Home | History | Annotate | Line # | Download | only in ic
rt2661.c revision 1.39
      1 /*	$NetBSD: rt2661.c,v 1.39 2018/06/26 06:48:00 msaitoh Exp $	*/
      2 /*	$OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $	*/
      3 /*	$FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $	*/
      4 
      5 /*-
      6  * Copyright (c) 2006
      7  *	Damien Bergamini <damien.bergamini (at) free.fr>
      8  *
      9  * Permission to use, copy, modify, and distribute this software for any
     10  * purpose with or without fee is hereby granted, provided that the above
     11  * copyright notice and this permission notice appear in all copies.
     12  *
     13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     20  */
     21 
     22 /*-
     23  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
     24  * http://www.ralinktech.com/
     25  */
     26 
     27 #include <sys/cdefs.h>
     28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.39 2018/06/26 06:48:00 msaitoh Exp $");
     29 
     30 
     31 #include <sys/param.h>
     32 #include <sys/sockio.h>
     33 #include <sys/sysctl.h>
     34 #include <sys/mbuf.h>
     35 #include <sys/kernel.h>
     36 #include <sys/socket.h>
     37 #include <sys/systm.h>
     38 #include <sys/malloc.h>
     39 #include <sys/callout.h>
     40 #include <sys/conf.h>
     41 #include <sys/device.h>
     42 
     43 #include <sys/bus.h>
     44 #include <machine/endian.h>
     45 #include <sys/intr.h>
     46 
     47 #include <net/bpf.h>
     48 #include <net/if.h>
     49 #include <net/if_arp.h>
     50 #include <net/if_dl.h>
     51 #include <net/if_media.h>
     52 #include <net/if_types.h>
     53 #include <net/if_ether.h>
     54 
     55 #include <netinet/in.h>
     56 #include <netinet/in_systm.h>
     57 #include <netinet/in_var.h>
     58 #include <netinet/ip.h>
     59 
     60 #include <net80211/ieee80211_var.h>
     61 #include <net80211/ieee80211_amrr.h>
     62 #include <net80211/ieee80211_radiotap.h>
     63 
     64 #include <dev/ic/rt2661reg.h>
     65 #include <dev/ic/rt2661var.h>
     66 
     67 #include <dev/pci/pcireg.h>
     68 #include <dev/pci/pcivar.h>
     69 #include <dev/pci/pcidevs.h>
     70 
     71 #include <dev/firmload.h>
     72 
     73 #ifdef RAL_DEBUG
     74 #define DPRINTF(x)	do { if (rt2661_debug > 0) printf x; } while (0)
     75 #define DPRINTFN(n, x)	do { if (rt2661_debug >= (n)) printf x; } while (0)
     76 int rt2661_debug = 0;
     77 #else
     78 #define DPRINTF(x)
     79 #define DPRINTFN(n, x)
     80 #endif
     81 
     82 static int	rt2661_alloc_tx_ring(struct rt2661_softc *,
     83 		    struct rt2661_tx_ring *, int);
     84 static void	rt2661_reset_tx_ring(struct rt2661_softc *,
     85 		    struct rt2661_tx_ring *);
     86 static void	rt2661_free_tx_ring(struct rt2661_softc *,
     87 		    struct rt2661_tx_ring *);
     88 static int	rt2661_alloc_rx_ring(struct rt2661_softc *,
     89 		    struct rt2661_rx_ring *, int);
     90 static void	rt2661_reset_rx_ring(struct rt2661_softc *,
     91 		    struct rt2661_rx_ring *);
     92 static void	rt2661_free_rx_ring(struct rt2661_softc *,
     93 		    struct rt2661_rx_ring *);
     94 static struct ieee80211_node *
     95 		rt2661_node_alloc(struct ieee80211_node_table *);
     96 static int	rt2661_media_change(struct ifnet *);
     97 static void	rt2661_next_scan(void *);
     98 static void	rt2661_iter_func(void *, struct ieee80211_node *);
     99 static void	rt2661_updatestats(void *);
    100 static void	rt2661_newassoc(struct ieee80211_node *, int);
    101 static int	rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
    102 		    int);
    103 static uint16_t	rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
    104 static void	rt2661_tx_intr(struct rt2661_softc *);
    105 static void	rt2661_tx_dma_intr(struct rt2661_softc *,
    106 		    struct rt2661_tx_ring *);
    107 static void	rt2661_rx_intr(struct rt2661_softc *);
    108 static void	rt2661_mcu_beacon_expire(struct rt2661_softc *);
    109 static void	rt2661_mcu_wakeup(struct rt2661_softc *);
    110 static void	rt2661_mcu_cmd_intr(struct rt2661_softc *);
    111 int		rt2661_intr(void *);
    112 static uint8_t	rt2661_rxrate(struct rt2661_rx_desc *);
    113 static int	rt2661_ack_rate(struct ieee80211com *, int);
    114 static uint16_t	rt2661_txtime(int, int, uint32_t);
    115 static uint8_t	rt2661_plcp_signal(int);
    116 static void	rt2661_setup_tx_desc(struct rt2661_softc *,
    117 		    struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
    118 		    const bus_dma_segment_t *, int, int);
    119 static int	rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
    120 		    struct ieee80211_node *);
    121 static struct mbuf *
    122 		rt2661_get_rts(struct rt2661_softc *,
    123 		    struct ieee80211_frame *, uint16_t);
    124 static int	rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
    125 		    struct ieee80211_node *, int);
    126 static void	rt2661_start(struct ifnet *);
    127 static void	rt2661_watchdog(struct ifnet *);
    128 static int	rt2661_reset(struct ifnet *);
    129 static int	rt2661_ioctl(struct ifnet *, u_long, void *);
    130 static void	rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
    131 static uint8_t	rt2661_bbp_read(struct rt2661_softc *, uint8_t);
    132 static void	rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
    133 static int	rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
    134 static void	rt2661_select_antenna(struct rt2661_softc *);
    135 static void	rt2661_enable_mrr(struct rt2661_softc *);
    136 static void	rt2661_set_txpreamble(struct rt2661_softc *);
    137 static void	rt2661_set_basicrates(struct rt2661_softc *,
    138 			const struct ieee80211_rateset *);
    139 static void	rt2661_select_band(struct rt2661_softc *,
    140 		    struct ieee80211_channel *);
    141 static void	rt2661_set_chan(struct rt2661_softc *,
    142 		    struct ieee80211_channel *);
    143 static void	rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
    144 static void	rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
    145 static void	rt2661_update_promisc(struct rt2661_softc *);
    146 #if 0
    147 static int	rt2661_wme_update(struct ieee80211com *);
    148 #endif
    149 
    150 static void	rt2661_updateslot(struct ifnet *);
    151 static void	rt2661_set_slottime(struct rt2661_softc *);
    152 static const char *
    153 		rt2661_get_rf(int);
    154 static void	rt2661_read_eeprom(struct rt2661_softc *);
    155 static int	rt2661_bbp_init(struct rt2661_softc *);
    156 static int     	rt2661_init(struct ifnet *);
    157 static void	rt2661_stop(struct ifnet *, int);
    158 static int	rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
    159 		    int);
    160 static void	rt2661_rx_tune(struct rt2661_softc *);
    161 #ifdef notyet
    162 static void	rt2661_radar_start(struct rt2661_softc *);
    163 static int	rt2661_radar_stop(struct rt2661_softc *);
    164 #endif
    165 static int	rt2661_prepare_beacon(struct rt2661_softc *);
    166 static void	rt2661_enable_tsf_sync(struct rt2661_softc *);
    167 static int	rt2661_get_rssi(struct rt2661_softc *, uint8_t);
    168 static void	rt2661_softintr(void *);
    169 
    170 static const struct {
    171 	uint32_t	reg;
    172 	uint32_t	val;
    173 } rt2661_def_mac[] = {
    174 	RT2661_DEF_MAC
    175 };
    176 
    177 static const struct {
    178 	uint8_t	reg;
    179 	uint8_t	val;
    180 } rt2661_def_bbp[] = {
    181 	RT2661_DEF_BBP
    182 };
    183 
    184 static const struct rfprog {
    185 	uint8_t		chan;
    186 	uint32_t	r1, r2, r3, r4;
    187 } rt2661_rf5225_1[] = {
    188 	RT2661_RF5225_1
    189 }, rt2661_rf5225_2[] = {
    190 	RT2661_RF5225_2
    191 };
    192 
    193 int
    194 rt2661_attach(void *xsc, int id)
    195 {
    196 	struct rt2661_softc *sc = xsc;
    197 	struct ieee80211com *ic = &sc->sc_ic;
    198 	struct ifnet *ifp = &sc->sc_if;
    199 	uint32_t val;
    200 	int error, i, ntries;
    201 
    202 	sc->sc_id = id;
    203 
    204 	sc->amrr.amrr_min_success_threshold =  1;
    205 	sc->amrr.amrr_max_success_threshold = 15;
    206 	callout_init(&sc->scan_ch, 0);
    207 	callout_init(&sc->amrr_ch, 0);
    208 
    209 	/* wait for NIC to initialize */
    210 	for (ntries = 0; ntries < 1000; ntries++) {
    211 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
    212 			break;
    213 		DELAY(1000);
    214 	}
    215 	if (ntries == 1000) {
    216 		aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
    217 		return EIO;
    218 	}
    219 
    220 	/* retrieve RF rev. no and various other things from EEPROM */
    221 	rt2661_read_eeprom(sc);
    222 	aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
    223 	    ether_sprintf(ic->ic_myaddr));
    224 
    225 	aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
    226 	    rt2661_get_rf(sc->rf_rev));
    227 
    228 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
    229 	if (sc->sc_soft_ih == NULL) {
    230 		aprint_error_dev(sc->sc_dev, "could not establish softint\n");
    231 		goto fail0;
    232 	}
    233 
    234 	/*
    235 	 * Allocate Tx and Rx rings.
    236 	 */
    237 	error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
    238 	if (error != 0) {
    239 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
    240 		goto fail1;
    241 	}
    242 
    243 	error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
    244 	if (error != 0) {
    245 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
    246 		goto fail2;
    247 	}
    248 
    249 	error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
    250 	if (error != 0) {
    251 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
    252 		goto fail3;
    253 	}
    254 
    255 	error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
    256 	if (error != 0) {
    257 		aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
    258 		goto fail4;
    259 	}
    260 
    261 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
    262 	if (error != 0) {
    263 		aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
    264 		goto fail5;
    265 	}
    266 
    267 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
    268 	if (error != 0) {
    269 		aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
    270 		goto fail6;
    271 	}
    272 
    273 	ifp->if_softc = sc;
    274 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    275 	ifp->if_init = rt2661_init;
    276 	ifp->if_stop = rt2661_stop;
    277 	ifp->if_ioctl = rt2661_ioctl;
    278 	ifp->if_start = rt2661_start;
    279 	ifp->if_watchdog = rt2661_watchdog;
    280 	IFQ_SET_READY(&ifp->if_snd);
    281 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    282 
    283 	ic->ic_ifp = ifp;
    284 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
    285 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
    286 	ic->ic_state = IEEE80211_S_INIT;
    287 
    288 	/* set device capabilities */
    289 	ic->ic_caps =
    290 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
    291 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
    292 	    IEEE80211_C_HOSTAP |	/* HostAP mode supported */
    293 	    IEEE80211_C_TXPMGT |	/* tx power management */
    294 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
    295 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
    296 	    IEEE80211_C_WPA;		/* 802.11i */
    297 
    298 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
    299 		/* set supported .11a rates */
    300 		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
    301 
    302 		/* set supported .11a channels */
    303 		for (i = 36; i <= 64; i += 4) {
    304 			ic->ic_channels[i].ic_freq =
    305 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    306 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    307 		}
    308 		for (i = 100; i <= 140; i += 4) {
    309 			ic->ic_channels[i].ic_freq =
    310 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    311 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    312 		}
    313 		for (i = 149; i <= 165; i += 4) {
    314 			ic->ic_channels[i].ic_freq =
    315 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
    316 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
    317 		}
    318 	}
    319 
    320 	/* set supported .11b and .11g rates */
    321 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
    322 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
    323 
    324 	/* set supported .11b and .11g channels (1 through 14) */
    325 	for (i = 1; i <= 14; i++) {
    326 		ic->ic_channels[i].ic_freq =
    327 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
    328 		ic->ic_channels[i].ic_flags =
    329 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
    330 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
    331 	}
    332 
    333 	error = if_initialize(ifp);
    334 	if (error != 0) {
    335 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
    336 		    error);
    337 		goto fail7;
    338 	}
    339 	ieee80211_ifattach(ic);
    340 	/* Use common softint-based if_input */
    341 	ifp->if_percpuq = if_percpuq_create(ifp);
    342 	if_register(ifp);
    343 
    344 	ic->ic_node_alloc = rt2661_node_alloc;
    345 	ic->ic_newassoc = rt2661_newassoc;
    346 	ic->ic_updateslot = rt2661_updateslot;
    347 	ic->ic_reset = rt2661_reset;
    348 
    349 	/* override state transition machine */
    350 	sc->sc_newstate = ic->ic_newstate;
    351 	ic->ic_newstate = rt2661_newstate;
    352 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
    353 
    354 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
    355 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
    356 	    &sc->sc_drvbpf);
    357 
    358 	sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
    359 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
    360 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
    361 
    362 	sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
    363 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
    364 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
    365 
    366 	ieee80211_announce(ic);
    367 
    368 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    369 		pmf_class_network_register(sc->sc_dev, ifp);
    370 	else
    371 		aprint_error_dev(sc->sc_dev,
    372 		    "couldn't establish power handler\n");
    373 
    374 	return 0;
    375 
    376 fail7:	rt2661_free_rx_ring(sc, &sc->rxq);
    377 fail6:	rt2661_free_tx_ring(sc, &sc->mgtq);
    378 fail5:	rt2661_free_tx_ring(sc, &sc->txq[3]);
    379 fail4:	rt2661_free_tx_ring(sc, &sc->txq[2]);
    380 fail3:	rt2661_free_tx_ring(sc, &sc->txq[1]);
    381 fail2:	rt2661_free_tx_ring(sc, &sc->txq[0]);
    382 fail1:	softint_disestablish(sc->sc_soft_ih);
    383 	sc->sc_soft_ih = NULL;
    384 fail0:	return ENXIO;
    385 }
    386 
    387 int
    388 rt2661_detach(void *xsc)
    389 {
    390 	struct rt2661_softc *sc = xsc;
    391 	struct ifnet *ifp = &sc->sc_if;
    392 
    393 	callout_stop(&sc->scan_ch);
    394 	callout_stop(&sc->amrr_ch);
    395 
    396 	pmf_device_deregister(sc->sc_dev);
    397 
    398 	ieee80211_ifdetach(&sc->sc_ic);
    399 	if_detach(ifp);
    400 
    401 	rt2661_free_tx_ring(sc, &sc->txq[0]);
    402 	rt2661_free_tx_ring(sc, &sc->txq[1]);
    403 	rt2661_free_tx_ring(sc, &sc->txq[2]);
    404 	rt2661_free_tx_ring(sc, &sc->txq[3]);
    405 	rt2661_free_tx_ring(sc, &sc->mgtq);
    406 	rt2661_free_rx_ring(sc, &sc->rxq);
    407 
    408 	if (sc->sc_soft_ih != NULL) {
    409 		softint_disestablish(sc->sc_soft_ih);
    410 		sc->sc_soft_ih = NULL;
    411 	}
    412 
    413 	return 0;
    414 }
    415 
    416 static int
    417 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
    418     int count)
    419 {
    420 	int i, nsegs, error;
    421 
    422 	ring->count = count;
    423 	ring->queued = 0;
    424 	ring->cur = ring->next = ring->stat = 0;
    425 
    426 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
    427 	    count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    428 	if (error != 0) {
    429 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
    430 		goto fail;
    431 	}
    432 
    433 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
    434 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    435 	if (error != 0) {
    436 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
    437 		goto fail;
    438 	}
    439 
    440 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    441 	    count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
    442 	    BUS_DMA_NOWAIT);
    443 	if (error != 0) {
    444 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
    445 		goto fail;
    446 	}
    447 
    448 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    449 	    count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    450 	if (error != 0) {
    451 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
    452 		goto fail;
    453 	}
    454 
    455 	memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
    456 	ring->physaddr = ring->map->dm_segs->ds_addr;
    457 
    458 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
    459 	    M_NOWAIT);
    460 	if (ring->data == NULL) {
    461 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
    462 		error = ENOMEM;
    463 		goto fail;
    464 	}
    465 
    466 	memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
    467 	for (i = 0; i < count; i++) {
    468 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    469 		    RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
    470 		    &ring->data[i].map);
    471 		if (error != 0) {
    472 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
    473 			goto fail;
    474 		}
    475 	}
    476 
    477 	return 0;
    478 
    479 fail:	rt2661_free_tx_ring(sc, ring);
    480 	return error;
    481 }
    482 
    483 static void
    484 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
    485 {
    486 	struct rt2661_tx_desc *desc;
    487 	struct rt2661_tx_data *data;
    488 	int i;
    489 
    490 	for (i = 0; i < ring->count; i++) {
    491 		desc = &ring->desc[i];
    492 		data = &ring->data[i];
    493 
    494 		if (data->m != NULL) {
    495 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    496 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    497 			bus_dmamap_unload(sc->sc_dmat, data->map);
    498 			m_freem(data->m);
    499 			data->m = NULL;
    500 		}
    501 
    502 		if (data->ni != NULL) {
    503 			ieee80211_free_node(data->ni);
    504 			data->ni = NULL;
    505 		}
    506 
    507 		desc->flags = 0;
    508 	}
    509 
    510 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    511 	    BUS_DMASYNC_PREWRITE);
    512 
    513 	ring->queued = 0;
    514 	ring->cur = ring->next = ring->stat = 0;
    515 }
    516 
    517 
    518 static void
    519 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
    520 {
    521 	struct rt2661_tx_data *data;
    522 	int i;
    523 
    524 	if (ring->desc != NULL) {
    525 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    526 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    527 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    528 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    529 		    ring->count * RT2661_TX_DESC_SIZE);
    530 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    531 	}
    532 
    533 	if (ring->data != NULL) {
    534 		for (i = 0; i < ring->count; i++) {
    535 			data = &ring->data[i];
    536 
    537 			if (data->m != NULL) {
    538 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    539 				    data->map->dm_mapsize,
    540 				    BUS_DMASYNC_POSTWRITE);
    541 				bus_dmamap_unload(sc->sc_dmat, data->map);
    542 				m_freem(data->m);
    543 			}
    544 
    545 			if (data->ni != NULL)
    546 				ieee80211_free_node(data->ni);
    547 
    548 			if (data->map != NULL)
    549 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    550 		}
    551 		free(ring->data, M_DEVBUF);
    552 	}
    553 }
    554 
    555 static int
    556 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
    557     int count)
    558 {
    559 	struct rt2661_rx_desc *desc;
    560 	struct rt2661_rx_data *data;
    561 	int i, nsegs, error;
    562 
    563 	ring->count = count;
    564 	ring->cur = ring->next = 0;
    565 
    566 	error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
    567 	    count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
    568 	if (error != 0) {
    569 		aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
    570 		goto fail;
    571 	}
    572 
    573 	error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
    574 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
    575 	if (error != 0) {
    576 		aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
    577 		goto fail;
    578 	}
    579 
    580 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
    581 	    count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
    582 	    BUS_DMA_NOWAIT);
    583 	if (error != 0) {
    584 		aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
    585 		goto fail;
    586 	}
    587 
    588 	error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
    589 	    count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
    590 	if (error != 0) {
    591 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
    592 		goto fail;
    593 	}
    594 
    595 	memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
    596 	ring->physaddr = ring->map->dm_segs->ds_addr;
    597 
    598 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
    599 	    M_NOWAIT);
    600 	if (ring->data == NULL) {
    601 		aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
    602 		error = ENOMEM;
    603 		goto fail;
    604 	}
    605 
    606 	/*
    607 	 * Pre-allocate Rx buffers and populate Rx ring.
    608 	 */
    609 	memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
    610 	for (i = 0; i < count; i++) {
    611 		desc = &sc->rxq.desc[i];
    612 		data = &sc->rxq.data[i];
    613 
    614 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    615 		    0, BUS_DMA_NOWAIT, &data->map);
    616 		if (error != 0) {
    617 			aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
    618 			goto fail;
    619 		}
    620 
    621 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
    622 		if (data->m == NULL) {
    623 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
    624 			error = ENOMEM;
    625 			goto fail;
    626 		}
    627 
    628 		MCLGET(data->m, M_DONTWAIT);
    629 		if (!(data->m->m_flags & M_EXT)) {
    630 			aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
    631 			error = ENOMEM;
    632 			goto fail;
    633 		}
    634 
    635 		error = bus_dmamap_load(sc->sc_dmat, data->map,
    636 		    mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
    637 		if (error != 0) {
    638 			aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
    639 			goto fail;
    640 		}
    641 
    642 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
    643 		desc->flags = htole32(RT2661_RX_BUSY);
    644 	}
    645 
    646 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    647 	    BUS_DMASYNC_PREWRITE);
    648 
    649 	return 0;
    650 
    651 fail:	rt2661_free_rx_ring(sc, ring);
    652 	return error;
    653 }
    654 
    655 static void
    656 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
    657 {
    658 	int i;
    659 
    660 	for (i = 0; i < ring->count; i++)
    661 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
    662 
    663 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
    664 	    BUS_DMASYNC_PREWRITE);
    665 
    666 	ring->cur = ring->next = 0;
    667 }
    668 
    669 static void
    670 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
    671 {
    672 	struct rt2661_rx_data *data;
    673 	int i;
    674 
    675 	if (ring->desc != NULL) {
    676 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
    677 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    678 		bus_dmamap_unload(sc->sc_dmat, ring->map);
    679 		bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
    680 		    ring->count * RT2661_RX_DESC_SIZE);
    681 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
    682 	}
    683 
    684 	if (ring->data != NULL) {
    685 		for (i = 0; i < ring->count; i++) {
    686 			data = &ring->data[i];
    687 
    688 			if (data->m != NULL) {
    689 				bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    690 				    data->map->dm_mapsize,
    691 				    BUS_DMASYNC_POSTREAD);
    692 				bus_dmamap_unload(sc->sc_dmat, data->map);
    693 				m_freem(data->m);
    694 			}
    695 
    696 			if (data->map != NULL)
    697 				bus_dmamap_destroy(sc->sc_dmat, data->map);
    698 		}
    699 		free(ring->data, M_DEVBUF);
    700 	}
    701 }
    702 
    703 static struct ieee80211_node *
    704 rt2661_node_alloc(struct ieee80211_node_table *nt)
    705 {
    706 	struct rt2661_node *rn;
    707 
    708 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
    709 	    M_NOWAIT | M_ZERO);
    710 
    711 	return (rn != NULL) ? &rn->ni : NULL;
    712 }
    713 
    714 static int
    715 rt2661_media_change(struct ifnet *ifp)
    716 {
    717 	int error;
    718 
    719 	error = ieee80211_media_change(ifp);
    720 	if (error != ENETRESET)
    721 		return error;
    722 
    723 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
    724 		rt2661_init(ifp);
    725 
    726 	return 0;
    727 }
    728 
    729 /*
    730  * This function is called periodically (every 200ms) during scanning to
    731  * switch from one channel to another.
    732  */
    733 static void
    734 rt2661_next_scan(void *arg)
    735 {
    736 	struct rt2661_softc *sc = arg;
    737 	struct ieee80211com *ic = &sc->sc_ic;
    738 	int s;
    739 
    740 	s = splnet();
    741 	if (ic->ic_state == IEEE80211_S_SCAN)
    742 		ieee80211_next_scan(ic);
    743 	splx(s);
    744 }
    745 
    746 /*
    747  * This function is called for each neighbor node.
    748  */
    749 static void
    750 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
    751 {
    752 	struct rt2661_softc *sc = arg;
    753 	struct rt2661_node *rn = (struct rt2661_node *)ni;
    754 
    755 	ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
    756 }
    757 
    758 /*
    759  * This function is called periodically (every 500ms) in RUN state to update
    760  * various settings like rate control statistics or Rx sensitivity.
    761  */
    762 static void
    763 rt2661_updatestats(void *arg)
    764 {
    765 	struct rt2661_softc *sc = arg;
    766 	struct ieee80211com *ic = &sc->sc_ic;
    767 	int s;
    768 
    769 	s = splnet();
    770 	if (ic->ic_opmode == IEEE80211_M_STA)
    771 		rt2661_iter_func(sc, ic->ic_bss);
    772 	else
    773 		ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
    774 
    775 	/* update rx sensitivity every 1 sec */
    776 	if (++sc->ncalls & 1)
    777 		rt2661_rx_tune(sc);
    778 	splx(s);
    779 
    780 	callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
    781 }
    782 
    783 static void
    784 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
    785 {
    786 	struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
    787 	int i;
    788 
    789 	ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
    790 
    791 	/* set rate to some reasonable initial value */
    792 	for (i = ni->ni_rates.rs_nrates - 1;
    793 	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
    794 	     i--);
    795 	ni->ni_txrate = i;
    796 }
    797 
    798 static int
    799 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
    800 {
    801 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
    802 	enum ieee80211_state ostate;
    803 	struct ieee80211_node *ni;
    804 	uint32_t tmp;
    805 
    806 	ostate = ic->ic_state;
    807 	callout_stop(&sc->scan_ch);
    808 
    809 	switch (nstate) {
    810 	case IEEE80211_S_INIT:
    811 		callout_stop(&sc->amrr_ch);
    812 
    813 		if (ostate == IEEE80211_S_RUN) {
    814 			/* abort TSF synchronization */
    815 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
    816 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
    817 		}
    818 		break;
    819 
    820 	case IEEE80211_S_SCAN:
    821 		rt2661_set_chan(sc, ic->ic_curchan);
    822 		callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
    823 		break;
    824 
    825 	case IEEE80211_S_AUTH:
    826 	case IEEE80211_S_ASSOC:
    827 		rt2661_set_chan(sc, ic->ic_curchan);
    828 		break;
    829 
    830 	case IEEE80211_S_RUN:
    831 		rt2661_set_chan(sc, ic->ic_curchan);
    832 
    833 		ni = ic->ic_bss;
    834 
    835 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    836 			rt2661_set_slottime(sc);
    837 			rt2661_enable_mrr(sc);
    838 			rt2661_set_txpreamble(sc);
    839 			rt2661_set_basicrates(sc, &ni->ni_rates);
    840 			rt2661_set_bssid(sc, ni->ni_bssid);
    841 		}
    842 
    843 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
    844 		    ic->ic_opmode == IEEE80211_M_IBSS)
    845 			rt2661_prepare_beacon(sc);
    846 
    847 		if (ic->ic_opmode == IEEE80211_M_STA) {
    848 			/* fake a join to init the tx rate */
    849 			rt2661_newassoc(ni, 1);
    850 		}
    851 
    852 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
    853 			sc->ncalls = 0;
    854 			sc->avg_rssi = -95;	/* reset EMA */
    855 			callout_reset(&sc->amrr_ch, hz / 2,
    856 			    rt2661_updatestats, sc);
    857 			rt2661_enable_tsf_sync(sc);
    858 		}
    859 		break;
    860 	}
    861 
    862 	return sc->sc_newstate(ic, nstate, arg);
    863 }
    864 
    865 /*
    866  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
    867  * 93C66).
    868  */
    869 static uint16_t
    870 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
    871 {
    872 	uint32_t tmp;
    873 	uint16_t val;
    874 	int n;
    875 
    876 	/* clock C once before the first command */
    877 	RT2661_EEPROM_CTL(sc, 0);
    878 
    879 	RT2661_EEPROM_CTL(sc, RT2661_S);
    880 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
    881 	RT2661_EEPROM_CTL(sc, RT2661_S);
    882 
    883 	/* write start bit (1) */
    884 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
    885 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
    886 
    887 	/* write READ opcode (10) */
    888 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
    889 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
    890 	RT2661_EEPROM_CTL(sc, RT2661_S);
    891 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
    892 
    893 	/* write address (A5-A0 or A7-A0) */
    894 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
    895 	for (; n >= 0; n--) {
    896 		RT2661_EEPROM_CTL(sc, RT2661_S |
    897 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
    898 		RT2661_EEPROM_CTL(sc, RT2661_S |
    899 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
    900 	}
    901 
    902 	RT2661_EEPROM_CTL(sc, RT2661_S);
    903 
    904 	/* read data Q15-Q0 */
    905 	val = 0;
    906 	for (n = 15; n >= 0; n--) {
    907 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
    908 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
    909 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
    910 		RT2661_EEPROM_CTL(sc, RT2661_S);
    911 	}
    912 
    913 	RT2661_EEPROM_CTL(sc, 0);
    914 
    915 	/* clear Chip Select and clock C */
    916 	RT2661_EEPROM_CTL(sc, RT2661_S);
    917 	RT2661_EEPROM_CTL(sc, 0);
    918 	RT2661_EEPROM_CTL(sc, RT2661_C);
    919 
    920 	return val;
    921 }
    922 
    923 static void
    924 rt2661_tx_intr(struct rt2661_softc *sc)
    925 {
    926 	struct ifnet *ifp = &sc->sc_if;
    927 	struct rt2661_tx_ring *txq;
    928 	struct rt2661_tx_data *data;
    929 	struct rt2661_node *rn;
    930 	uint32_t val;
    931 	int qid, retrycnt, s;
    932 
    933 	s = splnet();
    934 
    935 	for (;;) {
    936 		val = RAL_READ(sc, RT2661_STA_CSR4);
    937 		if (!(val & RT2661_TX_STAT_VALID))
    938 			break;
    939 
    940 		/* retrieve the queue in which this frame was sent */
    941 		qid = RT2661_TX_QID(val);
    942 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
    943 
    944 		/* retrieve rate control algorithm context */
    945 		data = &txq->data[txq->stat];
    946 		rn = (struct rt2661_node *)data->ni;
    947 
    948 		/* if no frame has been sent, ignore */
    949 		if (rn == NULL)
    950 			continue;
    951 
    952 		switch (RT2661_TX_RESULT(val)) {
    953 		case RT2661_TX_SUCCESS:
    954 			retrycnt = RT2661_TX_RETRYCNT(val);
    955 
    956 			DPRINTFN(10, ("data frame sent successfully after "
    957 			    "%d retries\n", retrycnt));
    958 			rn->amn.amn_txcnt++;
    959 			if (retrycnt > 0)
    960 				rn->amn.amn_retrycnt++;
    961 			ifp->if_opackets++;
    962 			break;
    963 
    964 		case RT2661_TX_RETRY_FAIL:
    965 			DPRINTFN(9, ("sending data frame failed (too much "
    966 			    "retries)\n"));
    967 			rn->amn.amn_txcnt++;
    968 			rn->amn.amn_retrycnt++;
    969 			ifp->if_oerrors++;
    970 			break;
    971 
    972 		default:
    973 			/* other failure */
    974 			aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
    975 			ifp->if_oerrors++;
    976 		}
    977 
    978 		ieee80211_free_node(data->ni);
    979 		data->ni = NULL;
    980 
    981 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
    982 
    983 		txq->queued--;
    984 		if (++txq->stat >= txq->count)	/* faster than % count */
    985 			txq->stat = 0;
    986 	}
    987 
    988 	sc->sc_tx_timer = 0;
    989 	ifp->if_flags &= ~IFF_OACTIVE;
    990 	rt2661_start(ifp); /* in softint */
    991 
    992 	splx(s);
    993 }
    994 
    995 static void
    996 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
    997 {
    998 	struct rt2661_tx_desc *desc;
    999 	struct rt2661_tx_data *data;
   1000 
   1001 	for (;;) {
   1002 		desc = &txq->desc[txq->next];
   1003 		data = &txq->data[txq->next];
   1004 
   1005 		bus_dmamap_sync(sc->sc_dmat, txq->map,
   1006 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1007 		    BUS_DMASYNC_POSTREAD);
   1008 
   1009 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
   1010 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
   1011 			break;
   1012 
   1013 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1014 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1015 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1016 		m_freem(data->m);
   1017 		data->m = NULL;
   1018 		/* node reference is released in rt2661_tx_intr() */
   1019 
   1020 		/* descriptor is no longer valid */
   1021 		desc->flags &= ~htole32(RT2661_TX_VALID);
   1022 
   1023 		bus_dmamap_sync(sc->sc_dmat, txq->map,
   1024 		    txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1025 		    BUS_DMASYNC_PREWRITE);
   1026 
   1027 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
   1028 
   1029 		if (++txq->next >= txq->count)	/* faster than % count */
   1030 			txq->next = 0;
   1031 	}
   1032 }
   1033 
   1034 static void
   1035 rt2661_rx_intr(struct rt2661_softc *sc)
   1036 {
   1037 	struct ieee80211com *ic = &sc->sc_ic;
   1038 	struct ifnet *ifp = &sc->sc_if;
   1039 	struct rt2661_rx_desc *desc;
   1040 	struct rt2661_rx_data *data;
   1041 	struct ieee80211_frame *wh;
   1042 	struct ieee80211_node *ni;
   1043 	struct mbuf *mnew, *m;
   1044 	int error, rssi, s;
   1045 
   1046 	for (;;) {
   1047 		desc = &sc->rxq.desc[sc->rxq.cur];
   1048 		data = &sc->rxq.data[sc->rxq.cur];
   1049 
   1050 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1051 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
   1052 		    BUS_DMASYNC_POSTREAD);
   1053 
   1054 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
   1055 			break;
   1056 
   1057 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
   1058 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
   1059 			/*
   1060 			 * This should not happen since we did not request
   1061 			 * to receive those frames when we filled TXRX_CSR0.
   1062 			 */
   1063 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
   1064 			    le32toh(desc->flags)));
   1065 			ifp->if_ierrors++;
   1066 			goto skip;
   1067 		}
   1068 
   1069 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
   1070 			ifp->if_ierrors++;
   1071 			goto skip;
   1072 		}
   1073 
   1074 		/*
   1075 		 * Try to allocate a new mbuf for this ring element and load it
   1076 		 * before processing the current mbuf. If the ring element
   1077 		 * cannot be loaded, drop the received packet and reuse the old
   1078 		 * mbuf. In the unlikely case that the old mbuf can't be
   1079 		 * reloaded either, explicitly panic.
   1080 		 */
   1081 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1082 		if (mnew == NULL) {
   1083 			ifp->if_ierrors++;
   1084 			goto skip;
   1085 		}
   1086 
   1087 		MCLGET(mnew, M_DONTWAIT);
   1088 		if (!(mnew->m_flags & M_EXT)) {
   1089 			m_freem(mnew);
   1090 			ifp->if_ierrors++;
   1091 			goto skip;
   1092 		}
   1093 
   1094 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1095 		    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1096 		bus_dmamap_unload(sc->sc_dmat, data->map);
   1097 
   1098 		error = bus_dmamap_load(sc->sc_dmat, data->map,
   1099 		    mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
   1100 		if (error != 0) {
   1101 			m_freem(mnew);
   1102 
   1103 			/* try to reload the old mbuf */
   1104 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1105 			    mtod(data->m, void *), MCLBYTES, NULL,
   1106 			    BUS_DMA_NOWAIT);
   1107 			if (error != 0) {
   1108 				/* very unlikely that it will fail... */
   1109 				panic("%s: could not load old rx mbuf",
   1110 				    device_xname(sc->sc_dev));
   1111 			}
   1112 			/* physical address may have changed */
   1113 			desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1114 			ifp->if_ierrors++;
   1115 			goto skip;
   1116 		}
   1117 
   1118 		/*
   1119 	 	 * New mbuf successfully loaded, update Rx ring and continue
   1120 		 * processing.
   1121 		 */
   1122 		m = data->m;
   1123 		data->m = mnew;
   1124 		desc->physaddr = htole32(data->map->dm_segs->ds_addr);
   1125 
   1126 		/* finalize mbuf */
   1127 		m_set_rcvif(m, ifp);
   1128 		m->m_pkthdr.len = m->m_len =
   1129 		    (le32toh(desc->flags) >> 16) & 0xfff;
   1130 
   1131 		s = splnet();
   1132 
   1133 		if (sc->sc_drvbpf != NULL) {
   1134 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
   1135 			uint32_t tsf_lo, tsf_hi;
   1136 
   1137 			/* get timestamp (low and high 32 bits) */
   1138 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
   1139 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
   1140 
   1141 			tap->wr_tsf =
   1142 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
   1143 			tap->wr_flags = 0;
   1144 			tap->wr_rate = rt2661_rxrate(desc);
   1145 			tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
   1146 			tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
   1147 			tap->wr_antsignal = desc->rssi;
   1148 
   1149 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m,
   1150 			    BPF_D_IN);
   1151 		}
   1152 
   1153 		wh = mtod(m, struct ieee80211_frame *);
   1154 		ni = ieee80211_find_rxnode(ic,
   1155 		    (struct ieee80211_frame_min *)wh);
   1156 
   1157 		/* send the frame to the 802.11 layer */
   1158 		ieee80211_input(ic, m, ni, desc->rssi, 0);
   1159 
   1160 		/*-
   1161 		 * Keep track of the average RSSI using an Exponential Moving
   1162 		 * Average (EMA) of 8 Wilder's days:
   1163 		 *     avg = (1 / N) x rssi + ((N - 1) / N) x avg
   1164 		 */
   1165 		rssi = rt2661_get_rssi(sc, desc->rssi);
   1166 		sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
   1167 
   1168 		/* node is no longer needed */
   1169 		ieee80211_free_node(ni);
   1170 
   1171 		splx(s);
   1172 
   1173 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
   1174 
   1175 		bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
   1176 		    sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
   1177 		    BUS_DMASYNC_PREWRITE);
   1178 
   1179 		DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
   1180 
   1181 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
   1182 	}
   1183 
   1184 	/*
   1185 	 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
   1186 	 * without calling if_start().
   1187 	 */
   1188 	s = splnet();
   1189 	if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
   1190 		rt2661_start(ifp);
   1191 	splx(s);
   1192 }
   1193 
   1194 /*
   1195  * This function is called in HostAP or IBSS modes when it's time to send a
   1196  * new beacon (every ni_intval milliseconds).
   1197  */
   1198 static void
   1199 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
   1200 {
   1201 	struct ieee80211com *ic = &sc->sc_ic;
   1202 
   1203 	if (sc->sc_flags & RT2661_UPDATE_SLOT) {
   1204 		sc->sc_flags &= ~RT2661_UPDATE_SLOT;
   1205 		sc->sc_flags |= RT2661_SET_SLOTTIME;
   1206 	} else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
   1207 		sc->sc_flags &= ~RT2661_SET_SLOTTIME;
   1208 		rt2661_set_slottime(sc);
   1209 	}
   1210 
   1211 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   1212 		/* update ERP Information Element */
   1213 		RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
   1214 		RAL_RW_BARRIER_1(sc, sc->erp_csr);
   1215 	}
   1216 
   1217 	DPRINTFN(15, ("beacon expired\n"));
   1218 }
   1219 
   1220 static void
   1221 rt2661_mcu_wakeup(struct rt2661_softc *sc)
   1222 {
   1223 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
   1224 
   1225 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
   1226 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
   1227 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
   1228 
   1229 	/* send wakeup command to MCU */
   1230 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
   1231 }
   1232 
   1233 static void
   1234 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
   1235 {
   1236 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
   1237 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
   1238 }
   1239 
   1240 int
   1241 rt2661_intr(void *arg)
   1242 {
   1243 	struct rt2661_softc *sc = arg;
   1244 	struct ifnet *ifp = &sc->sc_if;
   1245 	uint32_t r1, r2;
   1246 
   1247 	/* don't re-enable interrupts if we're shutting down */
   1248 	if (!(ifp->if_flags & IFF_RUNNING)) {
   1249 		/* disable MAC and MCU interrupts */
   1250 		RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
   1251 		RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
   1252 		return 0;
   1253 	}
   1254 
   1255 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
   1256 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
   1257 
   1258 	if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
   1259 		return 0;
   1260 
   1261 	/* disable interrupts */
   1262 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
   1263 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
   1264 
   1265 	softint_schedule(sc->sc_soft_ih);
   1266 	return 1;
   1267 }
   1268 
   1269 static void
   1270 rt2661_softintr(void *arg)
   1271 {
   1272 	struct rt2661_softc *sc = arg;
   1273 	uint32_t r1, r2;
   1274 
   1275 	for (;;) {
   1276 		r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
   1277 		r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
   1278 
   1279 		if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
   1280 		    (r2 & RT2661_MCU_INT_ALL) == 0)
   1281 			break;
   1282 
   1283 		RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
   1284 		RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
   1285 
   1286 		if (r1 & RT2661_MGT_DONE)
   1287 			rt2661_tx_dma_intr(sc, &sc->mgtq);
   1288 
   1289 		if (r1 & RT2661_RX_DONE)
   1290 			rt2661_rx_intr(sc);
   1291 
   1292 		if (r1 & RT2661_TX0_DMA_DONE)
   1293 			rt2661_tx_dma_intr(sc, &sc->txq[0]);
   1294 
   1295 		if (r1 & RT2661_TX1_DMA_DONE)
   1296 			rt2661_tx_dma_intr(sc, &sc->txq[1]);
   1297 
   1298 		if (r1 & RT2661_TX2_DMA_DONE)
   1299 			rt2661_tx_dma_intr(sc, &sc->txq[2]);
   1300 
   1301 		if (r1 & RT2661_TX3_DMA_DONE)
   1302 			rt2661_tx_dma_intr(sc, &sc->txq[3]);
   1303 
   1304 		if (r1 & RT2661_TX_DONE)
   1305 			rt2661_tx_intr(sc);
   1306 
   1307 		if (r2 & RT2661_MCU_CMD_DONE)
   1308 			rt2661_mcu_cmd_intr(sc);
   1309 
   1310 		if (r2 & RT2661_MCU_BEACON_EXPIRE)
   1311 			rt2661_mcu_beacon_expire(sc);
   1312 
   1313 		if (r2 & RT2661_MCU_WAKEUP)
   1314 			rt2661_mcu_wakeup(sc);
   1315 	}
   1316 
   1317 	/* enable interrupts */
   1318 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
   1319 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
   1320 }
   1321 
   1322 /* quickly determine if a given rate is CCK or OFDM */
   1323 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
   1324 
   1325 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
   1326 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
   1327 
   1328 /*
   1329  * This function is only used by the Rx radiotap code. It returns the rate at
   1330  * which a given frame was received.
   1331  */
   1332 static uint8_t
   1333 rt2661_rxrate(struct rt2661_rx_desc *desc)
   1334 {
   1335 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
   1336 		/* reverse function of rt2661_plcp_signal */
   1337 		switch (desc->rate & 0xf) {
   1338 		case 0xb:	return 12;
   1339 		case 0xf:	return 18;
   1340 		case 0xa:	return 24;
   1341 		case 0xe:	return 36;
   1342 		case 0x9:	return 48;
   1343 		case 0xd:	return 72;
   1344 		case 0x8:	return 96;
   1345 		case 0xc:	return 108;
   1346 		}
   1347 	} else {
   1348 		if (desc->rate == 10)
   1349 			return 2;
   1350 		if (desc->rate == 20)
   1351 			return 4;
   1352 		if (desc->rate == 55)
   1353 			return 11;
   1354 		if (desc->rate == 110)
   1355 			return 22;
   1356 	}
   1357 	return 2;	/* should not get there */
   1358 }
   1359 
   1360 /*
   1361  * Return the expected ack rate for a frame transmitted at rate `rate'.
   1362  * XXX: this should depend on the destination node basic rate set.
   1363  */
   1364 static int
   1365 rt2661_ack_rate(struct ieee80211com *ic, int rate)
   1366 {
   1367 	switch (rate) {
   1368 	/* CCK rates */
   1369 	case 2:
   1370 		return 2;
   1371 	case 4:
   1372 	case 11:
   1373 	case 22:
   1374 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
   1375 
   1376 	/* OFDM rates */
   1377 	case 12:
   1378 	case 18:
   1379 		return 12;
   1380 	case 24:
   1381 	case 36:
   1382 		return 24;
   1383 	case 48:
   1384 	case 72:
   1385 	case 96:
   1386 	case 108:
   1387 		return 48;
   1388 	}
   1389 
   1390 	/* default to 1Mbps */
   1391 	return 2;
   1392 }
   1393 
   1394 /*
   1395  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
   1396  * The function automatically determines the operating mode depending on the
   1397  * given rate. `flags' indicates whether short preamble is in use or not.
   1398  */
   1399 static uint16_t
   1400 rt2661_txtime(int len, int rate, uint32_t flags)
   1401 {
   1402 	uint16_t txtime;
   1403 
   1404 	if (RAL_RATE_IS_OFDM(rate)) {
   1405 		/* IEEE Std 802.11g-2003, pp. 44 */
   1406 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
   1407 		txtime = 16 + 4 + 4 * txtime + 6;
   1408 	} else {
   1409 		/* IEEE Std 802.11b-1999, pp. 28 */
   1410 		txtime = (16 * len + rate - 1) / rate;
   1411 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
   1412 			txtime +=  72 + 24;
   1413 		else
   1414 			txtime += 144 + 48;
   1415 	}
   1416 	return txtime;
   1417 }
   1418 
   1419 static uint8_t
   1420 rt2661_plcp_signal(int rate)
   1421 {
   1422 	switch (rate) {
   1423 	/* CCK rates (returned values are device-dependent) */
   1424 	case 2:		return 0x0;
   1425 	case 4:		return 0x1;
   1426 	case 11:	return 0x2;
   1427 	case 22:	return 0x3;
   1428 
   1429 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
   1430 	case 12:	return 0xb;
   1431 	case 18:	return 0xf;
   1432 	case 24:	return 0xa;
   1433 	case 36:	return 0xe;
   1434 	case 48:	return 0x9;
   1435 	case 72:	return 0xd;
   1436 	case 96:	return 0x8;
   1437 	case 108:	return 0xc;
   1438 
   1439 	/* unsupported rates (should not get there) */
   1440 	default:	return 0xff;
   1441 	}
   1442 }
   1443 
   1444 static void
   1445 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
   1446     uint32_t flags, uint16_t xflags, int len, int rate,
   1447     const bus_dma_segment_t *segs, int nsegs, int ac)
   1448 {
   1449 	struct ieee80211com *ic = &sc->sc_ic;
   1450 	uint16_t plcp_length;
   1451 	int i, remainder;
   1452 
   1453 	desc->flags = htole32(flags);
   1454 	desc->flags |= htole32(len << 16);
   1455 
   1456 	desc->xflags = htole16(xflags);
   1457 	desc->xflags |= htole16(nsegs << 13);
   1458 
   1459 	desc->wme = htole16(
   1460 	    RT2661_QID(ac) |
   1461 	    RT2661_AIFSN(2) |
   1462 	    RT2661_LOGCWMIN(4) |
   1463 	    RT2661_LOGCWMAX(10));
   1464 
   1465 	/*
   1466 	 * Remember in which queue this frame was sent. This field is driver
   1467 	 * private data only. It will be made available by the NIC in STA_CSR4
   1468 	 * on Tx interrupts.
   1469 	 */
   1470 	desc->qid = ac;
   1471 
   1472 	/* setup PLCP fields */
   1473 	desc->plcp_signal  = rt2661_plcp_signal(rate);
   1474 	desc->plcp_service = 4;
   1475 
   1476 	len += IEEE80211_CRC_LEN;
   1477 	if (RAL_RATE_IS_OFDM(rate)) {
   1478 		desc->flags |= htole32(RT2661_TX_OFDM);
   1479 
   1480 		plcp_length = len & 0xfff;
   1481 		desc->plcp_length_hi = plcp_length >> 6;
   1482 		desc->plcp_length_lo = plcp_length & 0x3f;
   1483 	} else {
   1484 		plcp_length = (16 * len + rate - 1) / rate;
   1485 		if (rate == 22) {
   1486 			remainder = (16 * len) % 22;
   1487 			if (remainder != 0 && remainder < 7)
   1488 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
   1489 		}
   1490 		desc->plcp_length_hi = plcp_length >> 8;
   1491 		desc->plcp_length_lo = plcp_length & 0xff;
   1492 
   1493 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1494 			desc->plcp_signal |= 0x08;
   1495 	}
   1496 
   1497 	/* RT2x61 supports scatter with up to 5 segments */
   1498 	for (i = 0; i < nsegs; i++) {
   1499 		desc->addr[i] = htole32(segs[i].ds_addr);
   1500 		desc->len [i] = htole16(segs[i].ds_len);
   1501 	}
   1502 
   1503 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
   1504 }
   1505 
   1506 static int
   1507 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
   1508     struct ieee80211_node *ni)
   1509 {
   1510 	struct ieee80211com *ic = &sc->sc_ic;
   1511 	struct rt2661_tx_desc *desc;
   1512 	struct rt2661_tx_data *data;
   1513 	struct ieee80211_frame *wh;
   1514 	uint16_t dur;
   1515 	uint32_t flags = 0;
   1516 	int rate, error;
   1517 
   1518 	desc = &sc->mgtq.desc[sc->mgtq.cur];
   1519 	data = &sc->mgtq.data[sc->mgtq.cur];
   1520 
   1521 	/* send mgt frames at the lowest available rate */
   1522 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   1523 
   1524 	wh = mtod(m0, struct ieee80211_frame *);
   1525 
   1526 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1527 		if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
   1528 			m_freem(m0);
   1529 			return ENOBUFS;
   1530 		}
   1531 
   1532 		/* packet header may have moved, reset our local pointer */
   1533 		wh = mtod(m0, struct ieee80211_frame *);
   1534 	}
   1535 
   1536 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1537 	    BUS_DMA_NOWAIT);
   1538 	if (error != 0) {
   1539 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1540 		    error);
   1541 		m_freem(m0);
   1542 		return error;
   1543 	}
   1544 
   1545 	if (sc->sc_drvbpf != NULL) {
   1546 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
   1547 
   1548 		tap->wt_flags = 0;
   1549 		tap->wt_rate = rate;
   1550 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
   1551 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
   1552 
   1553 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
   1554 	}
   1555 
   1556 	data->m = m0;
   1557 	data->ni = ni;
   1558 
   1559 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1560 		flags |= RT2661_TX_NEED_ACK;
   1561 
   1562 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
   1563 		    sc->sifs;
   1564 		*(uint16_t *)wh->i_dur = htole16(dur);
   1565 
   1566 		/* tell hardware to set timestamp in probe responses */
   1567 		if ((wh->i_fc[0] &
   1568 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1569 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
   1570 			flags |= RT2661_TX_TIMESTAMP;
   1571 	}
   1572 
   1573 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
   1574 	    m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
   1575 	    RT2661_QID_MGT);
   1576 
   1577 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1578 	    BUS_DMASYNC_PREWRITE);
   1579 	bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
   1580 	    sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1581 	    BUS_DMASYNC_PREWRITE);
   1582 
   1583 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
   1584 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
   1585 
   1586 	/* kick mgt */
   1587 	sc->mgtq.queued++;
   1588 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
   1589 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
   1590 
   1591 	return 0;
   1592 }
   1593 
   1594 /*
   1595  * Build a RTS control frame.
   1596  */
   1597 static struct mbuf *
   1598 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
   1599     uint16_t dur)
   1600 {
   1601 	struct ieee80211_frame_rts *rts;
   1602 	struct mbuf *m;
   1603 
   1604 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1605 	if (m == NULL) {
   1606 		sc->sc_ic.ic_stats.is_tx_nobuf++;
   1607 		aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
   1608 		return NULL;
   1609 	}
   1610 
   1611 	rts = mtod(m, struct ieee80211_frame_rts *);
   1612 
   1613 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
   1614 	    IEEE80211_FC0_SUBTYPE_RTS;
   1615 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   1616 	*(uint16_t *)rts->i_dur = htole16(dur);
   1617 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
   1618 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
   1619 
   1620 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
   1621 
   1622 	return m;
   1623 }
   1624 
   1625 static int
   1626 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
   1627     struct ieee80211_node *ni, int ac)
   1628 {
   1629 	struct ieee80211com *ic = &sc->sc_ic;
   1630 	struct rt2661_tx_ring *txq = &sc->txq[ac];
   1631 	struct rt2661_tx_desc *desc;
   1632 	struct rt2661_tx_data *data;
   1633 	struct ieee80211_frame *wh;
   1634 	struct ieee80211_key *k;
   1635 	struct mbuf *mnew;
   1636 	uint16_t dur;
   1637 	uint32_t flags = 0;
   1638 	int rate, useprot, error, tid;
   1639 
   1640 	wh = mtod(m0, struct ieee80211_frame *);
   1641 
   1642 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
   1643 		rate = ic->ic_sup_rates[ic->ic_curmode].
   1644 		    rs_rates[ic->ic_fixed_rate];
   1645 	} else
   1646 		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
   1647 	rate &= IEEE80211_RATE_VAL;
   1648 	if (rate == 0)
   1649 		rate = 2;	/* XXX should not happen */
   1650 
   1651 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
   1652 		k = ieee80211_crypto_encap(ic, ni, m0);
   1653 		if (k == NULL) {
   1654 			m_freem(m0);
   1655 			return ENOBUFS;
   1656 		}
   1657 
   1658 		/* packet header may have moved, reset our local pointer */
   1659 		wh = mtod(m0, struct ieee80211_frame *);
   1660 	}
   1661 
   1662 	/*
   1663 	 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
   1664 	 * chance to contend for the wireless medium.
   1665 	 */
   1666 	tid = WME_AC_TO_TID(M_WME_GETAC(m0));
   1667 	if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
   1668 		flags |= RT2661_TX_IFS_SIFS;
   1669 
   1670 	/*
   1671 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
   1672 	 * for directed frames only when the length of the MPDU is greater
   1673 	 * than the length threshold indicated by" ic_rtsthreshold.
   1674 	 *
   1675 	 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
   1676 	 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
   1677 	 * type Data or an MMPDU".
   1678 	 */
   1679 	useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
   1680 	    (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
   1681 	    ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
   1682 	if (useprot) {
   1683 		struct mbuf *m;
   1684 		int rtsrate, ackrate;
   1685 
   1686 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
   1687 		ackrate = rt2661_ack_rate(ic, rate);
   1688 
   1689 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
   1690 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
   1691 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
   1692 		      3 * sc->sifs;
   1693 
   1694 		m = rt2661_get_rts(sc, wh, dur);
   1695 		if (m == NULL) {
   1696 			aprint_error_dev(sc->sc_dev, "could not allocate RTS "
   1697 			    "frame\n");
   1698 			m_freem(m0);
   1699 			return ENOBUFS;
   1700 		}
   1701 
   1702 		desc = &txq->desc[txq->cur];
   1703 		data = &txq->data[txq->cur];
   1704 
   1705 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
   1706 		    BUS_DMA_NOWAIT);
   1707 		if (error != 0) {
   1708 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1709 			m_freem(m);
   1710 			m_freem(m0);
   1711 			return error;
   1712 		}
   1713 
   1714 		/* avoid multiple free() of the same node for each fragment */
   1715 		ieee80211_ref_node(ni);
   1716 
   1717 		data->m = m;
   1718 		data->ni = ni;
   1719 
   1720 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
   1721 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
   1722 		    data->map->dm_segs, data->map->dm_nsegs, ac);
   1723 
   1724 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1725 		    data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1726 		bus_dmamap_sync(sc->sc_dmat, txq->map,
   1727 		    txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
   1728 		    BUS_DMASYNC_PREWRITE);
   1729 
   1730 		txq->queued++;
   1731 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
   1732 
   1733 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
   1734 	}
   1735 
   1736 	data = &txq->data[txq->cur];
   1737 	desc = &txq->desc[txq->cur];
   1738 
   1739 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1740 	    BUS_DMA_NOWAIT);
   1741 	if (error != 0 && error != EFBIG) {
   1742 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1743 		    error);
   1744 		m_freem(m0);
   1745 		return error;
   1746 	}
   1747 	if (error != 0) {
   1748 		/* too many fragments, linearize */
   1749 
   1750 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
   1751 		if (mnew == NULL) {
   1752 			m_freem(m0);
   1753 			return ENOMEM;
   1754 		}
   1755 
   1756 		M_COPY_PKTHDR(mnew, m0);
   1757 		if (m0->m_pkthdr.len > MHLEN) {
   1758 			MCLGET(mnew, M_DONTWAIT);
   1759 			if (!(mnew->m_flags & M_EXT)) {
   1760 				m_freem(m0);
   1761 				m_freem(mnew);
   1762 				return ENOMEM;
   1763 			}
   1764 		}
   1765 
   1766 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
   1767 		m_freem(m0);
   1768 		mnew->m_len = mnew->m_pkthdr.len;
   1769 		m0 = mnew;
   1770 
   1771 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
   1772 		    BUS_DMA_NOWAIT);
   1773 		if (error != 0) {
   1774 			aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
   1775 			m_freem(m0);
   1776 			return error;
   1777 		}
   1778 
   1779 		/* packet header have moved, reset our local pointer */
   1780 		wh = mtod(m0, struct ieee80211_frame *);
   1781 	}
   1782 
   1783 	if (sc->sc_drvbpf != NULL) {
   1784 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
   1785 
   1786 		tap->wt_flags = 0;
   1787 		tap->wt_rate = rate;
   1788 		tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
   1789 		tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
   1790 
   1791 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
   1792 	}
   1793 
   1794 	data->m = m0;
   1795 	data->ni = ni;
   1796 
   1797 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1798 		flags |= RT2661_TX_NEED_ACK;
   1799 
   1800 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
   1801 		    ic->ic_flags) + sc->sifs;
   1802 		*(uint16_t *)wh->i_dur = htole16(dur);
   1803 	}
   1804 
   1805 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
   1806 	    data->map->dm_segs, data->map->dm_nsegs, ac);
   1807 
   1808 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
   1809 	    BUS_DMASYNC_PREWRITE);
   1810 	bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
   1811 	    RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
   1812 
   1813 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
   1814 	    m0->m_pkthdr.len, txq->cur, rate));
   1815 
   1816 	/* kick Tx */
   1817 	txq->queued++;
   1818 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
   1819 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
   1820 
   1821 	return 0;
   1822 }
   1823 
   1824 static void
   1825 rt2661_start(struct ifnet *ifp)
   1826 {
   1827 	struct rt2661_softc *sc = ifp->if_softc;
   1828 	struct ieee80211com *ic = &sc->sc_ic;
   1829 	struct mbuf *m0;
   1830 	struct ether_header *eh;
   1831 	struct ieee80211_node *ni = NULL;
   1832 
   1833 	/*
   1834 	 * net80211 may still try to send management frames even if the
   1835 	 * IFF_RUNNING flag is not set...
   1836 	 */
   1837 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1838 		return;
   1839 
   1840 	for (;;) {
   1841 		IF_POLL(&ic->ic_mgtq, m0);
   1842 		if (m0 != NULL) {
   1843 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
   1844 				ifp->if_flags |= IFF_OACTIVE;
   1845 				break;
   1846 			}
   1847 			IF_DEQUEUE(&ic->ic_mgtq, m0);
   1848 			if (m0 == NULL)
   1849 				break;
   1850 
   1851 			ni = M_GETCTX(m0, struct ieee80211_node *);
   1852 			M_CLEARCTX(m0);
   1853 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
   1854 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
   1855 				break;
   1856 
   1857 		} else {
   1858 			IF_POLL(&ifp->if_snd, m0);
   1859 			if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
   1860 				break;
   1861 
   1862 			if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
   1863 				/* there is no place left in this ring */
   1864 				ifp->if_flags |= IFF_OACTIVE;
   1865 				break;
   1866 			}
   1867 
   1868 			IFQ_DEQUEUE(&ifp->if_snd, m0);
   1869 
   1870 			if (m0->m_len < sizeof (struct ether_header) &&
   1871 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
   1872 				continue;
   1873 
   1874 			eh = mtod(m0, struct ether_header *);
   1875 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
   1876 			if (ni == NULL) {
   1877 				m_freem(m0);
   1878 				ifp->if_oerrors++;
   1879 				continue;
   1880 			}
   1881 
   1882 			bpf_mtap(ifp, m0, BPF_D_OUT);
   1883 			m0 = ieee80211_encap(ic, m0, ni);
   1884 			if (m0 == NULL) {
   1885 				ieee80211_free_node(ni);
   1886 				ifp->if_oerrors++;
   1887 				continue;
   1888 			}
   1889 			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
   1890 			if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
   1891 				if (ni != NULL)
   1892 					ieee80211_free_node(ni);
   1893 				ifp->if_oerrors++;
   1894 				break;
   1895 			}
   1896 		}
   1897 
   1898 		sc->sc_tx_timer = 5;
   1899 		ifp->if_timer = 1;
   1900 	}
   1901 }
   1902 
   1903 static void
   1904 rt2661_watchdog(struct ifnet *ifp)
   1905 {
   1906 	struct rt2661_softc *sc = ifp->if_softc;
   1907 
   1908 	ifp->if_timer = 0;
   1909 
   1910 	if (sc->sc_tx_timer > 0) {
   1911 		if (--sc->sc_tx_timer == 0) {
   1912 			aprint_error_dev(sc->sc_dev, "device timeout\n");
   1913 			rt2661_init(ifp);
   1914 			ifp->if_oerrors++;
   1915 			return;
   1916 		}
   1917 		ifp->if_timer = 1;
   1918 	}
   1919 
   1920 	ieee80211_watchdog(&sc->sc_ic);
   1921 }
   1922 
   1923 /*
   1924  * This function allows for fast channel switching in monitor mode (used by
   1925  * kismet). In IBSS mode, we must explicitly reset the interface to
   1926  * generate a new beacon frame.
   1927  */
   1928 static int
   1929 rt2661_reset(struct ifnet *ifp)
   1930 {
   1931 	struct rt2661_softc *sc = ifp->if_softc;
   1932 	struct ieee80211com *ic = &sc->sc_ic;
   1933 
   1934 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
   1935 		return ENETRESET;
   1936 
   1937 	rt2661_set_chan(sc, ic->ic_curchan);
   1938 
   1939 	return 0;
   1940 }
   1941 
   1942 static int
   1943 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1944 {
   1945 	struct rt2661_softc *sc = ifp->if_softc;
   1946 	struct ieee80211com *ic = &sc->sc_ic;
   1947 	int s, error = 0;
   1948 
   1949 	s = splnet();
   1950 
   1951 	switch (cmd) {
   1952 	case SIOCSIFFLAGS:
   1953 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1954 			break;
   1955 		if (ifp->if_flags & IFF_UP) {
   1956 			if (ifp->if_flags & IFF_RUNNING)
   1957 				rt2661_update_promisc(sc);
   1958 			else
   1959 				rt2661_init(ifp);
   1960 		} else {
   1961 			if (ifp->if_flags & IFF_RUNNING)
   1962 				rt2661_stop(ifp, 1);
   1963 		}
   1964 		break;
   1965 
   1966 	case SIOCADDMULTI:
   1967 	case SIOCDELMULTI:
   1968 		/* XXX no h/w multicast filter? --dyoung */
   1969 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
   1970 			error = 0;
   1971 		break;
   1972 
   1973 	case SIOCS80211CHANNEL:
   1974 		/*
   1975 		 * This allows for fast channel switching in monitor mode
   1976 		 * (used by kismet). In IBSS mode, we must explicitly reset
   1977 		 * the interface to generate a new beacon frame.
   1978 		 */
   1979 		error = ieee80211_ioctl(ic, cmd, data);
   1980 		if (error == ENETRESET &&
   1981 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
   1982 			if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1983 			     (IFF_UP | IFF_RUNNING))
   1984 				rt2661_set_chan(sc, ic->ic_ibss_chan);
   1985 			error = 0;
   1986 		}
   1987 		break;
   1988 
   1989 	default:
   1990 		error = ieee80211_ioctl(ic, cmd, data);
   1991 
   1992 	}
   1993 
   1994 	if (error == ENETRESET) {
   1995 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
   1996 		    (IFF_UP | IFF_RUNNING))
   1997 			rt2661_init(ifp);
   1998 		error = 0;
   1999 	}
   2000 
   2001 	splx(s);
   2002 
   2003 	return error;
   2004 }
   2005 
   2006 static void
   2007 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
   2008 {
   2009 	uint32_t tmp;
   2010 	int ntries;
   2011 
   2012 	for (ntries = 0; ntries < 100; ntries++) {
   2013 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
   2014 			break;
   2015 		DELAY(1);
   2016 	}
   2017 	if (ntries == 100) {
   2018 		aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
   2019 		return;
   2020 	}
   2021 
   2022 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
   2023 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
   2024 
   2025 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
   2026 }
   2027 
   2028 static uint8_t
   2029 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
   2030 {
   2031 	uint32_t val;
   2032 	int ntries;
   2033 
   2034 	for (ntries = 0; ntries < 100; ntries++) {
   2035 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
   2036 			break;
   2037 		DELAY(1);
   2038 	}
   2039 	if (ntries == 100) {
   2040 		aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
   2041 		return 0;
   2042 	}
   2043 
   2044 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
   2045 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
   2046 
   2047 	for (ntries = 0; ntries < 100; ntries++) {
   2048 		val = RAL_READ(sc, RT2661_PHY_CSR3);
   2049 		if (!(val & RT2661_BBP_BUSY))
   2050 			return val & 0xff;
   2051 		DELAY(1);
   2052 	}
   2053 
   2054 	aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
   2055 	return 0;
   2056 }
   2057 
   2058 static void
   2059 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
   2060 {
   2061 	uint32_t tmp;
   2062 	int ntries;
   2063 
   2064 	for (ntries = 0; ntries < 100; ntries++) {
   2065 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
   2066 			break;
   2067 		DELAY(1);
   2068 	}
   2069 	if (ntries == 100) {
   2070 		aprint_error_dev(sc->sc_dev, "could not write to RF\n");
   2071 		return;
   2072 	}
   2073 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
   2074 	    (reg & 3);
   2075 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
   2076 
   2077 	/* remember last written value in sc */
   2078 	sc->rf_regs[reg] = val;
   2079 
   2080 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
   2081 }
   2082 
   2083 static int
   2084 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
   2085 {
   2086 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
   2087 		return EIO;	/* there is already a command pending */
   2088 
   2089 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
   2090 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
   2091 
   2092 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
   2093 
   2094 	return 0;
   2095 }
   2096 
   2097 static void
   2098 rt2661_select_antenna(struct rt2661_softc *sc)
   2099 {
   2100 	uint8_t bbp4, bbp77;
   2101 	uint32_t tmp;
   2102 
   2103 	bbp4  = rt2661_bbp_read(sc,  4);
   2104 	bbp77 = rt2661_bbp_read(sc, 77);
   2105 
   2106 	/* TBD */
   2107 
   2108 	/* make sure Rx is disabled before switching antenna */
   2109 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2110 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
   2111 
   2112 	rt2661_bbp_write(sc,  4, bbp4);
   2113 	rt2661_bbp_write(sc, 77, bbp77);
   2114 
   2115 	/* restore Rx filter */
   2116 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2117 }
   2118 
   2119 /*
   2120  * Enable multi-rate retries for frames sent at OFDM rates.
   2121  * In 802.11b/g mode, allow fallback to CCK rates.
   2122  */
   2123 static void
   2124 rt2661_enable_mrr(struct rt2661_softc *sc)
   2125 {
   2126 	struct ieee80211com *ic = &sc->sc_ic;
   2127 	uint32_t tmp;
   2128 
   2129 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
   2130 
   2131 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
   2132 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
   2133 		tmp |= RT2661_MRR_CCK_FALLBACK;
   2134 	tmp |= RT2661_MRR_ENABLED;
   2135 
   2136 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
   2137 }
   2138 
   2139 static void
   2140 rt2661_set_txpreamble(struct rt2661_softc *sc)
   2141 {
   2142 	uint32_t tmp;
   2143 
   2144 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
   2145 
   2146 	tmp &= ~RT2661_SHORT_PREAMBLE;
   2147 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
   2148 		tmp |= RT2661_SHORT_PREAMBLE;
   2149 
   2150 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
   2151 }
   2152 
   2153 static void
   2154 rt2661_set_basicrates(struct rt2661_softc *sc,
   2155     const struct ieee80211_rateset *rs)
   2156 {
   2157 #define RV(r)	((r) & IEEE80211_RATE_VAL)
   2158 	uint32_t mask = 0;
   2159 	uint8_t rate;
   2160 	int i, j;
   2161 
   2162 	for (i = 0; i < rs->rs_nrates; i++) {
   2163 		rate = rs->rs_rates[i];
   2164 
   2165 		if (!(rate & IEEE80211_RATE_BASIC))
   2166 			continue;
   2167 
   2168 		/*
   2169 		 * Find h/w rate index.  We know it exists because the rate
   2170 		 * set has already been negotiated.
   2171 		 */
   2172 		for (j = 0; ieee80211_std_rateset_11g.rs_rates[j] != RV(rate); j++);
   2173 
   2174 		mask |= 1 << j;
   2175 	}
   2176 
   2177 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
   2178 
   2179 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
   2180 #undef RV
   2181 }
   2182 
   2183 /*
   2184  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
   2185  * driver.
   2186  */
   2187 static void
   2188 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
   2189 {
   2190 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
   2191 	uint32_t tmp;
   2192 
   2193 	/* update all BBP registers that depend on the band */
   2194 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
   2195 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
   2196 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
   2197 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
   2198 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
   2199 	}
   2200 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   2201 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   2202 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
   2203 	}
   2204 
   2205 	sc->bbp17 = bbp17;
   2206 	rt2661_bbp_write(sc,  17, bbp17);
   2207 	rt2661_bbp_write(sc,  96, bbp96);
   2208 	rt2661_bbp_write(sc, 104, bbp104);
   2209 
   2210 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
   2211 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
   2212 		rt2661_bbp_write(sc, 75, 0x80);
   2213 		rt2661_bbp_write(sc, 86, 0x80);
   2214 		rt2661_bbp_write(sc, 88, 0x80);
   2215 	}
   2216 
   2217 	rt2661_bbp_write(sc, 35, bbp35);
   2218 	rt2661_bbp_write(sc, 97, bbp97);
   2219 	rt2661_bbp_write(sc, 98, bbp98);
   2220 
   2221 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
   2222 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
   2223 	if (IEEE80211_IS_CHAN_2GHZ(c))
   2224 		tmp |= RT2661_PA_PE_2GHZ;
   2225 	else
   2226 		tmp |= RT2661_PA_PE_5GHZ;
   2227 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
   2228 
   2229 	/* 802.11a uses a 16 microseconds short interframe space */
   2230 	sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
   2231 }
   2232 
   2233 static void
   2234 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
   2235 {
   2236 	struct ieee80211com *ic = &sc->sc_ic;
   2237 	const struct rfprog *rfprog;
   2238 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
   2239 	int8_t power;
   2240 	u_int i, chan;
   2241 
   2242 	chan = ieee80211_chan2ieee(ic, c);
   2243 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
   2244 		return;
   2245 
   2246 	/* select the appropriate RF settings based on what EEPROM says */
   2247 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
   2248 
   2249 	/* find the settings for this channel (we know it exists) */
   2250 	for (i = 0; rfprog[i].chan != chan; i++);
   2251 
   2252 	power = sc->txpow[i];
   2253 	if (power < 0) {
   2254 		bbp94 += power;
   2255 		power = 0;
   2256 	} else if (power > 31) {
   2257 		bbp94 += power - 31;
   2258 		power = 31;
   2259 	}
   2260 
   2261 	/*
   2262 	 * If we've yet to select a channel, or we are switching from the
   2263 	 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
   2264 	 * be reprogrammed.
   2265 	 */
   2266 	if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
   2267 		rt2661_select_band(sc, c);
   2268 		rt2661_select_antenna(sc);
   2269 	}
   2270 	sc->sc_curchan = c;
   2271 
   2272 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
   2273 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
   2274 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
   2275 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
   2276 
   2277 	DELAY(200);
   2278 
   2279 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
   2280 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
   2281 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
   2282 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
   2283 
   2284 	DELAY(200);
   2285 
   2286 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
   2287 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
   2288 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
   2289 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
   2290 
   2291 	/* enable smart mode for MIMO-capable RFs */
   2292 	bbp3 = rt2661_bbp_read(sc, 3);
   2293 
   2294 	bbp3 &= ~RT2661_SMART_MODE;
   2295 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
   2296 		bbp3 |= RT2661_SMART_MODE;
   2297 
   2298 	rt2661_bbp_write(sc, 3, bbp3);
   2299 
   2300 	if (bbp94 != RT2661_BBPR94_DEFAULT)
   2301 		rt2661_bbp_write(sc, 94, bbp94);
   2302 
   2303 	/* 5GHz radio needs a 1ms delay here */
   2304 	if (IEEE80211_IS_CHAN_5GHZ(c))
   2305 		DELAY(1000);
   2306 }
   2307 
   2308 static void
   2309 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
   2310 {
   2311 	uint32_t tmp;
   2312 
   2313 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
   2314 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
   2315 
   2316 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
   2317 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
   2318 }
   2319 
   2320 static void
   2321 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
   2322 {
   2323 	uint32_t tmp;
   2324 
   2325 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
   2326 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
   2327 
   2328 	tmp = addr[4] | addr[5] << 8 | 0xff << 16;
   2329 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
   2330 }
   2331 
   2332 static void
   2333 rt2661_update_promisc(struct rt2661_softc *sc)
   2334 {
   2335 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
   2336 	uint32_t tmp;
   2337 
   2338 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2339 
   2340 	tmp &= ~RT2661_DROP_NOT_TO_ME;
   2341 	if (!(ifp->if_flags & IFF_PROMISC))
   2342 		tmp |= RT2661_DROP_NOT_TO_ME;
   2343 
   2344 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2345 
   2346 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
   2347 	    "entering" : "leaving"));
   2348 }
   2349 
   2350 #if 0
   2351 /*
   2352  * Update QoS (802.11e) settings for each h/w Tx ring.
   2353  */
   2354 static int
   2355 rt2661_wme_update(struct ieee80211com *ic)
   2356 {
   2357 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
   2358 	const struct wmeParams *wmep;
   2359 
   2360 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
   2361 
   2362 	/* XXX: not sure about shifts. */
   2363 	/* XXX: the reference driver plays with AC_VI settings too. */
   2364 
   2365 	/* update TxOp */
   2366 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
   2367 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
   2368 	    wmep[WME_AC_BK].wmep_txopLimit);
   2369 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
   2370 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
   2371 	    wmep[WME_AC_VO].wmep_txopLimit);
   2372 
   2373 	/* update CWmin */
   2374 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
   2375 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
   2376 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
   2377 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
   2378 	    wmep[WME_AC_VO].wmep_logcwmin);
   2379 
   2380 	/* update CWmax */
   2381 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
   2382 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
   2383 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
   2384 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
   2385 	    wmep[WME_AC_VO].wmep_logcwmax);
   2386 
   2387 	/* update Aifsn */
   2388 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
   2389 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
   2390 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
   2391 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
   2392 	    wmep[WME_AC_VO].wmep_aifsn);
   2393 
   2394 	return 0;
   2395 }
   2396 #endif
   2397 
   2398 static void
   2399 rt2661_updateslot(struct ifnet *ifp)
   2400 {
   2401 	struct rt2661_softc *sc = ifp->if_softc;
   2402 	struct ieee80211com *ic = &sc->sc_ic;
   2403 
   2404 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
   2405 		/*
   2406 		 * In HostAP mode, we defer setting of new slot time until
   2407 		 * updated ERP Information Element has propagated to all
   2408 		 * associated STAs.
   2409 		 */
   2410 		sc->sc_flags |= RT2661_UPDATE_SLOT;
   2411 	} else
   2412 		rt2661_set_slottime(sc);
   2413 }
   2414 
   2415 static void
   2416 rt2661_set_slottime(struct rt2661_softc *sc)
   2417 {
   2418 	struct ieee80211com *ic = &sc->sc_ic;
   2419 	uint8_t slottime;
   2420 	uint32_t tmp;
   2421 
   2422 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
   2423 
   2424 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
   2425 	tmp = (tmp & ~0xff) | slottime;
   2426 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
   2427 
   2428 	DPRINTF(("setting slot time to %uus\n", slottime));
   2429 }
   2430 
   2431 static const char *
   2432 rt2661_get_rf(int rev)
   2433 {
   2434 	switch (rev) {
   2435 	case RT2661_RF_5225:	return "RT5225";
   2436 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
   2437 	case RT2661_RF_2527:	return "RT2527";
   2438 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
   2439 	default:		return "unknown";
   2440 	}
   2441 }
   2442 
   2443 static void
   2444 rt2661_read_eeprom(struct rt2661_softc *sc)
   2445 {
   2446 	struct ieee80211com *ic = &sc->sc_ic;
   2447 	uint16_t val;
   2448 	int i;
   2449 
   2450 	/* read MAC address */
   2451 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
   2452 	ic->ic_myaddr[0] = val & 0xff;
   2453 	ic->ic_myaddr[1] = val >> 8;
   2454 
   2455 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
   2456 	ic->ic_myaddr[2] = val & 0xff;
   2457 	ic->ic_myaddr[3] = val >> 8;
   2458 
   2459 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
   2460 	ic->ic_myaddr[4] = val & 0xff;
   2461 	ic->ic_myaddr[5] = val >> 8;
   2462 
   2463 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
   2464 	/* XXX: test if different from 0xffff? */
   2465 	sc->rf_rev   = (val >> 11) & 0x1f;
   2466 	sc->hw_radio = (val >> 10) & 0x1;
   2467 	sc->rx_ant   = (val >> 4)  & 0x3;
   2468 	sc->tx_ant   = (val >> 2)  & 0x3;
   2469 	sc->nb_ant   = val & 0x3;
   2470 
   2471 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
   2472 
   2473 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
   2474 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
   2475 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
   2476 
   2477 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
   2478 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
   2479 
   2480 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
   2481 	if ((val & 0xff) != 0xff)
   2482 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
   2483 
   2484 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
   2485 	if ((val & 0xff) != 0xff)
   2486 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
   2487 
   2488 	/* adjust RSSI correction for external low-noise amplifier */
   2489 	if (sc->ext_2ghz_lna)
   2490 		sc->rssi_2ghz_corr -= 14;
   2491 	if (sc->ext_5ghz_lna)
   2492 		sc->rssi_5ghz_corr -= 14;
   2493 
   2494 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
   2495 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
   2496 
   2497 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
   2498 	if ((val >> 8) != 0xff)
   2499 		sc->rfprog = (val >> 8) & 0x3;
   2500 	if ((val & 0xff) != 0xff)
   2501 		sc->rffreq = val & 0xff;
   2502 
   2503 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
   2504 
   2505 	/* read Tx power for all a/b/g channels */
   2506 	for (i = 0; i < 19; i++) {
   2507 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
   2508 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
   2509 		DPRINTF(("Channel=%d Tx power=%d\n",
   2510 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
   2511 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
   2512 		DPRINTF(("Channel=%d Tx power=%d\n",
   2513 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
   2514 	}
   2515 
   2516 	/* read vendor-specific BBP values */
   2517 	for (i = 0; i < 16; i++) {
   2518 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
   2519 		if (val == 0 || val == 0xffff)
   2520 			continue;	/* skip invalid entries */
   2521 		sc->bbp_prom[i].reg = val >> 8;
   2522 		sc->bbp_prom[i].val = val & 0xff;
   2523 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
   2524 		    sc->bbp_prom[i].val));
   2525 	}
   2526 }
   2527 
   2528 static int
   2529 rt2661_bbp_init(struct rt2661_softc *sc)
   2530 {
   2531 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2532 	int i, ntries;
   2533 	uint8_t val;
   2534 
   2535 	/* wait for BBP to be ready */
   2536 	for (ntries = 0; ntries < 100; ntries++) {
   2537 		val = rt2661_bbp_read(sc, 0);
   2538 		if (val != 0 && val != 0xff)
   2539 			break;
   2540 		DELAY(100);
   2541 	}
   2542 	if (ntries == 100) {
   2543 		aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
   2544 		return EIO;
   2545 	}
   2546 
   2547 	/* initialize BBP registers to default values */
   2548 	for (i = 0; i < N(rt2661_def_bbp); i++) {
   2549 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
   2550 		    rt2661_def_bbp[i].val);
   2551 	}
   2552 
   2553 	/* write vendor-specific BBP values (from EEPROM) */
   2554 	for (i = 0; i < 16; i++) {
   2555 		if (sc->bbp_prom[i].reg == 0)
   2556 			continue;
   2557 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
   2558 	}
   2559 
   2560 	return 0;
   2561 #undef N
   2562 }
   2563 
   2564 static int
   2565 rt2661_init(struct ifnet *ifp)
   2566 {
   2567 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
   2568 	struct rt2661_softc *sc = ifp->if_softc;
   2569 	struct ieee80211com *ic = &sc->sc_ic;
   2570 	const char *name = NULL;	/* make lint happy */
   2571 	uint8_t *ucode;
   2572 	size_t size;
   2573 	uint32_t tmp, star[3];
   2574 	int i, ntries;
   2575 	firmware_handle_t fh;
   2576 
   2577 	/* for CardBus, power on the socket */
   2578 	if (!(sc->sc_flags & RT2661_ENABLED)) {
   2579 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
   2580 			aprint_error_dev(sc->sc_dev, "could not enable device\n");
   2581 			return EIO;
   2582 		}
   2583 		sc->sc_flags |= RT2661_ENABLED;
   2584 	}
   2585 
   2586 	rt2661_stop(ifp, 0);
   2587 
   2588 	if (!(sc->sc_flags & RT2661_FWLOADED)) {
   2589 		switch (sc->sc_id) {
   2590 		case PCI_PRODUCT_RALINK_RT2561:
   2591 			name = "ral-rt2561";
   2592 			break;
   2593 		case PCI_PRODUCT_RALINK_RT2561S:
   2594 			name = "ral-rt2561s";
   2595 			break;
   2596 		case PCI_PRODUCT_RALINK_RT2661:
   2597 			name = "ral-rt2661";
   2598 			break;
   2599 		}
   2600 
   2601 		if (firmware_open("ral", name, &fh) != 0) {
   2602 			aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
   2603 			rt2661_stop(ifp, 1);
   2604 			return EIO;
   2605 		}
   2606 
   2607 		size = firmware_get_size(fh);
   2608 		if (!(ucode = firmware_malloc(size))) {
   2609 			aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
   2610 			firmware_close(fh);
   2611 			rt2661_stop(ifp, 1);
   2612 			return ENOMEM;
   2613 		}
   2614 
   2615 		if (firmware_read(fh, 0, ucode, size) != 0) {
   2616 			aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
   2617 			firmware_free(ucode, size);
   2618 			firmware_close(fh);
   2619 			rt2661_stop(ifp, 1);
   2620 			return EIO;
   2621 		}
   2622 
   2623 		if (rt2661_load_microcode(sc, ucode, size) != 0) {
   2624 			aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
   2625 			firmware_free(ucode, size);
   2626 			firmware_close(fh);
   2627 			rt2661_stop(ifp, 1);
   2628 			return EIO;
   2629 		}
   2630 
   2631 		firmware_free(ucode, size);
   2632 		firmware_close(fh);
   2633 		sc->sc_flags |= RT2661_FWLOADED;
   2634 	}
   2635 
   2636 	/* initialize Tx rings */
   2637 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
   2638 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
   2639 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
   2640 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
   2641 
   2642 	/* initialize Mgt ring */
   2643 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
   2644 
   2645 	/* initialize Rx ring */
   2646 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
   2647 
   2648 	/* initialize Tx rings sizes */
   2649 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
   2650 	    RT2661_TX_RING_COUNT << 24 |
   2651 	    RT2661_TX_RING_COUNT << 16 |
   2652 	    RT2661_TX_RING_COUNT <<  8 |
   2653 	    RT2661_TX_RING_COUNT);
   2654 
   2655 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
   2656 	    RT2661_TX_DESC_WSIZE << 16 |
   2657 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
   2658 	    RT2661_MGT_RING_COUNT);
   2659 
   2660 	/* initialize Rx rings */
   2661 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
   2662 	    RT2661_RX_DESC_BACK  << 16 |
   2663 	    RT2661_RX_DESC_WSIZE <<  8 |
   2664 	    RT2661_RX_RING_COUNT);
   2665 
   2666 	/* XXX: some magic here */
   2667 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
   2668 
   2669 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
   2670 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
   2671 
   2672 	/* load base address of Rx ring */
   2673 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
   2674 
   2675 	/* initialize MAC registers to default values */
   2676 	for (i = 0; i < N(rt2661_def_mac); i++)
   2677 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
   2678 
   2679 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
   2680 	rt2661_set_macaddr(sc, ic->ic_myaddr);
   2681 
   2682 	/* set host ready */
   2683 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
   2684 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
   2685 
   2686 	/* wait for BBP/RF to wakeup */
   2687 	for (ntries = 0; ntries < 1000; ntries++) {
   2688 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
   2689 			break;
   2690 		DELAY(1000);
   2691 	}
   2692 	if (ntries == 1000) {
   2693 		printf("timeout waiting for BBP/RF to wakeup\n");
   2694 		rt2661_stop(ifp, 1);
   2695 		return EIO;
   2696 	}
   2697 
   2698 	if (rt2661_bbp_init(sc) != 0) {
   2699 		rt2661_stop(ifp, 1);
   2700 		return EIO;
   2701 	}
   2702 
   2703 	/* select default channel */
   2704 	sc->sc_curchan = ic->ic_curchan;
   2705 	rt2661_select_band(sc, sc->sc_curchan);
   2706 	rt2661_select_antenna(sc);
   2707 	rt2661_set_chan(sc, sc->sc_curchan);
   2708 
   2709 	/* update Rx filter */
   2710 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
   2711 
   2712 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
   2713 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2714 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
   2715 		       RT2661_DROP_ACKCTS;
   2716 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
   2717 			tmp |= RT2661_DROP_TODS;
   2718 		if (!(ifp->if_flags & IFF_PROMISC))
   2719 			tmp |= RT2661_DROP_NOT_TO_ME;
   2720 	}
   2721 
   2722 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2723 
   2724 	/* clear STA registers */
   2725 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
   2726 
   2727 	/* initialize ASIC */
   2728 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
   2729 
   2730 	/* clear any pending interrupt */
   2731 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
   2732 
   2733 	/* enable interrupts */
   2734 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
   2735 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
   2736 
   2737 	/* kick Rx */
   2738 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
   2739 
   2740 	ifp->if_flags &= ~IFF_OACTIVE;
   2741 	ifp->if_flags |= IFF_RUNNING;
   2742 
   2743 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
   2744 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
   2745 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
   2746 	} else
   2747 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
   2748 
   2749 	return 0;
   2750 #undef N
   2751 }
   2752 
   2753 static void
   2754 rt2661_stop(struct ifnet *ifp, int disable)
   2755 {
   2756 	struct rt2661_softc *sc = ifp->if_softc;
   2757 	struct ieee80211com *ic = &sc->sc_ic;
   2758 	uint32_t tmp;
   2759 
   2760 	sc->sc_tx_timer = 0;
   2761 	ifp->if_timer = 0;
   2762 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2763 
   2764 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);	/* free all nodes */
   2765 
   2766 	/* abort Tx (for all 5 Tx rings) */
   2767 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
   2768 
   2769 	/* disable Rx (value remains after reset!) */
   2770 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2771 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
   2772 
   2773 	/* reset ASIC */
   2774 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
   2775 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
   2776 
   2777 	/* disable interrupts */
   2778 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
   2779 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
   2780 
   2781 	/* clear any pending interrupt */
   2782 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
   2783 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
   2784 
   2785 	/* reset Tx and Rx rings */
   2786 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
   2787 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
   2788 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
   2789 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
   2790 	rt2661_reset_tx_ring(sc, &sc->mgtq);
   2791 	rt2661_reset_rx_ring(sc, &sc->rxq);
   2792 
   2793 	/* for CardBus, power down the socket */
   2794 	if (disable && sc->sc_disable != NULL) {
   2795 		if (sc->sc_flags & RT2661_ENABLED) {
   2796 			(*sc->sc_disable)(sc);
   2797 			sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
   2798 		}
   2799 	}
   2800 }
   2801 
   2802 static int
   2803 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
   2804 {
   2805 	int ntries;
   2806 
   2807 	/* reset 8051 */
   2808 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
   2809 
   2810 	/* cancel any pending Host to MCU command */
   2811 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
   2812 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
   2813 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
   2814 
   2815 	/* write 8051's microcode */
   2816 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
   2817 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
   2818 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
   2819 
   2820 	/* kick 8051's ass */
   2821 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
   2822 
   2823 	/* wait for 8051 to initialize */
   2824 	for (ntries = 0; ntries < 500; ntries++) {
   2825 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
   2826 			break;
   2827 		DELAY(100);
   2828 	}
   2829 	if (ntries == 500) {
   2830 		printf("timeout waiting for MCU to initialize\n");
   2831 		return EIO;
   2832 	}
   2833 	return 0;
   2834 }
   2835 
   2836 /*
   2837  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
   2838  * false CCA count.  This function is called periodically (every seconds) when
   2839  * in the RUN state.  Values taken from the reference driver.
   2840  */
   2841 static void
   2842 rt2661_rx_tune(struct rt2661_softc *sc)
   2843 {
   2844 	uint8_t bbp17;
   2845 	uint16_t cca;
   2846 	int lo, hi, dbm;
   2847 
   2848 	/*
   2849 	 * Tuning range depends on operating band and on the presence of an
   2850 	 * external low-noise amplifier.
   2851 	 */
   2852 	lo = 0x20;
   2853 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
   2854 		lo += 0x08;
   2855 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
   2856 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
   2857 		lo += 0x10;
   2858 	hi = lo + 0x20;
   2859 
   2860 	dbm = sc->avg_rssi;
   2861 	/* retrieve false CCA count since last call (clear on read) */
   2862 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
   2863 
   2864 	DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
   2865 
   2866 	if (dbm < -74) {
   2867 		/* very bad RSSI, tune using false CCA count */
   2868 		bbp17 = sc->bbp17; /* current value */
   2869 
   2870 		hi -= 2 * (-74 - dbm);
   2871 		if (hi < lo)
   2872 			hi = lo;
   2873 
   2874 		if (bbp17 > hi)
   2875 			bbp17 = hi;
   2876 		else if (cca > 512)
   2877 			bbp17 = min(bbp17 + 1, hi);
   2878 		else if (cca < 100)
   2879 			bbp17 = max(bbp17 - 1, lo);
   2880 
   2881 	} else if (dbm < -66) {
   2882 		bbp17 = lo + 0x08;
   2883 	} else if (dbm < -58) {
   2884 		bbp17 = lo + 0x10;
   2885 	} else if (dbm < -35) {
   2886 		bbp17 = hi;
   2887 	} else {	/* very good RSSI >= -35dBm */
   2888 		bbp17 = 0x60;	/* very low sensitivity */
   2889 	}
   2890 
   2891 	if (bbp17 != sc->bbp17) {
   2892 		DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
   2893 		rt2661_bbp_write(sc, 17, bbp17);
   2894 		sc->bbp17 = bbp17;
   2895 	}
   2896 }
   2897 
   2898 #ifdef notyet
   2899 /*
   2900  * Enter/Leave radar detection mode.
   2901  * This is for 802.11h additional regulatory domains.
   2902  */
   2903 static void
   2904 rt2661_radar_start(struct rt2661_softc *sc)
   2905 {
   2906 	uint32_t tmp;
   2907 
   2908 	/* disable Rx */
   2909 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
   2910 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
   2911 
   2912 	rt2661_bbp_write(sc, 82, 0x20);
   2913 	rt2661_bbp_write(sc, 83, 0x00);
   2914 	rt2661_bbp_write(sc, 84, 0x40);
   2915 
   2916 	/* save current BBP registers values */
   2917 	sc->bbp18 = rt2661_bbp_read(sc, 18);
   2918 	sc->bbp21 = rt2661_bbp_read(sc, 21);
   2919 	sc->bbp22 = rt2661_bbp_read(sc, 22);
   2920 	sc->bbp16 = rt2661_bbp_read(sc, 16);
   2921 	sc->bbp17 = rt2661_bbp_read(sc, 17);
   2922 	sc->bbp64 = rt2661_bbp_read(sc, 64);
   2923 
   2924 	rt2661_bbp_write(sc, 18, 0xff);
   2925 	rt2661_bbp_write(sc, 21, 0x3f);
   2926 	rt2661_bbp_write(sc, 22, 0x3f);
   2927 	rt2661_bbp_write(sc, 16, 0xbd);
   2928 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
   2929 	rt2661_bbp_write(sc, 64, 0x21);
   2930 
   2931 	/* restore Rx filter */
   2932 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
   2933 }
   2934 
   2935 static int
   2936 rt2661_radar_stop(struct rt2661_softc *sc)
   2937 {
   2938 	uint8_t bbp66;
   2939 
   2940 	/* read radar detection result */
   2941 	bbp66 = rt2661_bbp_read(sc, 66);
   2942 
   2943 	/* restore BBP registers values */
   2944 	rt2661_bbp_write(sc, 16, sc->bbp16);
   2945 	rt2661_bbp_write(sc, 17, sc->bbp17);
   2946 	rt2661_bbp_write(sc, 18, sc->bbp18);
   2947 	rt2661_bbp_write(sc, 21, sc->bbp21);
   2948 	rt2661_bbp_write(sc, 22, sc->bbp22);
   2949 	rt2661_bbp_write(sc, 64, sc->bbp64);
   2950 
   2951 	return bbp66 == 1;
   2952 }
   2953 #endif
   2954 
   2955 static int
   2956 rt2661_prepare_beacon(struct rt2661_softc *sc)
   2957 {
   2958 	struct ieee80211com *ic = &sc->sc_ic;
   2959 	struct ieee80211_node *ni = ic->ic_bss;
   2960 	struct rt2661_tx_desc desc;
   2961 	struct mbuf *m0;
   2962 	struct ieee80211_beacon_offsets bo;
   2963 	int rate;
   2964 
   2965 	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
   2966 	if (m0 == NULL) {
   2967 		aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
   2968 		return ENOBUFS;
   2969 	}
   2970 
   2971 	/* send beacons at the lowest available rate */
   2972 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
   2973 
   2974 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
   2975 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
   2976 
   2977 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
   2978 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
   2979 
   2980 	/* copy beacon header and payload into NIC memory */
   2981 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
   2982 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
   2983 
   2984 	m_freem(m0);
   2985 
   2986 	/*
   2987 	 * Store offset of ERP Information Element so that we can update it
   2988 	 * dynamically when the slot time changes.
   2989 	 * XXX: this is ugly since it depends on how net80211 builds beacon
   2990 	 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
   2991 	 */
   2992 	if (ic->ic_curmode == IEEE80211_MODE_11G) {
   2993 		sc->erp_csr =
   2994 		    RT2661_HW_BEACON_BASE0 + 24 +
   2995 		    sizeof (struct ieee80211_frame) +
   2996 		    8 + 2 + 2 + 2 + ni->ni_esslen +
   2997 		    2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
   2998 		    2 + 1 +
   2999 		    ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
   3000 		    2;
   3001 	}
   3002 
   3003 	return 0;
   3004 }
   3005 
   3006 /*
   3007  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
   3008  * and HostAP operating modes.
   3009  */
   3010 static void
   3011 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
   3012 {
   3013 	struct ieee80211com *ic = &sc->sc_ic;
   3014 	uint32_t tmp;
   3015 
   3016 	if (ic->ic_opmode != IEEE80211_M_STA) {
   3017 		/*
   3018 		 * Change default 16ms TBTT adjustment to 8ms.
   3019 		 * Must be done before enabling beacon generation.
   3020 		 */
   3021 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
   3022 	}
   3023 
   3024 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
   3025 
   3026 	/* set beacon interval (in 1/16ms unit) */
   3027 	tmp |= ic->ic_bss->ni_intval * 16;
   3028 
   3029 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
   3030 	if (ic->ic_opmode == IEEE80211_M_STA)
   3031 		tmp |= RT2661_TSF_MODE(1);
   3032 	else
   3033 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
   3034 
   3035 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
   3036 }
   3037 
   3038 /*
   3039  * Retrieve the "Received Signal Strength Indicator" from the raw values
   3040  * contained in Rx descriptors.  The computation depends on which band the
   3041  * frame was received.  Correction values taken from the reference driver.
   3042  */
   3043 static int
   3044 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
   3045 {
   3046 	int lna, agc, rssi;
   3047 
   3048 	lna = (raw >> 5) & 0x3;
   3049 	agc = raw & 0x1f;
   3050 
   3051 	rssi = 2 * agc;
   3052 
   3053 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
   3054 		rssi += sc->rssi_2ghz_corr;
   3055 
   3056 		if (lna == 1)
   3057 			rssi -= 64;
   3058 		else if (lna == 2)
   3059 			rssi -= 74;
   3060 		else if (lna == 3)
   3061 			rssi -= 90;
   3062 	} else {
   3063 		rssi += sc->rssi_5ghz_corr;
   3064 
   3065 		if (lna == 1)
   3066 			rssi -= 64;
   3067 		else if (lna == 2)
   3068 			rssi -= 86;
   3069 		else if (lna == 3)
   3070 			rssi -= 100;
   3071 	}
   3072 	return rssi;
   3073 }
   3074