rt2661.c revision 1.39 1 /* $NetBSD: rt2661.c,v 1.39 2018/06/26 06:48:00 msaitoh Exp $ */
2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */
4
5 /*-
6 * Copyright (c) 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24 * http://www.ralinktech.com/
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.39 2018/06/26 06:48:00 msaitoh Exp $");
29
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/callout.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_ether.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63
64 #include <dev/ic/rt2661reg.h>
65 #include <dev/ic/rt2661var.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/firmload.h>
72
73 #ifdef RAL_DEBUG
74 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0)
76 int rt2661_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static int rt2661_alloc_tx_ring(struct rt2661_softc *,
83 struct rt2661_tx_ring *, int);
84 static void rt2661_reset_tx_ring(struct rt2661_softc *,
85 struct rt2661_tx_ring *);
86 static void rt2661_free_tx_ring(struct rt2661_softc *,
87 struct rt2661_tx_ring *);
88 static int rt2661_alloc_rx_ring(struct rt2661_softc *,
89 struct rt2661_rx_ring *, int);
90 static void rt2661_reset_rx_ring(struct rt2661_softc *,
91 struct rt2661_rx_ring *);
92 static void rt2661_free_rx_ring(struct rt2661_softc *,
93 struct rt2661_rx_ring *);
94 static struct ieee80211_node *
95 rt2661_node_alloc(struct ieee80211_node_table *);
96 static int rt2661_media_change(struct ifnet *);
97 static void rt2661_next_scan(void *);
98 static void rt2661_iter_func(void *, struct ieee80211_node *);
99 static void rt2661_updatestats(void *);
100 static void rt2661_newassoc(struct ieee80211_node *, int);
101 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
102 int);
103 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
104 static void rt2661_tx_intr(struct rt2661_softc *);
105 static void rt2661_tx_dma_intr(struct rt2661_softc *,
106 struct rt2661_tx_ring *);
107 static void rt2661_rx_intr(struct rt2661_softc *);
108 static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 static void rt2661_mcu_wakeup(struct rt2661_softc *);
110 static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
111 int rt2661_intr(void *);
112 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
113 static int rt2661_ack_rate(struct ieee80211com *, int);
114 static uint16_t rt2661_txtime(int, int, uint32_t);
115 static uint8_t rt2661_plcp_signal(int);
116 static void rt2661_setup_tx_desc(struct rt2661_softc *,
117 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
118 const bus_dma_segment_t *, int, int);
119 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
120 struct ieee80211_node *);
121 static struct mbuf *
122 rt2661_get_rts(struct rt2661_softc *,
123 struct ieee80211_frame *, uint16_t);
124 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 struct ieee80211_node *, int);
126 static void rt2661_start(struct ifnet *);
127 static void rt2661_watchdog(struct ifnet *);
128 static int rt2661_reset(struct ifnet *);
129 static int rt2661_ioctl(struct ifnet *, u_long, void *);
130 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
131 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
132 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
133 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
134 static void rt2661_select_antenna(struct rt2661_softc *);
135 static void rt2661_enable_mrr(struct rt2661_softc *);
136 static void rt2661_set_txpreamble(struct rt2661_softc *);
137 static void rt2661_set_basicrates(struct rt2661_softc *,
138 const struct ieee80211_rateset *);
139 static void rt2661_select_band(struct rt2661_softc *,
140 struct ieee80211_channel *);
141 static void rt2661_set_chan(struct rt2661_softc *,
142 struct ieee80211_channel *);
143 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
144 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
145 static void rt2661_update_promisc(struct rt2661_softc *);
146 #if 0
147 static int rt2661_wme_update(struct ieee80211com *);
148 #endif
149
150 static void rt2661_updateslot(struct ifnet *);
151 static void rt2661_set_slottime(struct rt2661_softc *);
152 static const char *
153 rt2661_get_rf(int);
154 static void rt2661_read_eeprom(struct rt2661_softc *);
155 static int rt2661_bbp_init(struct rt2661_softc *);
156 static int rt2661_init(struct ifnet *);
157 static void rt2661_stop(struct ifnet *, int);
158 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
159 int);
160 static void rt2661_rx_tune(struct rt2661_softc *);
161 #ifdef notyet
162 static void rt2661_radar_start(struct rt2661_softc *);
163 static int rt2661_radar_stop(struct rt2661_softc *);
164 #endif
165 static int rt2661_prepare_beacon(struct rt2661_softc *);
166 static void rt2661_enable_tsf_sync(struct rt2661_softc *);
167 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
168 static void rt2661_softintr(void *);
169
170 static const struct {
171 uint32_t reg;
172 uint32_t val;
173 } rt2661_def_mac[] = {
174 RT2661_DEF_MAC
175 };
176
177 static const struct {
178 uint8_t reg;
179 uint8_t val;
180 } rt2661_def_bbp[] = {
181 RT2661_DEF_BBP
182 };
183
184 static const struct rfprog {
185 uint8_t chan;
186 uint32_t r1, r2, r3, r4;
187 } rt2661_rf5225_1[] = {
188 RT2661_RF5225_1
189 }, rt2661_rf5225_2[] = {
190 RT2661_RF5225_2
191 };
192
193 int
194 rt2661_attach(void *xsc, int id)
195 {
196 struct rt2661_softc *sc = xsc;
197 struct ieee80211com *ic = &sc->sc_ic;
198 struct ifnet *ifp = &sc->sc_if;
199 uint32_t val;
200 int error, i, ntries;
201
202 sc->sc_id = id;
203
204 sc->amrr.amrr_min_success_threshold = 1;
205 sc->amrr.amrr_max_success_threshold = 15;
206 callout_init(&sc->scan_ch, 0);
207 callout_init(&sc->amrr_ch, 0);
208
209 /* wait for NIC to initialize */
210 for (ntries = 0; ntries < 1000; ntries++) {
211 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
212 break;
213 DELAY(1000);
214 }
215 if (ntries == 1000) {
216 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
217 return EIO;
218 }
219
220 /* retrieve RF rev. no and various other things from EEPROM */
221 rt2661_read_eeprom(sc);
222 aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
223 ether_sprintf(ic->ic_myaddr));
224
225 aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
226 rt2661_get_rf(sc->rf_rev));
227
228 sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
229 if (sc->sc_soft_ih == NULL) {
230 aprint_error_dev(sc->sc_dev, "could not establish softint\n");
231 goto fail0;
232 }
233
234 /*
235 * Allocate Tx and Rx rings.
236 */
237 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
238 if (error != 0) {
239 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
240 goto fail1;
241 }
242
243 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
244 if (error != 0) {
245 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
246 goto fail2;
247 }
248
249 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
250 if (error != 0) {
251 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
252 goto fail3;
253 }
254
255 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
256 if (error != 0) {
257 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
258 goto fail4;
259 }
260
261 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
262 if (error != 0) {
263 aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
264 goto fail5;
265 }
266
267 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
268 if (error != 0) {
269 aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
270 goto fail6;
271 }
272
273 ifp->if_softc = sc;
274 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
275 ifp->if_init = rt2661_init;
276 ifp->if_stop = rt2661_stop;
277 ifp->if_ioctl = rt2661_ioctl;
278 ifp->if_start = rt2661_start;
279 ifp->if_watchdog = rt2661_watchdog;
280 IFQ_SET_READY(&ifp->if_snd);
281 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
282
283 ic->ic_ifp = ifp;
284 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
285 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
286 ic->ic_state = IEEE80211_S_INIT;
287
288 /* set device capabilities */
289 ic->ic_caps =
290 IEEE80211_C_IBSS | /* IBSS mode supported */
291 IEEE80211_C_MONITOR | /* monitor mode supported */
292 IEEE80211_C_HOSTAP | /* HostAP mode supported */
293 IEEE80211_C_TXPMGT | /* tx power management */
294 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
295 IEEE80211_C_SHSLOT | /* short slot time supported */
296 IEEE80211_C_WPA; /* 802.11i */
297
298 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
299 /* set supported .11a rates */
300 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
301
302 /* set supported .11a channels */
303 for (i = 36; i <= 64; i += 4) {
304 ic->ic_channels[i].ic_freq =
305 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
306 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
307 }
308 for (i = 100; i <= 140; i += 4) {
309 ic->ic_channels[i].ic_freq =
310 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
311 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
312 }
313 for (i = 149; i <= 165; i += 4) {
314 ic->ic_channels[i].ic_freq =
315 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 }
318 }
319
320 /* set supported .11b and .11g rates */
321 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
322 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
323
324 /* set supported .11b and .11g channels (1 through 14) */
325 for (i = 1; i <= 14; i++) {
326 ic->ic_channels[i].ic_freq =
327 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
328 ic->ic_channels[i].ic_flags =
329 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
330 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
331 }
332
333 error = if_initialize(ifp);
334 if (error != 0) {
335 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
336 error);
337 goto fail7;
338 }
339 ieee80211_ifattach(ic);
340 /* Use common softint-based if_input */
341 ifp->if_percpuq = if_percpuq_create(ifp);
342 if_register(ifp);
343
344 ic->ic_node_alloc = rt2661_node_alloc;
345 ic->ic_newassoc = rt2661_newassoc;
346 ic->ic_updateslot = rt2661_updateslot;
347 ic->ic_reset = rt2661_reset;
348
349 /* override state transition machine */
350 sc->sc_newstate = ic->ic_newstate;
351 ic->ic_newstate = rt2661_newstate;
352 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
353
354 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
355 sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
356 &sc->sc_drvbpf);
357
358 sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
359 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
360 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
361
362 sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
363 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
364 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
365
366 ieee80211_announce(ic);
367
368 if (pmf_device_register(sc->sc_dev, NULL, NULL))
369 pmf_class_network_register(sc->sc_dev, ifp);
370 else
371 aprint_error_dev(sc->sc_dev,
372 "couldn't establish power handler\n");
373
374 return 0;
375
376 fail7: rt2661_free_rx_ring(sc, &sc->rxq);
377 fail6: rt2661_free_tx_ring(sc, &sc->mgtq);
378 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]);
379 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]);
380 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]);
381 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]);
382 fail1: softint_disestablish(sc->sc_soft_ih);
383 sc->sc_soft_ih = NULL;
384 fail0: return ENXIO;
385 }
386
387 int
388 rt2661_detach(void *xsc)
389 {
390 struct rt2661_softc *sc = xsc;
391 struct ifnet *ifp = &sc->sc_if;
392
393 callout_stop(&sc->scan_ch);
394 callout_stop(&sc->amrr_ch);
395
396 pmf_device_deregister(sc->sc_dev);
397
398 ieee80211_ifdetach(&sc->sc_ic);
399 if_detach(ifp);
400
401 rt2661_free_tx_ring(sc, &sc->txq[0]);
402 rt2661_free_tx_ring(sc, &sc->txq[1]);
403 rt2661_free_tx_ring(sc, &sc->txq[2]);
404 rt2661_free_tx_ring(sc, &sc->txq[3]);
405 rt2661_free_tx_ring(sc, &sc->mgtq);
406 rt2661_free_rx_ring(sc, &sc->rxq);
407
408 if (sc->sc_soft_ih != NULL) {
409 softint_disestablish(sc->sc_soft_ih);
410 sc->sc_soft_ih = NULL;
411 }
412
413 return 0;
414 }
415
416 static int
417 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
418 int count)
419 {
420 int i, nsegs, error;
421
422 ring->count = count;
423 ring->queued = 0;
424 ring->cur = ring->next = ring->stat = 0;
425
426 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
427 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
428 if (error != 0) {
429 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
430 goto fail;
431 }
432
433 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
434 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
435 if (error != 0) {
436 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
437 goto fail;
438 }
439
440 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
441 count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
442 BUS_DMA_NOWAIT);
443 if (error != 0) {
444 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
445 goto fail;
446 }
447
448 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
449 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
450 if (error != 0) {
451 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
452 goto fail;
453 }
454
455 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
456 ring->physaddr = ring->map->dm_segs->ds_addr;
457
458 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
459 M_NOWAIT);
460 if (ring->data == NULL) {
461 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
462 error = ENOMEM;
463 goto fail;
464 }
465
466 memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
467 for (i = 0; i < count; i++) {
468 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
469 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
470 &ring->data[i].map);
471 if (error != 0) {
472 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
473 goto fail;
474 }
475 }
476
477 return 0;
478
479 fail: rt2661_free_tx_ring(sc, ring);
480 return error;
481 }
482
483 static void
484 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
485 {
486 struct rt2661_tx_desc *desc;
487 struct rt2661_tx_data *data;
488 int i;
489
490 for (i = 0; i < ring->count; i++) {
491 desc = &ring->desc[i];
492 data = &ring->data[i];
493
494 if (data->m != NULL) {
495 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
496 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
497 bus_dmamap_unload(sc->sc_dmat, data->map);
498 m_freem(data->m);
499 data->m = NULL;
500 }
501
502 if (data->ni != NULL) {
503 ieee80211_free_node(data->ni);
504 data->ni = NULL;
505 }
506
507 desc->flags = 0;
508 }
509
510 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
511 BUS_DMASYNC_PREWRITE);
512
513 ring->queued = 0;
514 ring->cur = ring->next = ring->stat = 0;
515 }
516
517
518 static void
519 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
520 {
521 struct rt2661_tx_data *data;
522 int i;
523
524 if (ring->desc != NULL) {
525 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
526 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
527 bus_dmamap_unload(sc->sc_dmat, ring->map);
528 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
529 ring->count * RT2661_TX_DESC_SIZE);
530 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
531 }
532
533 if (ring->data != NULL) {
534 for (i = 0; i < ring->count; i++) {
535 data = &ring->data[i];
536
537 if (data->m != NULL) {
538 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
539 data->map->dm_mapsize,
540 BUS_DMASYNC_POSTWRITE);
541 bus_dmamap_unload(sc->sc_dmat, data->map);
542 m_freem(data->m);
543 }
544
545 if (data->ni != NULL)
546 ieee80211_free_node(data->ni);
547
548 if (data->map != NULL)
549 bus_dmamap_destroy(sc->sc_dmat, data->map);
550 }
551 free(ring->data, M_DEVBUF);
552 }
553 }
554
555 static int
556 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
557 int count)
558 {
559 struct rt2661_rx_desc *desc;
560 struct rt2661_rx_data *data;
561 int i, nsegs, error;
562
563 ring->count = count;
564 ring->cur = ring->next = 0;
565
566 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
567 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
568 if (error != 0) {
569 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
570 goto fail;
571 }
572
573 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
574 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
575 if (error != 0) {
576 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
577 goto fail;
578 }
579
580 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
581 count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
582 BUS_DMA_NOWAIT);
583 if (error != 0) {
584 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
585 goto fail;
586 }
587
588 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
589 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
590 if (error != 0) {
591 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
592 goto fail;
593 }
594
595 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
596 ring->physaddr = ring->map->dm_segs->ds_addr;
597
598 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
599 M_NOWAIT);
600 if (ring->data == NULL) {
601 aprint_error_dev(sc->sc_dev, "could not allocate soft data\n");
602 error = ENOMEM;
603 goto fail;
604 }
605
606 /*
607 * Pre-allocate Rx buffers and populate Rx ring.
608 */
609 memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
610 for (i = 0; i < count; i++) {
611 desc = &sc->rxq.desc[i];
612 data = &sc->rxq.data[i];
613
614 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
615 0, BUS_DMA_NOWAIT, &data->map);
616 if (error != 0) {
617 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
618 goto fail;
619 }
620
621 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
622 if (data->m == NULL) {
623 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
624 error = ENOMEM;
625 goto fail;
626 }
627
628 MCLGET(data->m, M_DONTWAIT);
629 if (!(data->m->m_flags & M_EXT)) {
630 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
631 error = ENOMEM;
632 goto fail;
633 }
634
635 error = bus_dmamap_load(sc->sc_dmat, data->map,
636 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
637 if (error != 0) {
638 aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
639 goto fail;
640 }
641
642 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
643 desc->flags = htole32(RT2661_RX_BUSY);
644 }
645
646 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
647 BUS_DMASYNC_PREWRITE);
648
649 return 0;
650
651 fail: rt2661_free_rx_ring(sc, ring);
652 return error;
653 }
654
655 static void
656 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
657 {
658 int i;
659
660 for (i = 0; i < ring->count; i++)
661 ring->desc[i].flags = htole32(RT2661_RX_BUSY);
662
663 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
664 BUS_DMASYNC_PREWRITE);
665
666 ring->cur = ring->next = 0;
667 }
668
669 static void
670 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
671 {
672 struct rt2661_rx_data *data;
673 int i;
674
675 if (ring->desc != NULL) {
676 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
677 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
678 bus_dmamap_unload(sc->sc_dmat, ring->map);
679 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
680 ring->count * RT2661_RX_DESC_SIZE);
681 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
682 }
683
684 if (ring->data != NULL) {
685 for (i = 0; i < ring->count; i++) {
686 data = &ring->data[i];
687
688 if (data->m != NULL) {
689 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
690 data->map->dm_mapsize,
691 BUS_DMASYNC_POSTREAD);
692 bus_dmamap_unload(sc->sc_dmat, data->map);
693 m_freem(data->m);
694 }
695
696 if (data->map != NULL)
697 bus_dmamap_destroy(sc->sc_dmat, data->map);
698 }
699 free(ring->data, M_DEVBUF);
700 }
701 }
702
703 static struct ieee80211_node *
704 rt2661_node_alloc(struct ieee80211_node_table *nt)
705 {
706 struct rt2661_node *rn;
707
708 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
709 M_NOWAIT | M_ZERO);
710
711 return (rn != NULL) ? &rn->ni : NULL;
712 }
713
714 static int
715 rt2661_media_change(struct ifnet *ifp)
716 {
717 int error;
718
719 error = ieee80211_media_change(ifp);
720 if (error != ENETRESET)
721 return error;
722
723 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
724 rt2661_init(ifp);
725
726 return 0;
727 }
728
729 /*
730 * This function is called periodically (every 200ms) during scanning to
731 * switch from one channel to another.
732 */
733 static void
734 rt2661_next_scan(void *arg)
735 {
736 struct rt2661_softc *sc = arg;
737 struct ieee80211com *ic = &sc->sc_ic;
738 int s;
739
740 s = splnet();
741 if (ic->ic_state == IEEE80211_S_SCAN)
742 ieee80211_next_scan(ic);
743 splx(s);
744 }
745
746 /*
747 * This function is called for each neighbor node.
748 */
749 static void
750 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
751 {
752 struct rt2661_softc *sc = arg;
753 struct rt2661_node *rn = (struct rt2661_node *)ni;
754
755 ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
756 }
757
758 /*
759 * This function is called periodically (every 500ms) in RUN state to update
760 * various settings like rate control statistics or Rx sensitivity.
761 */
762 static void
763 rt2661_updatestats(void *arg)
764 {
765 struct rt2661_softc *sc = arg;
766 struct ieee80211com *ic = &sc->sc_ic;
767 int s;
768
769 s = splnet();
770 if (ic->ic_opmode == IEEE80211_M_STA)
771 rt2661_iter_func(sc, ic->ic_bss);
772 else
773 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
774
775 /* update rx sensitivity every 1 sec */
776 if (++sc->ncalls & 1)
777 rt2661_rx_tune(sc);
778 splx(s);
779
780 callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
781 }
782
783 static void
784 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
785 {
786 struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
787 int i;
788
789 ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
790
791 /* set rate to some reasonable initial value */
792 for (i = ni->ni_rates.rs_nrates - 1;
793 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
794 i--);
795 ni->ni_txrate = i;
796 }
797
798 static int
799 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
800 {
801 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
802 enum ieee80211_state ostate;
803 struct ieee80211_node *ni;
804 uint32_t tmp;
805
806 ostate = ic->ic_state;
807 callout_stop(&sc->scan_ch);
808
809 switch (nstate) {
810 case IEEE80211_S_INIT:
811 callout_stop(&sc->amrr_ch);
812
813 if (ostate == IEEE80211_S_RUN) {
814 /* abort TSF synchronization */
815 tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
816 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
817 }
818 break;
819
820 case IEEE80211_S_SCAN:
821 rt2661_set_chan(sc, ic->ic_curchan);
822 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
823 break;
824
825 case IEEE80211_S_AUTH:
826 case IEEE80211_S_ASSOC:
827 rt2661_set_chan(sc, ic->ic_curchan);
828 break;
829
830 case IEEE80211_S_RUN:
831 rt2661_set_chan(sc, ic->ic_curchan);
832
833 ni = ic->ic_bss;
834
835 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
836 rt2661_set_slottime(sc);
837 rt2661_enable_mrr(sc);
838 rt2661_set_txpreamble(sc);
839 rt2661_set_basicrates(sc, &ni->ni_rates);
840 rt2661_set_bssid(sc, ni->ni_bssid);
841 }
842
843 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
844 ic->ic_opmode == IEEE80211_M_IBSS)
845 rt2661_prepare_beacon(sc);
846
847 if (ic->ic_opmode == IEEE80211_M_STA) {
848 /* fake a join to init the tx rate */
849 rt2661_newassoc(ni, 1);
850 }
851
852 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
853 sc->ncalls = 0;
854 sc->avg_rssi = -95; /* reset EMA */
855 callout_reset(&sc->amrr_ch, hz / 2,
856 rt2661_updatestats, sc);
857 rt2661_enable_tsf_sync(sc);
858 }
859 break;
860 }
861
862 return sc->sc_newstate(ic, nstate, arg);
863 }
864
865 /*
866 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
867 * 93C66).
868 */
869 static uint16_t
870 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
871 {
872 uint32_t tmp;
873 uint16_t val;
874 int n;
875
876 /* clock C once before the first command */
877 RT2661_EEPROM_CTL(sc, 0);
878
879 RT2661_EEPROM_CTL(sc, RT2661_S);
880 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
881 RT2661_EEPROM_CTL(sc, RT2661_S);
882
883 /* write start bit (1) */
884 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
885 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
886
887 /* write READ opcode (10) */
888 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
889 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
890 RT2661_EEPROM_CTL(sc, RT2661_S);
891 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
892
893 /* write address (A5-A0 or A7-A0) */
894 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
895 for (; n >= 0; n--) {
896 RT2661_EEPROM_CTL(sc, RT2661_S |
897 (((addr >> n) & 1) << RT2661_SHIFT_D));
898 RT2661_EEPROM_CTL(sc, RT2661_S |
899 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
900 }
901
902 RT2661_EEPROM_CTL(sc, RT2661_S);
903
904 /* read data Q15-Q0 */
905 val = 0;
906 for (n = 15; n >= 0; n--) {
907 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
908 tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
909 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
910 RT2661_EEPROM_CTL(sc, RT2661_S);
911 }
912
913 RT2661_EEPROM_CTL(sc, 0);
914
915 /* clear Chip Select and clock C */
916 RT2661_EEPROM_CTL(sc, RT2661_S);
917 RT2661_EEPROM_CTL(sc, 0);
918 RT2661_EEPROM_CTL(sc, RT2661_C);
919
920 return val;
921 }
922
923 static void
924 rt2661_tx_intr(struct rt2661_softc *sc)
925 {
926 struct ifnet *ifp = &sc->sc_if;
927 struct rt2661_tx_ring *txq;
928 struct rt2661_tx_data *data;
929 struct rt2661_node *rn;
930 uint32_t val;
931 int qid, retrycnt, s;
932
933 s = splnet();
934
935 for (;;) {
936 val = RAL_READ(sc, RT2661_STA_CSR4);
937 if (!(val & RT2661_TX_STAT_VALID))
938 break;
939
940 /* retrieve the queue in which this frame was sent */
941 qid = RT2661_TX_QID(val);
942 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
943
944 /* retrieve rate control algorithm context */
945 data = &txq->data[txq->stat];
946 rn = (struct rt2661_node *)data->ni;
947
948 /* if no frame has been sent, ignore */
949 if (rn == NULL)
950 continue;
951
952 switch (RT2661_TX_RESULT(val)) {
953 case RT2661_TX_SUCCESS:
954 retrycnt = RT2661_TX_RETRYCNT(val);
955
956 DPRINTFN(10, ("data frame sent successfully after "
957 "%d retries\n", retrycnt));
958 rn->amn.amn_txcnt++;
959 if (retrycnt > 0)
960 rn->amn.amn_retrycnt++;
961 ifp->if_opackets++;
962 break;
963
964 case RT2661_TX_RETRY_FAIL:
965 DPRINTFN(9, ("sending data frame failed (too much "
966 "retries)\n"));
967 rn->amn.amn_txcnt++;
968 rn->amn.amn_retrycnt++;
969 ifp->if_oerrors++;
970 break;
971
972 default:
973 /* other failure */
974 aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
975 ifp->if_oerrors++;
976 }
977
978 ieee80211_free_node(data->ni);
979 data->ni = NULL;
980
981 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
982
983 txq->queued--;
984 if (++txq->stat >= txq->count) /* faster than % count */
985 txq->stat = 0;
986 }
987
988 sc->sc_tx_timer = 0;
989 ifp->if_flags &= ~IFF_OACTIVE;
990 rt2661_start(ifp); /* in softint */
991
992 splx(s);
993 }
994
995 static void
996 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
997 {
998 struct rt2661_tx_desc *desc;
999 struct rt2661_tx_data *data;
1000
1001 for (;;) {
1002 desc = &txq->desc[txq->next];
1003 data = &txq->data[txq->next];
1004
1005 bus_dmamap_sync(sc->sc_dmat, txq->map,
1006 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1007 BUS_DMASYNC_POSTREAD);
1008
1009 if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1010 !(le32toh(desc->flags) & RT2661_TX_VALID))
1011 break;
1012
1013 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1014 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1015 bus_dmamap_unload(sc->sc_dmat, data->map);
1016 m_freem(data->m);
1017 data->m = NULL;
1018 /* node reference is released in rt2661_tx_intr() */
1019
1020 /* descriptor is no longer valid */
1021 desc->flags &= ~htole32(RT2661_TX_VALID);
1022
1023 bus_dmamap_sync(sc->sc_dmat, txq->map,
1024 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1025 BUS_DMASYNC_PREWRITE);
1026
1027 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1028
1029 if (++txq->next >= txq->count) /* faster than % count */
1030 txq->next = 0;
1031 }
1032 }
1033
1034 static void
1035 rt2661_rx_intr(struct rt2661_softc *sc)
1036 {
1037 struct ieee80211com *ic = &sc->sc_ic;
1038 struct ifnet *ifp = &sc->sc_if;
1039 struct rt2661_rx_desc *desc;
1040 struct rt2661_rx_data *data;
1041 struct ieee80211_frame *wh;
1042 struct ieee80211_node *ni;
1043 struct mbuf *mnew, *m;
1044 int error, rssi, s;
1045
1046 for (;;) {
1047 desc = &sc->rxq.desc[sc->rxq.cur];
1048 data = &sc->rxq.data[sc->rxq.cur];
1049
1050 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1051 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1052 BUS_DMASYNC_POSTREAD);
1053
1054 if (le32toh(desc->flags) & RT2661_RX_BUSY)
1055 break;
1056
1057 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1058 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1059 /*
1060 * This should not happen since we did not request
1061 * to receive those frames when we filled TXRX_CSR0.
1062 */
1063 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1064 le32toh(desc->flags)));
1065 ifp->if_ierrors++;
1066 goto skip;
1067 }
1068
1069 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1070 ifp->if_ierrors++;
1071 goto skip;
1072 }
1073
1074 /*
1075 * Try to allocate a new mbuf for this ring element and load it
1076 * before processing the current mbuf. If the ring element
1077 * cannot be loaded, drop the received packet and reuse the old
1078 * mbuf. In the unlikely case that the old mbuf can't be
1079 * reloaded either, explicitly panic.
1080 */
1081 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1082 if (mnew == NULL) {
1083 ifp->if_ierrors++;
1084 goto skip;
1085 }
1086
1087 MCLGET(mnew, M_DONTWAIT);
1088 if (!(mnew->m_flags & M_EXT)) {
1089 m_freem(mnew);
1090 ifp->if_ierrors++;
1091 goto skip;
1092 }
1093
1094 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1095 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1096 bus_dmamap_unload(sc->sc_dmat, data->map);
1097
1098 error = bus_dmamap_load(sc->sc_dmat, data->map,
1099 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1100 if (error != 0) {
1101 m_freem(mnew);
1102
1103 /* try to reload the old mbuf */
1104 error = bus_dmamap_load(sc->sc_dmat, data->map,
1105 mtod(data->m, void *), MCLBYTES, NULL,
1106 BUS_DMA_NOWAIT);
1107 if (error != 0) {
1108 /* very unlikely that it will fail... */
1109 panic("%s: could not load old rx mbuf",
1110 device_xname(sc->sc_dev));
1111 }
1112 /* physical address may have changed */
1113 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1114 ifp->if_ierrors++;
1115 goto skip;
1116 }
1117
1118 /*
1119 * New mbuf successfully loaded, update Rx ring and continue
1120 * processing.
1121 */
1122 m = data->m;
1123 data->m = mnew;
1124 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1125
1126 /* finalize mbuf */
1127 m_set_rcvif(m, ifp);
1128 m->m_pkthdr.len = m->m_len =
1129 (le32toh(desc->flags) >> 16) & 0xfff;
1130
1131 s = splnet();
1132
1133 if (sc->sc_drvbpf != NULL) {
1134 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1135 uint32_t tsf_lo, tsf_hi;
1136
1137 /* get timestamp (low and high 32 bits) */
1138 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1139 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1140
1141 tap->wr_tsf =
1142 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1143 tap->wr_flags = 0;
1144 tap->wr_rate = rt2661_rxrate(desc);
1145 tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1146 tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1147 tap->wr_antsignal = desc->rssi;
1148
1149 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m,
1150 BPF_D_IN);
1151 }
1152
1153 wh = mtod(m, struct ieee80211_frame *);
1154 ni = ieee80211_find_rxnode(ic,
1155 (struct ieee80211_frame_min *)wh);
1156
1157 /* send the frame to the 802.11 layer */
1158 ieee80211_input(ic, m, ni, desc->rssi, 0);
1159
1160 /*-
1161 * Keep track of the average RSSI using an Exponential Moving
1162 * Average (EMA) of 8 Wilder's days:
1163 * avg = (1 / N) x rssi + ((N - 1) / N) x avg
1164 */
1165 rssi = rt2661_get_rssi(sc, desc->rssi);
1166 sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1167
1168 /* node is no longer needed */
1169 ieee80211_free_node(ni);
1170
1171 splx(s);
1172
1173 skip: desc->flags |= htole32(RT2661_RX_BUSY);
1174
1175 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1176 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1177 BUS_DMASYNC_PREWRITE);
1178
1179 DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1180
1181 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1182 }
1183
1184 /*
1185 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1186 * without calling if_start().
1187 */
1188 s = splnet();
1189 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1190 rt2661_start(ifp);
1191 splx(s);
1192 }
1193
1194 /*
1195 * This function is called in HostAP or IBSS modes when it's time to send a
1196 * new beacon (every ni_intval milliseconds).
1197 */
1198 static void
1199 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1200 {
1201 struct ieee80211com *ic = &sc->sc_ic;
1202
1203 if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1204 sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1205 sc->sc_flags |= RT2661_SET_SLOTTIME;
1206 } else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1207 sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1208 rt2661_set_slottime(sc);
1209 }
1210
1211 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1212 /* update ERP Information Element */
1213 RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1214 RAL_RW_BARRIER_1(sc, sc->erp_csr);
1215 }
1216
1217 DPRINTFN(15, ("beacon expired\n"));
1218 }
1219
1220 static void
1221 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1222 {
1223 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1224
1225 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1226 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1227 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1228
1229 /* send wakeup command to MCU */
1230 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1231 }
1232
1233 static void
1234 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1235 {
1236 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1237 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1238 }
1239
1240 int
1241 rt2661_intr(void *arg)
1242 {
1243 struct rt2661_softc *sc = arg;
1244 struct ifnet *ifp = &sc->sc_if;
1245 uint32_t r1, r2;
1246
1247 /* don't re-enable interrupts if we're shutting down */
1248 if (!(ifp->if_flags & IFF_RUNNING)) {
1249 /* disable MAC and MCU interrupts */
1250 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1251 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1252 return 0;
1253 }
1254
1255 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1256 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1257
1258 if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
1259 return 0;
1260
1261 /* disable interrupts */
1262 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1263 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1264
1265 softint_schedule(sc->sc_soft_ih);
1266 return 1;
1267 }
1268
1269 static void
1270 rt2661_softintr(void *arg)
1271 {
1272 struct rt2661_softc *sc = arg;
1273 uint32_t r1, r2;
1274
1275 for (;;) {
1276 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1277 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1278
1279 if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1280 (r2 & RT2661_MCU_INT_ALL) == 0)
1281 break;
1282
1283 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1284 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1285
1286 if (r1 & RT2661_MGT_DONE)
1287 rt2661_tx_dma_intr(sc, &sc->mgtq);
1288
1289 if (r1 & RT2661_RX_DONE)
1290 rt2661_rx_intr(sc);
1291
1292 if (r1 & RT2661_TX0_DMA_DONE)
1293 rt2661_tx_dma_intr(sc, &sc->txq[0]);
1294
1295 if (r1 & RT2661_TX1_DMA_DONE)
1296 rt2661_tx_dma_intr(sc, &sc->txq[1]);
1297
1298 if (r1 & RT2661_TX2_DMA_DONE)
1299 rt2661_tx_dma_intr(sc, &sc->txq[2]);
1300
1301 if (r1 & RT2661_TX3_DMA_DONE)
1302 rt2661_tx_dma_intr(sc, &sc->txq[3]);
1303
1304 if (r1 & RT2661_TX_DONE)
1305 rt2661_tx_intr(sc);
1306
1307 if (r2 & RT2661_MCU_CMD_DONE)
1308 rt2661_mcu_cmd_intr(sc);
1309
1310 if (r2 & RT2661_MCU_BEACON_EXPIRE)
1311 rt2661_mcu_beacon_expire(sc);
1312
1313 if (r2 & RT2661_MCU_WAKEUP)
1314 rt2661_mcu_wakeup(sc);
1315 }
1316
1317 /* enable interrupts */
1318 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1319 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1320 }
1321
1322 /* quickly determine if a given rate is CCK or OFDM */
1323 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1324
1325 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1326 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1327
1328 /*
1329 * This function is only used by the Rx radiotap code. It returns the rate at
1330 * which a given frame was received.
1331 */
1332 static uint8_t
1333 rt2661_rxrate(struct rt2661_rx_desc *desc)
1334 {
1335 if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1336 /* reverse function of rt2661_plcp_signal */
1337 switch (desc->rate & 0xf) {
1338 case 0xb: return 12;
1339 case 0xf: return 18;
1340 case 0xa: return 24;
1341 case 0xe: return 36;
1342 case 0x9: return 48;
1343 case 0xd: return 72;
1344 case 0x8: return 96;
1345 case 0xc: return 108;
1346 }
1347 } else {
1348 if (desc->rate == 10)
1349 return 2;
1350 if (desc->rate == 20)
1351 return 4;
1352 if (desc->rate == 55)
1353 return 11;
1354 if (desc->rate == 110)
1355 return 22;
1356 }
1357 return 2; /* should not get there */
1358 }
1359
1360 /*
1361 * Return the expected ack rate for a frame transmitted at rate `rate'.
1362 * XXX: this should depend on the destination node basic rate set.
1363 */
1364 static int
1365 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1366 {
1367 switch (rate) {
1368 /* CCK rates */
1369 case 2:
1370 return 2;
1371 case 4:
1372 case 11:
1373 case 22:
1374 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1375
1376 /* OFDM rates */
1377 case 12:
1378 case 18:
1379 return 12;
1380 case 24:
1381 case 36:
1382 return 24;
1383 case 48:
1384 case 72:
1385 case 96:
1386 case 108:
1387 return 48;
1388 }
1389
1390 /* default to 1Mbps */
1391 return 2;
1392 }
1393
1394 /*
1395 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1396 * The function automatically determines the operating mode depending on the
1397 * given rate. `flags' indicates whether short preamble is in use or not.
1398 */
1399 static uint16_t
1400 rt2661_txtime(int len, int rate, uint32_t flags)
1401 {
1402 uint16_t txtime;
1403
1404 if (RAL_RATE_IS_OFDM(rate)) {
1405 /* IEEE Std 802.11g-2003, pp. 44 */
1406 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1407 txtime = 16 + 4 + 4 * txtime + 6;
1408 } else {
1409 /* IEEE Std 802.11b-1999, pp. 28 */
1410 txtime = (16 * len + rate - 1) / rate;
1411 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1412 txtime += 72 + 24;
1413 else
1414 txtime += 144 + 48;
1415 }
1416 return txtime;
1417 }
1418
1419 static uint8_t
1420 rt2661_plcp_signal(int rate)
1421 {
1422 switch (rate) {
1423 /* CCK rates (returned values are device-dependent) */
1424 case 2: return 0x0;
1425 case 4: return 0x1;
1426 case 11: return 0x2;
1427 case 22: return 0x3;
1428
1429 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1430 case 12: return 0xb;
1431 case 18: return 0xf;
1432 case 24: return 0xa;
1433 case 36: return 0xe;
1434 case 48: return 0x9;
1435 case 72: return 0xd;
1436 case 96: return 0x8;
1437 case 108: return 0xc;
1438
1439 /* unsupported rates (should not get there) */
1440 default: return 0xff;
1441 }
1442 }
1443
1444 static void
1445 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1446 uint32_t flags, uint16_t xflags, int len, int rate,
1447 const bus_dma_segment_t *segs, int nsegs, int ac)
1448 {
1449 struct ieee80211com *ic = &sc->sc_ic;
1450 uint16_t plcp_length;
1451 int i, remainder;
1452
1453 desc->flags = htole32(flags);
1454 desc->flags |= htole32(len << 16);
1455
1456 desc->xflags = htole16(xflags);
1457 desc->xflags |= htole16(nsegs << 13);
1458
1459 desc->wme = htole16(
1460 RT2661_QID(ac) |
1461 RT2661_AIFSN(2) |
1462 RT2661_LOGCWMIN(4) |
1463 RT2661_LOGCWMAX(10));
1464
1465 /*
1466 * Remember in which queue this frame was sent. This field is driver
1467 * private data only. It will be made available by the NIC in STA_CSR4
1468 * on Tx interrupts.
1469 */
1470 desc->qid = ac;
1471
1472 /* setup PLCP fields */
1473 desc->plcp_signal = rt2661_plcp_signal(rate);
1474 desc->plcp_service = 4;
1475
1476 len += IEEE80211_CRC_LEN;
1477 if (RAL_RATE_IS_OFDM(rate)) {
1478 desc->flags |= htole32(RT2661_TX_OFDM);
1479
1480 plcp_length = len & 0xfff;
1481 desc->plcp_length_hi = plcp_length >> 6;
1482 desc->plcp_length_lo = plcp_length & 0x3f;
1483 } else {
1484 plcp_length = (16 * len + rate - 1) / rate;
1485 if (rate == 22) {
1486 remainder = (16 * len) % 22;
1487 if (remainder != 0 && remainder < 7)
1488 desc->plcp_service |= RT2661_PLCP_LENGEXT;
1489 }
1490 desc->plcp_length_hi = plcp_length >> 8;
1491 desc->plcp_length_lo = plcp_length & 0xff;
1492
1493 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1494 desc->plcp_signal |= 0x08;
1495 }
1496
1497 /* RT2x61 supports scatter with up to 5 segments */
1498 for (i = 0; i < nsegs; i++) {
1499 desc->addr[i] = htole32(segs[i].ds_addr);
1500 desc->len [i] = htole16(segs[i].ds_len);
1501 }
1502
1503 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1504 }
1505
1506 static int
1507 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1508 struct ieee80211_node *ni)
1509 {
1510 struct ieee80211com *ic = &sc->sc_ic;
1511 struct rt2661_tx_desc *desc;
1512 struct rt2661_tx_data *data;
1513 struct ieee80211_frame *wh;
1514 uint16_t dur;
1515 uint32_t flags = 0;
1516 int rate, error;
1517
1518 desc = &sc->mgtq.desc[sc->mgtq.cur];
1519 data = &sc->mgtq.data[sc->mgtq.cur];
1520
1521 /* send mgt frames at the lowest available rate */
1522 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1523
1524 wh = mtod(m0, struct ieee80211_frame *);
1525
1526 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1527 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1528 m_freem(m0);
1529 return ENOBUFS;
1530 }
1531
1532 /* packet header may have moved, reset our local pointer */
1533 wh = mtod(m0, struct ieee80211_frame *);
1534 }
1535
1536 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1537 BUS_DMA_NOWAIT);
1538 if (error != 0) {
1539 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1540 error);
1541 m_freem(m0);
1542 return error;
1543 }
1544
1545 if (sc->sc_drvbpf != NULL) {
1546 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1547
1548 tap->wt_flags = 0;
1549 tap->wt_rate = rate;
1550 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1551 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1552
1553 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1554 }
1555
1556 data->m = m0;
1557 data->ni = ni;
1558
1559 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1560 flags |= RT2661_TX_NEED_ACK;
1561
1562 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1563 sc->sifs;
1564 *(uint16_t *)wh->i_dur = htole16(dur);
1565
1566 /* tell hardware to set timestamp in probe responses */
1567 if ((wh->i_fc[0] &
1568 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1569 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1570 flags |= RT2661_TX_TIMESTAMP;
1571 }
1572
1573 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1574 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1575 RT2661_QID_MGT);
1576
1577 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1578 BUS_DMASYNC_PREWRITE);
1579 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1580 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1581 BUS_DMASYNC_PREWRITE);
1582
1583 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1584 m0->m_pkthdr.len, sc->mgtq.cur, rate));
1585
1586 /* kick mgt */
1587 sc->mgtq.queued++;
1588 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1589 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1590
1591 return 0;
1592 }
1593
1594 /*
1595 * Build a RTS control frame.
1596 */
1597 static struct mbuf *
1598 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1599 uint16_t dur)
1600 {
1601 struct ieee80211_frame_rts *rts;
1602 struct mbuf *m;
1603
1604 MGETHDR(m, M_DONTWAIT, MT_DATA);
1605 if (m == NULL) {
1606 sc->sc_ic.ic_stats.is_tx_nobuf++;
1607 aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1608 return NULL;
1609 }
1610
1611 rts = mtod(m, struct ieee80211_frame_rts *);
1612
1613 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1614 IEEE80211_FC0_SUBTYPE_RTS;
1615 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1616 *(uint16_t *)rts->i_dur = htole16(dur);
1617 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1618 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1619
1620 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1621
1622 return m;
1623 }
1624
1625 static int
1626 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1627 struct ieee80211_node *ni, int ac)
1628 {
1629 struct ieee80211com *ic = &sc->sc_ic;
1630 struct rt2661_tx_ring *txq = &sc->txq[ac];
1631 struct rt2661_tx_desc *desc;
1632 struct rt2661_tx_data *data;
1633 struct ieee80211_frame *wh;
1634 struct ieee80211_key *k;
1635 struct mbuf *mnew;
1636 uint16_t dur;
1637 uint32_t flags = 0;
1638 int rate, useprot, error, tid;
1639
1640 wh = mtod(m0, struct ieee80211_frame *);
1641
1642 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1643 rate = ic->ic_sup_rates[ic->ic_curmode].
1644 rs_rates[ic->ic_fixed_rate];
1645 } else
1646 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1647 rate &= IEEE80211_RATE_VAL;
1648 if (rate == 0)
1649 rate = 2; /* XXX should not happen */
1650
1651 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1652 k = ieee80211_crypto_encap(ic, ni, m0);
1653 if (k == NULL) {
1654 m_freem(m0);
1655 return ENOBUFS;
1656 }
1657
1658 /* packet header may have moved, reset our local pointer */
1659 wh = mtod(m0, struct ieee80211_frame *);
1660 }
1661
1662 /*
1663 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1664 * chance to contend for the wireless medium.
1665 */
1666 tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1667 if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1668 flags |= RT2661_TX_IFS_SIFS;
1669
1670 /*
1671 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1672 * for directed frames only when the length of the MPDU is greater
1673 * than the length threshold indicated by" ic_rtsthreshold.
1674 *
1675 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1676 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1677 * type Data or an MMPDU".
1678 */
1679 useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1680 (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1681 ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1682 if (useprot) {
1683 struct mbuf *m;
1684 int rtsrate, ackrate;
1685
1686 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1687 ackrate = rt2661_ack_rate(ic, rate);
1688
1689 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1690 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1691 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1692 3 * sc->sifs;
1693
1694 m = rt2661_get_rts(sc, wh, dur);
1695 if (m == NULL) {
1696 aprint_error_dev(sc->sc_dev, "could not allocate RTS "
1697 "frame\n");
1698 m_freem(m0);
1699 return ENOBUFS;
1700 }
1701
1702 desc = &txq->desc[txq->cur];
1703 data = &txq->data[txq->cur];
1704
1705 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1706 BUS_DMA_NOWAIT);
1707 if (error != 0) {
1708 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1709 m_freem(m);
1710 m_freem(m0);
1711 return error;
1712 }
1713
1714 /* avoid multiple free() of the same node for each fragment */
1715 ieee80211_ref_node(ni);
1716
1717 data->m = m;
1718 data->ni = ni;
1719
1720 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1721 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1722 data->map->dm_segs, data->map->dm_nsegs, ac);
1723
1724 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1725 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1726 bus_dmamap_sync(sc->sc_dmat, txq->map,
1727 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1728 BUS_DMASYNC_PREWRITE);
1729
1730 txq->queued++;
1731 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1732
1733 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1734 }
1735
1736 data = &txq->data[txq->cur];
1737 desc = &txq->desc[txq->cur];
1738
1739 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1740 BUS_DMA_NOWAIT);
1741 if (error != 0 && error != EFBIG) {
1742 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1743 error);
1744 m_freem(m0);
1745 return error;
1746 }
1747 if (error != 0) {
1748 /* too many fragments, linearize */
1749
1750 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1751 if (mnew == NULL) {
1752 m_freem(m0);
1753 return ENOMEM;
1754 }
1755
1756 M_COPY_PKTHDR(mnew, m0);
1757 if (m0->m_pkthdr.len > MHLEN) {
1758 MCLGET(mnew, M_DONTWAIT);
1759 if (!(mnew->m_flags & M_EXT)) {
1760 m_freem(m0);
1761 m_freem(mnew);
1762 return ENOMEM;
1763 }
1764 }
1765
1766 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1767 m_freem(m0);
1768 mnew->m_len = mnew->m_pkthdr.len;
1769 m0 = mnew;
1770
1771 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1772 BUS_DMA_NOWAIT);
1773 if (error != 0) {
1774 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1775 m_freem(m0);
1776 return error;
1777 }
1778
1779 /* packet header have moved, reset our local pointer */
1780 wh = mtod(m0, struct ieee80211_frame *);
1781 }
1782
1783 if (sc->sc_drvbpf != NULL) {
1784 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1785
1786 tap->wt_flags = 0;
1787 tap->wt_rate = rate;
1788 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1789 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1790
1791 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1792 }
1793
1794 data->m = m0;
1795 data->ni = ni;
1796
1797 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1798 flags |= RT2661_TX_NEED_ACK;
1799
1800 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1801 ic->ic_flags) + sc->sifs;
1802 *(uint16_t *)wh->i_dur = htole16(dur);
1803 }
1804
1805 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1806 data->map->dm_segs, data->map->dm_nsegs, ac);
1807
1808 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1809 BUS_DMASYNC_PREWRITE);
1810 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1811 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1812
1813 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1814 m0->m_pkthdr.len, txq->cur, rate));
1815
1816 /* kick Tx */
1817 txq->queued++;
1818 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1819 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1820
1821 return 0;
1822 }
1823
1824 static void
1825 rt2661_start(struct ifnet *ifp)
1826 {
1827 struct rt2661_softc *sc = ifp->if_softc;
1828 struct ieee80211com *ic = &sc->sc_ic;
1829 struct mbuf *m0;
1830 struct ether_header *eh;
1831 struct ieee80211_node *ni = NULL;
1832
1833 /*
1834 * net80211 may still try to send management frames even if the
1835 * IFF_RUNNING flag is not set...
1836 */
1837 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1838 return;
1839
1840 for (;;) {
1841 IF_POLL(&ic->ic_mgtq, m0);
1842 if (m0 != NULL) {
1843 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1844 ifp->if_flags |= IFF_OACTIVE;
1845 break;
1846 }
1847 IF_DEQUEUE(&ic->ic_mgtq, m0);
1848 if (m0 == NULL)
1849 break;
1850
1851 ni = M_GETCTX(m0, struct ieee80211_node *);
1852 M_CLEARCTX(m0);
1853 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1854 if (rt2661_tx_mgt(sc, m0, ni) != 0)
1855 break;
1856
1857 } else {
1858 IF_POLL(&ifp->if_snd, m0);
1859 if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1860 break;
1861
1862 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1863 /* there is no place left in this ring */
1864 ifp->if_flags |= IFF_OACTIVE;
1865 break;
1866 }
1867
1868 IFQ_DEQUEUE(&ifp->if_snd, m0);
1869
1870 if (m0->m_len < sizeof (struct ether_header) &&
1871 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1872 continue;
1873
1874 eh = mtod(m0, struct ether_header *);
1875 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1876 if (ni == NULL) {
1877 m_freem(m0);
1878 ifp->if_oerrors++;
1879 continue;
1880 }
1881
1882 bpf_mtap(ifp, m0, BPF_D_OUT);
1883 m0 = ieee80211_encap(ic, m0, ni);
1884 if (m0 == NULL) {
1885 ieee80211_free_node(ni);
1886 ifp->if_oerrors++;
1887 continue;
1888 }
1889 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1890 if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1891 if (ni != NULL)
1892 ieee80211_free_node(ni);
1893 ifp->if_oerrors++;
1894 break;
1895 }
1896 }
1897
1898 sc->sc_tx_timer = 5;
1899 ifp->if_timer = 1;
1900 }
1901 }
1902
1903 static void
1904 rt2661_watchdog(struct ifnet *ifp)
1905 {
1906 struct rt2661_softc *sc = ifp->if_softc;
1907
1908 ifp->if_timer = 0;
1909
1910 if (sc->sc_tx_timer > 0) {
1911 if (--sc->sc_tx_timer == 0) {
1912 aprint_error_dev(sc->sc_dev, "device timeout\n");
1913 rt2661_init(ifp);
1914 ifp->if_oerrors++;
1915 return;
1916 }
1917 ifp->if_timer = 1;
1918 }
1919
1920 ieee80211_watchdog(&sc->sc_ic);
1921 }
1922
1923 /*
1924 * This function allows for fast channel switching in monitor mode (used by
1925 * kismet). In IBSS mode, we must explicitly reset the interface to
1926 * generate a new beacon frame.
1927 */
1928 static int
1929 rt2661_reset(struct ifnet *ifp)
1930 {
1931 struct rt2661_softc *sc = ifp->if_softc;
1932 struct ieee80211com *ic = &sc->sc_ic;
1933
1934 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1935 return ENETRESET;
1936
1937 rt2661_set_chan(sc, ic->ic_curchan);
1938
1939 return 0;
1940 }
1941
1942 static int
1943 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1944 {
1945 struct rt2661_softc *sc = ifp->if_softc;
1946 struct ieee80211com *ic = &sc->sc_ic;
1947 int s, error = 0;
1948
1949 s = splnet();
1950
1951 switch (cmd) {
1952 case SIOCSIFFLAGS:
1953 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1954 break;
1955 if (ifp->if_flags & IFF_UP) {
1956 if (ifp->if_flags & IFF_RUNNING)
1957 rt2661_update_promisc(sc);
1958 else
1959 rt2661_init(ifp);
1960 } else {
1961 if (ifp->if_flags & IFF_RUNNING)
1962 rt2661_stop(ifp, 1);
1963 }
1964 break;
1965
1966 case SIOCADDMULTI:
1967 case SIOCDELMULTI:
1968 /* XXX no h/w multicast filter? --dyoung */
1969 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1970 error = 0;
1971 break;
1972
1973 case SIOCS80211CHANNEL:
1974 /*
1975 * This allows for fast channel switching in monitor mode
1976 * (used by kismet). In IBSS mode, we must explicitly reset
1977 * the interface to generate a new beacon frame.
1978 */
1979 error = ieee80211_ioctl(ic, cmd, data);
1980 if (error == ENETRESET &&
1981 ic->ic_opmode == IEEE80211_M_MONITOR) {
1982 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1983 (IFF_UP | IFF_RUNNING))
1984 rt2661_set_chan(sc, ic->ic_ibss_chan);
1985 error = 0;
1986 }
1987 break;
1988
1989 default:
1990 error = ieee80211_ioctl(ic, cmd, data);
1991
1992 }
1993
1994 if (error == ENETRESET) {
1995 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1996 (IFF_UP | IFF_RUNNING))
1997 rt2661_init(ifp);
1998 error = 0;
1999 }
2000
2001 splx(s);
2002
2003 return error;
2004 }
2005
2006 static void
2007 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2008 {
2009 uint32_t tmp;
2010 int ntries;
2011
2012 for (ntries = 0; ntries < 100; ntries++) {
2013 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2014 break;
2015 DELAY(1);
2016 }
2017 if (ntries == 100) {
2018 aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2019 return;
2020 }
2021
2022 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2023 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2024
2025 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2026 }
2027
2028 static uint8_t
2029 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2030 {
2031 uint32_t val;
2032 int ntries;
2033
2034 for (ntries = 0; ntries < 100; ntries++) {
2035 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2036 break;
2037 DELAY(1);
2038 }
2039 if (ntries == 100) {
2040 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2041 return 0;
2042 }
2043
2044 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2045 RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2046
2047 for (ntries = 0; ntries < 100; ntries++) {
2048 val = RAL_READ(sc, RT2661_PHY_CSR3);
2049 if (!(val & RT2661_BBP_BUSY))
2050 return val & 0xff;
2051 DELAY(1);
2052 }
2053
2054 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2055 return 0;
2056 }
2057
2058 static void
2059 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2060 {
2061 uint32_t tmp;
2062 int ntries;
2063
2064 for (ntries = 0; ntries < 100; ntries++) {
2065 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2066 break;
2067 DELAY(1);
2068 }
2069 if (ntries == 100) {
2070 aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2071 return;
2072 }
2073 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2074 (reg & 3);
2075 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2076
2077 /* remember last written value in sc */
2078 sc->rf_regs[reg] = val;
2079
2080 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2081 }
2082
2083 static int
2084 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2085 {
2086 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2087 return EIO; /* there is already a command pending */
2088
2089 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2090 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2091
2092 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2093
2094 return 0;
2095 }
2096
2097 static void
2098 rt2661_select_antenna(struct rt2661_softc *sc)
2099 {
2100 uint8_t bbp4, bbp77;
2101 uint32_t tmp;
2102
2103 bbp4 = rt2661_bbp_read(sc, 4);
2104 bbp77 = rt2661_bbp_read(sc, 77);
2105
2106 /* TBD */
2107
2108 /* make sure Rx is disabled before switching antenna */
2109 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2110 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2111
2112 rt2661_bbp_write(sc, 4, bbp4);
2113 rt2661_bbp_write(sc, 77, bbp77);
2114
2115 /* restore Rx filter */
2116 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2117 }
2118
2119 /*
2120 * Enable multi-rate retries for frames sent at OFDM rates.
2121 * In 802.11b/g mode, allow fallback to CCK rates.
2122 */
2123 static void
2124 rt2661_enable_mrr(struct rt2661_softc *sc)
2125 {
2126 struct ieee80211com *ic = &sc->sc_ic;
2127 uint32_t tmp;
2128
2129 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2130
2131 tmp &= ~RT2661_MRR_CCK_FALLBACK;
2132 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2133 tmp |= RT2661_MRR_CCK_FALLBACK;
2134 tmp |= RT2661_MRR_ENABLED;
2135
2136 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2137 }
2138
2139 static void
2140 rt2661_set_txpreamble(struct rt2661_softc *sc)
2141 {
2142 uint32_t tmp;
2143
2144 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2145
2146 tmp &= ~RT2661_SHORT_PREAMBLE;
2147 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2148 tmp |= RT2661_SHORT_PREAMBLE;
2149
2150 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2151 }
2152
2153 static void
2154 rt2661_set_basicrates(struct rt2661_softc *sc,
2155 const struct ieee80211_rateset *rs)
2156 {
2157 #define RV(r) ((r) & IEEE80211_RATE_VAL)
2158 uint32_t mask = 0;
2159 uint8_t rate;
2160 int i, j;
2161
2162 for (i = 0; i < rs->rs_nrates; i++) {
2163 rate = rs->rs_rates[i];
2164
2165 if (!(rate & IEEE80211_RATE_BASIC))
2166 continue;
2167
2168 /*
2169 * Find h/w rate index. We know it exists because the rate
2170 * set has already been negotiated.
2171 */
2172 for (j = 0; ieee80211_std_rateset_11g.rs_rates[j] != RV(rate); j++);
2173
2174 mask |= 1 << j;
2175 }
2176
2177 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2178
2179 DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2180 #undef RV
2181 }
2182
2183 /*
2184 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
2185 * driver.
2186 */
2187 static void
2188 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2189 {
2190 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2191 uint32_t tmp;
2192
2193 /* update all BBP registers that depend on the band */
2194 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2195 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
2196 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2197 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2198 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
2199 }
2200 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2201 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2202 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2203 }
2204
2205 sc->bbp17 = bbp17;
2206 rt2661_bbp_write(sc, 17, bbp17);
2207 rt2661_bbp_write(sc, 96, bbp96);
2208 rt2661_bbp_write(sc, 104, bbp104);
2209
2210 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2211 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2212 rt2661_bbp_write(sc, 75, 0x80);
2213 rt2661_bbp_write(sc, 86, 0x80);
2214 rt2661_bbp_write(sc, 88, 0x80);
2215 }
2216
2217 rt2661_bbp_write(sc, 35, bbp35);
2218 rt2661_bbp_write(sc, 97, bbp97);
2219 rt2661_bbp_write(sc, 98, bbp98);
2220
2221 tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2222 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2223 if (IEEE80211_IS_CHAN_2GHZ(c))
2224 tmp |= RT2661_PA_PE_2GHZ;
2225 else
2226 tmp |= RT2661_PA_PE_5GHZ;
2227 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2228
2229 /* 802.11a uses a 16 microseconds short interframe space */
2230 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2231 }
2232
2233 static void
2234 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2235 {
2236 struct ieee80211com *ic = &sc->sc_ic;
2237 const struct rfprog *rfprog;
2238 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2239 int8_t power;
2240 u_int i, chan;
2241
2242 chan = ieee80211_chan2ieee(ic, c);
2243 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2244 return;
2245
2246 /* select the appropriate RF settings based on what EEPROM says */
2247 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2248
2249 /* find the settings for this channel (we know it exists) */
2250 for (i = 0; rfprog[i].chan != chan; i++);
2251
2252 power = sc->txpow[i];
2253 if (power < 0) {
2254 bbp94 += power;
2255 power = 0;
2256 } else if (power > 31) {
2257 bbp94 += power - 31;
2258 power = 31;
2259 }
2260
2261 /*
2262 * If we've yet to select a channel, or we are switching from the
2263 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2264 * be reprogrammed.
2265 */
2266 if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2267 rt2661_select_band(sc, c);
2268 rt2661_select_antenna(sc);
2269 }
2270 sc->sc_curchan = c;
2271
2272 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2273 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2274 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2275 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2276
2277 DELAY(200);
2278
2279 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2280 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2281 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2282 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2283
2284 DELAY(200);
2285
2286 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2287 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2288 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2289 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2290
2291 /* enable smart mode for MIMO-capable RFs */
2292 bbp3 = rt2661_bbp_read(sc, 3);
2293
2294 bbp3 &= ~RT2661_SMART_MODE;
2295 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2296 bbp3 |= RT2661_SMART_MODE;
2297
2298 rt2661_bbp_write(sc, 3, bbp3);
2299
2300 if (bbp94 != RT2661_BBPR94_DEFAULT)
2301 rt2661_bbp_write(sc, 94, bbp94);
2302
2303 /* 5GHz radio needs a 1ms delay here */
2304 if (IEEE80211_IS_CHAN_5GHZ(c))
2305 DELAY(1000);
2306 }
2307
2308 static void
2309 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2310 {
2311 uint32_t tmp;
2312
2313 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2314 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2315
2316 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2317 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2318 }
2319
2320 static void
2321 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2322 {
2323 uint32_t tmp;
2324
2325 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2326 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2327
2328 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2329 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2330 }
2331
2332 static void
2333 rt2661_update_promisc(struct rt2661_softc *sc)
2334 {
2335 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2336 uint32_t tmp;
2337
2338 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2339
2340 tmp &= ~RT2661_DROP_NOT_TO_ME;
2341 if (!(ifp->if_flags & IFF_PROMISC))
2342 tmp |= RT2661_DROP_NOT_TO_ME;
2343
2344 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2345
2346 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2347 "entering" : "leaving"));
2348 }
2349
2350 #if 0
2351 /*
2352 * Update QoS (802.11e) settings for each h/w Tx ring.
2353 */
2354 static int
2355 rt2661_wme_update(struct ieee80211com *ic)
2356 {
2357 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2358 const struct wmeParams *wmep;
2359
2360 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2361
2362 /* XXX: not sure about shifts. */
2363 /* XXX: the reference driver plays with AC_VI settings too. */
2364
2365 /* update TxOp */
2366 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2367 wmep[WME_AC_BE].wmep_txopLimit << 16 |
2368 wmep[WME_AC_BK].wmep_txopLimit);
2369 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2370 wmep[WME_AC_VI].wmep_txopLimit << 16 |
2371 wmep[WME_AC_VO].wmep_txopLimit);
2372
2373 /* update CWmin */
2374 RAL_WRITE(sc, RT2661_CWMIN_CSR,
2375 wmep[WME_AC_BE].wmep_logcwmin << 12 |
2376 wmep[WME_AC_BK].wmep_logcwmin << 8 |
2377 wmep[WME_AC_VI].wmep_logcwmin << 4 |
2378 wmep[WME_AC_VO].wmep_logcwmin);
2379
2380 /* update CWmax */
2381 RAL_WRITE(sc, RT2661_CWMAX_CSR,
2382 wmep[WME_AC_BE].wmep_logcwmax << 12 |
2383 wmep[WME_AC_BK].wmep_logcwmax << 8 |
2384 wmep[WME_AC_VI].wmep_logcwmax << 4 |
2385 wmep[WME_AC_VO].wmep_logcwmax);
2386
2387 /* update Aifsn */
2388 RAL_WRITE(sc, RT2661_AIFSN_CSR,
2389 wmep[WME_AC_BE].wmep_aifsn << 12 |
2390 wmep[WME_AC_BK].wmep_aifsn << 8 |
2391 wmep[WME_AC_VI].wmep_aifsn << 4 |
2392 wmep[WME_AC_VO].wmep_aifsn);
2393
2394 return 0;
2395 }
2396 #endif
2397
2398 static void
2399 rt2661_updateslot(struct ifnet *ifp)
2400 {
2401 struct rt2661_softc *sc = ifp->if_softc;
2402 struct ieee80211com *ic = &sc->sc_ic;
2403
2404 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2405 /*
2406 * In HostAP mode, we defer setting of new slot time until
2407 * updated ERP Information Element has propagated to all
2408 * associated STAs.
2409 */
2410 sc->sc_flags |= RT2661_UPDATE_SLOT;
2411 } else
2412 rt2661_set_slottime(sc);
2413 }
2414
2415 static void
2416 rt2661_set_slottime(struct rt2661_softc *sc)
2417 {
2418 struct ieee80211com *ic = &sc->sc_ic;
2419 uint8_t slottime;
2420 uint32_t tmp;
2421
2422 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2423
2424 tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2425 tmp = (tmp & ~0xff) | slottime;
2426 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2427
2428 DPRINTF(("setting slot time to %uus\n", slottime));
2429 }
2430
2431 static const char *
2432 rt2661_get_rf(int rev)
2433 {
2434 switch (rev) {
2435 case RT2661_RF_5225: return "RT5225";
2436 case RT2661_RF_5325: return "RT5325 (MIMO XR)";
2437 case RT2661_RF_2527: return "RT2527";
2438 case RT2661_RF_2529: return "RT2529 (MIMO XR)";
2439 default: return "unknown";
2440 }
2441 }
2442
2443 static void
2444 rt2661_read_eeprom(struct rt2661_softc *sc)
2445 {
2446 struct ieee80211com *ic = &sc->sc_ic;
2447 uint16_t val;
2448 int i;
2449
2450 /* read MAC address */
2451 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2452 ic->ic_myaddr[0] = val & 0xff;
2453 ic->ic_myaddr[1] = val >> 8;
2454
2455 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2456 ic->ic_myaddr[2] = val & 0xff;
2457 ic->ic_myaddr[3] = val >> 8;
2458
2459 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2460 ic->ic_myaddr[4] = val & 0xff;
2461 ic->ic_myaddr[5] = val >> 8;
2462
2463 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2464 /* XXX: test if different from 0xffff? */
2465 sc->rf_rev = (val >> 11) & 0x1f;
2466 sc->hw_radio = (val >> 10) & 0x1;
2467 sc->rx_ant = (val >> 4) & 0x3;
2468 sc->tx_ant = (val >> 2) & 0x3;
2469 sc->nb_ant = val & 0x3;
2470
2471 DPRINTF(("RF revision=%d\n", sc->rf_rev));
2472
2473 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2474 sc->ext_5ghz_lna = (val >> 6) & 0x1;
2475 sc->ext_2ghz_lna = (val >> 4) & 0x1;
2476
2477 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2478 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2479
2480 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2481 if ((val & 0xff) != 0xff)
2482 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
2483
2484 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2485 if ((val & 0xff) != 0xff)
2486 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
2487
2488 /* adjust RSSI correction for external low-noise amplifier */
2489 if (sc->ext_2ghz_lna)
2490 sc->rssi_2ghz_corr -= 14;
2491 if (sc->ext_5ghz_lna)
2492 sc->rssi_5ghz_corr -= 14;
2493
2494 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2495 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2496
2497 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2498 if ((val >> 8) != 0xff)
2499 sc->rfprog = (val >> 8) & 0x3;
2500 if ((val & 0xff) != 0xff)
2501 sc->rffreq = val & 0xff;
2502
2503 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2504
2505 /* read Tx power for all a/b/g channels */
2506 for (i = 0; i < 19; i++) {
2507 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2508 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
2509 DPRINTF(("Channel=%d Tx power=%d\n",
2510 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2511 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
2512 DPRINTF(("Channel=%d Tx power=%d\n",
2513 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2514 }
2515
2516 /* read vendor-specific BBP values */
2517 for (i = 0; i < 16; i++) {
2518 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2519 if (val == 0 || val == 0xffff)
2520 continue; /* skip invalid entries */
2521 sc->bbp_prom[i].reg = val >> 8;
2522 sc->bbp_prom[i].val = val & 0xff;
2523 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2524 sc->bbp_prom[i].val));
2525 }
2526 }
2527
2528 static int
2529 rt2661_bbp_init(struct rt2661_softc *sc)
2530 {
2531 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2532 int i, ntries;
2533 uint8_t val;
2534
2535 /* wait for BBP to be ready */
2536 for (ntries = 0; ntries < 100; ntries++) {
2537 val = rt2661_bbp_read(sc, 0);
2538 if (val != 0 && val != 0xff)
2539 break;
2540 DELAY(100);
2541 }
2542 if (ntries == 100) {
2543 aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2544 return EIO;
2545 }
2546
2547 /* initialize BBP registers to default values */
2548 for (i = 0; i < N(rt2661_def_bbp); i++) {
2549 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2550 rt2661_def_bbp[i].val);
2551 }
2552
2553 /* write vendor-specific BBP values (from EEPROM) */
2554 for (i = 0; i < 16; i++) {
2555 if (sc->bbp_prom[i].reg == 0)
2556 continue;
2557 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2558 }
2559
2560 return 0;
2561 #undef N
2562 }
2563
2564 static int
2565 rt2661_init(struct ifnet *ifp)
2566 {
2567 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2568 struct rt2661_softc *sc = ifp->if_softc;
2569 struct ieee80211com *ic = &sc->sc_ic;
2570 const char *name = NULL; /* make lint happy */
2571 uint8_t *ucode;
2572 size_t size;
2573 uint32_t tmp, star[3];
2574 int i, ntries;
2575 firmware_handle_t fh;
2576
2577 /* for CardBus, power on the socket */
2578 if (!(sc->sc_flags & RT2661_ENABLED)) {
2579 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2580 aprint_error_dev(sc->sc_dev, "could not enable device\n");
2581 return EIO;
2582 }
2583 sc->sc_flags |= RT2661_ENABLED;
2584 }
2585
2586 rt2661_stop(ifp, 0);
2587
2588 if (!(sc->sc_flags & RT2661_FWLOADED)) {
2589 switch (sc->sc_id) {
2590 case PCI_PRODUCT_RALINK_RT2561:
2591 name = "ral-rt2561";
2592 break;
2593 case PCI_PRODUCT_RALINK_RT2561S:
2594 name = "ral-rt2561s";
2595 break;
2596 case PCI_PRODUCT_RALINK_RT2661:
2597 name = "ral-rt2661";
2598 break;
2599 }
2600
2601 if (firmware_open("ral", name, &fh) != 0) {
2602 aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
2603 rt2661_stop(ifp, 1);
2604 return EIO;
2605 }
2606
2607 size = firmware_get_size(fh);
2608 if (!(ucode = firmware_malloc(size))) {
2609 aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
2610 firmware_close(fh);
2611 rt2661_stop(ifp, 1);
2612 return ENOMEM;
2613 }
2614
2615 if (firmware_read(fh, 0, ucode, size) != 0) {
2616 aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
2617 firmware_free(ucode, size);
2618 firmware_close(fh);
2619 rt2661_stop(ifp, 1);
2620 return EIO;
2621 }
2622
2623 if (rt2661_load_microcode(sc, ucode, size) != 0) {
2624 aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
2625 firmware_free(ucode, size);
2626 firmware_close(fh);
2627 rt2661_stop(ifp, 1);
2628 return EIO;
2629 }
2630
2631 firmware_free(ucode, size);
2632 firmware_close(fh);
2633 sc->sc_flags |= RT2661_FWLOADED;
2634 }
2635
2636 /* initialize Tx rings */
2637 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2638 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2639 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2640 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2641
2642 /* initialize Mgt ring */
2643 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2644
2645 /* initialize Rx ring */
2646 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2647
2648 /* initialize Tx rings sizes */
2649 RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2650 RT2661_TX_RING_COUNT << 24 |
2651 RT2661_TX_RING_COUNT << 16 |
2652 RT2661_TX_RING_COUNT << 8 |
2653 RT2661_TX_RING_COUNT);
2654
2655 RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2656 RT2661_TX_DESC_WSIZE << 16 |
2657 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
2658 RT2661_MGT_RING_COUNT);
2659
2660 /* initialize Rx rings */
2661 RAL_WRITE(sc, RT2661_RX_RING_CSR,
2662 RT2661_RX_DESC_BACK << 16 |
2663 RT2661_RX_DESC_WSIZE << 8 |
2664 RT2661_RX_RING_COUNT);
2665
2666 /* XXX: some magic here */
2667 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2668
2669 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2670 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2671
2672 /* load base address of Rx ring */
2673 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2674
2675 /* initialize MAC registers to default values */
2676 for (i = 0; i < N(rt2661_def_mac); i++)
2677 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2678
2679 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2680 rt2661_set_macaddr(sc, ic->ic_myaddr);
2681
2682 /* set host ready */
2683 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2684 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2685
2686 /* wait for BBP/RF to wakeup */
2687 for (ntries = 0; ntries < 1000; ntries++) {
2688 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2689 break;
2690 DELAY(1000);
2691 }
2692 if (ntries == 1000) {
2693 printf("timeout waiting for BBP/RF to wakeup\n");
2694 rt2661_stop(ifp, 1);
2695 return EIO;
2696 }
2697
2698 if (rt2661_bbp_init(sc) != 0) {
2699 rt2661_stop(ifp, 1);
2700 return EIO;
2701 }
2702
2703 /* select default channel */
2704 sc->sc_curchan = ic->ic_curchan;
2705 rt2661_select_band(sc, sc->sc_curchan);
2706 rt2661_select_antenna(sc);
2707 rt2661_set_chan(sc, sc->sc_curchan);
2708
2709 /* update Rx filter */
2710 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2711
2712 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2713 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2714 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2715 RT2661_DROP_ACKCTS;
2716 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2717 tmp |= RT2661_DROP_TODS;
2718 if (!(ifp->if_flags & IFF_PROMISC))
2719 tmp |= RT2661_DROP_NOT_TO_ME;
2720 }
2721
2722 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2723
2724 /* clear STA registers */
2725 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2726
2727 /* initialize ASIC */
2728 RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2729
2730 /* clear any pending interrupt */
2731 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2732
2733 /* enable interrupts */
2734 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2735 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2736
2737 /* kick Rx */
2738 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2739
2740 ifp->if_flags &= ~IFF_OACTIVE;
2741 ifp->if_flags |= IFF_RUNNING;
2742
2743 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2744 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2745 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2746 } else
2747 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2748
2749 return 0;
2750 #undef N
2751 }
2752
2753 static void
2754 rt2661_stop(struct ifnet *ifp, int disable)
2755 {
2756 struct rt2661_softc *sc = ifp->if_softc;
2757 struct ieee80211com *ic = &sc->sc_ic;
2758 uint32_t tmp;
2759
2760 sc->sc_tx_timer = 0;
2761 ifp->if_timer = 0;
2762 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2763
2764 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2765
2766 /* abort Tx (for all 5 Tx rings) */
2767 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2768
2769 /* disable Rx (value remains after reset!) */
2770 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2771 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2772
2773 /* reset ASIC */
2774 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2775 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2776
2777 /* disable interrupts */
2778 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2779 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2780
2781 /* clear any pending interrupt */
2782 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2783 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2784
2785 /* reset Tx and Rx rings */
2786 rt2661_reset_tx_ring(sc, &sc->txq[0]);
2787 rt2661_reset_tx_ring(sc, &sc->txq[1]);
2788 rt2661_reset_tx_ring(sc, &sc->txq[2]);
2789 rt2661_reset_tx_ring(sc, &sc->txq[3]);
2790 rt2661_reset_tx_ring(sc, &sc->mgtq);
2791 rt2661_reset_rx_ring(sc, &sc->rxq);
2792
2793 /* for CardBus, power down the socket */
2794 if (disable && sc->sc_disable != NULL) {
2795 if (sc->sc_flags & RT2661_ENABLED) {
2796 (*sc->sc_disable)(sc);
2797 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2798 }
2799 }
2800 }
2801
2802 static int
2803 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2804 {
2805 int ntries;
2806
2807 /* reset 8051 */
2808 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2809
2810 /* cancel any pending Host to MCU command */
2811 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2812 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2813 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2814
2815 /* write 8051's microcode */
2816 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2817 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2818 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2819
2820 /* kick 8051's ass */
2821 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2822
2823 /* wait for 8051 to initialize */
2824 for (ntries = 0; ntries < 500; ntries++) {
2825 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2826 break;
2827 DELAY(100);
2828 }
2829 if (ntries == 500) {
2830 printf("timeout waiting for MCU to initialize\n");
2831 return EIO;
2832 }
2833 return 0;
2834 }
2835
2836 /*
2837 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2838 * false CCA count. This function is called periodically (every seconds) when
2839 * in the RUN state. Values taken from the reference driver.
2840 */
2841 static void
2842 rt2661_rx_tune(struct rt2661_softc *sc)
2843 {
2844 uint8_t bbp17;
2845 uint16_t cca;
2846 int lo, hi, dbm;
2847
2848 /*
2849 * Tuning range depends on operating band and on the presence of an
2850 * external low-noise amplifier.
2851 */
2852 lo = 0x20;
2853 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2854 lo += 0x08;
2855 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2856 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2857 lo += 0x10;
2858 hi = lo + 0x20;
2859
2860 dbm = sc->avg_rssi;
2861 /* retrieve false CCA count since last call (clear on read) */
2862 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2863
2864 DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2865
2866 if (dbm < -74) {
2867 /* very bad RSSI, tune using false CCA count */
2868 bbp17 = sc->bbp17; /* current value */
2869
2870 hi -= 2 * (-74 - dbm);
2871 if (hi < lo)
2872 hi = lo;
2873
2874 if (bbp17 > hi)
2875 bbp17 = hi;
2876 else if (cca > 512)
2877 bbp17 = min(bbp17 + 1, hi);
2878 else if (cca < 100)
2879 bbp17 = max(bbp17 - 1, lo);
2880
2881 } else if (dbm < -66) {
2882 bbp17 = lo + 0x08;
2883 } else if (dbm < -58) {
2884 bbp17 = lo + 0x10;
2885 } else if (dbm < -35) {
2886 bbp17 = hi;
2887 } else { /* very good RSSI >= -35dBm */
2888 bbp17 = 0x60; /* very low sensitivity */
2889 }
2890
2891 if (bbp17 != sc->bbp17) {
2892 DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2893 rt2661_bbp_write(sc, 17, bbp17);
2894 sc->bbp17 = bbp17;
2895 }
2896 }
2897
2898 #ifdef notyet
2899 /*
2900 * Enter/Leave radar detection mode.
2901 * This is for 802.11h additional regulatory domains.
2902 */
2903 static void
2904 rt2661_radar_start(struct rt2661_softc *sc)
2905 {
2906 uint32_t tmp;
2907
2908 /* disable Rx */
2909 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2910 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2911
2912 rt2661_bbp_write(sc, 82, 0x20);
2913 rt2661_bbp_write(sc, 83, 0x00);
2914 rt2661_bbp_write(sc, 84, 0x40);
2915
2916 /* save current BBP registers values */
2917 sc->bbp18 = rt2661_bbp_read(sc, 18);
2918 sc->bbp21 = rt2661_bbp_read(sc, 21);
2919 sc->bbp22 = rt2661_bbp_read(sc, 22);
2920 sc->bbp16 = rt2661_bbp_read(sc, 16);
2921 sc->bbp17 = rt2661_bbp_read(sc, 17);
2922 sc->bbp64 = rt2661_bbp_read(sc, 64);
2923
2924 rt2661_bbp_write(sc, 18, 0xff);
2925 rt2661_bbp_write(sc, 21, 0x3f);
2926 rt2661_bbp_write(sc, 22, 0x3f);
2927 rt2661_bbp_write(sc, 16, 0xbd);
2928 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2929 rt2661_bbp_write(sc, 64, 0x21);
2930
2931 /* restore Rx filter */
2932 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2933 }
2934
2935 static int
2936 rt2661_radar_stop(struct rt2661_softc *sc)
2937 {
2938 uint8_t bbp66;
2939
2940 /* read radar detection result */
2941 bbp66 = rt2661_bbp_read(sc, 66);
2942
2943 /* restore BBP registers values */
2944 rt2661_bbp_write(sc, 16, sc->bbp16);
2945 rt2661_bbp_write(sc, 17, sc->bbp17);
2946 rt2661_bbp_write(sc, 18, sc->bbp18);
2947 rt2661_bbp_write(sc, 21, sc->bbp21);
2948 rt2661_bbp_write(sc, 22, sc->bbp22);
2949 rt2661_bbp_write(sc, 64, sc->bbp64);
2950
2951 return bbp66 == 1;
2952 }
2953 #endif
2954
2955 static int
2956 rt2661_prepare_beacon(struct rt2661_softc *sc)
2957 {
2958 struct ieee80211com *ic = &sc->sc_ic;
2959 struct ieee80211_node *ni = ic->ic_bss;
2960 struct rt2661_tx_desc desc;
2961 struct mbuf *m0;
2962 struct ieee80211_beacon_offsets bo;
2963 int rate;
2964
2965 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2966 if (m0 == NULL) {
2967 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2968 return ENOBUFS;
2969 }
2970
2971 /* send beacons at the lowest available rate */
2972 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2973
2974 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2975 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2976
2977 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2978 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2979
2980 /* copy beacon header and payload into NIC memory */
2981 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2982 mtod(m0, uint8_t *), m0->m_pkthdr.len);
2983
2984 m_freem(m0);
2985
2986 /*
2987 * Store offset of ERP Information Element so that we can update it
2988 * dynamically when the slot time changes.
2989 * XXX: this is ugly since it depends on how net80211 builds beacon
2990 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2991 */
2992 if (ic->ic_curmode == IEEE80211_MODE_11G) {
2993 sc->erp_csr =
2994 RT2661_HW_BEACON_BASE0 + 24 +
2995 sizeof (struct ieee80211_frame) +
2996 8 + 2 + 2 + 2 + ni->ni_esslen +
2997 2 + min(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2998 2 + 1 +
2999 ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
3000 2;
3001 }
3002
3003 return 0;
3004 }
3005
3006 /*
3007 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
3008 * and HostAP operating modes.
3009 */
3010 static void
3011 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3012 {
3013 struct ieee80211com *ic = &sc->sc_ic;
3014 uint32_t tmp;
3015
3016 if (ic->ic_opmode != IEEE80211_M_STA) {
3017 /*
3018 * Change default 16ms TBTT adjustment to 8ms.
3019 * Must be done before enabling beacon generation.
3020 */
3021 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3022 }
3023
3024 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3025
3026 /* set beacon interval (in 1/16ms unit) */
3027 tmp |= ic->ic_bss->ni_intval * 16;
3028
3029 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3030 if (ic->ic_opmode == IEEE80211_M_STA)
3031 tmp |= RT2661_TSF_MODE(1);
3032 else
3033 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3034
3035 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3036 }
3037
3038 /*
3039 * Retrieve the "Received Signal Strength Indicator" from the raw values
3040 * contained in Rx descriptors. The computation depends on which band the
3041 * frame was received. Correction values taken from the reference driver.
3042 */
3043 static int
3044 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3045 {
3046 int lna, agc, rssi;
3047
3048 lna = (raw >> 5) & 0x3;
3049 agc = raw & 0x1f;
3050
3051 rssi = 2 * agc;
3052
3053 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3054 rssi += sc->rssi_2ghz_corr;
3055
3056 if (lna == 1)
3057 rssi -= 64;
3058 else if (lna == 2)
3059 rssi -= 74;
3060 else if (lna == 3)
3061 rssi -= 90;
3062 } else {
3063 rssi += sc->rssi_5ghz_corr;
3064
3065 if (lna == 1)
3066 rssi -= 64;
3067 else if (lna == 2)
3068 rssi -= 86;
3069 else if (lna == 3)
3070 rssi -= 100;
3071 }
3072 return rssi;
3073 }
3074