
   2290 
   2291 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
   2292 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
   2293 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
   2294 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
   2295 
   2296 	/* enable smart mode for MIMO-capable RFs */
   2297 	bbp3 = rt2661_bbp_read(sc, 3);
   2298 
   2299 	bbp3 &= ~RT2661_SMART_MODE;
   2300 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
   2301 		bbp3 |= RT2661_SMART_MODE;
   2302 
   2303 	rt2661_bbp_write(sc, 3, bbp3);
   2304 
   2305 	if (bbp94 != RT2661_BBPR94_DEFAULT)
   2306 		rt2661_bbp_write(sc, 94, bbp94);
   2307 
   2308 	/* 5GHz radio needs a 1ms delay here */
   2309 	if (IEEE80211_IS_CHAN_5GHZ(c))
   2310 		DELAY(1000);
   2311 }
   2312 
   2313 static void
   2314 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
   2315 {
   2316 	uint32_t tmp;
   2317 
   2318 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   2319 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
   2320 
   2321 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
   2322 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
   2323 }
   2324 
   2325 static void
   2326 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
   2327 {
   2328 	uint32_t tmp;
   2329 
   2330 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   2331 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
   2332 
   2333 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   2334 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
   2335 }
   2336 
   2337 static void
   2338 rt2661_update_promisc(struct rt2661_softc *sc)
   2339 {
   2340 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2341 	uint32_t tmp;
   2342 
   2343 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2344 
   2345 	tmp &= ~RT2661_DROP_NOT_TO_ME;
   2346 	if (!(ifp->if_flags & IFF_PROMISC))
   2347 		tmp |= RT2661_DROP_NOT_TO_ME;
   2348 
   2349 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2350 
   2351 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   2352 	    "entering" : "leaving"));
   2353 }
   2354 
   2355 #if 0
   2356 /*
   2357  * Update QoS (802.11e) settings for each h/w Tx ring.
   2358  */
   2359 static int
   2360 rt2661_wme_update(struct ieee80211com *ic)
   2361 {
   2362 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
   2363 	const struct wmeParams *wmep;
   2364 
   2365 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
   2366 
   2367 	/* XXX: not sure about shifts. */
   2368 	/* XXX: the reference driver plays with AC_VI settings too. */
   2369 
   2370 	/* update TxOp */
   2371 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
   2372 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
   2373 	    wmep[WME_AC_BK].wmep_txopLimit);
   2374 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
   2375 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
   2376 	    wmep[WME_AC_VO].wmep_txopLimit);
   2377 
   2378 	/* update CWmin */
   2379 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
   2380 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
   2381 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
   2382 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
   2383 	    wmep[WME_AC_VO].wmep_logcwmin);
   2384 
   2385 	/* update CWmax */
   2386 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
   2387 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
   2388 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
   2389 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
   2390 	    wmep[WME_AC_VO].wmep_logcwmax);
   2391 
   2392 	/* update Aifsn */
   2393 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
   2394 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
   2395 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
   2396 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
   2397 	    wmep[WME_AC_VO].wmep_aifsn);
   2398 
   2399 	return 0;
   2400 }
   2401 #endif
   2402 
   2403 static void
   2404 rt2661_updateslot(struct ifnet *ifp)
   2405 {
   2406 	struct rt2661_softc *sc = ifp->if_softc;
   2407 	struct ieee80211com *ic = &sc->sc_ic;
   2408 
   2409 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2410 		/*
   2411 		 * In HostAP mode, we defer setting of new slot time until
   2412 		 * updated ERP Information Element has propagated to all
   2413 		 * associated STAs.
   2414 		 */
   2415 		sc->sc_flags |= RT2661_UPDATE_SLOT;
   2416 	} else
   2417 		rt2661_set_slottime(sc);
   2418 }
   2419 
   2420 static void
   2421 rt2661_set_slottime(struct rt2661_softc *sc)
   2422 {
   2423 	struct ieee80211com *ic = &sc->sc_ic;
   2424 	uint8_t slottime;
   2425 	uint32_t tmp;
   2426 
   2427 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   2428 
   2429 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
   2430 	tmp = (tmp & ~0xff) | slottime;
   2431 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
   2432 
   2433 	DPRINTF(("setting slot time to %uus\n", slottime));
   2434 }
   2435 
   2436 static const char *
   2437 rt2661_get_rf(int rev)
   2438 {
   2439 	switch (rev) {
   2440 	case RT2661_RF_5225:	return "RT5225";
   2441 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
   2442 	case RT2661_RF_2527:	return "RT2527";
   2443 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
   2444 	default:		return "unknown";
   2445 	}
   2446 }
   2447 
   2448 static void
   2449 rt2661_read_eeprom(struct rt2661_softc *sc)
   2450 {
   2451 	struct ieee80211com *ic = &sc->sc_ic;
   2452 	uint16_t val;
   2453 	int i;
   2454 
   2455 	/* read MAC address */
   2456 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
   2457 	ic->ic_myaddr[0] = val & 0xff;
   2458 	ic->ic_myaddr[1] = val >> 8;
   2459 
   2460 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
   2461 	ic->ic_myaddr[2] = val & 0xff;
   2462 	ic->ic_myaddr[3] = val >> 8;
   2463 
   2464 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
   2465 	ic->ic_myaddr[4] = val & 0xff;
   2466 	ic->ic_myaddr[5] = val >> 8;
   2467 
   2468 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
   2469 	/* XXX: test if different from 0xffff? */
   2470 	sc->rf_rev   = (val >> 11) & 0x1f;
   2471 	sc->hw_radio = (val >> 10) & 0x1;
   2472 	sc->rx_ant   = (val >> 4)  & 0x3;
   2473 	sc->tx_ant   = (val >> 2)  & 0x3;
   2474 	sc->nb_ant   = val & 0x3;
   2475 
   2476 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   2477 
   2478 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
   2479 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   2480 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   2481 
   2482 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   2483 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   2484 
   2485 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
   2486 	if ((val & 0xff) != 0xff)
   2487 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   2488 
   2489 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
   2490 	if ((val & 0xff) != 0xff)
   2491 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   2492 
   2493 	/* adjust RSSI correction for external low-noise amplifier */
   2494 	if (sc->ext_2ghz_lna)
   2495 		sc->rssi_2ghz_corr -= 14;
   2496 	if (sc->ext_5ghz_lna)
   2497 		sc->rssi_5ghz_corr -= 14;
   2498 
   2499 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   2500 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   2501 
   2502 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
   2503 	if ((val >> 8) != 0xff)
   2504 		sc->rfprog = (val >> 8) & 0x3;
   2505 	if ((val & 0xff) != 0xff)
   2506 		sc->rffreq = val & 0xff;
   2507 
   2508 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
   2509 
   2510 	/* read Tx power for all a/b/g channels */
   2511 	for (i = 0; i < 19; i++) {
   2512 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
   2513 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
   2514 		DPRINTF(("Channel=%d Tx power=%d\n",
   2515 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
   2516 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
   2517 		DPRINTF(("Channel=%d Tx power=%d\n",
   2518 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
   2519 	}
   2520 
   2521 	/* read vendor-specific BBP values */
   2522 	for (i = 0; i < 16; i++) {
   2523 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
   2524 		if (val == 0 || val == 0xffff)
   2525 			continue;	/* skip invalid entries */
   2526 		sc->bbp_prom[i].reg = val >> 8;
   2527 		sc->bbp_prom[i].val = val & 0xff;
   2528 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   2529 		    sc->bbp_prom[i].val));
   2530 	}
   2531 }
   2532 
   2533 static int
   2534 rt2661_bbp_init(struct rt2661_softc *sc)
   2535 {
   2536 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2537 	int i, ntries;
   2538 	uint8_t val;
   2539 
   2540 	/* wait for BBP to be ready */
   2541 	for (ntries = 0; ntries < 100; ntries++) {
   2542 		val = rt2661_bbp_read(sc, 0);
   2543 		if (val != 0 && val != 0xff)
   2544 			break;
   2545 		DELAY(100);
   2546 	}
   2547 	if (ntries == 100) {
   2548 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
   2549 		return EIO;
   2550 	}
   2551 
   2552 	/* initialize BBP registers to default values */
   2553 	for (i = 0; i < N(rt2661_def_bbp); i++) {
   2554 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
   2555 		    rt2661_def_bbp[i].val);
   2556 	}
   2557 
   2558 	/* write vendor-specific BBP values (from EEPROM) */
   2559 	for (i = 0; i < 16; i++) {
   2560 		if (sc->bbp_prom[i].reg == 0)
   2561 			continue;
   2562 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   2563 	}
   2564 
   2565 	return 0;
   2566 #undef N
   2567 }
   2568 
   2569 static int
   2570 rt2661_init(struct ifnet *ifp)
   2571 {
   2572 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2573 	struct rt2661_softc *sc = ifp->if_softc;
   2574 	struct ieee80211com *ic = &sc->sc_ic;
   2575 	const char *name = NULL;	/* make lint happy */
   2576 	uint8_t *ucode;
   2577 	size_t size;
   2578 	uint32_t tmp, star[3];
   2579 	int i, ntries;
   2580 	firmware_handle_t fh;
   2581 
   2582 	/* for CardBus, power on the socket */
   2583 	if (!(sc->sc_flags & RT2661_ENABLED)) {
   2584 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
   2585 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
   2586 			return EIO;
   2587 		}
   2588 		sc->sc_flags |= RT2661_ENABLED;
   2589 	}
   2590 
   2591 	rt2661_stop(ifp, 0);
   2592 
   2593 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
   2594 		switch (sc->sc_id) {
   2595 		case PCI_PRODUCT_RALINK_RT2561:
   2596 			name = "ral-rt2561";
   2597 			break;
   2598 		case PCI_PRODUCT_RALINK_RT2561S:
   2599 			name = "ral-rt2561s";
   2600 			break;
   2601 		case PCI_PRODUCT_RALINK_RT2661:
   2602 			name = "ral-rt2661";
   2603 			break;
   2604 		}
   2605 
   2606 		if (firmware_open("ral", name, &fh) != 0) {
   2607 			aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
   2608 			rt2661_stop(ifp, 1);
   2609 			return EIO;
   2610 		}
   2611 
   2612 		size = firmware_get_size(fh);
   2613 		if (!(ucode = firmware_malloc(size))) {
   2614 			aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
   2615 			firmware_close(fh);
   2616 			rt2661_stop(ifp, 1);
   2617 			return ENOMEM;
   2618 		}
   2619 
   2620 		if (firmware_read(fh, 0, ucode, size) != 0) {
   2621 			aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
   2622 			firmware_free(ucode, size);
   2623 			firmware_close(fh);
   2624 			rt2661_stop(ifp, 1);
   2625 			return EIO;
   2626 		}
   2627 
   2628 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
   2629 			aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
   2630 			firmware_free(ucode, size);
   2631 			firmware_close(fh);
   2632 			rt2661_stop(ifp, 1);
   2633 			return EIO;
   2634 		}
   2635 
   2636 		firmware_free(ucode, size);
   2637 		firmware_close(fh);
   2638 		sc->sc_flags |= RT2661_FWLOADED;
   2639 	}
   2640 
   2641 	/* initialize Tx rings */
   2642 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
   2643 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
   2644 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
   2645 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
   2646 
   2647 	/* initialize Mgt ring */
   2648 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
   2649 
   2650 	/* initialize Rx ring */
   2651 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
   2652 
   2653 	/* initialize Tx rings sizes */
   2654 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
   2655 	    RT2661_TX_RING_COUNT << 24 |
   2656 	    RT2661_TX_RING_COUNT << 16 |
   2657 	    RT2661_TX_RING_COUNT <<  8 |
   2658 	    RT2661_TX_RING_COUNT);
   2659 
   2660 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
   2661 	    RT2661_TX_DESC_WSIZE << 16 |
   2662 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
   2663 	    RT2661_MGT_RING_COUNT);
   2664 
   2665 	/* initialize Rx rings */
   2666 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
   2667 	    RT2661_RX_DESC_BACK  << 16 |
   2668 	    RT2661_RX_DESC_WSIZE <<  8 |
   2669 	    RT2661_RX_RING_COUNT);
   2670 
   2671 	/* XXX: some magic here */
   2672 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
   2673 
   2674 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
   2675 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
   2676 
   2677 	/* load base address of Rx ring */
   2678 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
   2679 
   2680 	/* initialize MAC registers to default values */
   2681 	for (i = 0; i < N(rt2661_def_mac); i++)
   2682 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
   2683 
   2684 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2685 	rt2661_set_macaddr(sc, ic->ic_myaddr);
   2686 
   2687 	/* set host ready */
   2688 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
   2689 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
   2690 
   2691 	/* wait for BBP/RF to wakeup */
   2692 	for (ntries = 0; ntries < 1000; ntries++) {
   2693 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
   2694 			break;
   2695 		DELAY(1000);
   2696 	}
   2697 	if (ntries == 1000) {
   2698 		printf("timeout waiting for BBP/RF to wakeup\n");
   2699 		rt2661_stop(ifp, 1);
   2700 		return EIO;
   2701 	}
   2702 
   2703 	if (rt2661_bbp_init(sc) != 0) {
   2704 		rt2661_stop(ifp, 1);
   2705 		return EIO;
   2706 	}
   2707 
   2708 	/* select default channel */
   2709 	sc->sc_curchan = ic->ic_curchan;
   2710 	rt2661_select_band(sc, sc->sc_curchan);
   2711 	rt2661_select_antenna(sc);
   2712 	rt2661_set_chan(sc, sc->sc_curchan);
   2713 
   2714 	/* update Rx filter */
   2715 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
   2716 
   2717 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
   2718 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2719 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
   2720 		       RT2661_DROP_ACKCTS;
   2721 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2722 			tmp |= RT2661_DROP_TODS;
   2723 		if (!(ifp->if_flags & IFF_PROMISC))
   2724 			tmp |= RT2661_DROP_NOT_TO_ME;
   2725 	}
   2726 
   2727 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2728 
   2729 	/* clear STA registers */
   2730 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
   2731 
   2732 	/* initialize ASIC */
   2733 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
   2734 
   2735 	/* clear any pending interrupt */
   2736 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
   2737 
   2738 	/* enable interrupts */
   2739 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
   2740 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
   2741 
   2742 	/* kick Rx */
   2743 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
   2744 
   2745 	ifp->if_flags &= ~IFF_OACTIVE;
   2746 	ifp->if_flags |= IFF_RUNNING;
   2747 
   2748 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2749 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   2750 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2751 	} else
   2752 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2753 
   2754 	return 0;
   2755 #undef N
   2756 }
   2757 
   2758 static void
   2759 rt2661_stop(struct ifnet *ifp, int disable)
   2760 {
   2761 	struct rt2661_softc *sc = ifp->if_softc;
   2762 	struct ieee80211com *ic = &sc->sc_ic;
   2763 	uint32_t tmp;
   2764 
   2765 	sc->sc_tx_timer = 0;
   2766 	ifp->if_timer = 0;
   2767 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2768 
   2769 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2770 
   2771 	/* abort Tx (for all 5 Tx rings) */
   2772 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
   2773 
   2774 	/* disable Rx (value remains after reset!) */
   2775 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2776 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
   2777 
   2778 	/* reset ASIC */
   2779 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
   2780 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
   2781 
   2782 	/* disable interrupts */
   2783 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
   2784 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
   2785 
   2786 	/* clear any pending interrupt */
   2787 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
   2788 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
   2789 
   2790 	/* reset Tx and Rx rings */
   2791 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
   2792 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
   2793 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
   2794 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
   2795 	rt2661_reset_tx_ring(sc, &sc->mgtq);
   2796 	rt2661_reset_rx_ring(sc, &sc->rxq);
   2797 
   2798 	/* for CardBus, power down the socket */
   2799 	if (disable && sc->sc_disable != NULL) {
   2800 		if (sc->sc_flags & RT2661_ENABLED) {
   2801 			(*sc->sc_disable)(sc);
   2802 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
   2803 		}
   2804 	}
   2805 }
   2806 
   2807 static int
   2808 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
   2809 {
   2810 	int ntries;
   2811 
   2812 	/* reset 8051 */
   2813 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
   2814 
   2815 	/* cancel any pending Host to MCU command */
   2816 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
   2817 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
   2818 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
   2819 
   2820 	/* write 8051's microcode */
   2821 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
   2822 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
   2823 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
   2824 
   2825 	/* kick 8051's ass */
   2826 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
   2827 
   2828 	/* wait for 8051 to initialize */
   2829 	for (ntries = 0; ntries < 500; ntries++) {
   2830 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
   2831 			break;
   2832 		DELAY(100);
   2833 	}
   2834 	if (ntries == 500) {
   2835 		printf("timeout waiting for MCU to initialize\n");
   2836 		return EIO;
   2837 	}
   2838 	return 0;
   2839 }
   2840 
   2841 /*
   2842  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
   2843  * false CCA count.  This function is called periodically (every seconds) when
   2844  * in the RUN state.  Values taken from the reference driver.
   2845  */
   2846 static void
   2847 rt2661_rx_tune(struct rt2661_softc *sc)
   2848 {
   2849 	uint8_t bbp17;
   2850 	uint16_t cca;
   2851 	int lo, hi, dbm;
   2852 
   2853 	/*
   2854 	 * Tuning range depends on operating band and on the presence of an
   2855 	 * external low-noise amplifier.
   2856 	 */
   2857 	lo = 0x20;
   2858 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
   2859 		lo += 0x08;
   2860 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
   2861 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
   2862 		lo += 0x10;
   2863 	hi = lo + 0x20;
   2864 
   2865 	dbm = sc->avg_rssi;
   2866 	/* retrieve false CCA count since last call (clear on read) */
   2867 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
   2868 
   2869 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
   2870 
   2871 	if (dbm < -74) {
   2872 		/* very bad RSSI, tune using false CCA count */
   2873 		bbp17 = sc->bbp17; /* current value */
   2874 
   2875 		hi -= 2 * (-74 - dbm);
   2876 		if (hi < lo)
   2877 			hi = lo;
   2878 
   2879 		if (bbp17 > hi)
   2880 			bbp17 = hi;
   2881 		else if (cca > 512)
   2882 			bbp17 = min(bbp17 + 1, hi);
   2883 		else if (cca < 100)
   2884 			bbp17 = max(bbp17 - 1, lo);
   2885 
   2886 	} else if (dbm < -66) {
   2887 		bbp17 = lo + 0x08;
   2888 	} else if (dbm < -58) {
   2889 		bbp17 = lo + 0x10;
   2890 	} else if (dbm < -35) {
   2891 		bbp17 = hi;
   2892 	} else {	/* very good RSSI >= -35dBm */
   2893 		bbp17 = 0x60;	/* very low sensitivity */
   2894 	}
   2895 
   2896 	if (bbp17 != sc->bbp17) {
   2897 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
   2898 		rt2661_bbp_write(sc, 17, bbp17);
   2899 		sc->bbp17 = bbp17;
   2900 	}
   2901 }
   2902 
   2903 #ifdef notyet
   2904 /*
   2905  * Enter/Leave radar detection mode.
   2906  * This is for 802.11h additional regulatory domains.
   2907  */
   2908 static void
   2909 rt2661_radar_start(struct rt2661_softc *sc)
   2910 {
   2911 	uint32_t tmp;
   2912 
   2913 	/* disable Rx */
   2914 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2915 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
   2916 
   2917 	rt2661_bbp_write(sc, 82, 0x20);
   2918 	rt2661_bbp_write(sc, 83, 0x00);
   2919 	rt2661_bbp_write(sc, 84, 0x40);
   2920 
   2921 	/* save current BBP registers values */
   2922 	sc->bbp18 = rt2661_bbp_read(sc, 18);
   2923 	sc->bbp21 = rt2661_bbp_read(sc, 21);
   2924 	sc->bbp22 = rt2661_bbp_read(sc, 22);
   2925 	sc->bbp16 = rt2661_bbp_read(sc, 16);
   2926 	sc->bbp17 = rt2661_bbp_read(sc, 17);
   2927 	sc->bbp64 = rt2661_bbp_read(sc, 64);
   2928 
   2929 	rt2661_bbp_write(sc, 18, 0xff);
   2930 	rt2661_bbp_write(sc, 21, 0x3f);
   2931 	rt2661_bbp_write(sc, 22, 0x3f);
   2932 	rt2661_bbp_write(sc, 16, 0xbd);
   2933 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
   2934 	rt2661_bbp_write(sc, 64, 0x21);
   2935 
   2936 	/* restore Rx filter */
   2937 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2938 }
   2939 
   2940 static int
   2941 rt2661_radar_stop(struct rt2661_softc *sc)
   2942 {
   2943 	uint8_t bbp66;
   2944 
   2945 	/* read radar detection result */
   2946 	bbp66 = rt2661_bbp_read(sc, 66);
   2947 
   2948 	/* restore BBP registers values */
   2949 	rt2661_bbp_write(sc, 16, sc->bbp16);
   2950 	rt2661_bbp_write(sc, 17, sc->bbp17);
   2951 	rt2661_bbp_write(sc, 18, sc->bbp18);
   2952 	rt2661_bbp_write(sc, 21, sc->bbp21);
   2953 	rt2661_bbp_write(sc, 22, sc->bbp22);
   2954 	rt2661_bbp_write(sc, 64, sc->bbp64);
   2955 
   2956 	return bbp66 == 1;
   2957 }
   2958 #endif
   2959 
   2960 static int
   2961 rt2661_prepare_beacon(struct rt2661_softc *sc)
   2962 {
   2963 	struct ieee80211com *ic = &sc->sc_ic;
   2964 	struct ieee80211_node *ni = ic->ic_bss;
   2965 	struct rt2661_tx_desc desc;
   2966 	struct mbuf *m0;
   2967 	struct ieee80211_beacon_offsets bo;
   2968 	int rate;
   2969 
   2970 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2971 	if (m0 == NULL) {
   2972 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2973 		return ENOBUFS;
   2974 	}
   2975 
   2976 	/* send beacons at the lowest available rate */
   2977 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   2978 
   2979 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
   2980 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
   2981 
   2982 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2983 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2984 
   2985 	/* copy beacon header and payload into NIC memory */
   2986 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
   2987 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
   2988 
   2989 	m_freem(m0);
   2990 
   2991 	/*
   2992 	 * Store offset of ERP Information Element so that we can update it
   2993 	 * dynamically when the slot time changes.
   2994 	 * XXX: this is ugly since it depends on how net80211 builds beacon
   2995 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
   2996 	 */
   2997 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   2998 		sc->erp_csr =
   2999 		    RT2661_HW_BEACON_BASE0 + 24 +
   3000 		    sizeof (struct ieee80211_frame) +
   3001 		    8 + 2 + 2 + 2 + ni->ni_esslen +
   3002 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
   3003 		    2 + 1 +
   3004 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
   3005 		    2;
   3006 	}
   3007 
   3008 	return 0;
   3009 }
   3010 
   3011 /*
   3012  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   3013  * and HostAP operating modes.
   3014  */
   3015 static void
   3016 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
   3017 {
   3018 	struct ieee80211com *ic = &sc->sc_ic;
   3019 	uint32_t tmp;
   3020 
   3021 	if (ic->ic_opmode != IEEE80211_M_STA) {
   3022 		/*
   3023 		 * Change default 16ms TBTT adjustment to 8ms.
   3024 		 * Must be done before enabling beacon generation.
   3025 		 */
   3026 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
   3027 	}
   3028 
   3029 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
   3030 
   3031 	/* set beacon interval (in 1/16ms unit) */
   3032 	tmp |= ic->ic_bss->ni_intval * 16;
   3033 
   3034 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
   3035 	if (ic->ic_opmode == IEEE80211_M_STA)
   3036 		tmp |= RT2661_TSF_MODE(1);
   3037 	else
   3038 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
   3039 
   3040 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
   3041 }
   3042 
   3043 /*
   3044  * Retrieve the "Received Signal Strength Indicator" from the raw values
   3045  * contained in Rx descriptors.  The computation depends on which band the
   3046  * frame was received.  Correction values taken from the reference driver.
   3047  */
   3048 static int
   3049 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
   3050 {
   3051 	int lna, agc, rssi;
   3052 
   3053 	lna = (raw >> 5) & 0x3;
   3054 	agc = raw & 0x1f;
   3055 
   3056 	rssi = 2 * agc;
   3057 
   3058 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
   3059 		rssi += sc->rssi_2ghz_corr;
   3060 
   3061 		if (lna == 1)
   3062 			rssi -= 64;
   3063 		else if (lna == 2)
   3064 			rssi -= 74;
   3065 		else if (lna == 3)
   3066 			rssi -= 90;
   3067 	} else {
   3068 		rssi += sc->rssi_5ghz_corr;
   3069 
   3070 		if (lna == 1)
   3071 			rssi -= 64;
   3072 		else if (lna == 2)
   3073 			rssi -= 86;
   3074 		else if (lna == 3)
   3075 			rssi -= 100;
   3076 	}
   3077 	return rssi;
   3078 }
   3079