rt2661.c revision 1.37 1 /* $NetBSD: rt2661.c,v 1.37 2018/05/01 16:18:13 maya Exp $ */
2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */
4
5 /*-
6 * Copyright (c) 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24 * http://www.ralinktech.com/
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.37 2018/05/01 16:18:13 maya Exp $");
29
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/callout.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_ether.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63
64 #include <dev/ic/rt2661reg.h>
65 #include <dev/ic/rt2661var.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/firmload.h>
72
73 #ifdef RAL_DEBUG
74 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0)
76 int rt2661_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static int rt2661_alloc_tx_ring(struct rt2661_softc *,
83 struct rt2661_tx_ring *, int);
84 static void rt2661_reset_tx_ring(struct rt2661_softc *,
85 struct rt2661_tx_ring *);
86 static void rt2661_free_tx_ring(struct rt2661_softc *,
87 struct rt2661_tx_ring *);
88 static int rt2661_alloc_rx_ring(struct rt2661_softc *,
89 struct rt2661_rx_ring *, int);
90 static void rt2661_reset_rx_ring(struct rt2661_softc *,
91 struct rt2661_rx_ring *);
92 static void rt2661_free_rx_ring(struct rt2661_softc *,
93 struct rt2661_rx_ring *);
94 static struct ieee80211_node *
95 rt2661_node_alloc(struct ieee80211_node_table *);
96 static int rt2661_media_change(struct ifnet *);
97 static void rt2661_next_scan(void *);
98 static void rt2661_iter_func(void *, struct ieee80211_node *);
99 static void rt2661_updatestats(void *);
100 static void rt2661_newassoc(struct ieee80211_node *, int);
101 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
102 int);
103 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
104 static void rt2661_tx_intr(struct rt2661_softc *);
105 static void rt2661_tx_dma_intr(struct rt2661_softc *,
106 struct rt2661_tx_ring *);
107 static void rt2661_rx_intr(struct rt2661_softc *);
108 static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 static void rt2661_mcu_wakeup(struct rt2661_softc *);
110 static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
111 int rt2661_intr(void *);
112 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
113 static int rt2661_ack_rate(struct ieee80211com *, int);
114 static uint16_t rt2661_txtime(int, int, uint32_t);
115 static uint8_t rt2661_plcp_signal(int);
116 static void rt2661_setup_tx_desc(struct rt2661_softc *,
117 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
118 const bus_dma_segment_t *, int, int);
119 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
120 struct ieee80211_node *);
121 static struct mbuf *
122 rt2661_get_rts(struct rt2661_softc *,
123 struct ieee80211_frame *, uint16_t);
124 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 struct ieee80211_node *, int);
126 static void rt2661_start(struct ifnet *);
127 static void rt2661_watchdog(struct ifnet *);
128 static int rt2661_reset(struct ifnet *);
129 static int rt2661_ioctl(struct ifnet *, u_long, void *);
130 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
131 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
132 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
133 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
134 static void rt2661_select_antenna(struct rt2661_softc *);
135 static void rt2661_enable_mrr(struct rt2661_softc *);
136 static void rt2661_set_txpreamble(struct rt2661_softc *);
137 static void rt2661_set_basicrates(struct rt2661_softc *,
138 const struct ieee80211_rateset *);
139 static void rt2661_select_band(struct rt2661_softc *,
140 struct ieee80211_channel *);
141 static void rt2661_set_chan(struct rt2661_softc *,
142 struct ieee80211_channel *);
143 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
144 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
145 static void rt2661_update_promisc(struct rt2661_softc *);
146 #if 0
147 static int rt2661_wme_update(struct ieee80211com *);
148 #endif
149
150 static void rt2661_updateslot(struct ifnet *);
151 static void rt2661_set_slottime(struct rt2661_softc *);
152 static const char *
153 rt2661_get_rf(int);
154 static void rt2661_read_eeprom(struct rt2661_softc *);
155 static int rt2661_bbp_init(struct rt2661_softc *);
156 static int rt2661_init(struct ifnet *);
157 static void rt2661_stop(struct ifnet *, int);
158 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
159 int);
160 static void rt2661_rx_tune(struct rt2661_softc *);
161 #ifdef notyet
162 static void rt2661_radar_start(struct rt2661_softc *);
163 static int rt2661_radar_stop(struct rt2661_softc *);
164 #endif
165 static int rt2661_prepare_beacon(struct rt2661_softc *);
166 static void rt2661_enable_tsf_sync(struct rt2661_softc *);
167 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
168 static void rt2661_softintr(void *);
169
170 static const struct {
171 uint32_t reg;
172 uint32_t val;
173 } rt2661_def_mac[] = {
174 RT2661_DEF_MAC
175 };
176
177 static const struct {
178 uint8_t reg;
179 uint8_t val;
180 } rt2661_def_bbp[] = {
181 RT2661_DEF_BBP
182 };
183
184 static const struct rfprog {
185 uint8_t chan;
186 uint32_t r1, r2, r3, r4;
187 } rt2661_rf5225_1[] = {
188 RT2661_RF5225_1
189 }, rt2661_rf5225_2[] = {
190 RT2661_RF5225_2
191 };
192
193 int
194 rt2661_attach(void *xsc, int id)
195 {
196 struct rt2661_softc *sc = xsc;
197 struct ieee80211com *ic = &sc->sc_ic;
198 struct ifnet *ifp = &sc->sc_if;
199 uint32_t val;
200 int error, i, ntries;
201
202 sc->sc_id = id;
203
204 sc->amrr.amrr_min_success_threshold = 1;
205 sc->amrr.amrr_max_success_threshold = 15;
206 callout_init(&sc->scan_ch, 0);
207 callout_init(&sc->amrr_ch, 0);
208
209 /* wait for NIC to initialize */
210 for (ntries = 0; ntries < 1000; ntries++) {
211 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
212 break;
213 DELAY(1000);
214 }
215 if (ntries == 1000) {
216 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
217 return EIO;
218 }
219
220 /* retrieve RF rev. no and various other things from EEPROM */
221 rt2661_read_eeprom(sc);
222 aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
223 ether_sprintf(ic->ic_myaddr));
224
225 aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
226 rt2661_get_rf(sc->rf_rev));
227
228 sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
229 if (sc->sc_soft_ih == NULL) {
230 aprint_error_dev(sc->sc_dev, "could not establish softint\n");
231 goto fail0;
232 }
233
234 /*
235 * Allocate Tx and Rx rings.
236 */
237 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
238 if (error != 0) {
239 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
240 goto fail1;
241 }
242
243 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
244 if (error != 0) {
245 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
246 goto fail2;
247 }
248
249 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
250 if (error != 0) {
251 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
252 goto fail3;
253 }
254
255 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
256 if (error != 0) {
257 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
258 goto fail4;
259 }
260
261 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
262 if (error != 0) {
263 aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
264 goto fail5;
265 }
266
267 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
268 if (error != 0) {
269 aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
270 goto fail6;
271 }
272
273 ifp->if_softc = sc;
274 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
275 ifp->if_init = rt2661_init;
276 ifp->if_stop = rt2661_stop;
277 ifp->if_ioctl = rt2661_ioctl;
278 ifp->if_start = rt2661_start;
279 ifp->if_watchdog = rt2661_watchdog;
280 IFQ_SET_READY(&ifp->if_snd);
281 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
282
283 ic->ic_ifp = ifp;
284 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
285 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
286 ic->ic_state = IEEE80211_S_INIT;
287
288 /* set device capabilities */
289 ic->ic_caps =
290 IEEE80211_C_IBSS | /* IBSS mode supported */
291 IEEE80211_C_MONITOR | /* monitor mode supported */
292 IEEE80211_C_HOSTAP | /* HostAP mode supported */
293 IEEE80211_C_TXPMGT | /* tx power management */
294 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
295 IEEE80211_C_SHSLOT | /* short slot time supported */
296 IEEE80211_C_WPA; /* 802.11i */
297
298 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
299 /* set supported .11a rates */
300 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
301
302 /* set supported .11a channels */
303 for (i = 36; i <= 64; i += 4) {
304 ic->ic_channels[i].ic_freq =
305 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
306 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
307 }
308 for (i = 100; i <= 140; i += 4) {
309 ic->ic_channels[i].ic_freq =
310 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
311 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
312 }
313 for (i = 149; i <= 165; i += 4) {
314 ic->ic_channels[i].ic_freq =
315 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 }
318 }
319
320 /* set supported .11b and .11g rates */
321 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
322 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
323
324 /* set supported .11b and .11g channels (1 through 14) */
325 for (i = 1; i <= 14; i++) {
326 ic->ic_channels[i].ic_freq =
327 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
328 ic->ic_channels[i].ic_flags =
329 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
330 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
331 }
332
333 error = if_initialize(ifp);
334 if (error != 0) {
335 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
336 error);
337 goto fail7;
338 }
339 ieee80211_ifattach(ic);
340 /* Use common softint-based if_input */
341 ifp->if_percpuq = if_percpuq_create(ifp);
342 if_register(ifp);
343
344 ic->ic_node_alloc = rt2661_node_alloc;
345 ic->ic_newassoc = rt2661_newassoc;
346 ic->ic_updateslot = rt2661_updateslot;
347 ic->ic_reset = rt2661_reset;
348
349 /* override state transition machine */
350 sc->sc_newstate = ic->ic_newstate;
351 ic->ic_newstate = rt2661_newstate;
352 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
353
354 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
355 sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
356 &sc->sc_drvbpf);
357
358 sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
359 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
360 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
361
362 sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
363 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
364 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
365
366 ieee80211_announce(ic);
367
368 if (pmf_device_register(sc->sc_dev, NULL, NULL))
369 pmf_class_network_register(sc->sc_dev, ifp);
370 else
371 aprint_error_dev(sc->sc_dev,
372 "couldn't establish power handler\n");
373
374 return 0;
375
376 fail7: rt2661_free_rx_ring(sc, &sc->rxq);
377 fail6: rt2661_free_tx_ring(sc, &sc->mgtq);
378 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]);
379 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]);
380 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]);
381 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]);
382 fail1: softint_disestablish(sc->sc_soft_ih);
383 sc->sc_soft_ih = NULL;
384 fail0: return ENXIO;
385 }
386
387 int
388 rt2661_detach(void *xsc)
389 {
390 struct rt2661_softc *sc = xsc;
391 struct ifnet *ifp = &sc->sc_if;
392
393 callout_stop(&sc->scan_ch);
394 callout_stop(&sc->amrr_ch);
395
396 pmf_device_deregister(sc->sc_dev);
397
398 ieee80211_ifdetach(&sc->sc_ic);
399 if_detach(ifp);
400
401 rt2661_free_tx_ring(sc, &sc->txq[0]);
402 rt2661_free_tx_ring(sc, &sc->txq[1]);
403 rt2661_free_tx_ring(sc, &sc->txq[2]);
404 rt2661_free_tx_ring(sc, &sc->txq[3]);
405 rt2661_free_tx_ring(sc, &sc->mgtq);
406 rt2661_free_rx_ring(sc, &sc->rxq);
407
408 if (sc->sc_soft_ih != NULL) {
409 softint_disestablish(sc->sc_soft_ih);
410 sc->sc_soft_ih = NULL;
411 }
412
413 return 0;
414 }
415
416 static int
417 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
418 int count)
419 {
420 int i, nsegs, error;
421
422 ring->count = count;
423 ring->queued = 0;
424 ring->cur = ring->next = ring->stat = 0;
425
426 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
427 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
428 if (error != 0) {
429 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
430 goto fail;
431 }
432
433 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
434 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
435 if (error != 0) {
436 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
437 goto fail;
438 }
439
440 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
441 count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
442 BUS_DMA_NOWAIT);
443 if (error != 0) {
444 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
445 goto fail;
446 }
447
448 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
449 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
450 if (error != 0) {
451 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
452 goto fail;
453 }
454
455 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
456 ring->physaddr = ring->map->dm_segs->ds_addr;
457
458 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
459 M_NOWAIT);
460 if (ring->data == NULL) {
461 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
462 error = ENOMEM;
463 goto fail;
464 }
465
466 memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
467 for (i = 0; i < count; i++) {
468 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
469 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
470 &ring->data[i].map);
471 if (error != 0) {
472 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
473 goto fail;
474 }
475 }
476
477 return 0;
478
479 fail: rt2661_free_tx_ring(sc, ring);
480 return error;
481 }
482
483 static void
484 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
485 {
486 struct rt2661_tx_desc *desc;
487 struct rt2661_tx_data *data;
488 int i;
489
490 for (i = 0; i < ring->count; i++) {
491 desc = &ring->desc[i];
492 data = &ring->data[i];
493
494 if (data->m != NULL) {
495 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
496 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
497 bus_dmamap_unload(sc->sc_dmat, data->map);
498 m_freem(data->m);
499 data->m = NULL;
500 }
501
502 if (data->ni != NULL) {
503 ieee80211_free_node(data->ni);
504 data->ni = NULL;
505 }
506
507 desc->flags = 0;
508 }
509
510 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
511 BUS_DMASYNC_PREWRITE);
512
513 ring->queued = 0;
514 ring->cur = ring->next = ring->stat = 0;
515 }
516
517
518 static void
519 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
520 {
521 struct rt2661_tx_data *data;
522 int i;
523
524 if (ring->desc != NULL) {
525 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
526 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
527 bus_dmamap_unload(sc->sc_dmat, ring->map);
528 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
529 ring->count * RT2661_TX_DESC_SIZE);
530 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
531 }
532
533 if (ring->data != NULL) {
534 for (i = 0; i < ring->count; i++) {
535 data = &ring->data[i];
536
537 if (data->m != NULL) {
538 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
539 data->map->dm_mapsize,
540 BUS_DMASYNC_POSTWRITE);
541 bus_dmamap_unload(sc->sc_dmat, data->map);
542 m_freem(data->m);
543 }
544
545 if (data->ni != NULL)
546 ieee80211_free_node(data->ni);
547
548 if (data->map != NULL)
549 bus_dmamap_destroy(sc->sc_dmat, data->map);
550 }
551 free(ring->data, M_DEVBUF);
552 }
553 }
554
555 static int
556 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
557 int count)
558 {
559 struct rt2661_rx_desc *desc;
560 struct rt2661_rx_data *data;
561 int i, nsegs, error;
562
563 ring->count = count;
564 ring->cur = ring->next = 0;
565
566 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
567 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
568 if (error != 0) {
569 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
570 goto fail;
571 }
572
573 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
574 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
575 if (error != 0) {
576 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
577 goto fail;
578 }
579
580 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
581 count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
582 BUS_DMA_NOWAIT);
583 if (error != 0) {
584 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
585 goto fail;
586 }
587
588 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
589 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
590 if (error != 0) {
591 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
592 goto fail;
593 }
594
595 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
596 ring->physaddr = ring->map->dm_segs->ds_addr;
597
598 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
599 M_NOWAIT);
600 if (ring->data == NULL) {
601 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
602 error = ENOMEM;
603 goto fail;
604 }
605
606 /*
607 * Pre-allocate Rx buffers and populate Rx ring.
608 */
609 memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
610 for (i = 0; i < count; i++) {
611 desc = &sc->rxq.desc[i];
612 data = &sc->rxq.data[i];
613
614 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
615 0, BUS_DMA_NOWAIT, &data->map);
616 if (error != 0) {
617 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
618 goto fail;
619 }
620
621 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
622 if (data->m == NULL) {
623 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
624 error = ENOMEM;
625 goto fail;
626 }
627
628 MCLGET(data->m, M_DONTWAIT);
629 if (!(data->m->m_flags & M_EXT)) {
630 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
631 error = ENOMEM;
632 goto fail;
633 }
634
635 error = bus_dmamap_load(sc->sc_dmat, data->map,
636 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
637 if (error != 0) {
638 aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
639 goto fail;
640 }
641
642 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
643 desc->flags = htole32(RT2661_RX_BUSY);
644 }
645
646 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
647 BUS_DMASYNC_PREWRITE);
648
649 return 0;
650
651 fail: rt2661_free_rx_ring(sc, ring);
652 return error;
653 }
654
655 static void
656 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
657 {
658 int i;
659
660 for (i = 0; i < ring->count; i++)
661 ring->desc[i].flags = htole32(RT2661_RX_BUSY);
662
663 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
664 BUS_DMASYNC_PREWRITE);
665
666 ring->cur = ring->next = 0;
667 }
668
669 static void
670 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
671 {
672 struct rt2661_rx_data *data;
673 int i;
674
675 if (ring->desc != NULL) {
676 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
677 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
678 bus_dmamap_unload(sc->sc_dmat, ring->map);
679 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
680 ring->count * RT2661_RX_DESC_SIZE);
681 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
682 }
683
684 if (ring->data != NULL) {
685 for (i = 0; i < ring->count; i++) {
686 data = &ring->data[i];
687
688 if (data->m != NULL) {
689 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
690 data->map->dm_mapsize,
691 BUS_DMASYNC_POSTREAD);
692 bus_dmamap_unload(sc->sc_dmat, data->map);
693 m_freem(data->m);
694 }
695
696 if (data->map != NULL)
697 bus_dmamap_destroy(sc->sc_dmat, data->map);
698 }
699 free(ring->data, M_DEVBUF);
700 }
701 }
702
703 static struct ieee80211_node *
704 rt2661_node_alloc(struct ieee80211_node_table *nt)
705 {
706 struct rt2661_node *rn;
707
708 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
709 M_NOWAIT | M_ZERO);
710
711 return (rn != NULL) ? &rn->ni : NULL;
712 }
713
714 static int
715 rt2661_media_change(struct ifnet *ifp)
716 {
717 int error;
718
719 error = ieee80211_media_change(ifp);
720 if (error != ENETRESET)
721 return error;
722
723 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
724 rt2661_init(ifp);
725
726 return 0;
727 }
728
729 /*
730 * This function is called periodically (every 200ms) during scanning to
731 * switch from one channel to another.
732 */
733 static void
734 rt2661_next_scan(void *arg)
735 {
736 struct rt2661_softc *sc = arg;
737 struct ieee80211com *ic = &sc->sc_ic;
738 int s;
739
740 s = splnet();
741 if (ic->ic_state == IEEE80211_S_SCAN)
742 ieee80211_next_scan(ic);
743 splx(s);
744 }
745
746 /*
747 * This function is called for each neighbor node.
748 */
749 static void
750 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
751 {
752 struct rt2661_softc *sc = arg;
753 struct rt2661_node *rn = (struct rt2661_node *)ni;
754
755 ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
756 }
757
758 /*
759 * This function is called periodically (every 500ms) in RUN state to update
760 * various settings like rate control statistics or Rx sensitivity.
761 */
762 static void
763 rt2661_updatestats(void *arg)
764 {
765 struct rt2661_softc *sc = arg;
766 struct ieee80211com *ic = &sc->sc_ic;
767 int s;
768
769 s = splnet();
770 if (ic->ic_opmode == IEEE80211_M_STA)
771 rt2661_iter_func(sc, ic->ic_bss);
772 else
773 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
774
775 /* update rx sensitivity every 1 sec */
776 if (++sc->ncalls & 1)
777 rt2661_rx_tune(sc);
778 splx(s);
779
780 callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
781 }
782
783 static void
784 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
785 {
786 struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
787 int i;
788
789 ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
790
791 /* set rate to some reasonable initial value */
792 for (i = ni->ni_rates.rs_nrates - 1;
793 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
794 i--);
795 ni->ni_txrate = i;
796 }
797
798 static int
799 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
800 {
801 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
802 enum ieee80211_state ostate;
803 struct ieee80211_node *ni;
804 uint32_t tmp;
805
806 ostate = ic->ic_state;
807 callout_stop(&sc->scan_ch);
808
809 switch (nstate) {
810 case IEEE80211_S_INIT:
811 callout_stop(&sc->amrr_ch);
812
813 if (ostate == IEEE80211_S_RUN) {
814 /* abort TSF synchronization */
815 tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
816 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
817 }
818 break;
819
820 case IEEE80211_S_SCAN:
821 rt2661_set_chan(sc, ic->ic_curchan);
822 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
823 break;
824
825 case IEEE80211_S_AUTH:
826 case IEEE80211_S_ASSOC:
827 rt2661_set_chan(sc, ic->ic_curchan);
828 break;
829
830 case IEEE80211_S_RUN:
831 rt2661_set_chan(sc, ic->ic_curchan);
832
833 ni = ic->ic_bss;
834
835 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
836 rt2661_set_slottime(sc);
837 rt2661_enable_mrr(sc);
838 rt2661_set_txpreamble(sc);
839 rt2661_set_basicrates(sc, &ni->ni_rates);
840 rt2661_set_bssid(sc, ni->ni_bssid);
841 }
842
843 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
844 ic->ic_opmode == IEEE80211_M_IBSS)
845 rt2661_prepare_beacon(sc);
846
847 if (ic->ic_opmode == IEEE80211_M_STA) {
848 /* fake a join to init the tx rate */
849 rt2661_newassoc(ni, 1);
850 }
851
852 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
853 sc->ncalls = 0;
854 sc->avg_rssi = -95; /* reset EMA */
855 callout_reset(&sc->amrr_ch, hz / 2,
856 rt2661_updatestats, sc);
857 rt2661_enable_tsf_sync(sc);
858 }
859 break;
860 }
861
862 return sc->sc_newstate(ic, nstate, arg);
863 }
864
865 /*
866 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
867 * 93C66).
868 */
869 static uint16_t
870 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
871 {
872 uint32_t tmp;
873 uint16_t val;
874 int n;
875
876 /* clock C once before the first command */
877 RT2661_EEPROM_CTL(sc, 0);
878
879 RT2661_EEPROM_CTL(sc, RT2661_S);
880 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
881 RT2661_EEPROM_CTL(sc, RT2661_S);
882
883 /* write start bit (1) */
884 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
885 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
886
887 /* write READ opcode (10) */
888 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
889 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
890 RT2661_EEPROM_CTL(sc, RT2661_S);
891 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
892
893 /* write address (A5-A0 or A7-A0) */
894 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
895 for (; n >= 0; n--) {
896 RT2661_EEPROM_CTL(sc, RT2661_S |
897 (((addr >> n) & 1) << RT2661_SHIFT_D));
898 RT2661_EEPROM_CTL(sc, RT2661_S |
899 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
900 }
901
902 RT2661_EEPROM_CTL(sc, RT2661_S);
903
904 /* read data Q15-Q0 */
905 val = 0;
906 for (n = 15; n >= 0; n--) {
907 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
908 tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
909 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
910 RT2661_EEPROM_CTL(sc, RT2661_S);
911 }
912
913 RT2661_EEPROM_CTL(sc, 0);
914
915 /* clear Chip Select and clock C */
916 RT2661_EEPROM_CTL(sc, RT2661_S);
917 RT2661_EEPROM_CTL(sc, 0);
918 RT2661_EEPROM_CTL(sc, RT2661_C);
919
920 return val;
921 }
922
923 static void
924 rt2661_tx_intr(struct rt2661_softc *sc)
925 {
926 struct ifnet *ifp = &sc->sc_if;
927 struct rt2661_tx_ring *txq;
928 struct rt2661_tx_data *data;
929 struct rt2661_node *rn;
930 uint32_t val;
931 int qid, retrycnt, s;
932
933 s = splnet();
934
935 for (;;) {
936 val = RAL_READ(sc, RT2661_STA_CSR4);
937 if (!(val & RT2661_TX_STAT_VALID))
938 break;
939
940 /* retrieve the queue in which this frame was sent */
941 qid = RT2661_TX_QID(val);
942 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
943
944 /* retrieve rate control algorithm context */
945 data = &txq->data[txq->stat];
946 rn = (struct rt2661_node *)data->ni;
947
948 /* if no frame has been sent, ignore */
949 if (rn == NULL)
950 continue;
951
952 switch (RT2661_TX_RESULT(val)) {
953 case RT2661_TX_SUCCESS:
954 retrycnt = RT2661_TX_RETRYCNT(val);
955
956 DPRINTFN(10, ("data frame sent successfully after "
957 "%d retries\n", retrycnt));
958 rn->amn.amn_txcnt++;
959 if (retrycnt > 0)
960 rn->amn.amn_retrycnt++;
961 ifp->if_opackets++;
962 break;
963
964 case RT2661_TX_RETRY_FAIL:
965 DPRINTFN(9, ("sending data frame failed (too much "
966 "retries)\n"));
967 rn->amn.amn_txcnt++;
968 rn->amn.amn_retrycnt++;
969 ifp->if_oerrors++;
970 break;
971
972 default:
973 /* other failure */
974 aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
975 ifp->if_oerrors++;
976 }
977
978 ieee80211_free_node(data->ni);
979 data->ni = NULL;
980
981 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
982
983 txq->queued--;
984 if (++txq->stat >= txq->count) /* faster than % count */
985 txq->stat = 0;
986 }
987
988 sc->sc_tx_timer = 0;
989 ifp->if_flags &= ~IFF_OACTIVE;
990 rt2661_start(ifp); /* in softint */
991
992 splx(s);
993 }
994
995 static void
996 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
997 {
998 struct rt2661_tx_desc *desc;
999 struct rt2661_tx_data *data;
1000
1001 for (;;) {
1002 desc = &txq->desc[txq->next];
1003 data = &txq->data[txq->next];
1004
1005 bus_dmamap_sync(sc->sc_dmat, txq->map,
1006 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1007 BUS_DMASYNC_POSTREAD);
1008
1009 if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1010 !(le32toh(desc->flags) & RT2661_TX_VALID))
1011 break;
1012
1013 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1014 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1015 bus_dmamap_unload(sc->sc_dmat, data->map);
1016 m_freem(data->m);
1017 data->m = NULL;
1018 /* node reference is released in rt2661_tx_intr() */
1019
1020 /* descriptor is no longer valid */
1021 desc->flags &= ~htole32(RT2661_TX_VALID);
1022
1023 bus_dmamap_sync(sc->sc_dmat, txq->map,
1024 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1025 BUS_DMASYNC_PREWRITE);
1026
1027 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1028
1029 if (++txq->next >= txq->count) /* faster than % count */
1030 txq->next = 0;
1031 }
1032 }
1033
1034 static void
1035 rt2661_rx_intr(struct rt2661_softc *sc)
1036 {
1037 struct ieee80211com *ic = &sc->sc_ic;
1038 struct ifnet *ifp = &sc->sc_if;
1039 struct rt2661_rx_desc *desc;
1040 struct rt2661_rx_data *data;
1041 struct ieee80211_frame *wh;
1042 struct ieee80211_node *ni;
1043 struct mbuf *mnew, *m;
1044 int error, rssi, s;
1045
1046 for (;;) {
1047 desc = &sc->rxq.desc[sc->rxq.cur];
1048 data = &sc->rxq.data[sc->rxq.cur];
1049
1050 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1051 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1052 BUS_DMASYNC_POSTREAD);
1053
1054 if (le32toh(desc->flags) & RT2661_RX_BUSY)
1055 break;
1056
1057 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1058 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1059 /*
1060 * This should not happen since we did not request
1061 * to receive those frames when we filled TXRX_CSR0.
1062 */
1063 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1064 le32toh(desc->flags)));
1065 ifp->if_ierrors++;
1066 goto skip;
1067 }
1068
1069 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1070 ifp->if_ierrors++;
1071 goto skip;
1072 }
1073
1074 /*
1075 * Try to allocate a new mbuf for this ring element and load it
1076 * before processing the current mbuf. If the ring element
1077 * cannot be loaded, drop the received packet and reuse the old
1078 * mbuf. In the unlikely case that the old mbuf can't be
1079 * reloaded either, explicitly panic.
1080 */
1081 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1082 if (mnew == NULL) {
1083 ifp->if_ierrors++;
1084 goto skip;
1085 }
1086
1087 MCLGET(mnew, M_DONTWAIT);
1088 if (!(mnew->m_flags & M_EXT)) {
1089 m_freem(mnew);
1090 ifp->if_ierrors++;
1091 goto skip;
1092 }
1093
1094 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1095 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1096 bus_dmamap_unload(sc->sc_dmat, data->map);
1097
1098 error = bus_dmamap_load(sc->sc_dmat, data->map,
1099 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1100 if (error != 0) {
1101 m_freem(mnew);
1102
1103 /* try to reload the old mbuf */
1104 error = bus_dmamap_load(sc->sc_dmat, data->map,
1105 mtod(data->m, void *), MCLBYTES, NULL,
1106 BUS_DMA_NOWAIT);
1107 if (error != 0) {
1108 /* very unlikely that it will fail... */
1109 panic("%s: could not load old rx mbuf",
1110 device_xname(sc->sc_dev));
1111 }
1112 /* physical address may have changed */
1113 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1114 ifp->if_ierrors++;
1115 goto skip;
1116 }
1117
1118 /*
1119 * New mbuf successfully loaded, update Rx ring and continue
1120 * processing.
1121 */
1122 m = data->m;
1123 data->m = mnew;
1124 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1125
1126 /* finalize mbuf */
1127 m_set_rcvif(m, ifp);
1128 m->m_pkthdr.len = m->m_len =
1129 (le32toh(desc->flags) >> 16) & 0xfff;
1130
1131 s = splnet();
1132
1133 if (sc->sc_drvbpf != NULL) {
1134 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1135 uint32_t tsf_lo, tsf_hi;
1136
1137 /* get timestamp (low and high 32 bits) */
1138 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1139 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1140
1141 tap->wr_tsf =
1142 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1143 tap->wr_flags = 0;
1144 tap->wr_rate = rt2661_rxrate(desc);
1145 tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1146 tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1147 tap->wr_antsignal = desc->rssi;
1148
1149 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1150 }
1151
1152 wh = mtod(m, struct ieee80211_frame *);
1153 ni = ieee80211_find_rxnode(ic,
1154 (struct ieee80211_frame_min *)wh);
1155
1156 /* send the frame to the 802.11 layer */
1157 ieee80211_input(ic, m, ni, desc->rssi, 0);
1158
1159 /*-
1160 * Keep track of the average RSSI using an Exponential Moving
1161 * Average (EMA) of 8 Wilder's days:
1162 * avg = (1 / N) x rssi + ((N - 1) / N) x avg
1163 */
1164 rssi = rt2661_get_rssi(sc, desc->rssi);
1165 sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1166
1167 /* node is no longer needed */
1168 ieee80211_free_node(ni);
1169
1170 splx(s);
1171
1172 skip: desc->flags |= htole32(RT2661_RX_BUSY);
1173
1174 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1175 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1176 BUS_DMASYNC_PREWRITE);
1177
1178 DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1179
1180 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1181 }
1182
1183 /*
1184 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1185 * without calling if_start().
1186 */
1187 s = splnet();
1188 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1189 rt2661_start(ifp);
1190 splx(s);
1191 }
1192
1193 /*
1194 * This function is called in HostAP or IBSS modes when it's time to send a
1195 * new beacon (every ni_intval milliseconds).
1196 */
1197 static void
1198 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1199 {
1200 struct ieee80211com *ic = &sc->sc_ic;
1201
1202 if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1203 sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1204 sc->sc_flags |= RT2661_SET_SLOTTIME;
1205 } else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1206 sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1207 rt2661_set_slottime(sc);
1208 }
1209
1210 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1211 /* update ERP Information Element */
1212 RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1213 RAL_RW_BARRIER_1(sc, sc->erp_csr);
1214 }
1215
1216 DPRINTFN(15, ("beacon expired\n"));
1217 }
1218
1219 static void
1220 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1221 {
1222 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1223
1224 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1225 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1226 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1227
1228 /* send wakeup command to MCU */
1229 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1230 }
1231
1232 static void
1233 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1234 {
1235 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1236 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1237 }
1238
1239 int
1240 rt2661_intr(void *arg)
1241 {
1242 struct rt2661_softc *sc = arg;
1243 struct ifnet *ifp = &sc->sc_if;
1244 uint32_t r1, r2;
1245
1246 /* don't re-enable interrupts if we're shutting down */
1247 if (!(ifp->if_flags & IFF_RUNNING)) {
1248 /* disable MAC and MCU interrupts */
1249 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1250 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1251 return 0;
1252 }
1253
1254 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1255 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1256
1257 if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
1258 return 0;
1259
1260 /* disable interrupts */
1261 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1262 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1263
1264 softint_schedule(sc->sc_soft_ih);
1265 return 1;
1266 }
1267
1268 static void
1269 rt2661_softintr(void *arg)
1270 {
1271 struct rt2661_softc *sc = arg;
1272 uint32_t r1, r2;
1273
1274 for (;;) {
1275 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1276 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1277
1278 if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1279 (r2 & RT2661_MCU_INT_ALL) == 0)
1280 break;
1281
1282 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1283 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1284
1285 if (r1 & RT2661_MGT_DONE)
1286 rt2661_tx_dma_intr(sc, &sc->mgtq);
1287
1288 if (r1 & RT2661_RX_DONE)
1289 rt2661_rx_intr(sc);
1290
1291 if (r1 & RT2661_TX0_DMA_DONE)
1292 rt2661_tx_dma_intr(sc, &sc->txq[0]);
1293
1294 if (r1 & RT2661_TX1_DMA_DONE)
1295 rt2661_tx_dma_intr(sc, &sc->txq[1]);
1296
1297 if (r1 & RT2661_TX2_DMA_DONE)
1298 rt2661_tx_dma_intr(sc, &sc->txq[2]);
1299
1300 if (r1 & RT2661_TX3_DMA_DONE)
1301 rt2661_tx_dma_intr(sc, &sc->txq[3]);
1302
1303 if (r1 & RT2661_TX_DONE)
1304 rt2661_tx_intr(sc);
1305
1306 if (r2 & RT2661_MCU_CMD_DONE)
1307 rt2661_mcu_cmd_intr(sc);
1308
1309 if (r2 & RT2661_MCU_BEACON_EXPIRE)
1310 rt2661_mcu_beacon_expire(sc);
1311
1312 if (r2 & RT2661_MCU_WAKEUP)
1313 rt2661_mcu_wakeup(sc);
1314 }
1315
1316 /* enable interrupts */
1317 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1318 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1319 }
1320
1321 /* quickly determine if a given rate is CCK or OFDM */
1322 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1323
1324 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1325 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1326
1327 /*
1328 * This function is only used by the Rx radiotap code. It returns the rate at
1329 * which a given frame was received.
1330 */
1331 static uint8_t
1332 rt2661_rxrate(struct rt2661_rx_desc *desc)
1333 {
1334 if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1335 /* reverse function of rt2661_plcp_signal */
1336 switch (desc->rate & 0xf) {
1337 case 0xb: return 12;
1338 case 0xf: return 18;
1339 case 0xa: return 24;
1340 case 0xe: return 36;
1341 case 0x9: return 48;
1342 case 0xd: return 72;
1343 case 0x8: return 96;
1344 case 0xc: return 108;
1345 }
1346 } else {
1347 if (desc->rate == 10)
1348 return 2;
1349 if (desc->rate == 20)
1350 return 4;
1351 if (desc->rate == 55)
1352 return 11;
1353 if (desc->rate == 110)
1354 return 22;
1355 }
1356 return 2; /* should not get there */
1357 }
1358
1359 /*
1360 * Return the expected ack rate for a frame transmitted at rate `rate'.
1361 * XXX: this should depend on the destination node basic rate set.
1362 */
1363 static int
1364 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1365 {
1366 switch (rate) {
1367 /* CCK rates */
1368 case 2:
1369 return 2;
1370 case 4:
1371 case 11:
1372 case 22:
1373 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1374
1375 /* OFDM rates */
1376 case 12:
1377 case 18:
1378 return 12;
1379 case 24:
1380 case 36:
1381 return 24;
1382 case 48:
1383 case 72:
1384 case 96:
1385 case 108:
1386 return 48;
1387 }
1388
1389 /* default to 1Mbps */
1390 return 2;
1391 }
1392
1393 /*
1394 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1395 * The function automatically determines the operating mode depending on the
1396 * given rate. `flags' indicates whether short preamble is in use or not.
1397 */
1398 static uint16_t
1399 rt2661_txtime(int len, int rate, uint32_t flags)
1400 {
1401 uint16_t txtime;
1402
1403 if (RAL_RATE_IS_OFDM(rate)) {
1404 /* IEEE Std 802.11g-2003, pp. 44 */
1405 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1406 txtime = 16 + 4 + 4 * txtime + 6;
1407 } else {
1408 /* IEEE Std 802.11b-1999, pp. 28 */
1409 txtime = (16 * len + rate - 1) / rate;
1410 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1411 txtime += 72 + 24;
1412 else
1413 txtime += 144 + 48;
1414 }
1415 return txtime;
1416 }
1417
1418 static uint8_t
1419 rt2661_plcp_signal(int rate)
1420 {
1421 switch (rate) {
1422 /* CCK rates (returned values are device-dependent) */
1423 case 2: return 0x0;
1424 case 4: return 0x1;
1425 case 11: return 0x2;
1426 case 22: return 0x3;
1427
1428 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1429 case 12: return 0xb;
1430 case 18: return 0xf;
1431 case 24: return 0xa;
1432 case 36: return 0xe;
1433 case 48: return 0x9;
1434 case 72: return 0xd;
1435 case 96: return 0x8;
1436 case 108: return 0xc;
1437
1438 /* unsupported rates (should not get there) */
1439 default: return 0xff;
1440 }
1441 }
1442
1443 static void
1444 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1445 uint32_t flags, uint16_t xflags, int len, int rate,
1446 const bus_dma_segment_t *segs, int nsegs, int ac)
1447 {
1448 struct ieee80211com *ic = &sc->sc_ic;
1449 uint16_t plcp_length;
1450 int i, remainder;
1451
1452 desc->flags = htole32(flags);
1453 desc->flags |= htole32(len << 16);
1454
1455 desc->xflags = htole16(xflags);
1456 desc->xflags |= htole16(nsegs << 13);
1457
1458 desc->wme = htole16(
1459 RT2661_QID(ac) |
1460 RT2661_AIFSN(2) |
1461 RT2661_LOGCWMIN(4) |
1462 RT2661_LOGCWMAX(10));
1463
1464 /*
1465 * Remember in which queue this frame was sent. This field is driver
1466 * private data only. It will be made available by the NIC in STA_CSR4
1467 * on Tx interrupts.
1468 */
1469 desc->qid = ac;
1470
1471 /* setup PLCP fields */
1472 desc->plcp_signal = rt2661_plcp_signal(rate);
1473 desc->plcp_service = 4;
1474
1475 len += IEEE80211_CRC_LEN;
1476 if (RAL_RATE_IS_OFDM(rate)) {
1477 desc->flags |= htole32(RT2661_TX_OFDM);
1478
1479 plcp_length = len & 0xfff;
1480 desc->plcp_length_hi = plcp_length >> 6;
1481 desc->plcp_length_lo = plcp_length & 0x3f;
1482 } else {
1483 plcp_length = (16 * len + rate - 1) / rate;
1484 if (rate == 22) {
1485 remainder = (16 * len) % 22;
1486 if (remainder != 0 && remainder < 7)
1487 desc->plcp_service |= RT2661_PLCP_LENGEXT;
1488 }
1489 desc->plcp_length_hi = plcp_length >> 8;
1490 desc->plcp_length_lo = plcp_length & 0xff;
1491
1492 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1493 desc->plcp_signal |= 0x08;
1494 }
1495
1496 /* RT2x61 supports scatter with up to 5 segments */
1497 for (i = 0; i < nsegs; i++) {
1498 desc->addr[i] = htole32(segs[i].ds_addr);
1499 desc->len [i] = htole16(segs[i].ds_len);
1500 }
1501
1502 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1503 }
1504
1505 static int
1506 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1507 struct ieee80211_node *ni)
1508 {
1509 struct ieee80211com *ic = &sc->sc_ic;
1510 struct rt2661_tx_desc *desc;
1511 struct rt2661_tx_data *data;
1512 struct ieee80211_frame *wh;
1513 uint16_t dur;
1514 uint32_t flags = 0;
1515 int rate, error;
1516
1517 desc = &sc->mgtq.desc[sc->mgtq.cur];
1518 data = &sc->mgtq.data[sc->mgtq.cur];
1519
1520 /* send mgt frames at the lowest available rate */
1521 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1522
1523 wh = mtod(m0, struct ieee80211_frame *);
1524
1525 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1526 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1527 m_freem(m0);
1528 return ENOBUFS;
1529 }
1530
1531 /* packet header may have moved, reset our local pointer */
1532 wh = mtod(m0, struct ieee80211_frame *);
1533 }
1534
1535 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1536 BUS_DMA_NOWAIT);
1537 if (error != 0) {
1538 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1539 error);
1540 m_freem(m0);
1541 return error;
1542 }
1543
1544 if (sc->sc_drvbpf != NULL) {
1545 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1546
1547 tap->wt_flags = 0;
1548 tap->wt_rate = rate;
1549 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1550 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1551
1552 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1553 }
1554
1555 data->m = m0;
1556 data->ni = ni;
1557
1558 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1559 flags |= RT2661_TX_NEED_ACK;
1560
1561 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1562 sc->sifs;
1563 *(uint16_t *)wh->i_dur = htole16(dur);
1564
1565 /* tell hardware to set timestamp in probe responses */
1566 if ((wh->i_fc[0] &
1567 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1568 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1569 flags |= RT2661_TX_TIMESTAMP;
1570 }
1571
1572 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1573 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1574 RT2661_QID_MGT);
1575
1576 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1577 BUS_DMASYNC_PREWRITE);
1578 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1579 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1580 BUS_DMASYNC_PREWRITE);
1581
1582 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1583 m0->m_pkthdr.len, sc->mgtq.cur, rate));
1584
1585 /* kick mgt */
1586 sc->mgtq.queued++;
1587 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1588 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * Build a RTS control frame.
1595 */
1596 static struct mbuf *
1597 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1598 uint16_t dur)
1599 {
1600 struct ieee80211_frame_rts *rts;
1601 struct mbuf *m;
1602
1603 MGETHDR(m, M_DONTWAIT, MT_DATA);
1604 if (m == NULL) {
1605 sc->sc_ic.ic_stats.is_tx_nobuf++;
1606 aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1607 return NULL;
1608 }
1609
1610 rts = mtod(m, struct ieee80211_frame_rts *);
1611
1612 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1613 IEEE80211_FC0_SUBTYPE_RTS;
1614 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1615 *(uint16_t *)rts->i_dur = htole16(dur);
1616 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1617 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1618
1619 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1620
1621 return m;
1622 }
1623
1624 static int
1625 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1626 struct ieee80211_node *ni, int ac)
1627 {
1628 struct ieee80211com *ic = &sc->sc_ic;
1629 struct rt2661_tx_ring *txq = &sc->txq[ac];
1630 struct rt2661_tx_desc *desc;
1631 struct rt2661_tx_data *data;
1632 struct ieee80211_frame *wh;
1633 struct ieee80211_key *k;
1634 struct mbuf *mnew;
1635 uint16_t dur;
1636 uint32_t flags = 0;
1637 int rate, useprot, error, tid;
1638
1639 wh = mtod(m0, struct ieee80211_frame *);
1640
1641 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1642 rate = ic->ic_sup_rates[ic->ic_curmode].
1643 rs_rates[ic->ic_fixed_rate];
1644 } else
1645 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1646 rate &= IEEE80211_RATE_VAL;
1647 if (rate == 0)
1648 rate = 2; /* XXX should not happen */
1649
1650 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1651 k = ieee80211_crypto_encap(ic, ni, m0);
1652 if (k == NULL) {
1653 m_freem(m0);
1654 return ENOBUFS;
1655 }
1656
1657 /* packet header may have moved, reset our local pointer */
1658 wh = mtod(m0, struct ieee80211_frame *);
1659 }
1660
1661 /*
1662 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1663 * chance to contend for the wireless medium.
1664 */
1665 tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1666 if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1667 flags |= RT2661_TX_IFS_SIFS;
1668
1669 /*
1670 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1671 * for directed frames only when the length of the MPDU is greater
1672 * than the length threshold indicated by" ic_rtsthreshold.
1673 *
1674 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1675 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1676 * type Data or an MMPDU".
1677 */
1678 useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1679 (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1680 ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1681 if (useprot) {
1682 struct mbuf *m;
1683 int rtsrate, ackrate;
1684
1685 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1686 ackrate = rt2661_ack_rate(ic, rate);
1687
1688 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1689 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1690 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1691 3 * sc->sifs;
1692
1693 m = rt2661_get_rts(sc, wh, dur);
1694 if (m == NULL) {
1695 aprint_error_dev(sc->sc_dev, "could not allocate RTS "
1696 "frame\n");
1697 m_freem(m0);
1698 return ENOBUFS;
1699 }
1700
1701 desc = &txq->desc[txq->cur];
1702 data = &txq->data[txq->cur];
1703
1704 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1705 BUS_DMA_NOWAIT);
1706 if (error != 0) {
1707 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1708 m_freem(m);
1709 m_freem(m0);
1710 return error;
1711 }
1712
1713 /* avoid multiple free() of the same node for each fragment */
1714 ieee80211_ref_node(ni);
1715
1716 data->m = m;
1717 data->ni = ni;
1718
1719 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1720 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1721 data->map->dm_segs, data->map->dm_nsegs, ac);
1722
1723 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1724 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1725 bus_dmamap_sync(sc->sc_dmat, txq->map,
1726 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1727 BUS_DMASYNC_PREWRITE);
1728
1729 txq->queued++;
1730 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1731
1732 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1733 }
1734
1735 data = &txq->data[txq->cur];
1736 desc = &txq->desc[txq->cur];
1737
1738 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1739 BUS_DMA_NOWAIT);
1740 if (error != 0 && error != EFBIG) {
1741 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1742 error);
1743 m_freem(m0);
1744 return error;
1745 }
1746 if (error != 0) {
1747 /* too many fragments, linearize */
1748
1749 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1750 if (mnew == NULL) {
1751 m_freem(m0);
1752 return ENOMEM;
1753 }
1754
1755 M_COPY_PKTHDR(mnew, m0);
1756 if (m0->m_pkthdr.len > MHLEN) {
1757 MCLGET(mnew, M_DONTWAIT);
1758 if (!(mnew->m_flags & M_EXT)) {
1759 m_freem(m0);
1760 m_freem(mnew);
1761 return ENOMEM;
1762 }
1763 }
1764
1765 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1766 m_freem(m0);
1767 mnew->m_len = mnew->m_pkthdr.len;
1768 m0 = mnew;
1769
1770 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1771 BUS_DMA_NOWAIT);
1772 if (error != 0) {
1773 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1774 m_freem(m0);
1775 return error;
1776 }
1777
1778 /* packet header have moved, reset our local pointer */
1779 wh = mtod(m0, struct ieee80211_frame *);
1780 }
1781
1782 if (sc->sc_drvbpf != NULL) {
1783 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1784
1785 tap->wt_flags = 0;
1786 tap->wt_rate = rate;
1787 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1788 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1789
1790 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1791 }
1792
1793 data->m = m0;
1794 data->ni = ni;
1795
1796 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1797 flags |= RT2661_TX_NEED_ACK;
1798
1799 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1800 ic->ic_flags) + sc->sifs;
1801 *(uint16_t *)wh->i_dur = htole16(dur);
1802 }
1803
1804 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1805 data->map->dm_segs, data->map->dm_nsegs, ac);
1806
1807 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1808 BUS_DMASYNC_PREWRITE);
1809 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1810 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1811
1812 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1813 m0->m_pkthdr.len, txq->cur, rate));
1814
1815 /* kick Tx */
1816 txq->queued++;
1817 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1818 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1819
1820 return 0;
1821 }
1822
1823 static void
1824 rt2661_start(struct ifnet *ifp)
1825 {
1826 struct rt2661_softc *sc = ifp->if_softc;
1827 struct ieee80211com *ic = &sc->sc_ic;
1828 struct mbuf *m0;
1829 struct ether_header *eh;
1830 struct ieee80211_node *ni = NULL;
1831
1832 /*
1833 * net80211 may still try to send management frames even if the
1834 * IFF_RUNNING flag is not set...
1835 */
1836 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1837 return;
1838
1839 for (;;) {
1840 IF_POLL(&ic->ic_mgtq, m0);
1841 if (m0 != NULL) {
1842 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1843 ifp->if_flags |= IFF_OACTIVE;
1844 break;
1845 }
1846 IF_DEQUEUE(&ic->ic_mgtq, m0);
1847 if (m0 == NULL)
1848 break;
1849
1850 ni = M_GETCTX(m0, struct ieee80211_node *);
1851 M_CLEARCTX(m0);
1852 bpf_mtap3(ic->ic_rawbpf, m0);
1853 if (rt2661_tx_mgt(sc, m0, ni) != 0)
1854 break;
1855
1856 } else {
1857 IF_POLL(&ifp->if_snd, m0);
1858 if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1859 break;
1860
1861 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1862 /* there is no place left in this ring */
1863 ifp->if_flags |= IFF_OACTIVE;
1864 break;
1865 }
1866
1867 IFQ_DEQUEUE(&ifp->if_snd, m0);
1868
1869 if (m0->m_len < sizeof (struct ether_header) &&
1870 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1871 continue;
1872
1873 eh = mtod(m0, struct ether_header *);
1874 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1875 if (ni == NULL) {
1876 m_freem(m0);
1877 ifp->if_oerrors++;
1878 continue;
1879 }
1880
1881 bpf_mtap3(ifp->if_bpf, m0);
1882 m0 = ieee80211_encap(ic, m0, ni);
1883 if (m0 == NULL) {
1884 ieee80211_free_node(ni);
1885 ifp->if_oerrors++;
1886 continue;
1887 }
1888 bpf_mtap3(ic->ic_rawbpf, m0);
1889 if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1890 if (ni != NULL)
1891 ieee80211_free_node(ni);
1892 ifp->if_oerrors++;
1893 break;
1894 }
1895 }
1896
1897 sc->sc_tx_timer = 5;
1898 ifp->if_timer = 1;
1899 }
1900 }
1901
1902 static void
1903 rt2661_watchdog(struct ifnet *ifp)
1904 {
1905 struct rt2661_softc *sc = ifp->if_softc;
1906
1907 ifp->if_timer = 0;
1908
1909 if (sc->sc_tx_timer > 0) {
1910 if (--sc->sc_tx_timer == 0) {
1911 aprint_error_dev(sc->sc_dev, "device timeout\n");
1912 rt2661_init(ifp);
1913 ifp->if_oerrors++;
1914 return;
1915 }
1916 ifp->if_timer = 1;
1917 }
1918
1919 ieee80211_watchdog(&sc->sc_ic);
1920 }
1921
1922 /*
1923 * This function allows for fast channel switching in monitor mode (used by
1924 * kismet). In IBSS mode, we must explicitly reset the interface to
1925 * generate a new beacon frame.
1926 */
1927 static int
1928 rt2661_reset(struct ifnet *ifp)
1929 {
1930 struct rt2661_softc *sc = ifp->if_softc;
1931 struct ieee80211com *ic = &sc->sc_ic;
1932
1933 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1934 return ENETRESET;
1935
1936 rt2661_set_chan(sc, ic->ic_curchan);
1937
1938 return 0;
1939 }
1940
1941 static int
1942 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1943 {
1944 struct rt2661_softc *sc = ifp->if_softc;
1945 struct ieee80211com *ic = &sc->sc_ic;
1946 int s, error = 0;
1947
1948 s = splnet();
1949
1950 switch (cmd) {
1951 case SIOCSIFFLAGS:
1952 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1953 break;
1954 if (ifp->if_flags & IFF_UP) {
1955 if (ifp->if_flags & IFF_RUNNING)
1956 rt2661_update_promisc(sc);
1957 else
1958 rt2661_init(ifp);
1959 } else {
1960 if (ifp->if_flags & IFF_RUNNING)
1961 rt2661_stop(ifp, 1);
1962 }
1963 break;
1964
1965 case SIOCADDMULTI:
1966 case SIOCDELMULTI:
1967 /* XXX no h/w multicast filter? --dyoung */
1968 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1969 error = 0;
1970 break;
1971
1972 case SIOCS80211CHANNEL:
1973 /*
1974 * This allows for fast channel switching in monitor mode
1975 * (used by kismet). In IBSS mode, we must explicitly reset
1976 * the interface to generate a new beacon frame.
1977 */
1978 error = ieee80211_ioctl(ic, cmd, data);
1979 if (error == ENETRESET &&
1980 ic->ic_opmode == IEEE80211_M_MONITOR) {
1981 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1982 (IFF_UP | IFF_RUNNING))
1983 rt2661_set_chan(sc, ic->ic_ibss_chan);
1984 error = 0;
1985 }
1986 break;
1987
1988 default:
1989 error = ieee80211_ioctl(ic, cmd, data);
1990
1991 }
1992
1993 if (error == ENETRESET) {
1994 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1995 (IFF_UP | IFF_RUNNING))
1996 rt2661_init(ifp);
1997 error = 0;
1998 }
1999
2000 splx(s);
2001
2002 return error;
2003 }
2004
2005 static void
2006 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2007 {
2008 uint32_t tmp;
2009 int ntries;
2010
2011 for (ntries = 0; ntries < 100; ntries++) {
2012 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2013 break;
2014 DELAY(1);
2015 }
2016 if (ntries == 100) {
2017 aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2018 return;
2019 }
2020
2021 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2022 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2023
2024 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2025 }
2026
2027 static uint8_t
2028 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2029 {
2030 uint32_t val;
2031 int ntries;
2032
2033 for (ntries = 0; ntries < 100; ntries++) {
2034 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2035 break;
2036 DELAY(1);
2037 }
2038 if (ntries == 100) {
2039 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2040 return 0;
2041 }
2042
2043 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2044 RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2045
2046 for (ntries = 0; ntries < 100; ntries++) {
2047 val = RAL_READ(sc, RT2661_PHY_CSR3);
2048 if (!(val & RT2661_BBP_BUSY))
2049 return val & 0xff;
2050 DELAY(1);
2051 }
2052
2053 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2054 return 0;
2055 }
2056
2057 static void
2058 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2059 {
2060 uint32_t tmp;
2061 int ntries;
2062
2063 for (ntries = 0; ntries < 100; ntries++) {
2064 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2065 break;
2066 DELAY(1);
2067 }
2068 if (ntries == 100) {
2069 aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2070 return;
2071 }
2072 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2073 (reg & 3);
2074 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2075
2076 /* remember last written value in sc */
2077 sc->rf_regs[reg] = val;
2078
2079 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2080 }
2081
2082 static int
2083 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2084 {
2085 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2086 return EIO; /* there is already a command pending */
2087
2088 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2089 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2090
2091 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2092
2093 return 0;
2094 }
2095
2096 static void
2097 rt2661_select_antenna(struct rt2661_softc *sc)
2098 {
2099 uint8_t bbp4, bbp77;
2100 uint32_t tmp;
2101
2102 bbp4 = rt2661_bbp_read(sc, 4);
2103 bbp77 = rt2661_bbp_read(sc, 77);
2104
2105 /* TBD */
2106
2107 /* make sure Rx is disabled before switching antenna */
2108 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2109 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2110
2111 rt2661_bbp_write(sc, 4, bbp4);
2112 rt2661_bbp_write(sc, 77, bbp77);
2113
2114 /* restore Rx filter */
2115 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2116 }
2117
2118 /*
2119 * Enable multi-rate retries for frames sent at OFDM rates.
2120 * In 802.11b/g mode, allow fallback to CCK rates.
2121 */
2122 static void
2123 rt2661_enable_mrr(struct rt2661_softc *sc)
2124 {
2125 struct ieee80211com *ic = &sc->sc_ic;
2126 uint32_t tmp;
2127
2128 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2129
2130 tmp &= ~RT2661_MRR_CCK_FALLBACK;
2131 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2132 tmp |= RT2661_MRR_CCK_FALLBACK;
2133 tmp |= RT2661_MRR_ENABLED;
2134
2135 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2136 }
2137
2138 static void
2139 rt2661_set_txpreamble(struct rt2661_softc *sc)
2140 {
2141 uint32_t tmp;
2142
2143 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2144
2145 tmp &= ~RT2661_SHORT_PREAMBLE;
2146 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2147 tmp |= RT2661_SHORT_PREAMBLE;
2148
2149 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2150 }
2151
2152 static void
2153 rt2661_set_basicrates(struct rt2661_softc *sc,
2154 const struct ieee80211_rateset *rs)
2155 {
2156 #define RV(r) ((r) & IEEE80211_RATE_VAL)
2157 uint32_t mask = 0;
2158 uint8_t rate;
2159 int i, j;
2160
2161 for (i = 0; i < rs->rs_nrates; i++) {
2162 rate = rs->rs_rates[i];
2163
2164 if (!(rate & IEEE80211_RATE_BASIC))
2165 continue;
2166
2167 /*
2168 * Find h/w rate index. We know it exists because the rate
2169 * set has already been negotiated.
2170 */
2171 for (j = 0; ieee80211_std_rateset_11g.rs_rates[j] != RV(rate); j++);
2172
2173 mask |= 1 << j;
2174 }
2175
2176 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2177
2178 DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2179 #undef RV
2180 }
2181
2182 /*
2183 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
2184 * driver.
2185 */
2186 static void
2187 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2188 {
2189 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2190 uint32_t tmp;
2191
2192 /* update all BBP registers that depend on the band */
2193 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2194 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
2195 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2196 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2197 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
2198 }
2199 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2200 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2201 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2202 }
2203
2204 sc->bbp17 = bbp17;
2205 rt2661_bbp_write(sc, 17, bbp17);
2206 rt2661_bbp_write(sc, 96, bbp96);
2207 rt2661_bbp_write(sc, 104, bbp104);
2208
2209 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2210 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2211 rt2661_bbp_write(sc, 75, 0x80);
2212 rt2661_bbp_write(sc, 86, 0x80);
2213 rt2661_bbp_write(sc, 88, 0x80);
2214 }
2215
2216 rt2661_bbp_write(sc, 35, bbp35);
2217 rt2661_bbp_write(sc, 97, bbp97);
2218 rt2661_bbp_write(sc, 98, bbp98);
2219
2220 tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2221 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2222 if (IEEE80211_IS_CHAN_2GHZ(c))
2223 tmp |= RT2661_PA_PE_2GHZ;
2224 else
2225 tmp |= RT2661_PA_PE_5GHZ;
2226 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2227
2228 /* 802.11a uses a 16 microseconds short interframe space */
2229 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2230 }
2231
2232 static void
2233 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2234 {
2235 struct ieee80211com *ic = &sc->sc_ic;
2236 const struct rfprog *rfprog;
2237 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2238 int8_t power;
2239 u_int i, chan;
2240
2241 chan = ieee80211_chan2ieee(ic, c);
2242 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2243 return;
2244
2245 /* select the appropriate RF settings based on what EEPROM says */
2246 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2247
2248 /* find the settings for this channel (we know it exists) */
2249 for (i = 0; rfprog[i].chan != chan; i++);
2250
2251 power = sc->txpow[i];
2252 if (power < 0) {
2253 bbp94 += power;
2254 power = 0;
2255 } else if (power > 31) {
2256 bbp94 += power - 31;
2257 power = 31;
2258 }
2259
2260 /*
2261 * If we've yet to select a channel, or we are switching from the
2262 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2263 * be reprogrammed.
2264 */
2265 if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2266 rt2661_select_band(sc, c);
2267 rt2661_select_antenna(sc);
2268 }
2269 sc->sc_curchan = c;
2270
2271 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2272 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2273 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2274 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2275
2276 DELAY(200);
2277
2278 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2279 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2280 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2281 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2282
2283 DELAY(200);
2284
2285 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2286 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2287 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2288 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2289
2290 /* enable smart mode for MIMO-capable RFs */
2291 bbp3 = rt2661_bbp_read(sc, 3);
2292
2293 bbp3 &= ~RT2661_SMART_MODE;
2294 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2295 bbp3 |= RT2661_SMART_MODE;
2296
2297 rt2661_bbp_write(sc, 3, bbp3);
2298
2299 if (bbp94 != RT2661_BBPR94_DEFAULT)
2300 rt2661_bbp_write(sc, 94, bbp94);
2301
2302 /* 5GHz radio needs a 1ms delay here */
2303 if (IEEE80211_IS_CHAN_5GHZ(c))
2304 DELAY(1000);
2305 }
2306
2307 static void
2308 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2309 {
2310 uint32_t tmp;
2311
2312 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2313 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2314
2315 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2316 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2317 }
2318
2319 static void
2320 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2321 {
2322 uint32_t tmp;
2323
2324 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2325 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2326
2327 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2328 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2329 }
2330
2331 static void
2332 rt2661_update_promisc(struct rt2661_softc *sc)
2333 {
2334 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2335 uint32_t tmp;
2336
2337 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2338
2339 tmp &= ~RT2661_DROP_NOT_TO_ME;
2340 if (!(ifp->if_flags & IFF_PROMISC))
2341 tmp |= RT2661_DROP_NOT_TO_ME;
2342
2343 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2344
2345 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2346 "entering" : "leaving"));
2347 }
2348
2349 #if 0
2350 /*
2351 * Update QoS (802.11e) settings for each h/w Tx ring.
2352 */
2353 static int
2354 rt2661_wme_update(struct ieee80211com *ic)
2355 {
2356 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2357 const struct wmeParams *wmep;
2358
2359 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2360
2361 /* XXX: not sure about shifts. */
2362 /* XXX: the reference driver plays with AC_VI settings too. */
2363
2364 /* update TxOp */
2365 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2366 wmep[WME_AC_BE].wmep_txopLimit << 16 |
2367 wmep[WME_AC_BK].wmep_txopLimit);
2368 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2369 wmep[WME_AC_VI].wmep_txopLimit << 16 |
2370 wmep[WME_AC_VO].wmep_txopLimit);
2371
2372 /* update CWmin */
2373 RAL_WRITE(sc, RT2661_CWMIN_CSR,
2374 wmep[WME_AC_BE].wmep_logcwmin << 12 |
2375 wmep[WME_AC_BK].wmep_logcwmin << 8 |
2376 wmep[WME_AC_VI].wmep_logcwmin << 4 |
2377 wmep[WME_AC_VO].wmep_logcwmin);
2378
2379 /* update CWmax */
2380 RAL_WRITE(sc, RT2661_CWMAX_CSR,
2381 wmep[WME_AC_BE].wmep_logcwmax << 12 |
2382 wmep[WME_AC_BK].wmep_logcwmax << 8 |
2383 wmep[WME_AC_VI].wmep_logcwmax << 4 |
2384 wmep[WME_AC_VO].wmep_logcwmax);
2385
2386 /* update Aifsn */
2387 RAL_WRITE(sc, RT2661_AIFSN_CSR,
2388 wmep[WME_AC_BE].wmep_aifsn << 12 |
2389 wmep[WME_AC_BK].wmep_aifsn << 8 |
2390 wmep[WME_AC_VI].wmep_aifsn << 4 |
2391 wmep[WME_AC_VO].wmep_aifsn);
2392
2393 return 0;
2394 }
2395 #endif
2396
2397 static void
2398 rt2661_updateslot(struct ifnet *ifp)
2399 {
2400 struct rt2661_softc *sc = ifp->if_softc;
2401 struct ieee80211com *ic = &sc->sc_ic;
2402
2403 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2404 /*
2405 * In HostAP mode, we defer setting of new slot time until
2406 * updated ERP Information Element has propagated to all
2407 * associated STAs.
2408 */
2409 sc->sc_flags |= RT2661_UPDATE_SLOT;
2410 } else
2411 rt2661_set_slottime(sc);
2412 }
2413
2414 static void
2415 rt2661_set_slottime(struct rt2661_softc *sc)
2416 {
2417 struct ieee80211com *ic = &sc->sc_ic;
2418 uint8_t slottime;
2419 uint32_t tmp;
2420
2421 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2422
2423 tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2424 tmp = (tmp & ~0xff) | slottime;
2425 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2426
2427 DPRINTF(("setting slot time to %uus\n", slottime));
2428 }
2429
2430 static const char *
2431 rt2661_get_rf(int rev)
2432 {
2433 switch (rev) {
2434 case RT2661_RF_5225: return "RT5225";
2435 case RT2661_RF_5325: return "RT5325 (MIMO XR)";
2436 case RT2661_RF_2527: return "RT2527";
2437 case RT2661_RF_2529: return "RT2529 (MIMO XR)";
2438 default: return "unknown";
2439 }
2440 }
2441
2442 static void
2443 rt2661_read_eeprom(struct rt2661_softc *sc)
2444 {
2445 struct ieee80211com *ic = &sc->sc_ic;
2446 uint16_t val;
2447 int i;
2448
2449 /* read MAC address */
2450 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2451 ic->ic_myaddr[0] = val & 0xff;
2452 ic->ic_myaddr[1] = val >> 8;
2453
2454 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2455 ic->ic_myaddr[2] = val & 0xff;
2456 ic->ic_myaddr[3] = val >> 8;
2457
2458 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2459 ic->ic_myaddr[4] = val & 0xff;
2460 ic->ic_myaddr[5] = val >> 8;
2461
2462 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2463 /* XXX: test if different from 0xffff? */
2464 sc->rf_rev = (val >> 11) & 0x1f;
2465 sc->hw_radio = (val >> 10) & 0x1;
2466 sc->rx_ant = (val >> 4) & 0x3;
2467 sc->tx_ant = (val >> 2) & 0x3;
2468 sc->nb_ant = val & 0x3;
2469
2470 DPRINTF(("RF revision=%d\n", sc->rf_rev));
2471
2472 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2473 sc->ext_5ghz_lna = (val >> 6) & 0x1;
2474 sc->ext_2ghz_lna = (val >> 4) & 0x1;
2475
2476 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2477 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2478
2479 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2480 if ((val & 0xff) != 0xff)
2481 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
2482
2483 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2484 if ((val & 0xff) != 0xff)
2485 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
2486
2487 /* adjust RSSI correction for external low-noise amplifier */
2488 if (sc->ext_2ghz_lna)
2489 sc->rssi_2ghz_corr -= 14;
2490 if (sc->ext_5ghz_lna)
2491 sc->rssi_5ghz_corr -= 14;
2492
2493 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2494 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2495
2496 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2497 if ((val >> 8) != 0xff)
2498 sc->rfprog = (val >> 8) & 0x3;
2499 if ((val & 0xff) != 0xff)
2500 sc->rffreq = val & 0xff;
2501
2502 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2503
2504 /* read Tx power for all a/b/g channels */
2505 for (i = 0; i < 19; i++) {
2506 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2507 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
2508 DPRINTF(("Channel=%d Tx power=%d\n",
2509 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2510 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
2511 DPRINTF(("Channel=%d Tx power=%d\n",
2512 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2513 }
2514
2515 /* read vendor-specific BBP values */
2516 for (i = 0; i < 16; i++) {
2517 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2518 if (val == 0 || val == 0xffff)
2519 continue; /* skip invalid entries */
2520 sc->bbp_prom[i].reg = val >> 8;
2521 sc->bbp_prom[i].val = val & 0xff;
2522 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2523 sc->bbp_prom[i].val));
2524 }
2525 }
2526
2527 static int
2528 rt2661_bbp_init(struct rt2661_softc *sc)
2529 {
2530 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2531 int i, ntries;
2532 uint8_t val;
2533
2534 /* wait for BBP to be ready */
2535 for (ntries = 0; ntries < 100; ntries++) {
2536 val = rt2661_bbp_read(sc, 0);
2537 if (val != 0 && val != 0xff)
2538 break;
2539 DELAY(100);
2540 }
2541 if (ntries == 100) {
2542 aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2543 return EIO;
2544 }
2545
2546 /* initialize BBP registers to default values */
2547 for (i = 0; i < N(rt2661_def_bbp); i++) {
2548 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2549 rt2661_def_bbp[i].val);
2550 }
2551
2552 /* write vendor-specific BBP values (from EEPROM) */
2553 for (i = 0; i < 16; i++) {
2554 if (sc->bbp_prom[i].reg == 0)
2555 continue;
2556 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2557 }
2558
2559 return 0;
2560 #undef N
2561 }
2562
2563 static int
2564 rt2661_init(struct ifnet *ifp)
2565 {
2566 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2567 struct rt2661_softc *sc = ifp->if_softc;
2568 struct ieee80211com *ic = &sc->sc_ic;
2569 const char *name = NULL; /* make lint happy */
2570 uint8_t *ucode;
2571 size_t size;
2572 uint32_t tmp, star[3];
2573 int i, ntries;
2574 firmware_handle_t fh;
2575
2576 /* for CardBus, power on the socket */
2577 if (!(sc->sc_flags & RT2661_ENABLED)) {
2578 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2579 aprint_error_dev(sc->sc_dev, "could not enable device\n");
2580 return EIO;
2581 }
2582 sc->sc_flags |= RT2661_ENABLED;
2583 }
2584
2585 rt2661_stop(ifp, 0);
2586
2587 if (!(sc->sc_flags & RT2661_FWLOADED)) {
2588 switch (sc->sc_id) {
2589 case PCI_PRODUCT_RALINK_RT2561:
2590 name = "ral-rt2561";
2591 break;
2592 case PCI_PRODUCT_RALINK_RT2561S:
2593 name = "ral-rt2561s";
2594 break;
2595 case PCI_PRODUCT_RALINK_RT2661:
2596 name = "ral-rt2661";
2597 break;
2598 }
2599
2600 if (firmware_open("ral", name, &fh) != 0) {
2601 aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
2602 rt2661_stop(ifp, 1);
2603 return EIO;
2604 }
2605
2606 size = firmware_get_size(fh);
2607 if (!(ucode = firmware_malloc(size))) {
2608 aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
2609 firmware_close(fh);
2610 rt2661_stop(ifp, 1);
2611 return ENOMEM;
2612 }
2613
2614 if (firmware_read(fh, 0, ucode, size) != 0) {
2615 aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
2616 firmware_free(ucode, size);
2617 firmware_close(fh);
2618 rt2661_stop(ifp, 1);
2619 return EIO;
2620 }
2621
2622 if (rt2661_load_microcode(sc, ucode, size) != 0) {
2623 aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
2624 firmware_free(ucode, size);
2625 firmware_close(fh);
2626 rt2661_stop(ifp, 1);
2627 return EIO;
2628 }
2629
2630 firmware_free(ucode, size);
2631 firmware_close(fh);
2632 sc->sc_flags |= RT2661_FWLOADED;
2633 }
2634
2635 /* initialize Tx rings */
2636 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2637 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2638 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2639 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2640
2641 /* initialize Mgt ring */
2642 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2643
2644 /* initialize Rx ring */
2645 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2646
2647 /* initialize Tx rings sizes */
2648 RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2649 RT2661_TX_RING_COUNT << 24 |
2650 RT2661_TX_RING_COUNT << 16 |
2651 RT2661_TX_RING_COUNT << 8 |
2652 RT2661_TX_RING_COUNT);
2653
2654 RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2655 RT2661_TX_DESC_WSIZE << 16 |
2656 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
2657 RT2661_MGT_RING_COUNT);
2658
2659 /* initialize Rx rings */
2660 RAL_WRITE(sc, RT2661_RX_RING_CSR,
2661 RT2661_RX_DESC_BACK << 16 |
2662 RT2661_RX_DESC_WSIZE << 8 |
2663 RT2661_RX_RING_COUNT);
2664
2665 /* XXX: some magic here */
2666 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2667
2668 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2669 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2670
2671 /* load base address of Rx ring */
2672 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2673
2674 /* initialize MAC registers to default values */
2675 for (i = 0; i < N(rt2661_def_mac); i++)
2676 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2677
2678 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2679 rt2661_set_macaddr(sc, ic->ic_myaddr);
2680
2681 /* set host ready */
2682 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2683 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2684
2685 /* wait for BBP/RF to wakeup */
2686 for (ntries = 0; ntries < 1000; ntries++) {
2687 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2688 break;
2689 DELAY(1000);
2690 }
2691 if (ntries == 1000) {
2692 printf("timeout waiting for BBP/RF to wakeup\n");
2693 rt2661_stop(ifp, 1);
2694 return EIO;
2695 }
2696
2697 if (rt2661_bbp_init(sc) != 0) {
2698 rt2661_stop(ifp, 1);
2699 return EIO;
2700 }
2701
2702 /* select default channel */
2703 sc->sc_curchan = ic->ic_curchan;
2704 rt2661_select_band(sc, sc->sc_curchan);
2705 rt2661_select_antenna(sc);
2706 rt2661_set_chan(sc, sc->sc_curchan);
2707
2708 /* update Rx filter */
2709 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2710
2711 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2712 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2713 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2714 RT2661_DROP_ACKCTS;
2715 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2716 tmp |= RT2661_DROP_TODS;
2717 if (!(ifp->if_flags & IFF_PROMISC))
2718 tmp |= RT2661_DROP_NOT_TO_ME;
2719 }
2720
2721 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2722
2723 /* clear STA registers */
2724 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2725
2726 /* initialize ASIC */
2727 RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2728
2729 /* clear any pending interrupt */
2730 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2731
2732 /* enable interrupts */
2733 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2734 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2735
2736 /* kick Rx */
2737 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2738
2739 ifp->if_flags &= ~IFF_OACTIVE;
2740 ifp->if_flags |= IFF_RUNNING;
2741
2742 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2743 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2744 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2745 } else
2746 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2747
2748 return 0;
2749 #undef N
2750 }
2751
2752 static void
2753 rt2661_stop(struct ifnet *ifp, int disable)
2754 {
2755 struct rt2661_softc *sc = ifp->if_softc;
2756 struct ieee80211com *ic = &sc->sc_ic;
2757 uint32_t tmp;
2758
2759 sc->sc_tx_timer = 0;
2760 ifp->if_timer = 0;
2761 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2762
2763 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2764
2765 /* abort Tx (for all 5 Tx rings) */
2766 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2767
2768 /* disable Rx (value remains after reset!) */
2769 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2770 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2771
2772 /* reset ASIC */
2773 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2774 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2775
2776 /* disable interrupts */
2777 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2778 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2779
2780 /* clear any pending interrupt */
2781 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2782 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2783
2784 /* reset Tx and Rx rings */
2785 rt2661_reset_tx_ring(sc, &sc->txq[0]);
2786 rt2661_reset_tx_ring(sc, &sc->txq[1]);
2787 rt2661_reset_tx_ring(sc, &sc->txq[2]);
2788 rt2661_reset_tx_ring(sc, &sc->txq[3]);
2789 rt2661_reset_tx_ring(sc, &sc->mgtq);
2790 rt2661_reset_rx_ring(sc, &sc->rxq);
2791
2792 /* for CardBus, power down the socket */
2793 if (disable && sc->sc_disable != NULL) {
2794 if (sc->sc_flags & RT2661_ENABLED) {
2795 (*sc->sc_disable)(sc);
2796 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2797 }
2798 }
2799 }
2800
2801 static int
2802 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2803 {
2804 int ntries;
2805
2806 /* reset 8051 */
2807 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2808
2809 /* cancel any pending Host to MCU command */
2810 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2811 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2812 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2813
2814 /* write 8051's microcode */
2815 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2816 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2817 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2818
2819 /* kick 8051's ass */
2820 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2821
2822 /* wait for 8051 to initialize */
2823 for (ntries = 0; ntries < 500; ntries++) {
2824 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2825 break;
2826 DELAY(100);
2827 }
2828 if (ntries == 500) {
2829 printf("timeout waiting for MCU to initialize\n");
2830 return EIO;
2831 }
2832 return 0;
2833 }
2834
2835 /*
2836 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2837 * false CCA count. This function is called periodically (every seconds) when
2838 * in the RUN state. Values taken from the reference driver.
2839 */
2840 static void
2841 rt2661_rx_tune(struct rt2661_softc *sc)
2842 {
2843 uint8_t bbp17;
2844 uint16_t cca;
2845 int lo, hi, dbm;
2846
2847 /*
2848 * Tuning range depends on operating band and on the presence of an
2849 * external low-noise amplifier.
2850 */
2851 lo = 0x20;
2852 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2853 lo += 0x08;
2854 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2855 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2856 lo += 0x10;
2857 hi = lo + 0x20;
2858
2859 dbm = sc->avg_rssi;
2860 /* retrieve false CCA count since last call (clear on read) */
2861 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2862
2863 DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2864
2865 if (dbm < -74) {
2866 /* very bad RSSI, tune using false CCA count */
2867 bbp17 = sc->bbp17; /* current value */
2868
2869 hi -= 2 * (-74 - dbm);
2870 if (hi < lo)
2871 hi = lo;
2872
2873 if (bbp17 > hi)
2874 bbp17 = hi;
2875 else if (cca > 512)
2876 bbp17 = min(bbp17 + 1, hi);
2877 else if (cca < 100)
2878 bbp17 = max(bbp17 - 1, lo);
2879
2880 } else if (dbm < -66) {
2881 bbp17 = lo + 0x08;
2882 } else if (dbm < -58) {
2883 bbp17 = lo + 0x10;
2884 } else if (dbm < -35) {
2885 bbp17 = hi;
2886 } else { /* very good RSSI >= -35dBm */
2887 bbp17 = 0x60; /* very low sensitivity */
2888 }
2889
2890 if (bbp17 != sc->bbp17) {
2891 DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2892 rt2661_bbp_write(sc, 17, bbp17);
2893 sc->bbp17 = bbp17;
2894 }
2895 }
2896
2897 #ifdef notyet
2898 /*
2899 * Enter/Leave radar detection mode.
2900 * This is for 802.11h additional regulatory domains.
2901 */
2902 static void
2903 rt2661_radar_start(struct rt2661_softc *sc)
2904 {
2905 uint32_t tmp;
2906
2907 /* disable Rx */
2908 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2909 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2910
2911 rt2661_bbp_write(sc, 82, 0x20);
2912 rt2661_bbp_write(sc, 83, 0x00);
2913 rt2661_bbp_write(sc, 84, 0x40);
2914
2915 /* save current BBP registers values */
2916 sc->bbp18 = rt2661_bbp_read(sc, 18);
2917 sc->bbp21 = rt2661_bbp_read(sc, 21);
2918 sc->bbp22 = rt2661_bbp_read(sc, 22);
2919 sc->bbp16 = rt2661_bbp_read(sc, 16);
2920 sc->bbp17 = rt2661_bbp_read(sc, 17);
2921 sc->bbp64 = rt2661_bbp_read(sc, 64);
2922
2923 rt2661_bbp_write(sc, 18, 0xff);
2924 rt2661_bbp_write(sc, 21, 0x3f);
2925 rt2661_bbp_write(sc, 22, 0x3f);
2926 rt2661_bbp_write(sc, 16, 0xbd);
2927 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2928 rt2661_bbp_write(sc, 64, 0x21);
2929
2930 /* restore Rx filter */
2931 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2932 }
2933
2934 static int
2935 rt2661_radar_stop(struct rt2661_softc *sc)
2936 {
2937 uint8_t bbp66;
2938
2939 /* read radar detection result */
2940 bbp66 = rt2661_bbp_read(sc, 66);
2941
2942 /* restore BBP registers values */
2943 rt2661_bbp_write(sc, 16, sc->bbp16);
2944 rt2661_bbp_write(sc, 17, sc->bbp17);
2945 rt2661_bbp_write(sc, 18, sc->bbp18);
2946 rt2661_bbp_write(sc, 21, sc->bbp21);
2947 rt2661_bbp_write(sc, 22, sc->bbp22);
2948 rt2661_bbp_write(sc, 64, sc->bbp64);
2949
2950 return bbp66 == 1;
2951 }
2952 #endif
2953
2954 static int
2955 rt2661_prepare_beacon(struct rt2661_softc *sc)
2956 {
2957 struct ieee80211com *ic = &sc->sc_ic;
2958 struct ieee80211_node *ni = ic->ic_bss;
2959 struct rt2661_tx_desc desc;
2960 struct mbuf *m0;
2961 struct ieee80211_beacon_offsets bo;
2962 int rate;
2963
2964 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2965 if (m0 == NULL) {
2966 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2967 return ENOBUFS;
2968 }
2969
2970 /* send beacons at the lowest available rate */
2971 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2972
2973 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2974 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2975
2976 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2977 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2978
2979 /* copy beacon header and payload into NIC memory */
2980 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2981 mtod(m0, uint8_t *), m0->m_pkthdr.len);
2982
2983 m_freem(m0);
2984
2985 /*
2986 * Store offset of ERP Information Element so that we can update it
2987 * dynamically when the slot time changes.
2988 * XXX: this is ugly since it depends on how net80211 builds beacon
2989 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2990 */
2991 if (ic->ic_curmode == IEEE80211_MODE_11G) {
2992 sc->erp_csr =
2993 RT2661_HW_BEACON_BASE0 + 24 +
2994 sizeof (struct ieee80211_frame) +
2995 8 + 2 + 2 + 2 + ni->ni_esslen +
2996 2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2997 2 + 1 +
2998 ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2999 2;
3000 }
3001
3002 return 0;
3003 }
3004
3005 /*
3006 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
3007 * and HostAP operating modes.
3008 */
3009 static void
3010 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3011 {
3012 struct ieee80211com *ic = &sc->sc_ic;
3013 uint32_t tmp;
3014
3015 if (ic->ic_opmode != IEEE80211_M_STA) {
3016 /*
3017 * Change default 16ms TBTT adjustment to 8ms.
3018 * Must be done before enabling beacon generation.
3019 */
3020 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3021 }
3022
3023 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3024
3025 /* set beacon interval (in 1/16ms unit) */
3026 tmp |= ic->ic_bss->ni_intval * 16;
3027
3028 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3029 if (ic->ic_opmode == IEEE80211_M_STA)
3030 tmp |= RT2661_TSF_MODE(1);
3031 else
3032 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3033
3034 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3035 }
3036
3037 /*
3038 * Retrieve the "Received Signal Strength Indicator" from the raw values
3039 * contained in Rx descriptors. The computation depends on which band the
3040 * frame was received. Correction values taken from the reference driver.
3041 */
3042 static int
3043 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3044 {
3045 int lna, agc, rssi;
3046
3047 lna = (raw >> 5) & 0x3;
3048 agc = raw & 0x1f;
3049
3050 rssi = 2 * agc;
3051
3052 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3053 rssi += sc->rssi_2ghz_corr;
3054
3055 if (lna == 1)
3056 rssi -= 64;
3057 else if (lna == 2)
3058 rssi -= 74;
3059 else if (lna == 3)
3060 rssi -= 90;
3061 } else {
3062 rssi += sc->rssi_5ghz_corr;
3063
3064 if (lna == 1)
3065 rssi -= 64;
3066 else if (lna == 2)
3067 rssi -= 86;
3068 else if (lna == 3)
3069 rssi -= 100;
3070 }
3071 return rssi;
3072 }
3073