rt2661.c revision 1.42 1 /* $NetBSD: rt2661.c,v 1.42 2019/11/10 21:16:35 chs Exp $ */
2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */
4
5 /*-
6 * Copyright (c) 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24 * http://www.ralinktech.com/
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.42 2019/11/10 21:16:35 chs Exp $");
29
30
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/callout.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42
43 #include <sys/bus.h>
44 #include <machine/endian.h>
45 #include <sys/intr.h>
46
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 #include <net/if_ether.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/in_var.h>
58 #include <netinet/ip.h>
59
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_amrr.h>
62 #include <net80211/ieee80211_radiotap.h>
63
64 #include <dev/ic/rt2661reg.h>
65 #include <dev/ic/rt2661var.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/firmload.h>
72
73 #ifdef RAL_DEBUG
74 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0)
75 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0)
76 int rt2661_debug = 0;
77 #else
78 #define DPRINTF(x)
79 #define DPRINTFN(n, x)
80 #endif
81
82 static int rt2661_alloc_tx_ring(struct rt2661_softc *,
83 struct rt2661_tx_ring *, int);
84 static void rt2661_reset_tx_ring(struct rt2661_softc *,
85 struct rt2661_tx_ring *);
86 static void rt2661_free_tx_ring(struct rt2661_softc *,
87 struct rt2661_tx_ring *);
88 static int rt2661_alloc_rx_ring(struct rt2661_softc *,
89 struct rt2661_rx_ring *, int);
90 static void rt2661_reset_rx_ring(struct rt2661_softc *,
91 struct rt2661_rx_ring *);
92 static void rt2661_free_rx_ring(struct rt2661_softc *,
93 struct rt2661_rx_ring *);
94 static struct ieee80211_node *
95 rt2661_node_alloc(struct ieee80211_node_table *);
96 static int rt2661_media_change(struct ifnet *);
97 static void rt2661_next_scan(void *);
98 static void rt2661_iter_func(void *, struct ieee80211_node *);
99 static void rt2661_updatestats(void *);
100 static void rt2661_newassoc(struct ieee80211_node *, int);
101 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
102 int);
103 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
104 static void rt2661_tx_intr(struct rt2661_softc *);
105 static void rt2661_tx_dma_intr(struct rt2661_softc *,
106 struct rt2661_tx_ring *);
107 static void rt2661_rx_intr(struct rt2661_softc *);
108 static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
109 static void rt2661_mcu_wakeup(struct rt2661_softc *);
110 static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
111 int rt2661_intr(void *);
112 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
113 static int rt2661_ack_rate(struct ieee80211com *, int);
114 static uint16_t rt2661_txtime(int, int, uint32_t);
115 static uint8_t rt2661_plcp_signal(int);
116 static void rt2661_setup_tx_desc(struct rt2661_softc *,
117 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
118 const bus_dma_segment_t *, int, int);
119 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
120 struct ieee80211_node *);
121 static struct mbuf *
122 rt2661_get_rts(struct rt2661_softc *,
123 struct ieee80211_frame *, uint16_t);
124 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
125 struct ieee80211_node *, int);
126 static void rt2661_start(struct ifnet *);
127 static void rt2661_watchdog(struct ifnet *);
128 static int rt2661_reset(struct ifnet *);
129 static int rt2661_ioctl(struct ifnet *, u_long, void *);
130 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
131 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
132 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
133 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
134 static void rt2661_select_antenna(struct rt2661_softc *);
135 static void rt2661_enable_mrr(struct rt2661_softc *);
136 static void rt2661_set_txpreamble(struct rt2661_softc *);
137 static void rt2661_set_basicrates(struct rt2661_softc *,
138 const struct ieee80211_rateset *);
139 static void rt2661_select_band(struct rt2661_softc *,
140 struct ieee80211_channel *);
141 static void rt2661_set_chan(struct rt2661_softc *,
142 struct ieee80211_channel *);
143 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
144 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
145 static void rt2661_update_promisc(struct rt2661_softc *);
146 #if 0
147 static int rt2661_wme_update(struct ieee80211com *);
148 #endif
149
150 static void rt2661_updateslot(struct ifnet *);
151 static void rt2661_set_slottime(struct rt2661_softc *);
152 static const char *
153 rt2661_get_rf(int);
154 static void rt2661_read_eeprom(struct rt2661_softc *);
155 static int rt2661_bbp_init(struct rt2661_softc *);
156 static int rt2661_init(struct ifnet *);
157 static void rt2661_stop(struct ifnet *, int);
158 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
159 int);
160 static void rt2661_rx_tune(struct rt2661_softc *);
161 #ifdef notyet
162 static void rt2661_radar_start(struct rt2661_softc *);
163 static int rt2661_radar_stop(struct rt2661_softc *);
164 #endif
165 static int rt2661_prepare_beacon(struct rt2661_softc *);
166 static void rt2661_enable_tsf_sync(struct rt2661_softc *);
167 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
168 static void rt2661_softintr(void *);
169
170 static const struct {
171 uint32_t reg;
172 uint32_t val;
173 } rt2661_def_mac[] = {
174 RT2661_DEF_MAC
175 };
176
177 static const struct {
178 uint8_t reg;
179 uint8_t val;
180 } rt2661_def_bbp[] = {
181 RT2661_DEF_BBP
182 };
183
184 static const struct rfprog {
185 uint8_t chan;
186 uint32_t r1, r2, r3, r4;
187 } rt2661_rf5225_1[] = {
188 RT2661_RF5225_1
189 }, rt2661_rf5225_2[] = {
190 RT2661_RF5225_2
191 };
192
193 int
194 rt2661_attach(void *xsc, int id)
195 {
196 struct rt2661_softc *sc = xsc;
197 struct ieee80211com *ic = &sc->sc_ic;
198 struct ifnet *ifp = &sc->sc_if;
199 uint32_t val;
200 int error, i, ntries;
201
202 sc->sc_id = id;
203
204 sc->amrr.amrr_min_success_threshold = 1;
205 sc->amrr.amrr_max_success_threshold = 15;
206 callout_init(&sc->scan_ch, 0);
207 callout_init(&sc->amrr_ch, 0);
208
209 /* wait for NIC to initialize */
210 for (ntries = 0; ntries < 1000; ntries++) {
211 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
212 break;
213 DELAY(1000);
214 }
215 if (ntries == 1000) {
216 aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to initialize\n");
217 return EIO;
218 }
219
220 /* retrieve RF rev. no and various other things from EEPROM */
221 rt2661_read_eeprom(sc);
222 aprint_normal_dev(sc->sc_dev, "802.11 address %s\n",
223 ether_sprintf(ic->ic_myaddr));
224
225 aprint_normal_dev(sc->sc_dev, "MAC/BBP RT%X, RF %s\n", val,
226 rt2661_get_rf(sc->rf_rev));
227
228 sc->sc_soft_ih = softint_establish(SOFTINT_NET, rt2661_softintr, sc);
229 if (sc->sc_soft_ih == NULL) {
230 aprint_error_dev(sc->sc_dev, "could not establish softint\n");
231 goto fail0;
232 }
233
234 /*
235 * Allocate Tx and Rx rings.
236 */
237 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
238 if (error != 0) {
239 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 0\n");
240 goto fail1;
241 }
242
243 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
244 if (error != 0) {
245 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 1\n");
246 goto fail2;
247 }
248
249 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
250 if (error != 0) {
251 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 2\n");
252 goto fail3;
253 }
254
255 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
256 if (error != 0) {
257 aprint_error_dev(sc->sc_dev, "could not allocate Tx ring 3\n");
258 goto fail4;
259 }
260
261 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
262 if (error != 0) {
263 aprint_error_dev(sc->sc_dev, "could not allocate Mgt ring\n");
264 goto fail5;
265 }
266
267 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
268 if (error != 0) {
269 aprint_error_dev(sc->sc_dev, "could not allocate Rx ring\n");
270 goto fail6;
271 }
272
273 ifp->if_softc = sc;
274 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
275 ifp->if_init = rt2661_init;
276 ifp->if_stop = rt2661_stop;
277 ifp->if_ioctl = rt2661_ioctl;
278 ifp->if_start = rt2661_start;
279 ifp->if_watchdog = rt2661_watchdog;
280 IFQ_SET_READY(&ifp->if_snd);
281 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
282
283 ic->ic_ifp = ifp;
284 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
285 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
286 ic->ic_state = IEEE80211_S_INIT;
287
288 /* set device capabilities */
289 ic->ic_caps =
290 IEEE80211_C_IBSS | /* IBSS mode supported */
291 IEEE80211_C_MONITOR | /* monitor mode supported */
292 IEEE80211_C_HOSTAP | /* HostAP mode supported */
293 IEEE80211_C_TXPMGT | /* tx power management */
294 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
295 IEEE80211_C_SHSLOT | /* short slot time supported */
296 IEEE80211_C_WPA; /* 802.11i */
297
298 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
299 /* set supported .11a rates */
300 ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
301
302 /* set supported .11a channels */
303 for (i = 36; i <= 64; i += 4) {
304 ic->ic_channels[i].ic_freq =
305 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
306 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
307 }
308 for (i = 100; i <= 140; i += 4) {
309 ic->ic_channels[i].ic_freq =
310 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
311 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
312 }
313 for (i = 149; i <= 165; i += 4) {
314 ic->ic_channels[i].ic_freq =
315 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
316 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
317 }
318 }
319
320 /* set supported .11b and .11g rates */
321 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
322 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
323
324 /* set supported .11b and .11g channels (1 through 14) */
325 for (i = 1; i <= 14; i++) {
326 ic->ic_channels[i].ic_freq =
327 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
328 ic->ic_channels[i].ic_flags =
329 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
330 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
331 }
332
333 error = if_initialize(ifp);
334 if (error != 0) {
335 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
336 error);
337 goto fail7;
338 }
339 ieee80211_ifattach(ic);
340 /* Use common softint-based if_input */
341 ifp->if_percpuq = if_percpuq_create(ifp);
342 if_register(ifp);
343
344 ic->ic_node_alloc = rt2661_node_alloc;
345 ic->ic_newassoc = rt2661_newassoc;
346 ic->ic_updateslot = rt2661_updateslot;
347 ic->ic_reset = rt2661_reset;
348
349 /* override state transition machine */
350 sc->sc_newstate = ic->ic_newstate;
351 ic->ic_newstate = rt2661_newstate;
352 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
353
354 bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
355 sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap),
356 &sc->sc_drvbpf);
357
358 sc->sc_rxtap_len = roundup(sizeof(sc->sc_rxtap), sizeof(u_int32_t));
359 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
360 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
361
362 sc->sc_txtap_len = roundup(sizeof(sc->sc_txtap), sizeof(u_int32_t));
363 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
364 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
365
366 ieee80211_announce(ic);
367
368 if (pmf_device_register(sc->sc_dev, NULL, NULL))
369 pmf_class_network_register(sc->sc_dev, ifp);
370 else
371 aprint_error_dev(sc->sc_dev,
372 "couldn't establish power handler\n");
373
374 return 0;
375
376 fail7: rt2661_free_rx_ring(sc, &sc->rxq);
377 fail6: rt2661_free_tx_ring(sc, &sc->mgtq);
378 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]);
379 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]);
380 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]);
381 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]);
382 fail1: softint_disestablish(sc->sc_soft_ih);
383 sc->sc_soft_ih = NULL;
384 fail0: return ENXIO;
385 }
386
387 int
388 rt2661_detach(void *xsc)
389 {
390 struct rt2661_softc *sc = xsc;
391 struct ifnet *ifp = &sc->sc_if;
392
393 callout_stop(&sc->scan_ch);
394 callout_stop(&sc->amrr_ch);
395
396 pmf_device_deregister(sc->sc_dev);
397
398 ieee80211_ifdetach(&sc->sc_ic);
399 if_detach(ifp);
400
401 rt2661_free_tx_ring(sc, &sc->txq[0]);
402 rt2661_free_tx_ring(sc, &sc->txq[1]);
403 rt2661_free_tx_ring(sc, &sc->txq[2]);
404 rt2661_free_tx_ring(sc, &sc->txq[3]);
405 rt2661_free_tx_ring(sc, &sc->mgtq);
406 rt2661_free_rx_ring(sc, &sc->rxq);
407
408 if (sc->sc_soft_ih != NULL) {
409 softint_disestablish(sc->sc_soft_ih);
410 sc->sc_soft_ih = NULL;
411 }
412
413 return 0;
414 }
415
416 static int
417 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
418 int count)
419 {
420 int i, nsegs, error;
421
422 ring->count = count;
423 ring->queued = 0;
424 ring->cur = ring->next = ring->stat = 0;
425
426 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
427 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
428 if (error != 0) {
429 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
430 goto fail;
431 }
432
433 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
434 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
435 if (error != 0) {
436 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
437 goto fail;
438 }
439
440 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
441 count * RT2661_TX_DESC_SIZE, (void **)&ring->desc,
442 BUS_DMA_NOWAIT);
443 if (error != 0) {
444 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
445 goto fail;
446 }
447
448 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
449 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
450 if (error != 0) {
451 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
452 goto fail;
453 }
454
455 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
456 ring->physaddr = ring->map->dm_segs->ds_addr;
457
458 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
459 M_WAITOK | M_ZERO);
460
461 for (i = 0; i < count; i++) {
462 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
463 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
464 &ring->data[i].map);
465 if (error != 0) {
466 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
467 goto fail;
468 }
469 }
470
471 return 0;
472
473 fail: rt2661_free_tx_ring(sc, ring);
474 return error;
475 }
476
477 static void
478 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
479 {
480 struct rt2661_tx_desc *desc;
481 struct rt2661_tx_data *data;
482 int i;
483
484 for (i = 0; i < ring->count; i++) {
485 desc = &ring->desc[i];
486 data = &ring->data[i];
487
488 if (data->m != NULL) {
489 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
490 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
491 bus_dmamap_unload(sc->sc_dmat, data->map);
492 m_freem(data->m);
493 data->m = NULL;
494 }
495
496 if (data->ni != NULL) {
497 ieee80211_free_node(data->ni);
498 data->ni = NULL;
499 }
500
501 desc->flags = 0;
502 }
503
504 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
505 BUS_DMASYNC_PREWRITE);
506
507 ring->queued = 0;
508 ring->cur = ring->next = ring->stat = 0;
509 }
510
511
512 static void
513 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
514 {
515 struct rt2661_tx_data *data;
516 int i;
517
518 if (ring->desc != NULL) {
519 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
520 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
521 bus_dmamap_unload(sc->sc_dmat, ring->map);
522 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
523 ring->count * RT2661_TX_DESC_SIZE);
524 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
525 }
526
527 if (ring->data != NULL) {
528 for (i = 0; i < ring->count; i++) {
529 data = &ring->data[i];
530
531 if (data->m != NULL) {
532 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
533 data->map->dm_mapsize,
534 BUS_DMASYNC_POSTWRITE);
535 bus_dmamap_unload(sc->sc_dmat, data->map);
536 m_freem(data->m);
537 }
538
539 if (data->ni != NULL)
540 ieee80211_free_node(data->ni);
541
542 if (data->map != NULL)
543 bus_dmamap_destroy(sc->sc_dmat, data->map);
544 }
545 free(ring->data, M_DEVBUF);
546 }
547 }
548
549 static int
550 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
551 int count)
552 {
553 struct rt2661_rx_desc *desc;
554 struct rt2661_rx_data *data;
555 int i, nsegs, error;
556
557 ring->count = count;
558 ring->cur = ring->next = 0;
559
560 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
561 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
562 if (error != 0) {
563 aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
564 goto fail;
565 }
566
567 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
568 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
569 if (error != 0) {
570 aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
571 goto fail;
572 }
573
574 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
575 count * RT2661_RX_DESC_SIZE, (void **)&ring->desc,
576 BUS_DMA_NOWAIT);
577 if (error != 0) {
578 aprint_error_dev(sc->sc_dev, "could not map desc DMA memory\n");
579 goto fail;
580 }
581
582 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
583 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
584 if (error != 0) {
585 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
586 goto fail;
587 }
588
589 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
590 ring->physaddr = ring->map->dm_segs->ds_addr;
591
592 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
593 M_WAITOK | M_ZERO);
594
595 /*
596 * Pre-allocate Rx buffers and populate Rx ring.
597 */
598 for (i = 0; i < count; i++) {
599 desc = &sc->rxq.desc[i];
600 data = &sc->rxq.data[i];
601
602 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
603 0, BUS_DMA_NOWAIT, &data->map);
604 if (error != 0) {
605 aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
606 goto fail;
607 }
608
609 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
610 if (data->m == NULL) {
611 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
612 error = ENOMEM;
613 goto fail;
614 }
615
616 MCLGET(data->m, M_DONTWAIT);
617 if (!(data->m->m_flags & M_EXT)) {
618 aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
619 error = ENOMEM;
620 goto fail;
621 }
622
623 error = bus_dmamap_load(sc->sc_dmat, data->map,
624 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
625 if (error != 0) {
626 aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
627 goto fail;
628 }
629
630 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
631 desc->flags = htole32(RT2661_RX_BUSY);
632 }
633
634 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
635 BUS_DMASYNC_PREWRITE);
636
637 return 0;
638
639 fail: rt2661_free_rx_ring(sc, ring);
640 return error;
641 }
642
643 static void
644 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
645 {
646 int i;
647
648 for (i = 0; i < ring->count; i++)
649 ring->desc[i].flags = htole32(RT2661_RX_BUSY);
650
651 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
652 BUS_DMASYNC_PREWRITE);
653
654 ring->cur = ring->next = 0;
655 }
656
657 static void
658 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
659 {
660 struct rt2661_rx_data *data;
661 int i;
662
663 if (ring->desc != NULL) {
664 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
665 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
666 bus_dmamap_unload(sc->sc_dmat, ring->map);
667 bus_dmamem_unmap(sc->sc_dmat, (void *)ring->desc,
668 ring->count * RT2661_RX_DESC_SIZE);
669 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
670 }
671
672 if (ring->data != NULL) {
673 for (i = 0; i < ring->count; i++) {
674 data = &ring->data[i];
675
676 if (data->m != NULL) {
677 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
678 data->map->dm_mapsize,
679 BUS_DMASYNC_POSTREAD);
680 bus_dmamap_unload(sc->sc_dmat, data->map);
681 m_freem(data->m);
682 }
683
684 if (data->map != NULL)
685 bus_dmamap_destroy(sc->sc_dmat, data->map);
686 }
687 free(ring->data, M_DEVBUF);
688 }
689 }
690
691 static struct ieee80211_node *
692 rt2661_node_alloc(struct ieee80211_node_table *nt)
693 {
694 struct rt2661_node *rn;
695
696 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
697 M_NOWAIT | M_ZERO);
698
699 return (rn != NULL) ? &rn->ni : NULL;
700 }
701
702 static int
703 rt2661_media_change(struct ifnet *ifp)
704 {
705 int error;
706
707 error = ieee80211_media_change(ifp);
708 if (error != ENETRESET)
709 return error;
710
711 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
712 rt2661_init(ifp);
713
714 return 0;
715 }
716
717 /*
718 * This function is called periodically (every 200ms) during scanning to
719 * switch from one channel to another.
720 */
721 static void
722 rt2661_next_scan(void *arg)
723 {
724 struct rt2661_softc *sc = arg;
725 struct ieee80211com *ic = &sc->sc_ic;
726 int s;
727
728 s = splnet();
729 if (ic->ic_state == IEEE80211_S_SCAN)
730 ieee80211_next_scan(ic);
731 splx(s);
732 }
733
734 /*
735 * This function is called for each neighbor node.
736 */
737 static void
738 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
739 {
740 struct rt2661_softc *sc = arg;
741 struct rt2661_node *rn = (struct rt2661_node *)ni;
742
743 ieee80211_amrr_choose(&sc->amrr, ni, &rn->amn);
744 }
745
746 /*
747 * This function is called periodically (every 500ms) in RUN state to update
748 * various settings like rate control statistics or Rx sensitivity.
749 */
750 static void
751 rt2661_updatestats(void *arg)
752 {
753 struct rt2661_softc *sc = arg;
754 struct ieee80211com *ic = &sc->sc_ic;
755 int s;
756
757 s = splnet();
758 if (ic->ic_opmode == IEEE80211_M_STA)
759 rt2661_iter_func(sc, ic->ic_bss);
760 else
761 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
762
763 /* update rx sensitivity every 1 sec */
764 if (++sc->ncalls & 1)
765 rt2661_rx_tune(sc);
766 splx(s);
767
768 callout_reset(&sc->amrr_ch, hz / 2, rt2661_updatestats, sc);
769 }
770
771 static void
772 rt2661_newassoc(struct ieee80211_node *ni, int isnew)
773 {
774 struct rt2661_softc *sc = ni->ni_ic->ic_ifp->if_softc;
775 int i;
776
777 ieee80211_amrr_node_init(&sc->amrr, &((struct rt2661_node *)ni)->amn);
778
779 /* set rate to some reasonable initial value */
780 for (i = ni->ni_rates.rs_nrates - 1;
781 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
782 i--);
783 ni->ni_txrate = i;
784 }
785
786 static int
787 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
788 {
789 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
790 enum ieee80211_state ostate;
791 struct ieee80211_node *ni;
792 uint32_t tmp;
793
794 ostate = ic->ic_state;
795 callout_stop(&sc->scan_ch);
796
797 switch (nstate) {
798 case IEEE80211_S_INIT:
799 callout_stop(&sc->amrr_ch);
800
801 if (ostate == IEEE80211_S_RUN) {
802 /* abort TSF synchronization */
803 tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
804 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
805 }
806 break;
807
808 case IEEE80211_S_SCAN:
809 rt2661_set_chan(sc, ic->ic_curchan);
810 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
811 break;
812
813 case IEEE80211_S_AUTH:
814 case IEEE80211_S_ASSOC:
815 rt2661_set_chan(sc, ic->ic_curchan);
816 break;
817
818 case IEEE80211_S_RUN:
819 rt2661_set_chan(sc, ic->ic_curchan);
820
821 ni = ic->ic_bss;
822
823 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
824 rt2661_set_slottime(sc);
825 rt2661_enable_mrr(sc);
826 rt2661_set_txpreamble(sc);
827 rt2661_set_basicrates(sc, &ni->ni_rates);
828 rt2661_set_bssid(sc, ni->ni_bssid);
829 }
830
831 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
832 ic->ic_opmode == IEEE80211_M_IBSS)
833 rt2661_prepare_beacon(sc);
834
835 if (ic->ic_opmode == IEEE80211_M_STA) {
836 /* fake a join to init the tx rate */
837 rt2661_newassoc(ni, 1);
838 }
839
840 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
841 sc->ncalls = 0;
842 sc->avg_rssi = -95; /* reset EMA */
843 callout_reset(&sc->amrr_ch, hz / 2,
844 rt2661_updatestats, sc);
845 rt2661_enable_tsf_sync(sc);
846 }
847 break;
848 }
849
850 return sc->sc_newstate(ic, nstate, arg);
851 }
852
853 /*
854 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
855 * 93C66).
856 */
857 static uint16_t
858 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
859 {
860 uint32_t tmp;
861 uint16_t val;
862 int n;
863
864 /* clock C once before the first command */
865 RT2661_EEPROM_CTL(sc, 0);
866
867 RT2661_EEPROM_CTL(sc, RT2661_S);
868 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
869 RT2661_EEPROM_CTL(sc, RT2661_S);
870
871 /* write start bit (1) */
872 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
873 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
874
875 /* write READ opcode (10) */
876 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
877 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
878 RT2661_EEPROM_CTL(sc, RT2661_S);
879 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
880
881 /* write address (A5-A0 or A7-A0) */
882 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
883 for (; n >= 0; n--) {
884 RT2661_EEPROM_CTL(sc, RT2661_S |
885 (((addr >> n) & 1) << RT2661_SHIFT_D));
886 RT2661_EEPROM_CTL(sc, RT2661_S |
887 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
888 }
889
890 RT2661_EEPROM_CTL(sc, RT2661_S);
891
892 /* read data Q15-Q0 */
893 val = 0;
894 for (n = 15; n >= 0; n--) {
895 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
896 tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
897 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
898 RT2661_EEPROM_CTL(sc, RT2661_S);
899 }
900
901 RT2661_EEPROM_CTL(sc, 0);
902
903 /* clear Chip Select and clock C */
904 RT2661_EEPROM_CTL(sc, RT2661_S);
905 RT2661_EEPROM_CTL(sc, 0);
906 RT2661_EEPROM_CTL(sc, RT2661_C);
907
908 return val;
909 }
910
911 static void
912 rt2661_tx_intr(struct rt2661_softc *sc)
913 {
914 struct ifnet *ifp = &sc->sc_if;
915 struct rt2661_tx_ring *txq;
916 struct rt2661_tx_data *data;
917 struct rt2661_node *rn;
918 uint32_t val;
919 int qid, retrycnt, s;
920
921 s = splnet();
922
923 for (;;) {
924 val = RAL_READ(sc, RT2661_STA_CSR4);
925 if (!(val & RT2661_TX_STAT_VALID))
926 break;
927
928 /* retrieve the queue in which this frame was sent */
929 qid = RT2661_TX_QID(val);
930 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
931
932 /* retrieve rate control algorithm context */
933 data = &txq->data[txq->stat];
934 rn = (struct rt2661_node *)data->ni;
935
936 /* if no frame has been sent, ignore */
937 if (rn == NULL)
938 continue;
939
940 switch (RT2661_TX_RESULT(val)) {
941 case RT2661_TX_SUCCESS:
942 retrycnt = RT2661_TX_RETRYCNT(val);
943
944 DPRINTFN(10, ("data frame sent successfully after "
945 "%d retries\n", retrycnt));
946 rn->amn.amn_txcnt++;
947 if (retrycnt > 0)
948 rn->amn.amn_retrycnt++;
949 ifp->if_opackets++;
950 break;
951
952 case RT2661_TX_RETRY_FAIL:
953 DPRINTFN(9, ("sending data frame failed (too much "
954 "retries)\n"));
955 rn->amn.amn_txcnt++;
956 rn->amn.amn_retrycnt++;
957 ifp->if_oerrors++;
958 break;
959
960 default:
961 /* other failure */
962 aprint_error_dev(sc->sc_dev, "sending data frame failed 0x%08x\n", val);
963 ifp->if_oerrors++;
964 }
965
966 ieee80211_free_node(data->ni);
967 data->ni = NULL;
968
969 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
970
971 txq->queued--;
972 if (++txq->stat >= txq->count) /* faster than % count */
973 txq->stat = 0;
974 }
975
976 sc->sc_tx_timer = 0;
977 ifp->if_flags &= ~IFF_OACTIVE;
978 rt2661_start(ifp); /* in softint */
979
980 splx(s);
981 }
982
983 static void
984 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
985 {
986 struct rt2661_tx_desc *desc;
987 struct rt2661_tx_data *data;
988
989 for (;;) {
990 desc = &txq->desc[txq->next];
991 data = &txq->data[txq->next];
992
993 bus_dmamap_sync(sc->sc_dmat, txq->map,
994 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
995 BUS_DMASYNC_POSTREAD);
996
997 if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
998 !(le32toh(desc->flags) & RT2661_TX_VALID))
999 break;
1000
1001 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1002 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1003 bus_dmamap_unload(sc->sc_dmat, data->map);
1004 m_freem(data->m);
1005 data->m = NULL;
1006 /* node reference is released in rt2661_tx_intr() */
1007
1008 /* descriptor is no longer valid */
1009 desc->flags &= ~htole32(RT2661_TX_VALID);
1010
1011 bus_dmamap_sync(sc->sc_dmat, txq->map,
1012 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1013 BUS_DMASYNC_PREWRITE);
1014
1015 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1016
1017 if (++txq->next >= txq->count) /* faster than % count */
1018 txq->next = 0;
1019 }
1020 }
1021
1022 static void
1023 rt2661_rx_intr(struct rt2661_softc *sc)
1024 {
1025 struct ieee80211com *ic = &sc->sc_ic;
1026 struct ifnet *ifp = &sc->sc_if;
1027 struct rt2661_rx_desc *desc;
1028 struct rt2661_rx_data *data;
1029 struct ieee80211_frame *wh;
1030 struct ieee80211_node *ni;
1031 struct mbuf *mnew, *m;
1032 int error, rssi, s;
1033
1034 for (;;) {
1035 desc = &sc->rxq.desc[sc->rxq.cur];
1036 data = &sc->rxq.data[sc->rxq.cur];
1037
1038 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1039 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1040 BUS_DMASYNC_POSTREAD);
1041
1042 if (le32toh(desc->flags) & RT2661_RX_BUSY)
1043 break;
1044
1045 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1046 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1047 /*
1048 * This should not happen since we did not request
1049 * to receive those frames when we filled TXRX_CSR0.
1050 */
1051 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1052 le32toh(desc->flags)));
1053 ifp->if_ierrors++;
1054 goto skip;
1055 }
1056
1057 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1058 ifp->if_ierrors++;
1059 goto skip;
1060 }
1061
1062 /*
1063 * Try to allocate a new mbuf for this ring element and load it
1064 * before processing the current mbuf. If the ring element
1065 * cannot be loaded, drop the received packet and reuse the old
1066 * mbuf. In the unlikely case that the old mbuf can't be
1067 * reloaded either, explicitly panic.
1068 */
1069 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1070 if (mnew == NULL) {
1071 ifp->if_ierrors++;
1072 goto skip;
1073 }
1074
1075 MCLGET(mnew, M_DONTWAIT);
1076 if (!(mnew->m_flags & M_EXT)) {
1077 m_freem(mnew);
1078 ifp->if_ierrors++;
1079 goto skip;
1080 }
1081
1082 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1083 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1084 bus_dmamap_unload(sc->sc_dmat, data->map);
1085
1086 error = bus_dmamap_load(sc->sc_dmat, data->map,
1087 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1088 if (error != 0) {
1089 m_freem(mnew);
1090
1091 /* try to reload the old mbuf */
1092 error = bus_dmamap_load(sc->sc_dmat, data->map,
1093 mtod(data->m, void *), MCLBYTES, NULL,
1094 BUS_DMA_NOWAIT);
1095 if (error != 0) {
1096 /* very unlikely that it will fail... */
1097 panic("%s: could not load old rx mbuf",
1098 device_xname(sc->sc_dev));
1099 }
1100 /* physical address may have changed */
1101 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1102 ifp->if_ierrors++;
1103 goto skip;
1104 }
1105
1106 /*
1107 * New mbuf successfully loaded, update Rx ring and continue
1108 * processing.
1109 */
1110 m = data->m;
1111 data->m = mnew;
1112 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1113
1114 /* finalize mbuf */
1115 m_set_rcvif(m, ifp);
1116 m->m_pkthdr.len = m->m_len =
1117 (le32toh(desc->flags) >> 16) & 0xfff;
1118
1119 s = splnet();
1120
1121 if (sc->sc_drvbpf != NULL) {
1122 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1123 uint32_t tsf_lo, tsf_hi;
1124
1125 /* get timestamp (low and high 32 bits) */
1126 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1127 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1128
1129 tap->wr_tsf =
1130 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1131 tap->wr_flags = 0;
1132 tap->wr_rate = rt2661_rxrate(desc);
1133 tap->wr_chan_freq = htole16(sc->sc_curchan->ic_freq);
1134 tap->wr_chan_flags = htole16(sc->sc_curchan->ic_flags);
1135 tap->wr_antsignal = desc->rssi;
1136
1137 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m,
1138 BPF_D_IN);
1139 }
1140
1141 wh = mtod(m, struct ieee80211_frame *);
1142 ni = ieee80211_find_rxnode(ic,
1143 (struct ieee80211_frame_min *)wh);
1144
1145 /* send the frame to the 802.11 layer */
1146 ieee80211_input(ic, m, ni, desc->rssi, 0);
1147
1148 /*-
1149 * Keep track of the average RSSI using an Exponential Moving
1150 * Average (EMA) of 8 Wilder's days:
1151 * avg = (1 / N) x rssi + ((N - 1) / N) x avg
1152 */
1153 rssi = rt2661_get_rssi(sc, desc->rssi);
1154 sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1155
1156 /* node is no longer needed */
1157 ieee80211_free_node(ni);
1158
1159 splx(s);
1160
1161 skip: desc->flags |= htole32(RT2661_RX_BUSY);
1162
1163 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1164 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1165 BUS_DMASYNC_PREWRITE);
1166
1167 DPRINTFN(16, ("rx intr idx=%u\n", sc->rxq.cur));
1168
1169 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1170 }
1171
1172 /*
1173 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1174 * without calling if_start().
1175 */
1176 s = splnet();
1177 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1178 rt2661_start(ifp);
1179 splx(s);
1180 }
1181
1182 /*
1183 * This function is called in HostAP or IBSS modes when it's time to send a
1184 * new beacon (every ni_intval milliseconds).
1185 */
1186 static void
1187 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1188 {
1189 struct ieee80211com *ic = &sc->sc_ic;
1190
1191 if (sc->sc_flags & RT2661_UPDATE_SLOT) {
1192 sc->sc_flags &= ~RT2661_UPDATE_SLOT;
1193 sc->sc_flags |= RT2661_SET_SLOTTIME;
1194 } else if (sc->sc_flags & RT2661_SET_SLOTTIME) {
1195 sc->sc_flags &= ~RT2661_SET_SLOTTIME;
1196 rt2661_set_slottime(sc);
1197 }
1198
1199 if (ic->ic_curmode == IEEE80211_MODE_11G) {
1200 /* update ERP Information Element */
1201 RAL_WRITE_1(sc, sc->erp_csr, ic->ic_bss->ni_erp);
1202 RAL_RW_BARRIER_1(sc, sc->erp_csr);
1203 }
1204
1205 DPRINTFN(15, ("beacon expired\n"));
1206 }
1207
1208 static void
1209 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1210 {
1211 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1212
1213 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1214 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1215 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1216
1217 /* send wakeup command to MCU */
1218 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1219 }
1220
1221 static void
1222 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1223 {
1224 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1225 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1226 }
1227
1228 int
1229 rt2661_intr(void *arg)
1230 {
1231 struct rt2661_softc *sc = arg;
1232 struct ifnet *ifp = &sc->sc_if;
1233 uint32_t r1, r2;
1234
1235 /* don't re-enable interrupts if we're shutting down */
1236 if (!(ifp->if_flags & IFF_RUNNING)) {
1237 /* disable MAC and MCU interrupts */
1238 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1239 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1240 return 0;
1241 }
1242
1243 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1244 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1245
1246 if ((r1 & RT2661_INT_CSR_ALL) == 0 && (r2 & RT2661_MCU_INT_ALL) == 0)
1247 return 0;
1248
1249 /* disable interrupts */
1250 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1251 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1252
1253 softint_schedule(sc->sc_soft_ih);
1254 return 1;
1255 }
1256
1257 static void
1258 rt2661_softintr(void *arg)
1259 {
1260 struct rt2661_softc *sc = arg;
1261 uint32_t r1, r2;
1262
1263 for (;;) {
1264 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1265 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1266
1267 if ((r1 & RT2661_INT_CSR_ALL) == 0 &&
1268 (r2 & RT2661_MCU_INT_ALL) == 0)
1269 break;
1270
1271 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1272 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1273
1274 if (r1 & RT2661_MGT_DONE)
1275 rt2661_tx_dma_intr(sc, &sc->mgtq);
1276
1277 if (r1 & RT2661_RX_DONE)
1278 rt2661_rx_intr(sc);
1279
1280 if (r1 & RT2661_TX0_DMA_DONE)
1281 rt2661_tx_dma_intr(sc, &sc->txq[0]);
1282
1283 if (r1 & RT2661_TX1_DMA_DONE)
1284 rt2661_tx_dma_intr(sc, &sc->txq[1]);
1285
1286 if (r1 & RT2661_TX2_DMA_DONE)
1287 rt2661_tx_dma_intr(sc, &sc->txq[2]);
1288
1289 if (r1 & RT2661_TX3_DMA_DONE)
1290 rt2661_tx_dma_intr(sc, &sc->txq[3]);
1291
1292 if (r1 & RT2661_TX_DONE)
1293 rt2661_tx_intr(sc);
1294
1295 if (r2 & RT2661_MCU_CMD_DONE)
1296 rt2661_mcu_cmd_intr(sc);
1297
1298 if (r2 & RT2661_MCU_BEACON_EXPIRE)
1299 rt2661_mcu_beacon_expire(sc);
1300
1301 if (r2 & RT2661_MCU_WAKEUP)
1302 rt2661_mcu_wakeup(sc);
1303 }
1304
1305 /* enable interrupts */
1306 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1307 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1308 }
1309
1310 /* quickly determine if a given rate is CCK or OFDM */
1311 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1312
1313 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1314 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1315
1316 /*
1317 * This function is only used by the Rx radiotap code. It returns the rate at
1318 * which a given frame was received.
1319 */
1320 static uint8_t
1321 rt2661_rxrate(struct rt2661_rx_desc *desc)
1322 {
1323 if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1324 /* reverse function of rt2661_plcp_signal */
1325 switch (desc->rate & 0xf) {
1326 case 0xb: return 12;
1327 case 0xf: return 18;
1328 case 0xa: return 24;
1329 case 0xe: return 36;
1330 case 0x9: return 48;
1331 case 0xd: return 72;
1332 case 0x8: return 96;
1333 case 0xc: return 108;
1334 }
1335 } else {
1336 if (desc->rate == 10)
1337 return 2;
1338 if (desc->rate == 20)
1339 return 4;
1340 if (desc->rate == 55)
1341 return 11;
1342 if (desc->rate == 110)
1343 return 22;
1344 }
1345 return 2; /* should not get there */
1346 }
1347
1348 /*
1349 * Return the expected ack rate for a frame transmitted at rate `rate'.
1350 * XXX: this should depend on the destination node basic rate set.
1351 */
1352 static int
1353 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1354 {
1355 switch (rate) {
1356 /* CCK rates */
1357 case 2:
1358 return 2;
1359 case 4:
1360 case 11:
1361 case 22:
1362 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1363
1364 /* OFDM rates */
1365 case 12:
1366 case 18:
1367 return 12;
1368 case 24:
1369 case 36:
1370 return 24;
1371 case 48:
1372 case 72:
1373 case 96:
1374 case 108:
1375 return 48;
1376 }
1377
1378 /* default to 1Mbps */
1379 return 2;
1380 }
1381
1382 /*
1383 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1384 * The function automatically determines the operating mode depending on the
1385 * given rate. `flags' indicates whether short preamble is in use or not.
1386 */
1387 static uint16_t
1388 rt2661_txtime(int len, int rate, uint32_t flags)
1389 {
1390 uint16_t txtime;
1391
1392 if (RAL_RATE_IS_OFDM(rate)) {
1393 /* IEEE Std 802.11g-2003, pp. 44 */
1394 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1395 txtime = 16 + 4 + 4 * txtime + 6;
1396 } else {
1397 /* IEEE Std 802.11b-1999, pp. 28 */
1398 txtime = (16 * len + rate - 1) / rate;
1399 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1400 txtime += 72 + 24;
1401 else
1402 txtime += 144 + 48;
1403 }
1404 return txtime;
1405 }
1406
1407 static uint8_t
1408 rt2661_plcp_signal(int rate)
1409 {
1410 switch (rate) {
1411 /* CCK rates (returned values are device-dependent) */
1412 case 2: return 0x0;
1413 case 4: return 0x1;
1414 case 11: return 0x2;
1415 case 22: return 0x3;
1416
1417 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1418 case 12: return 0xb;
1419 case 18: return 0xf;
1420 case 24: return 0xa;
1421 case 36: return 0xe;
1422 case 48: return 0x9;
1423 case 72: return 0xd;
1424 case 96: return 0x8;
1425 case 108: return 0xc;
1426
1427 /* unsupported rates (should not get there) */
1428 default: return 0xff;
1429 }
1430 }
1431
1432 static void
1433 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1434 uint32_t flags, uint16_t xflags, int len, int rate,
1435 const bus_dma_segment_t *segs, int nsegs, int ac)
1436 {
1437 struct ieee80211com *ic = &sc->sc_ic;
1438 uint16_t plcp_length;
1439 int i, remainder;
1440
1441 desc->flags = htole32(flags);
1442 desc->flags |= htole32(len << 16);
1443
1444 desc->xflags = htole16(xflags);
1445 desc->xflags |= htole16(nsegs << 13);
1446
1447 desc->wme = htole16(
1448 RT2661_QID(ac) |
1449 RT2661_AIFSN(2) |
1450 RT2661_LOGCWMIN(4) |
1451 RT2661_LOGCWMAX(10));
1452
1453 /*
1454 * Remember in which queue this frame was sent. This field is driver
1455 * private data only. It will be made available by the NIC in STA_CSR4
1456 * on Tx interrupts.
1457 */
1458 desc->qid = ac;
1459
1460 /* setup PLCP fields */
1461 desc->plcp_signal = rt2661_plcp_signal(rate);
1462 desc->plcp_service = 4;
1463
1464 len += IEEE80211_CRC_LEN;
1465 if (RAL_RATE_IS_OFDM(rate)) {
1466 desc->flags |= htole32(RT2661_TX_OFDM);
1467
1468 plcp_length = len & 0xfff;
1469 desc->plcp_length_hi = plcp_length >> 6;
1470 desc->plcp_length_lo = plcp_length & 0x3f;
1471 } else {
1472 plcp_length = (16 * len + rate - 1) / rate;
1473 if (rate == 22) {
1474 remainder = (16 * len) % 22;
1475 if (remainder != 0 && remainder < 7)
1476 desc->plcp_service |= RT2661_PLCP_LENGEXT;
1477 }
1478 desc->plcp_length_hi = plcp_length >> 8;
1479 desc->plcp_length_lo = plcp_length & 0xff;
1480
1481 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1482 desc->plcp_signal |= 0x08;
1483 }
1484
1485 /* RT2x61 supports scatter with up to 5 segments */
1486 for (i = 0; i < nsegs; i++) {
1487 desc->addr[i] = htole32(segs[i].ds_addr);
1488 desc->len [i] = htole16(segs[i].ds_len);
1489 }
1490
1491 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1492 }
1493
1494 static int
1495 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1496 struct ieee80211_node *ni)
1497 {
1498 struct ieee80211com *ic = &sc->sc_ic;
1499 struct rt2661_tx_desc *desc;
1500 struct rt2661_tx_data *data;
1501 struct ieee80211_frame *wh;
1502 uint16_t dur;
1503 uint32_t flags = 0;
1504 int rate, error;
1505
1506 desc = &sc->mgtq.desc[sc->mgtq.cur];
1507 data = &sc->mgtq.data[sc->mgtq.cur];
1508
1509 /* send mgt frames at the lowest available rate */
1510 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1511
1512 wh = mtod(m0, struct ieee80211_frame *);
1513
1514 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1515 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1516 m_freem(m0);
1517 return ENOBUFS;
1518 }
1519
1520 /* packet header may have moved, reset our local pointer */
1521 wh = mtod(m0, struct ieee80211_frame *);
1522 }
1523
1524 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1525 BUS_DMA_NOWAIT);
1526 if (error != 0) {
1527 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1528 error);
1529 m_freem(m0);
1530 return error;
1531 }
1532
1533 if (sc->sc_drvbpf != NULL) {
1534 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1535
1536 tap->wt_flags = 0;
1537 tap->wt_rate = rate;
1538 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1539 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1540
1541 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1542 }
1543
1544 data->m = m0;
1545 data->ni = ni;
1546
1547 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1548 flags |= RT2661_TX_NEED_ACK;
1549
1550 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1551 sc->sifs;
1552 *(uint16_t *)wh->i_dur = htole16(dur);
1553
1554 /* tell hardware to set timestamp in probe responses */
1555 if ((wh->i_fc[0] &
1556 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1557 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1558 flags |= RT2661_TX_TIMESTAMP;
1559 }
1560
1561 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1562 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1563 RT2661_QID_MGT);
1564
1565 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1566 BUS_DMASYNC_PREWRITE);
1567 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1568 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1569 BUS_DMASYNC_PREWRITE);
1570
1571 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1572 m0->m_pkthdr.len, sc->mgtq.cur, rate));
1573
1574 /* kick mgt */
1575 sc->mgtq.queued++;
1576 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1577 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1578
1579 return 0;
1580 }
1581
1582 /*
1583 * Build a RTS control frame.
1584 */
1585 static struct mbuf *
1586 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1587 uint16_t dur)
1588 {
1589 struct ieee80211_frame_rts *rts;
1590 struct mbuf *m;
1591
1592 MGETHDR(m, M_DONTWAIT, MT_DATA);
1593 if (m == NULL) {
1594 sc->sc_ic.ic_stats.is_tx_nobuf++;
1595 aprint_error_dev(sc->sc_dev, "could not allocate RTS frame\n");
1596 return NULL;
1597 }
1598
1599 rts = mtod(m, struct ieee80211_frame_rts *);
1600
1601 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1602 IEEE80211_FC0_SUBTYPE_RTS;
1603 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1604 *(uint16_t *)rts->i_dur = htole16(dur);
1605 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1606 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1607
1608 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1609
1610 return m;
1611 }
1612
1613 static int
1614 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1615 struct ieee80211_node *ni, int ac)
1616 {
1617 struct ieee80211com *ic = &sc->sc_ic;
1618 struct rt2661_tx_ring *txq = &sc->txq[ac];
1619 struct rt2661_tx_desc *desc;
1620 struct rt2661_tx_data *data;
1621 struct ieee80211_frame *wh;
1622 struct ieee80211_key *k;
1623 struct mbuf *mnew;
1624 uint16_t dur;
1625 uint32_t flags = 0;
1626 int rate, useprot, error, tid;
1627
1628 wh = mtod(m0, struct ieee80211_frame *);
1629
1630 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1631 rate = ic->ic_sup_rates[ic->ic_curmode].
1632 rs_rates[ic->ic_fixed_rate];
1633 } else
1634 rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1635 rate &= IEEE80211_RATE_VAL;
1636 if (rate == 0)
1637 rate = 2; /* XXX should not happen */
1638
1639 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1640 k = ieee80211_crypto_encap(ic, ni, m0);
1641 if (k == NULL) {
1642 m_freem(m0);
1643 return ENOBUFS;
1644 }
1645
1646 /* packet header may have moved, reset our local pointer */
1647 wh = mtod(m0, struct ieee80211_frame *);
1648 }
1649
1650 /*
1651 * Packet Bursting: backoff after ppb=8 frames to give other STAs a
1652 * chance to contend for the wireless medium.
1653 */
1654 tid = WME_AC_TO_TID(M_WME_GETAC(m0));
1655 if (ic->ic_opmode == IEEE80211_M_STA && (ni->ni_txseqs[tid] & 7))
1656 flags |= RT2661_TX_IFS_SIFS;
1657
1658 /*
1659 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1660 * for directed frames only when the length of the MPDU is greater
1661 * than the length threshold indicated by" ic_rtsthreshold.
1662 *
1663 * IEEE Std 802.11-2003g, pp 13: "ERP STAs shall use protection
1664 * mechanism (such as RTS/CTS or CTS-to-self) for ERP-OFDM MPDUs of
1665 * type Data or an MMPDU".
1666 */
1667 useprot = !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1668 (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
1669 ((ic->ic_flags & IEEE80211_F_USEPROT) && RAL_RATE_IS_OFDM(rate)));
1670 if (useprot) {
1671 struct mbuf *m;
1672 int rtsrate, ackrate;
1673
1674 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1675 ackrate = rt2661_ack_rate(ic, rate);
1676
1677 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1678 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1679 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1680 3 * sc->sifs;
1681
1682 m = rt2661_get_rts(sc, wh, dur);
1683 if (m == NULL) {
1684 aprint_error_dev(sc->sc_dev, "could not allocate RTS "
1685 "frame\n");
1686 m_freem(m0);
1687 return ENOBUFS;
1688 }
1689
1690 desc = &txq->desc[txq->cur];
1691 data = &txq->data[txq->cur];
1692
1693 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1694 BUS_DMA_NOWAIT);
1695 if (error != 0) {
1696 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1697 m_freem(m);
1698 m_freem(m0);
1699 return error;
1700 }
1701
1702 /* avoid multiple free() of the same node for each fragment */
1703 ieee80211_ref_node(ni);
1704
1705 data->m = m;
1706 data->ni = ni;
1707
1708 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1709 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1710 data->map->dm_segs, data->map->dm_nsegs, ac);
1711
1712 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1713 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1714 bus_dmamap_sync(sc->sc_dmat, txq->map,
1715 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1716 BUS_DMASYNC_PREWRITE);
1717
1718 txq->queued++;
1719 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1720
1721 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS_SIFS;
1722 }
1723
1724 data = &txq->data[txq->cur];
1725 desc = &txq->desc[txq->cur];
1726
1727 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1728 BUS_DMA_NOWAIT);
1729 if (error != 0 && error != EFBIG) {
1730 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1731 error);
1732 m_freem(m0);
1733 return error;
1734 }
1735 if (error != 0) {
1736 /* too many fragments, linearize */
1737
1738 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1739 if (mnew == NULL) {
1740 m_freem(m0);
1741 return ENOMEM;
1742 }
1743
1744 m_copy_pkthdr(mnew, m0);
1745 if (m0->m_pkthdr.len > MHLEN) {
1746 MCLGET(mnew, M_DONTWAIT);
1747 if (!(mnew->m_flags & M_EXT)) {
1748 m_freem(m0);
1749 m_freem(mnew);
1750 return ENOMEM;
1751 }
1752 }
1753
1754 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
1755 m_freem(m0);
1756 mnew->m_len = mnew->m_pkthdr.len;
1757 m0 = mnew;
1758
1759 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1760 BUS_DMA_NOWAIT);
1761 if (error != 0) {
1762 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
1763 m_freem(m0);
1764 return error;
1765 }
1766
1767 /* packet header have moved, reset our local pointer */
1768 wh = mtod(m0, struct ieee80211_frame *);
1769 }
1770
1771 if (sc->sc_drvbpf != NULL) {
1772 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1773
1774 tap->wt_flags = 0;
1775 tap->wt_rate = rate;
1776 tap->wt_chan_freq = htole16(sc->sc_curchan->ic_freq);
1777 tap->wt_chan_flags = htole16(sc->sc_curchan->ic_flags);
1778
1779 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1780 }
1781
1782 data->m = m0;
1783 data->ni = ni;
1784
1785 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1786 flags |= RT2661_TX_NEED_ACK;
1787
1788 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1789 ic->ic_flags) + sc->sifs;
1790 *(uint16_t *)wh->i_dur = htole16(dur);
1791 }
1792
1793 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1794 data->map->dm_segs, data->map->dm_nsegs, ac);
1795
1796 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1797 BUS_DMASYNC_PREWRITE);
1798 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1799 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1800
1801 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1802 m0->m_pkthdr.len, txq->cur, rate));
1803
1804 /* kick Tx */
1805 txq->queued++;
1806 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1807 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1808
1809 return 0;
1810 }
1811
1812 static void
1813 rt2661_start(struct ifnet *ifp)
1814 {
1815 struct rt2661_softc *sc = ifp->if_softc;
1816 struct ieee80211com *ic = &sc->sc_ic;
1817 struct mbuf *m0;
1818 struct ether_header *eh;
1819 struct ieee80211_node *ni = NULL;
1820
1821 /*
1822 * net80211 may still try to send management frames even if the
1823 * IFF_RUNNING flag is not set...
1824 */
1825 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1826 return;
1827
1828 for (;;) {
1829 IF_POLL(&ic->ic_mgtq, m0);
1830 if (m0 != NULL) {
1831 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1832 ifp->if_flags |= IFF_OACTIVE;
1833 break;
1834 }
1835 IF_DEQUEUE(&ic->ic_mgtq, m0);
1836 if (m0 == NULL)
1837 break;
1838
1839 ni = M_GETCTX(m0, struct ieee80211_node *);
1840 M_CLEARCTX(m0);
1841 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1842 if (rt2661_tx_mgt(sc, m0, ni) != 0)
1843 break;
1844
1845 } else {
1846 IF_POLL(&ifp->if_snd, m0);
1847 if (m0 == NULL || ic->ic_state != IEEE80211_S_RUN)
1848 break;
1849
1850 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1851 /* there is no place left in this ring */
1852 ifp->if_flags |= IFF_OACTIVE;
1853 break;
1854 }
1855
1856 IFQ_DEQUEUE(&ifp->if_snd, m0);
1857
1858 if (m0->m_len < sizeof (struct ether_header) &&
1859 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1860 continue;
1861
1862 eh = mtod(m0, struct ether_header *);
1863 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1864 if (ni == NULL) {
1865 m_freem(m0);
1866 ifp->if_oerrors++;
1867 continue;
1868 }
1869
1870 bpf_mtap(ifp, m0, BPF_D_OUT);
1871 m0 = ieee80211_encap(ic, m0, ni);
1872 if (m0 == NULL) {
1873 ieee80211_free_node(ni);
1874 ifp->if_oerrors++;
1875 continue;
1876 }
1877 bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1878 if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1879 if (ni != NULL)
1880 ieee80211_free_node(ni);
1881 ifp->if_oerrors++;
1882 break;
1883 }
1884 }
1885
1886 sc->sc_tx_timer = 5;
1887 ifp->if_timer = 1;
1888 }
1889 }
1890
1891 static void
1892 rt2661_watchdog(struct ifnet *ifp)
1893 {
1894 struct rt2661_softc *sc = ifp->if_softc;
1895
1896 ifp->if_timer = 0;
1897
1898 if (sc->sc_tx_timer > 0) {
1899 if (--sc->sc_tx_timer == 0) {
1900 aprint_error_dev(sc->sc_dev, "device timeout\n");
1901 rt2661_init(ifp);
1902 ifp->if_oerrors++;
1903 return;
1904 }
1905 ifp->if_timer = 1;
1906 }
1907
1908 ieee80211_watchdog(&sc->sc_ic);
1909 }
1910
1911 /*
1912 * This function allows for fast channel switching in monitor mode (used by
1913 * kismet). In IBSS mode, we must explicitly reset the interface to
1914 * generate a new beacon frame.
1915 */
1916 static int
1917 rt2661_reset(struct ifnet *ifp)
1918 {
1919 struct rt2661_softc *sc = ifp->if_softc;
1920 struct ieee80211com *ic = &sc->sc_ic;
1921
1922 if (ic->ic_opmode != IEEE80211_M_MONITOR)
1923 return ENETRESET;
1924
1925 rt2661_set_chan(sc, ic->ic_curchan);
1926
1927 return 0;
1928 }
1929
1930 static int
1931 rt2661_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1932 {
1933 struct rt2661_softc *sc = ifp->if_softc;
1934 struct ieee80211com *ic = &sc->sc_ic;
1935 int s, error = 0;
1936
1937 s = splnet();
1938
1939 switch (cmd) {
1940 case SIOCSIFFLAGS:
1941 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1942 break;
1943 if (ifp->if_flags & IFF_UP) {
1944 if (ifp->if_flags & IFF_RUNNING)
1945 rt2661_update_promisc(sc);
1946 else
1947 rt2661_init(ifp);
1948 } else {
1949 if (ifp->if_flags & IFF_RUNNING)
1950 rt2661_stop(ifp, 1);
1951 }
1952 break;
1953
1954 case SIOCADDMULTI:
1955 case SIOCDELMULTI:
1956 /* XXX no h/w multicast filter? --dyoung */
1957 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
1958 error = 0;
1959 break;
1960
1961 case SIOCS80211CHANNEL:
1962 /*
1963 * This allows for fast channel switching in monitor mode
1964 * (used by kismet). In IBSS mode, we must explicitly reset
1965 * the interface to generate a new beacon frame.
1966 */
1967 error = ieee80211_ioctl(ic, cmd, data);
1968 if (error == ENETRESET &&
1969 ic->ic_opmode == IEEE80211_M_MONITOR) {
1970 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1971 (IFF_UP | IFF_RUNNING))
1972 rt2661_set_chan(sc, ic->ic_ibss_chan);
1973 error = 0;
1974 }
1975 break;
1976
1977 default:
1978 error = ieee80211_ioctl(ic, cmd, data);
1979
1980 }
1981
1982 if (error == ENETRESET) {
1983 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1984 (IFF_UP | IFF_RUNNING))
1985 rt2661_init(ifp);
1986 error = 0;
1987 }
1988
1989 splx(s);
1990
1991 return error;
1992 }
1993
1994 static void
1995 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1996 {
1997 uint32_t tmp;
1998 int ntries;
1999
2000 for (ntries = 0; ntries < 100; ntries++) {
2001 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2002 break;
2003 DELAY(1);
2004 }
2005 if (ntries == 100) {
2006 aprint_error_dev(sc->sc_dev, "could not write to BBP\n");
2007 return;
2008 }
2009
2010 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2011 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2012
2013 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2014 }
2015
2016 static uint8_t
2017 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2018 {
2019 uint32_t val;
2020 int ntries;
2021
2022 for (ntries = 0; ntries < 100; ntries++) {
2023 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2024 break;
2025 DELAY(1);
2026 }
2027 if (ntries == 100) {
2028 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2029 return 0;
2030 }
2031
2032 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2033 RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2034
2035 for (ntries = 0; ntries < 100; ntries++) {
2036 val = RAL_READ(sc, RT2661_PHY_CSR3);
2037 if (!(val & RT2661_BBP_BUSY))
2038 return val & 0xff;
2039 DELAY(1);
2040 }
2041
2042 aprint_error_dev(sc->sc_dev, "could not read from BBP\n");
2043 return 0;
2044 }
2045
2046 static void
2047 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2048 {
2049 uint32_t tmp;
2050 int ntries;
2051
2052 for (ntries = 0; ntries < 100; ntries++) {
2053 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2054 break;
2055 DELAY(1);
2056 }
2057 if (ntries == 100) {
2058 aprint_error_dev(sc->sc_dev, "could not write to RF\n");
2059 return;
2060 }
2061 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2062 (reg & 3);
2063 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2064
2065 /* remember last written value in sc */
2066 sc->rf_regs[reg] = val;
2067
2068 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2069 }
2070
2071 static int
2072 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2073 {
2074 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2075 return EIO; /* there is already a command pending */
2076
2077 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2078 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2079
2080 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2081
2082 return 0;
2083 }
2084
2085 static void
2086 rt2661_select_antenna(struct rt2661_softc *sc)
2087 {
2088 uint8_t bbp4, bbp77;
2089 uint32_t tmp;
2090
2091 bbp4 = rt2661_bbp_read(sc, 4);
2092 bbp77 = rt2661_bbp_read(sc, 77);
2093
2094 /* TBD */
2095
2096 /* make sure Rx is disabled before switching antenna */
2097 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2098 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2099
2100 rt2661_bbp_write(sc, 4, bbp4);
2101 rt2661_bbp_write(sc, 77, bbp77);
2102
2103 /* restore Rx filter */
2104 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2105 }
2106
2107 /*
2108 * Enable multi-rate retries for frames sent at OFDM rates.
2109 * In 802.11b/g mode, allow fallback to CCK rates.
2110 */
2111 static void
2112 rt2661_enable_mrr(struct rt2661_softc *sc)
2113 {
2114 struct ieee80211com *ic = &sc->sc_ic;
2115 uint32_t tmp;
2116
2117 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2118
2119 tmp &= ~RT2661_MRR_CCK_FALLBACK;
2120 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2121 tmp |= RT2661_MRR_CCK_FALLBACK;
2122 tmp |= RT2661_MRR_ENABLED;
2123
2124 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2125 }
2126
2127 static void
2128 rt2661_set_txpreamble(struct rt2661_softc *sc)
2129 {
2130 uint32_t tmp;
2131
2132 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2133
2134 tmp &= ~RT2661_SHORT_PREAMBLE;
2135 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2136 tmp |= RT2661_SHORT_PREAMBLE;
2137
2138 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2139 }
2140
2141 static void
2142 rt2661_set_basicrates(struct rt2661_softc *sc,
2143 const struct ieee80211_rateset *rs)
2144 {
2145 #define RV(r) ((r) & IEEE80211_RATE_VAL)
2146 uint32_t mask = 0;
2147 uint8_t rate;
2148 int i, j;
2149
2150 for (i = 0; i < rs->rs_nrates; i++) {
2151 rate = rs->rs_rates[i];
2152
2153 if (!(rate & IEEE80211_RATE_BASIC))
2154 continue;
2155
2156 /*
2157 * Find h/w rate index. We know it exists because the rate
2158 * set has already been negotiated.
2159 */
2160 for (j = 0; ieee80211_std_rateset_11g.rs_rates[j] != RV(rate); j++);
2161
2162 mask |= 1 << j;
2163 }
2164
2165 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2166
2167 DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2168 #undef RV
2169 }
2170
2171 /*
2172 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
2173 * driver.
2174 */
2175 static void
2176 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2177 {
2178 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2179 uint32_t tmp;
2180
2181 /* update all BBP registers that depend on the band */
2182 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2183 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
2184 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2185 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2186 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
2187 }
2188 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2189 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2190 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2191 }
2192
2193 sc->bbp17 = bbp17;
2194 rt2661_bbp_write(sc, 17, bbp17);
2195 rt2661_bbp_write(sc, 96, bbp96);
2196 rt2661_bbp_write(sc, 104, bbp104);
2197
2198 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2199 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2200 rt2661_bbp_write(sc, 75, 0x80);
2201 rt2661_bbp_write(sc, 86, 0x80);
2202 rt2661_bbp_write(sc, 88, 0x80);
2203 }
2204
2205 rt2661_bbp_write(sc, 35, bbp35);
2206 rt2661_bbp_write(sc, 97, bbp97);
2207 rt2661_bbp_write(sc, 98, bbp98);
2208
2209 tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2210 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2211 if (IEEE80211_IS_CHAN_2GHZ(c))
2212 tmp |= RT2661_PA_PE_2GHZ;
2213 else
2214 tmp |= RT2661_PA_PE_5GHZ;
2215 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2216
2217 /* 802.11a uses a 16 microseconds short interframe space */
2218 sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
2219 }
2220
2221 static void
2222 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2223 {
2224 struct ieee80211com *ic = &sc->sc_ic;
2225 const struct rfprog *rfprog;
2226 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2227 int8_t power;
2228 u_int i, chan;
2229
2230 chan = ieee80211_chan2ieee(ic, c);
2231 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2232 return;
2233
2234 /* select the appropriate RF settings based on what EEPROM says */
2235 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2236
2237 /* find the settings for this channel (we know it exists) */
2238 for (i = 0; rfprog[i].chan != chan; i++);
2239
2240 power = sc->txpow[i];
2241 if (power < 0) {
2242 bbp94 += power;
2243 power = 0;
2244 } else if (power > 31) {
2245 bbp94 += power - 31;
2246 power = 31;
2247 }
2248
2249 /*
2250 * If we've yet to select a channel, or we are switching from the
2251 * 2GHz band to the 5GHz band or vice-versa, BBP registers need to
2252 * be reprogrammed.
2253 */
2254 if (sc->sc_curchan == NULL || c->ic_flags != sc->sc_curchan->ic_flags) {
2255 rt2661_select_band(sc, c);
2256 rt2661_select_antenna(sc);
2257 }
2258 sc->sc_curchan = c;
2259
2260 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2261 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2262 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2263 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2264
2265 DELAY(200);
2266
2267 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2268 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2269 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2270 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2271
2272 DELAY(200);
2273
2274 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2275 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2276 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2277 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2278
2279 /* enable smart mode for MIMO-capable RFs */
2280 bbp3 = rt2661_bbp_read(sc, 3);
2281
2282 bbp3 &= ~RT2661_SMART_MODE;
2283 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2284 bbp3 |= RT2661_SMART_MODE;
2285
2286 rt2661_bbp_write(sc, 3, bbp3);
2287
2288 if (bbp94 != RT2661_BBPR94_DEFAULT)
2289 rt2661_bbp_write(sc, 94, bbp94);
2290
2291 /* 5GHz radio needs a 1ms delay here */
2292 if (IEEE80211_IS_CHAN_5GHZ(c))
2293 DELAY(1000);
2294 }
2295
2296 static void
2297 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2298 {
2299 uint32_t tmp;
2300
2301 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2302 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2303
2304 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2305 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2306 }
2307
2308 static void
2309 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2310 {
2311 uint32_t tmp;
2312
2313 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2314 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2315
2316 tmp = addr[4] | addr[5] << 8 | 0xff << 16;
2317 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2318 }
2319
2320 static void
2321 rt2661_update_promisc(struct rt2661_softc *sc)
2322 {
2323 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2324 uint32_t tmp;
2325
2326 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2327
2328 tmp &= ~RT2661_DROP_NOT_TO_ME;
2329 if (!(ifp->if_flags & IFF_PROMISC))
2330 tmp |= RT2661_DROP_NOT_TO_ME;
2331
2332 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2333
2334 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2335 "entering" : "leaving"));
2336 }
2337
2338 #if 0
2339 /*
2340 * Update QoS (802.11e) settings for each h/w Tx ring.
2341 */
2342 static int
2343 rt2661_wme_update(struct ieee80211com *ic)
2344 {
2345 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2346 const struct wmeParams *wmep;
2347
2348 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2349
2350 /* XXX: not sure about shifts. */
2351 /* XXX: the reference driver plays with AC_VI settings too. */
2352
2353 /* update TxOp */
2354 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2355 wmep[WME_AC_BE].wmep_txopLimit << 16 |
2356 wmep[WME_AC_BK].wmep_txopLimit);
2357 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2358 wmep[WME_AC_VI].wmep_txopLimit << 16 |
2359 wmep[WME_AC_VO].wmep_txopLimit);
2360
2361 /* update CWmin */
2362 RAL_WRITE(sc, RT2661_CWMIN_CSR,
2363 wmep[WME_AC_BE].wmep_logcwmin << 12 |
2364 wmep[WME_AC_BK].wmep_logcwmin << 8 |
2365 wmep[WME_AC_VI].wmep_logcwmin << 4 |
2366 wmep[WME_AC_VO].wmep_logcwmin);
2367
2368 /* update CWmax */
2369 RAL_WRITE(sc, RT2661_CWMAX_CSR,
2370 wmep[WME_AC_BE].wmep_logcwmax << 12 |
2371 wmep[WME_AC_BK].wmep_logcwmax << 8 |
2372 wmep[WME_AC_VI].wmep_logcwmax << 4 |
2373 wmep[WME_AC_VO].wmep_logcwmax);
2374
2375 /* update Aifsn */
2376 RAL_WRITE(sc, RT2661_AIFSN_CSR,
2377 wmep[WME_AC_BE].wmep_aifsn << 12 |
2378 wmep[WME_AC_BK].wmep_aifsn << 8 |
2379 wmep[WME_AC_VI].wmep_aifsn << 4 |
2380 wmep[WME_AC_VO].wmep_aifsn);
2381
2382 return 0;
2383 }
2384 #endif
2385
2386 static void
2387 rt2661_updateslot(struct ifnet *ifp)
2388 {
2389 struct rt2661_softc *sc = ifp->if_softc;
2390 struct ieee80211com *ic = &sc->sc_ic;
2391
2392 if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2393 /*
2394 * In HostAP mode, we defer setting of new slot time until
2395 * updated ERP Information Element has propagated to all
2396 * associated STAs.
2397 */
2398 sc->sc_flags |= RT2661_UPDATE_SLOT;
2399 } else
2400 rt2661_set_slottime(sc);
2401 }
2402
2403 static void
2404 rt2661_set_slottime(struct rt2661_softc *sc)
2405 {
2406 struct ieee80211com *ic = &sc->sc_ic;
2407 uint8_t slottime;
2408 uint32_t tmp;
2409
2410 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2411
2412 tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2413 tmp = (tmp & ~0xff) | slottime;
2414 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2415
2416 DPRINTF(("setting slot time to %uus\n", slottime));
2417 }
2418
2419 static const char *
2420 rt2661_get_rf(int rev)
2421 {
2422 switch (rev) {
2423 case RT2661_RF_5225: return "RT5225";
2424 case RT2661_RF_5325: return "RT5325 (MIMO XR)";
2425 case RT2661_RF_2527: return "RT2527";
2426 case RT2661_RF_2529: return "RT2529 (MIMO XR)";
2427 default: return "unknown";
2428 }
2429 }
2430
2431 static void
2432 rt2661_read_eeprom(struct rt2661_softc *sc)
2433 {
2434 struct ieee80211com *ic = &sc->sc_ic;
2435 uint16_t val;
2436 int i;
2437
2438 /* read MAC address */
2439 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2440 ic->ic_myaddr[0] = val & 0xff;
2441 ic->ic_myaddr[1] = val >> 8;
2442
2443 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2444 ic->ic_myaddr[2] = val & 0xff;
2445 ic->ic_myaddr[3] = val >> 8;
2446
2447 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2448 ic->ic_myaddr[4] = val & 0xff;
2449 ic->ic_myaddr[5] = val >> 8;
2450
2451 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2452 /* XXX: test if different from 0xffff? */
2453 sc->rf_rev = (val >> 11) & 0x1f;
2454 sc->hw_radio = (val >> 10) & 0x1;
2455 sc->rx_ant = (val >> 4) & 0x3;
2456 sc->tx_ant = (val >> 2) & 0x3;
2457 sc->nb_ant = val & 0x3;
2458
2459 DPRINTF(("RF revision=%d\n", sc->rf_rev));
2460
2461 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2462 sc->ext_5ghz_lna = (val >> 6) & 0x1;
2463 sc->ext_2ghz_lna = (val >> 4) & 0x1;
2464
2465 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2466 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2467
2468 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2469 if ((val & 0xff) != 0xff)
2470 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
2471
2472 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2473 if ((val & 0xff) != 0xff)
2474 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
2475
2476 /* adjust RSSI correction for external low-noise amplifier */
2477 if (sc->ext_2ghz_lna)
2478 sc->rssi_2ghz_corr -= 14;
2479 if (sc->ext_5ghz_lna)
2480 sc->rssi_5ghz_corr -= 14;
2481
2482 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2483 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2484
2485 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2486 if ((val >> 8) != 0xff)
2487 sc->rfprog = (val >> 8) & 0x3;
2488 if ((val & 0xff) != 0xff)
2489 sc->rffreq = val & 0xff;
2490
2491 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2492
2493 /* read Tx power for all a/b/g channels */
2494 for (i = 0; i < 19; i++) {
2495 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2496 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
2497 DPRINTF(("Channel=%d Tx power=%d\n",
2498 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2499 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
2500 DPRINTF(("Channel=%d Tx power=%d\n",
2501 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2502 }
2503
2504 /* read vendor-specific BBP values */
2505 for (i = 0; i < 16; i++) {
2506 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2507 if (val == 0 || val == 0xffff)
2508 continue; /* skip invalid entries */
2509 sc->bbp_prom[i].reg = val >> 8;
2510 sc->bbp_prom[i].val = val & 0xff;
2511 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2512 sc->bbp_prom[i].val));
2513 }
2514 }
2515
2516 static int
2517 rt2661_bbp_init(struct rt2661_softc *sc)
2518 {
2519 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2520 int i, ntries;
2521 uint8_t val;
2522
2523 /* wait for BBP to be ready */
2524 for (ntries = 0; ntries < 100; ntries++) {
2525 val = rt2661_bbp_read(sc, 0);
2526 if (val != 0 && val != 0xff)
2527 break;
2528 DELAY(100);
2529 }
2530 if (ntries == 100) {
2531 aprint_error_dev(sc->sc_dev, "timeout waiting for BBP\n");
2532 return EIO;
2533 }
2534
2535 /* initialize BBP registers to default values */
2536 for (i = 0; i < N(rt2661_def_bbp); i++) {
2537 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2538 rt2661_def_bbp[i].val);
2539 }
2540
2541 /* write vendor-specific BBP values (from EEPROM) */
2542 for (i = 0; i < 16; i++) {
2543 if (sc->bbp_prom[i].reg == 0)
2544 continue;
2545 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2546 }
2547
2548 return 0;
2549 #undef N
2550 }
2551
2552 static int
2553 rt2661_init(struct ifnet *ifp)
2554 {
2555 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2556 struct rt2661_softc *sc = ifp->if_softc;
2557 struct ieee80211com *ic = &sc->sc_ic;
2558 const char *name = NULL; /* make lint happy */
2559 uint8_t *ucode;
2560 size_t size;
2561 uint32_t tmp, star[3];
2562 int i, ntries;
2563 firmware_handle_t fh;
2564
2565 /* for CardBus, power on the socket */
2566 if (!(sc->sc_flags & RT2661_ENABLED)) {
2567 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2568 aprint_error_dev(sc->sc_dev, "could not enable device\n");
2569 return EIO;
2570 }
2571 sc->sc_flags |= RT2661_ENABLED;
2572 }
2573
2574 rt2661_stop(ifp, 0);
2575
2576 if (!(sc->sc_flags & RT2661_FWLOADED)) {
2577 switch (sc->sc_id) {
2578 case PCI_PRODUCT_RALINK_RT2561:
2579 name = "ral-rt2561";
2580 break;
2581 case PCI_PRODUCT_RALINK_RT2561S:
2582 name = "ral-rt2561s";
2583 break;
2584 case PCI_PRODUCT_RALINK_RT2661:
2585 name = "ral-rt2661";
2586 break;
2587 }
2588
2589 if (firmware_open("ral", name, &fh) != 0) {
2590 aprint_error_dev(sc->sc_dev, "could not open microcode %s\n", name);
2591 rt2661_stop(ifp, 1);
2592 return EIO;
2593 }
2594
2595 size = firmware_get_size(fh);
2596 if (!(ucode = firmware_malloc(size))) {
2597 aprint_error_dev(sc->sc_dev, "could not alloc microcode memory\n");
2598 firmware_close(fh);
2599 rt2661_stop(ifp, 1);
2600 return ENOMEM;
2601 }
2602
2603 if (firmware_read(fh, 0, ucode, size) != 0) {
2604 aprint_error_dev(sc->sc_dev, "could not read microcode %s\n", name);
2605 firmware_free(ucode, size);
2606 firmware_close(fh);
2607 rt2661_stop(ifp, 1);
2608 return EIO;
2609 }
2610
2611 if (rt2661_load_microcode(sc, ucode, size) != 0) {
2612 aprint_error_dev(sc->sc_dev, "could not load 8051 microcode\n");
2613 firmware_free(ucode, size);
2614 firmware_close(fh);
2615 rt2661_stop(ifp, 1);
2616 return EIO;
2617 }
2618
2619 firmware_free(ucode, size);
2620 firmware_close(fh);
2621 sc->sc_flags |= RT2661_FWLOADED;
2622 }
2623
2624 /* initialize Tx rings */
2625 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2626 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2627 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2628 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2629
2630 /* initialize Mgt ring */
2631 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2632
2633 /* initialize Rx ring */
2634 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2635
2636 /* initialize Tx rings sizes */
2637 RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2638 RT2661_TX_RING_COUNT << 24 |
2639 RT2661_TX_RING_COUNT << 16 |
2640 RT2661_TX_RING_COUNT << 8 |
2641 RT2661_TX_RING_COUNT);
2642
2643 RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2644 RT2661_TX_DESC_WSIZE << 16 |
2645 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
2646 RT2661_MGT_RING_COUNT);
2647
2648 /* initialize Rx rings */
2649 RAL_WRITE(sc, RT2661_RX_RING_CSR,
2650 RT2661_RX_DESC_BACK << 16 |
2651 RT2661_RX_DESC_WSIZE << 8 |
2652 RT2661_RX_RING_COUNT);
2653
2654 /* XXX: some magic here */
2655 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2656
2657 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2658 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2659
2660 /* load base address of Rx ring */
2661 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2662
2663 /* initialize MAC registers to default values */
2664 for (i = 0; i < N(rt2661_def_mac); i++)
2665 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2666
2667 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2668 rt2661_set_macaddr(sc, ic->ic_myaddr);
2669
2670 /* set host ready */
2671 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2672 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2673
2674 /* wait for BBP/RF to wakeup */
2675 for (ntries = 0; ntries < 1000; ntries++) {
2676 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2677 break;
2678 DELAY(1000);
2679 }
2680 if (ntries == 1000) {
2681 printf("timeout waiting for BBP/RF to wakeup\n");
2682 rt2661_stop(ifp, 1);
2683 return EIO;
2684 }
2685
2686 if (rt2661_bbp_init(sc) != 0) {
2687 rt2661_stop(ifp, 1);
2688 return EIO;
2689 }
2690
2691 /* select default channel */
2692 sc->sc_curchan = ic->ic_curchan;
2693 rt2661_select_band(sc, sc->sc_curchan);
2694 rt2661_select_antenna(sc);
2695 rt2661_set_chan(sc, sc->sc_curchan);
2696
2697 /* update Rx filter */
2698 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2699
2700 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2701 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2702 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2703 RT2661_DROP_ACKCTS;
2704 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2705 tmp |= RT2661_DROP_TODS;
2706 if (!(ifp->if_flags & IFF_PROMISC))
2707 tmp |= RT2661_DROP_NOT_TO_ME;
2708 }
2709
2710 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2711
2712 /* clear STA registers */
2713 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2714
2715 /* initialize ASIC */
2716 RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2717
2718 /* clear any pending interrupt */
2719 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2720
2721 /* enable interrupts */
2722 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2723 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2724
2725 /* kick Rx */
2726 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2727
2728 ifp->if_flags &= ~IFF_OACTIVE;
2729 ifp->if_flags |= IFF_RUNNING;
2730
2731 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2732 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2733 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2734 } else
2735 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2736
2737 return 0;
2738 #undef N
2739 }
2740
2741 static void
2742 rt2661_stop(struct ifnet *ifp, int disable)
2743 {
2744 struct rt2661_softc *sc = ifp->if_softc;
2745 struct ieee80211com *ic = &sc->sc_ic;
2746 uint32_t tmp;
2747
2748 sc->sc_tx_timer = 0;
2749 ifp->if_timer = 0;
2750 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2751
2752 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2753
2754 /* abort Tx (for all 5 Tx rings) */
2755 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2756
2757 /* disable Rx (value remains after reset!) */
2758 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2759 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2760
2761 /* reset ASIC */
2762 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2763 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2764
2765 /* disable interrupts */
2766 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2767 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2768
2769 /* clear any pending interrupt */
2770 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2771 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2772
2773 /* reset Tx and Rx rings */
2774 rt2661_reset_tx_ring(sc, &sc->txq[0]);
2775 rt2661_reset_tx_ring(sc, &sc->txq[1]);
2776 rt2661_reset_tx_ring(sc, &sc->txq[2]);
2777 rt2661_reset_tx_ring(sc, &sc->txq[3]);
2778 rt2661_reset_tx_ring(sc, &sc->mgtq);
2779 rt2661_reset_rx_ring(sc, &sc->rxq);
2780
2781 /* for CardBus, power down the socket */
2782 if (disable && sc->sc_disable != NULL) {
2783 if (sc->sc_flags & RT2661_ENABLED) {
2784 (*sc->sc_disable)(sc);
2785 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2786 }
2787 }
2788 }
2789
2790 static int
2791 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2792 {
2793 int ntries;
2794
2795 /* reset 8051 */
2796 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2797
2798 /* cancel any pending Host to MCU command */
2799 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2800 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2801 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2802
2803 /* write 8051's microcode */
2804 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2805 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2806 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2807
2808 /* kick 8051's ass */
2809 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2810
2811 /* wait for 8051 to initialize */
2812 for (ntries = 0; ntries < 500; ntries++) {
2813 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2814 break;
2815 DELAY(100);
2816 }
2817 if (ntries == 500) {
2818 printf("timeout waiting for MCU to initialize\n");
2819 return EIO;
2820 }
2821 return 0;
2822 }
2823
2824 /*
2825 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2826 * false CCA count. This function is called periodically (every seconds) when
2827 * in the RUN state. Values taken from the reference driver.
2828 */
2829 static void
2830 rt2661_rx_tune(struct rt2661_softc *sc)
2831 {
2832 uint8_t bbp17;
2833 uint16_t cca;
2834 int lo, hi, dbm;
2835
2836 /*
2837 * Tuning range depends on operating band and on the presence of an
2838 * external low-noise amplifier.
2839 */
2840 lo = 0x20;
2841 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2842 lo += 0x08;
2843 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2844 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2845 lo += 0x10;
2846 hi = lo + 0x20;
2847
2848 dbm = sc->avg_rssi;
2849 /* retrieve false CCA count since last call (clear on read) */
2850 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2851
2852 DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2853
2854 if (dbm < -74) {
2855 /* very bad RSSI, tune using false CCA count */
2856 bbp17 = sc->bbp17; /* current value */
2857
2858 hi -= 2 * (-74 - dbm);
2859 if (hi < lo)
2860 hi = lo;
2861
2862 if (bbp17 > hi)
2863 bbp17 = hi;
2864 else if (cca > 512)
2865 bbp17 = uimin(bbp17 + 1, hi);
2866 else if (cca < 100)
2867 bbp17 = uimax(bbp17 - 1, lo);
2868
2869 } else if (dbm < -66) {
2870 bbp17 = lo + 0x08;
2871 } else if (dbm < -58) {
2872 bbp17 = lo + 0x10;
2873 } else if (dbm < -35) {
2874 bbp17 = hi;
2875 } else { /* very good RSSI >= -35dBm */
2876 bbp17 = 0x60; /* very low sensitivity */
2877 }
2878
2879 if (bbp17 != sc->bbp17) {
2880 DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2881 rt2661_bbp_write(sc, 17, bbp17);
2882 sc->bbp17 = bbp17;
2883 }
2884 }
2885
2886 #ifdef notyet
2887 /*
2888 * Enter/Leave radar detection mode.
2889 * This is for 802.11h additional regulatory domains.
2890 */
2891 static void
2892 rt2661_radar_start(struct rt2661_softc *sc)
2893 {
2894 uint32_t tmp;
2895
2896 /* disable Rx */
2897 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2898 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2899
2900 rt2661_bbp_write(sc, 82, 0x20);
2901 rt2661_bbp_write(sc, 83, 0x00);
2902 rt2661_bbp_write(sc, 84, 0x40);
2903
2904 /* save current BBP registers values */
2905 sc->bbp18 = rt2661_bbp_read(sc, 18);
2906 sc->bbp21 = rt2661_bbp_read(sc, 21);
2907 sc->bbp22 = rt2661_bbp_read(sc, 22);
2908 sc->bbp16 = rt2661_bbp_read(sc, 16);
2909 sc->bbp17 = rt2661_bbp_read(sc, 17);
2910 sc->bbp64 = rt2661_bbp_read(sc, 64);
2911
2912 rt2661_bbp_write(sc, 18, 0xff);
2913 rt2661_bbp_write(sc, 21, 0x3f);
2914 rt2661_bbp_write(sc, 22, 0x3f);
2915 rt2661_bbp_write(sc, 16, 0xbd);
2916 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2917 rt2661_bbp_write(sc, 64, 0x21);
2918
2919 /* restore Rx filter */
2920 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2921 }
2922
2923 static int
2924 rt2661_radar_stop(struct rt2661_softc *sc)
2925 {
2926 uint8_t bbp66;
2927
2928 /* read radar detection result */
2929 bbp66 = rt2661_bbp_read(sc, 66);
2930
2931 /* restore BBP registers values */
2932 rt2661_bbp_write(sc, 16, sc->bbp16);
2933 rt2661_bbp_write(sc, 17, sc->bbp17);
2934 rt2661_bbp_write(sc, 18, sc->bbp18);
2935 rt2661_bbp_write(sc, 21, sc->bbp21);
2936 rt2661_bbp_write(sc, 22, sc->bbp22);
2937 rt2661_bbp_write(sc, 64, sc->bbp64);
2938
2939 return bbp66 == 1;
2940 }
2941 #endif
2942
2943 static int
2944 rt2661_prepare_beacon(struct rt2661_softc *sc)
2945 {
2946 struct ieee80211com *ic = &sc->sc_ic;
2947 struct ieee80211_node *ni = ic->ic_bss;
2948 struct rt2661_tx_desc desc;
2949 struct mbuf *m0;
2950 struct ieee80211_beacon_offsets bo;
2951 int rate;
2952
2953 m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2954 if (m0 == NULL) {
2955 aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
2956 return ENOBUFS;
2957 }
2958
2959 /* send beacons at the lowest available rate */
2960 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
2961
2962 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2963 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2964
2965 /* copy the first 24 bytes of Tx descriptor into NIC memory */
2966 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2967
2968 /* copy beacon header and payload into NIC memory */
2969 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2970 mtod(m0, uint8_t *), m0->m_pkthdr.len);
2971
2972 m_freem(m0);
2973
2974 /*
2975 * Store offset of ERP Information Element so that we can update it
2976 * dynamically when the slot time changes.
2977 * XXX: this is ugly since it depends on how net80211 builds beacon
2978 * frames but ieee80211_beacon_alloc() doesn't store offsets for us.
2979 */
2980 if (ic->ic_curmode == IEEE80211_MODE_11G) {
2981 sc->erp_csr =
2982 RT2661_HW_BEACON_BASE0 + 24 +
2983 sizeof (struct ieee80211_frame) +
2984 8 + 2 + 2 + 2 + ni->ni_esslen +
2985 2 + uimin(ni->ni_rates.rs_nrates, IEEE80211_RATE_SIZE) +
2986 2 + 1 +
2987 ((ic->ic_opmode == IEEE80211_M_IBSS) ? 4 : 6) +
2988 2;
2989 }
2990
2991 return 0;
2992 }
2993
2994 /*
2995 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2996 * and HostAP operating modes.
2997 */
2998 static void
2999 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3000 {
3001 struct ieee80211com *ic = &sc->sc_ic;
3002 uint32_t tmp;
3003
3004 if (ic->ic_opmode != IEEE80211_M_STA) {
3005 /*
3006 * Change default 16ms TBTT adjustment to 8ms.
3007 * Must be done before enabling beacon generation.
3008 */
3009 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3010 }
3011
3012 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3013
3014 /* set beacon interval (in 1/16ms unit) */
3015 tmp |= ic->ic_bss->ni_intval * 16;
3016
3017 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3018 if (ic->ic_opmode == IEEE80211_M_STA)
3019 tmp |= RT2661_TSF_MODE(1);
3020 else
3021 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3022
3023 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3024 }
3025
3026 /*
3027 * Retrieve the "Received Signal Strength Indicator" from the raw values
3028 * contained in Rx descriptors. The computation depends on which band the
3029 * frame was received. Correction values taken from the reference driver.
3030 */
3031 static int
3032 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3033 {
3034 int lna, agc, rssi;
3035
3036 lna = (raw >> 5) & 0x3;
3037 agc = raw & 0x1f;
3038
3039 rssi = 2 * agc;
3040
3041 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3042 rssi += sc->rssi_2ghz_corr;
3043
3044 if (lna == 1)
3045 rssi -= 64;
3046 else if (lna == 2)
3047 rssi -= 74;
3048 else if (lna == 3)
3049 rssi -= 90;
3050 } else {
3051 rssi += sc->rssi_5ghz_corr;
3052
3053 if (lna == 1)
3054 rssi -= 64;
3055 else if (lna == 2)
3056 rssi -= 86;
3057 else if (lna == 3)
3058 rssi -= 100;
3059 }
3060 return rssi;
3061 }
3062