rt2661.c revision 1.6 1 /* $NetBSD: rt2661.c,v 1.6 2006/06/08 20:56:41 rpaulo Exp $ */
2 /* $OpenBSD: rt2661.c,v 1.17 2006/05/01 08:41:11 damien Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.5 2006/06/02 19:59:31 csjp Exp $ */
4
5 /*-
6 * Copyright (c) 2006
7 * Damien Bergamini <damien.bergamini (at) free.fr>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22 /*-
23 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
24 * http://www.ralinktech.com/
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: rt2661.c,v 1.6 2006/06/08 20:56:41 rpaulo Exp $");
29
30 #include "bpfilter.h"
31
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/sysctl.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/socket.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/device.h>
43
44 #include <machine/bus.h>
45 #include <machine/endian.h>
46 #include <machine/intr.h>
47
48 #if NBPFILTER > 0
49 #include <net/bpf.h>
50 #endif
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <net/if_dl.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 #include <net/if_ether.h>
57
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_rssadapt.h>
65 #include <net80211/ieee80211_radiotap.h>
66
67 #include <dev/ic/rt2661reg.h>
68 #include <dev/ic/rt2661var.h>
69
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73
74 #include <dev/firmload.h>
75
76 #ifdef RAL_DEBUG
77 #define DPRINTF(x) do { if (rt2661_debug > 0) printf x; } while (0)
78 #define DPRINTFN(n, x) do { if (rt2661_debug >= (n)) printf x; } while (0)
79 int rt2661_debug = 0;
80 #else
81 #define DPRINTF(x)
82 #define DPRINTFN(n, x)
83 #endif
84
85 static int rt2661_alloc_tx_ring(struct rt2661_softc *,
86 struct rt2661_tx_ring *, int);
87 static void rt2661_reset_tx_ring(struct rt2661_softc *,
88 struct rt2661_tx_ring *);
89 static void rt2661_free_tx_ring(struct rt2661_softc *,
90 struct rt2661_tx_ring *);
91 static int rt2661_alloc_rx_ring(struct rt2661_softc *,
92 struct rt2661_rx_ring *, int);
93 static void rt2661_reset_rx_ring(struct rt2661_softc *,
94 struct rt2661_rx_ring *);
95 static void rt2661_free_rx_ring(struct rt2661_softc *,
96 struct rt2661_rx_ring *);
97 static struct ieee80211_node *
98 rt2661_node_alloc(struct ieee80211_node_table *);
99 static int rt2661_media_change(struct ifnet *);
100 static void rt2661_next_scan(void *);
101 static void rt2661_iter_func(void *, struct ieee80211_node *);
102 static void rt2661_updatestats(void *);
103 static int rt2661_newstate(struct ieee80211com *, enum ieee80211_state,
104 int);
105 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
106 static void rt2661_tx_intr(struct rt2661_softc *);
107 static void rt2661_tx_dma_intr(struct rt2661_softc *,
108 struct rt2661_tx_ring *);
109 static void rt2661_rx_intr(struct rt2661_softc *);
110 static void rt2661_mcu_beacon_expire(struct rt2661_softc *);
111 static void rt2661_mcu_wakeup(struct rt2661_softc *);
112 static void rt2661_mcu_cmd_intr(struct rt2661_softc *);
113 int rt2661_intr(void *);
114 #if NBPFILTER > 0
115 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *);
116 #endif
117 static int rt2661_ack_rate(struct ieee80211com *, int);
118 static uint16_t rt2661_txtime(int, int, uint32_t);
119 static uint8_t rt2661_plcp_signal(int);
120 static void rt2661_setup_tx_desc(struct rt2661_softc *,
121 struct rt2661_tx_desc *, uint32_t, uint16_t, int, int,
122 const bus_dma_segment_t *, int, int);
123 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
124 struct ieee80211_node *);
125 static struct mbuf *
126 rt2661_get_rts(struct rt2661_softc *,
127 struct ieee80211_frame *, uint16_t);
128 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
129 struct ieee80211_node *, int);
130 static void rt2661_start(struct ifnet *);
131 static void rt2661_watchdog(struct ifnet *);
132 static int rt2661_reset(struct ifnet *);
133 static int rt2661_ioctl(struct ifnet *, u_long, caddr_t);
134 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, uint8_t);
135 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t);
136 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, uint32_t);
137 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, uint16_t);
138 static void rt2661_select_antenna(struct rt2661_softc *);
139 static void rt2661_enable_mrr(struct rt2661_softc *);
140 static void rt2661_set_txpreamble(struct rt2661_softc *);
141 static void rt2661_set_basicrates(struct rt2661_softc *,
142 const struct ieee80211_rateset *);
143 static void rt2661_select_band(struct rt2661_softc *,
144 struct ieee80211_channel *);
145 static void rt2661_set_chan(struct rt2661_softc *,
146 struct ieee80211_channel *);
147 static void rt2661_set_bssid(struct rt2661_softc *, const uint8_t *);
148 static void rt2661_set_macaddr(struct rt2661_softc *, const uint8_t *);
149 static void rt2661_update_promisc(struct rt2661_softc *);
150 static int rt2661_wme_update(struct ieee80211com *) __unused;
151
152 static void rt2661_update_slot(struct ifnet *);
153 static const char *
154 rt2661_get_rf(int);
155 static void rt2661_read_eeprom(struct rt2661_softc *);
156 static int rt2661_bbp_init(struct rt2661_softc *);
157 static int rt2661_init(struct ifnet *);
158 static void rt2661_stop(struct ifnet *, int);
159 static int rt2661_load_microcode(struct rt2661_softc *, const uint8_t *,
160 int);
161 static void rt2661_rx_tune(struct rt2661_softc *);
162 #ifdef notyet
163 static void rt2661_radar_start(struct rt2661_softc *);
164 static int rt2661_radar_stop(struct rt2661_softc *);
165 #endif
166 static int rt2661_prepare_beacon(struct rt2661_softc *);
167 static void rt2661_enable_tsf_sync(struct rt2661_softc *);
168 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t);
169
170 /*
171 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
172 */
173 static const struct ieee80211_rateset rt2661_rateset_11a =
174 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
175
176 static const struct ieee80211_rateset rt2661_rateset_11b =
177 { 4, { 2, 4, 11, 22 } };
178
179 static const struct ieee80211_rateset rt2661_rateset_11g =
180 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
181
182 /*
183 * Default values for MAC registers; values taken from the reference driver.
184 */
185 static const struct {
186 uint32_t reg;
187 uint32_t val;
188 } rt2661_def_mac[] = {
189 { RT2661_TXRX_CSR0, 0x0000b032 },
190 { RT2661_TXRX_CSR1, 0x9eb39eb3 },
191 { RT2661_TXRX_CSR2, 0x8a8b8c8d },
192 { RT2661_TXRX_CSR3, 0x00858687 },
193 { RT2661_TXRX_CSR7, 0x2e31353b },
194 { RT2661_TXRX_CSR8, 0x2a2a2a2c },
195 { RT2661_TXRX_CSR15, 0x0000000f },
196 { RT2661_MAC_CSR6, 0x00000fff },
197 { RT2661_MAC_CSR8, 0x016c030a },
198 { RT2661_MAC_CSR10, 0x00000718 },
199 { RT2661_MAC_CSR12, 0x00000004 },
200 { RT2661_MAC_CSR13, 0x0000e000 },
201 { RT2661_SEC_CSR0, 0x00000000 },
202 { RT2661_SEC_CSR1, 0x00000000 },
203 { RT2661_SEC_CSR5, 0x00000000 },
204 { RT2661_PHY_CSR1, 0x000023b0 },
205 { RT2661_PHY_CSR5, 0x060a100c },
206 { RT2661_PHY_CSR6, 0x00080606 },
207 { RT2661_PHY_CSR7, 0x00000a08 },
208 { RT2661_PCI_CFG_CSR, 0x3cca4808 },
209 { RT2661_AIFSN_CSR, 0x00002273 },
210 { RT2661_CWMIN_CSR, 0x00002344 },
211 { RT2661_CWMAX_CSR, 0x000034aa },
212 { RT2661_TEST_MODE_CSR, 0x00000200 },
213 { RT2661_M2H_CMD_DONE_CSR, 0xffffffff }
214 };
215
216 /*
217 * Default values for BBP registers; values taken from the reference driver.
218 */
219 static const struct {
220 uint8_t reg;
221 uint8_t val;
222 } rt2661_def_bbp[] = {
223 { 3, 0x00 },
224 { 15, 0x30 },
225 { 17, 0x20 },
226 { 21, 0xc8 },
227 { 22, 0x38 },
228 { 23, 0x06 },
229 { 24, 0xfe },
230 { 25, 0x0a },
231 { 26, 0x0d },
232 { 34, 0x12 },
233 { 37, 0x07 },
234 { 39, 0xf8 },
235 { 41, 0x60 },
236 { 53, 0x10 },
237 { 54, 0x18 },
238 { 60, 0x10 },
239 { 61, 0x04 },
240 { 62, 0x04 },
241 { 75, 0xfe },
242 { 86, 0xfe },
243 { 88, 0xfe },
244 { 90, 0x0f },
245 { 99, 0x00 },
246 { 102, 0x16 },
247 { 107, 0x04 }
248 };
249
250 /*
251 * Default settings for RF registers; values taken from the reference driver.
252 */
253 static const struct rfprog {
254 uint8_t chan;
255 uint32_t r1;
256 uint32_t r2;
257 uint32_t r3;
258 uint32_t r4;
259 } rt2661_rf5225_1[] = {
260 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
261 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
262 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
263 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
264 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
265 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
266 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
267 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
268 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
269 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
270 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
271 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
272 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
273 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
274
275 { 36, 0x00b33, 0x01266, 0x26014, 0x30288 },
276 { 40, 0x00b33, 0x01268, 0x26014, 0x30280 },
277 { 44, 0x00b33, 0x01269, 0x26014, 0x30282 },
278 { 48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
279 { 52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
280 { 56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
281 { 60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
282 { 64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
283
284 { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
285 { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
286 { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
287 { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
288 { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
289 { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
290 { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
291 { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
292 { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
293 { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
294 { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
295
296 { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
297 { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
298 { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
299 { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
300 { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
301
302 }, rt2661_rf5225_2[] = {
303 { 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
304 { 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
305 { 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
306 { 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
307 { 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
308 { 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
309 { 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
310 { 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
311 { 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
312 { 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
313 { 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
314 { 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
315 { 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
316 { 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
317
318 { 36, 0x00b35, 0x11206, 0x26014, 0x30280 },
319 { 40, 0x00b34, 0x111a0, 0x26014, 0x30280 },
320 { 44, 0x00b34, 0x111a1, 0x26014, 0x30286 },
321 { 48, 0x00b34, 0x111a3, 0x26014, 0x30282 },
322 { 52, 0x00b34, 0x111a4, 0x26014, 0x30288 },
323 { 56, 0x00b34, 0x111a6, 0x26014, 0x30284 },
324 { 60, 0x00b34, 0x111a8, 0x26014, 0x30280 },
325 { 64, 0x00b34, 0x111a9, 0x26014, 0x30286 },
326
327 { 100, 0x00b35, 0x11226, 0x2e014, 0x30280 },
328 { 104, 0x00b35, 0x11228, 0x2e014, 0x30280 },
329 { 108, 0x00b35, 0x1122a, 0x2e014, 0x30280 },
330 { 112, 0x00b35, 0x1122c, 0x2e014, 0x30280 },
331 { 116, 0x00b35, 0x1122e, 0x2e014, 0x30280 },
332 { 120, 0x00b34, 0x111c0, 0x2e014, 0x30280 },
333 { 124, 0x00b34, 0x111c1, 0x2e014, 0x30286 },
334 { 128, 0x00b34, 0x111c3, 0x2e014, 0x30282 },
335 { 132, 0x00b34, 0x111c4, 0x2e014, 0x30288 },
336 { 136, 0x00b34, 0x111c6, 0x2e014, 0x30284 },
337 { 140, 0x00b34, 0x111c8, 0x2e014, 0x30280 },
338
339 { 149, 0x00b34, 0x111cb, 0x2e014, 0x30286 },
340 { 153, 0x00b34, 0x111cd, 0x2e014, 0x30282 },
341 { 157, 0x00b35, 0x11242, 0x2e014, 0x30285 },
342 { 161, 0x00b35, 0x11244, 0x2e014, 0x30285 },
343 { 165, 0x00b35, 0x11246, 0x2e014, 0x30285 }
344 };
345
346 int
347 rt2661_attach(void *xsc, int id)
348 {
349 struct rt2661_softc *sc = xsc;
350 struct ieee80211com *ic = &sc->sc_ic;
351 struct ifnet *ifp = &sc->sc_if;
352 uint32_t val;
353 int error, i, ntries;
354
355 sc->sc_id = id;
356
357 callout_init(&sc->scan_ch);
358 callout_init(&sc->rssadapt_ch);
359
360 /* wait for NIC to initialize */
361 for (ntries = 0; ntries < 1000; ntries++) {
362 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
363 break;
364 DELAY(1000);
365 }
366 if (ntries == 1000) {
367 aprint_error("%s: timeout waiting for NIC to initialize\n",
368 sc->sc_dev.dv_xname);
369 return EIO;
370 }
371
372 /* retrieve RF rev. no and various other things from EEPROM */
373 rt2661_read_eeprom(sc);
374 aprint_normal("%s: 802.11 address %s\n", sc->sc_dev.dv_xname,
375 ether_sprintf(ic->ic_myaddr));
376
377 aprint_normal("%s: MAC/BBP RT%X, RF %s\n", sc->sc_dev.dv_xname, val,
378 rt2661_get_rf(sc->rf_rev));
379
380 /*
381 * Allocate Tx and Rx rings.
382 */
383 error = rt2661_alloc_tx_ring(sc, &sc->txq[0], RT2661_TX_RING_COUNT);
384 if (error != 0) {
385 aprint_error("%s: could not allocate Tx ring 0\n",
386 sc->sc_dev.dv_xname);
387 goto fail1;
388 }
389
390 error = rt2661_alloc_tx_ring(sc, &sc->txq[1], RT2661_TX_RING_COUNT);
391 if (error != 0) {
392 aprint_error("%s: could not allocate Tx ring 1\n",
393 sc->sc_dev.dv_xname);
394 goto fail2;
395 }
396
397 error = rt2661_alloc_tx_ring(sc, &sc->txq[2], RT2661_TX_RING_COUNT);
398 if (error != 0) {
399 aprint_error("%s: could not allocate Tx ring 2\n",
400 sc->sc_dev.dv_xname);
401 goto fail3;
402 }
403
404 error = rt2661_alloc_tx_ring(sc, &sc->txq[3], RT2661_TX_RING_COUNT);
405 if (error != 0) {
406 aprint_error("%s: could not allocate Tx ring 3\n",
407 sc->sc_dev.dv_xname);
408 goto fail4;
409 }
410
411 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
412 if (error != 0) {
413 aprint_error("%s: could not allocate Mgt ring\n",
414 sc->sc_dev.dv_xname);
415 goto fail5;
416 }
417
418 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
419 if (error != 0) {
420 aprint_error("%s: could not allocate Rx ring\n",
421 sc->sc_dev.dv_xname);
422 goto fail6;
423 }
424
425 ifp->if_softc = sc;
426 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
427 ifp->if_init = rt2661_init;
428 ifp->if_ioctl = rt2661_ioctl;
429 ifp->if_start = rt2661_start;
430 ifp->if_watchdog = rt2661_watchdog;
431 IFQ_SET_READY(&ifp->if_snd);
432 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
433
434 ic->ic_ifp = ifp;
435 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
436 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
437 ic->ic_state = IEEE80211_S_INIT;
438
439 /* set device capabilities */
440 ic->ic_caps =
441 IEEE80211_C_IBSS | /* IBSS mode supported */
442 IEEE80211_C_MONITOR | /* monitor mode supported */
443 IEEE80211_C_HOSTAP | /* HostAp mode supported */
444 IEEE80211_C_TXPMGT | /* tx power management */
445 IEEE80211_C_SHPREAMBLE | /* short preamble supported */
446 IEEE80211_C_SHSLOT | /* short slot time supported */
447 IEEE80211_C_WPA; /* 802.11i */
448
449 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
450 /* set supported .11a rates */
451 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a;
452
453 /* set supported .11a channels */
454 for (i = 36; i <= 64; i += 4) {
455 ic->ic_channels[i].ic_freq =
456 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
457 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
458 }
459 for (i = 100; i <= 140; i += 4) {
460 ic->ic_channels[i].ic_freq =
461 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
462 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
463 }
464 for (i = 149; i <= 165; i += 4) {
465 ic->ic_channels[i].ic_freq =
466 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
467 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
468 }
469 }
470
471 /* set supported .11b and .11g rates */
472 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b;
473 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g;
474
475 /* set supported .11b and .11g channels (1 through 14) */
476 for (i = 1; i <= 14; i++) {
477 ic->ic_channels[i].ic_freq =
478 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
479 ic->ic_channels[i].ic_flags =
480 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
481 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
482 }
483
484 if_attach(ifp);
485 ieee80211_ifattach(ic);
486 ic->ic_node_alloc = rt2661_node_alloc;
487 ic->ic_updateslot = rt2661_update_slot;
488 ic->ic_reset = rt2661_reset;
489
490 /* override state transition machine */
491 sc->sc_newstate = ic->ic_newstate;
492 ic->ic_newstate = rt2661_newstate;
493 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
494
495 #if NPBFILTER > 0
496 bpfattach2(ifp, DLT_IEEE802_11_RADIO,
497 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
498
499 sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
500 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
501 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
502
503 sc->sc_txtap_len = sizeof sc->sc_txtapu;
504 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
505 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
506 #endif
507
508 ieee80211_announce(ic);
509
510 return 0;
511
512 fail6: rt2661_free_tx_ring(sc, &sc->mgtq);
513 fail5: rt2661_free_tx_ring(sc, &sc->txq[3]);
514 fail4: rt2661_free_tx_ring(sc, &sc->txq[2]);
515 fail3: rt2661_free_tx_ring(sc, &sc->txq[1]);
516 fail2: rt2661_free_tx_ring(sc, &sc->txq[0]);
517 fail1: return ENXIO;
518 }
519
520 int
521 rt2661_detach(void *xsc)
522 {
523 struct rt2661_softc *sc = xsc;
524 struct ifnet *ifp = &sc->sc_if;
525
526 callout_stop(&sc->scan_ch);
527 callout_stop(&sc->rssadapt_ch);
528
529 ieee80211_ifdetach(&sc->sc_ic);
530 if_detach(ifp);
531
532 rt2661_free_tx_ring(sc, &sc->txq[0]);
533 rt2661_free_tx_ring(sc, &sc->txq[1]);
534 rt2661_free_tx_ring(sc, &sc->txq[2]);
535 rt2661_free_tx_ring(sc, &sc->txq[3]);
536 rt2661_free_tx_ring(sc, &sc->mgtq);
537 rt2661_free_rx_ring(sc, &sc->rxq);
538
539 return 0;
540 }
541
542 static int
543 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
544 int count)
545 {
546 int i, nsegs, error;
547
548 ring->count = count;
549 ring->queued = 0;
550 ring->cur = ring->next = ring->stat = 0;
551
552 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_TX_DESC_SIZE, 1,
553 count * RT2661_TX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
554 if (error != 0) {
555 aprint_error("%s: could not create desc DMA map\n",
556 sc->sc_dev.dv_xname);
557 goto fail;
558 }
559
560 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_TX_DESC_SIZE,
561 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
562 if (error != 0) {
563 aprint_error("%s: could not allocate DMA memory\n",
564 sc->sc_dev.dv_xname);
565 goto fail;
566 }
567
568 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
569 count * RT2661_TX_DESC_SIZE, (caddr_t *)&ring->desc,
570 BUS_DMA_NOWAIT);
571 if (error != 0) {
572 aprint_error("%s: could not map desc DMA memory\n",
573 sc->sc_dev.dv_xname);
574 goto fail;
575 }
576
577 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
578 count * RT2661_TX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
579 if (error != 0) {
580 aprint_error("%s: could not load desc DMA map\n",
581 sc->sc_dev.dv_xname);
582 goto fail;
583 }
584
585 memset(ring->desc, 0, count * RT2661_TX_DESC_SIZE);
586 ring->physaddr = ring->map->dm_segs->ds_addr;
587
588 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
589 M_NOWAIT);
590 if (ring->data == NULL) {
591 aprint_error("%s: could not allocate soft data\n",
592 sc->sc_dev.dv_xname);
593 error = ENOMEM;
594 goto fail;
595 }
596
597 memset(ring->data, 0, count * sizeof (struct rt2661_tx_data));
598 for (i = 0; i < count; i++) {
599 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
600 RT2661_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
601 &ring->data[i].map);
602 if (error != 0) {
603 aprint_error("%s: could not create DMA map\n",
604 sc->sc_dev.dv_xname);
605 goto fail;
606 }
607 }
608
609 return 0;
610
611 fail: rt2661_free_tx_ring(sc, ring);
612 return error;
613 }
614
615 static void
616 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
617 {
618 struct rt2661_tx_desc *desc;
619 struct rt2661_tx_data *data;
620 int i;
621
622 for (i = 0; i < ring->count; i++) {
623 desc = &ring->desc[i];
624 data = &ring->data[i];
625
626 if (data->m != NULL) {
627 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
628 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
629 bus_dmamap_unload(sc->sc_dmat, data->map);
630 m_freem(data->m);
631 data->m = NULL;
632 }
633
634 if (data->ni != NULL) {
635 ieee80211_free_node(data->ni);
636 data->ni = NULL;
637 }
638
639 desc->flags = 0;
640 }
641
642 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
643 BUS_DMASYNC_PREWRITE);
644
645 ring->queued = 0;
646 ring->cur = ring->next = ring->stat = 0;
647 }
648
649
650 static void
651 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
652 {
653 struct rt2661_tx_data *data;
654 int i;
655
656 if (ring->desc != NULL) {
657 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
658 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
659 bus_dmamap_unload(sc->sc_dmat, ring->map);
660 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
661 ring->count * RT2661_TX_DESC_SIZE);
662 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
663 }
664
665 if (ring->data != NULL) {
666 for (i = 0; i < ring->count; i++) {
667 data = &ring->data[i];
668
669 if (data->m != NULL) {
670 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
671 data->map->dm_mapsize,
672 BUS_DMASYNC_POSTWRITE);
673 bus_dmamap_unload(sc->sc_dmat, data->map);
674 m_freem(data->m);
675 }
676
677 if (data->ni != NULL)
678 ieee80211_free_node(data->ni);
679
680 if (data->map != NULL)
681 bus_dmamap_destroy(sc->sc_dmat, data->map);
682 }
683 free(ring->data, M_DEVBUF);
684 }
685 }
686
687 static int
688 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
689 int count)
690 {
691 struct rt2661_rx_desc *desc;
692 struct rt2661_rx_data *data;
693 int i, nsegs, error;
694
695 ring->count = count;
696 ring->cur = ring->next = 0;
697
698 error = bus_dmamap_create(sc->sc_dmat, count * RT2661_RX_DESC_SIZE, 1,
699 count * RT2661_RX_DESC_SIZE, 0, BUS_DMA_NOWAIT, &ring->map);
700 if (error != 0) {
701 aprint_error("%s: could not create desc DMA map\n",
702 sc->sc_dev.dv_xname);
703 goto fail;
704 }
705
706 error = bus_dmamem_alloc(sc->sc_dmat, count * RT2661_RX_DESC_SIZE,
707 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
708 if (error != 0) {
709 aprint_error("%s: could not allocate DMA memory\n",
710 sc->sc_dev.dv_xname);
711 goto fail;
712 }
713
714 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
715 count * RT2661_RX_DESC_SIZE, (caddr_t *)&ring->desc,
716 BUS_DMA_NOWAIT);
717 if (error != 0) {
718 aprint_error("%s: could not map desc DMA memory\n",
719 sc->sc_dev.dv_xname);
720 goto fail;
721 }
722
723 error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
724 count * RT2661_RX_DESC_SIZE, NULL, BUS_DMA_NOWAIT);
725 if (error != 0) {
726 aprint_error("%s: could not load desc DMA map\n",
727 sc->sc_dev.dv_xname);
728 goto fail;
729 }
730
731 memset(ring->desc, 0, count * RT2661_RX_DESC_SIZE);
732 ring->physaddr = ring->map->dm_segs->ds_addr;
733
734 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
735 M_NOWAIT);
736 if (ring->data == NULL) {
737 aprint_error("%s: could not allocate soft data\n",
738 sc->sc_dev.dv_xname);
739 error = ENOMEM;
740 goto fail;
741 }
742
743 /*
744 * Pre-allocate Rx buffers and populate Rx ring.
745 */
746 memset(ring->data, 0, count * sizeof (struct rt2661_rx_data));
747 for (i = 0; i < count; i++) {
748 desc = &sc->rxq.desc[i];
749 data = &sc->rxq.data[i];
750
751 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
752 0, BUS_DMA_NOWAIT, &data->map);
753 if (error != 0) {
754 printf("%s: could not create DMA map\n",
755 sc->sc_dev.dv_xname);
756 goto fail;
757 }
758
759 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
760 if (data->m == NULL) {
761 printf("%s: could not allocate rx mbuf\n",
762 sc->sc_dev.dv_xname);
763 error = ENOMEM;
764 goto fail;
765 }
766
767 MCLGET(data->m, M_DONTWAIT);
768 if (!(data->m->m_flags & M_EXT)) {
769 printf("%s: could not allocate rx mbuf cluster\n",
770 sc->sc_dev.dv_xname);
771 error = ENOMEM;
772 goto fail;
773 }
774
775 error = bus_dmamap_load(sc->sc_dmat, data->map,
776 mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
777 if (error != 0) {
778 printf("%s: could not load rx buf DMA map",
779 sc->sc_dev.dv_xname);
780 goto fail;
781 }
782
783 desc->flags = htole32(RT2661_RX_BUSY);
784 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
785 }
786
787 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
788 BUS_DMASYNC_PREWRITE);
789
790 return 0;
791
792 fail: rt2661_free_rx_ring(sc, ring);
793 return error;
794 }
795
796 static void
797 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
798 {
799 int i;
800
801 for (i = 0; i < ring->count; i++)
802 ring->desc[i].flags = htole32(RT2661_RX_BUSY);
803
804 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
805 BUS_DMASYNC_PREWRITE);
806
807 ring->cur = ring->next = 0;
808 }
809
810 static void
811 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
812 {
813 struct rt2661_rx_data *data;
814 int i;
815
816 if (ring->desc != NULL) {
817 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
818 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
819 bus_dmamap_unload(sc->sc_dmat, ring->map);
820 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc,
821 ring->count * RT2661_RX_DESC_SIZE);
822 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
823 }
824
825 if (ring->data != NULL) {
826 for (i = 0; i < ring->count; i++) {
827 data = &ring->data[i];
828
829 if (data->m != NULL) {
830 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
831 data->map->dm_mapsize,
832 BUS_DMASYNC_POSTREAD);
833 bus_dmamap_unload(sc->sc_dmat, data->map);
834 m_freem(data->m);
835 }
836
837 if (data->map != NULL)
838 bus_dmamap_destroy(sc->sc_dmat, data->map);
839 }
840 free(ring->data, M_DEVBUF);
841 }
842 }
843
844 static struct ieee80211_node *
845 rt2661_node_alloc(struct ieee80211_node_table *nt)
846 {
847 struct rt2661_node *rn;
848
849 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
850 M_NOWAIT | M_ZERO);
851
852 return (rn != NULL) ? &rn->ni : NULL;
853 }
854
855 static int
856 rt2661_media_change(struct ifnet *ifp)
857 {
858 int error;
859
860 error = ieee80211_media_change(ifp);
861 if (error != ENETRESET)
862 return error;
863
864 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
865 rt2661_init(ifp);
866
867 return 0;
868 }
869
870 /*
871 * This function is called periodically (every 200ms) during scanning to
872 * switch from one channel to another.
873 */
874 static void
875 rt2661_next_scan(void *arg)
876 {
877 struct rt2661_softc *sc = arg;
878 struct ieee80211com *ic = &sc->sc_ic;
879
880 if (ic->ic_state == IEEE80211_S_SCAN)
881 ieee80211_next_scan(ic);
882 }
883
884 /*
885 * This function is called for each neighbor node.
886 */
887 static void
888 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
889 {
890 struct rt2661_node *rn = (struct rt2661_node *)ni;
891
892 ieee80211_rssadapt_updatestats(&rn->rssadapt);
893 }
894
895 /*
896 * This function is called periodically (every 100ms) in RUN state to update
897 * various settings like rate control statistics or Rx sensitivity.
898 */
899 static void
900 rt2661_updatestats(void *arg)
901 {
902 struct rt2661_softc *sc = arg;
903 struct ieee80211com *ic = &sc->sc_ic;
904
905 if (ic->ic_opmode == IEEE80211_M_STA)
906 rt2661_iter_func(sc, ic->ic_bss);
907 else
908 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
909
910 /* update rx sensitivity every 1 sec */
911 if (++sc->ncalls == 10) {
912 rt2661_rx_tune(sc);
913 sc->ncalls = 0;
914 }
915
916 callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_updatestats, sc);
917 }
918
919 static int
920 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
921 {
922 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
923 enum ieee80211_state ostate;
924 struct ieee80211_node *ni;
925 uint32_t tmp;
926 int error = 0;
927
928 ostate = ic->ic_state;
929 callout_stop(&sc->scan_ch);
930
931 switch (nstate) {
932 case IEEE80211_S_INIT:
933 callout_stop(&sc->rssadapt_ch);
934
935 if (ostate == IEEE80211_S_RUN) {
936 /* abort TSF synchronization */
937 tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
938 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
939 }
940 break;
941
942 case IEEE80211_S_SCAN:
943 rt2661_set_chan(sc, ic->ic_curchan);
944 callout_reset(&sc->scan_ch, hz / 5, rt2661_next_scan, sc);
945 break;
946
947 case IEEE80211_S_AUTH:
948 case IEEE80211_S_ASSOC:
949 rt2661_set_chan(sc, ic->ic_curchan);
950 break;
951
952 case IEEE80211_S_RUN:
953 rt2661_set_chan(sc, ic->ic_curchan);
954
955 ni = ic->ic_bss;
956
957 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
958 rt2661_enable_mrr(sc);
959 rt2661_set_txpreamble(sc);
960 rt2661_set_basicrates(sc, &ni->ni_rates);
961 rt2661_set_bssid(sc, ni->ni_bssid);
962 }
963
964 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
965 ic->ic_opmode == IEEE80211_M_IBSS) {
966 if ((error = rt2661_prepare_beacon(sc)) != 0)
967 break;
968 }
969
970 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
971 sc->ncalls = 0;
972 sc->avg_rssi = -95; /* reset EMA */
973 callout_reset(&sc->rssadapt_ch, hz / 10,
974 rt2661_updatestats, sc);
975 rt2661_enable_tsf_sync(sc);
976 }
977 break;
978 }
979
980 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
981 }
982
983 /*
984 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
985 * 93C66).
986 */
987 static uint16_t
988 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
989 {
990 uint32_t tmp;
991 uint16_t val;
992 int n;
993
994 /* clock C once before the first command */
995 RT2661_EEPROM_CTL(sc, 0);
996
997 RT2661_EEPROM_CTL(sc, RT2661_S);
998 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
999 RT2661_EEPROM_CTL(sc, RT2661_S);
1000
1001 /* write start bit (1) */
1002 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1003 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1004
1005 /* write READ opcode (10) */
1006 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
1007 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
1008 RT2661_EEPROM_CTL(sc, RT2661_S);
1009 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1010
1011 /* write address (A5-A0 or A7-A0) */
1012 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
1013 for (; n >= 0; n--) {
1014 RT2661_EEPROM_CTL(sc, RT2661_S |
1015 (((addr >> n) & 1) << RT2661_SHIFT_D));
1016 RT2661_EEPROM_CTL(sc, RT2661_S |
1017 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
1018 }
1019
1020 RT2661_EEPROM_CTL(sc, RT2661_S);
1021
1022 /* read data Q15-Q0 */
1023 val = 0;
1024 for (n = 15; n >= 0; n--) {
1025 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
1026 tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
1027 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
1028 RT2661_EEPROM_CTL(sc, RT2661_S);
1029 }
1030
1031 RT2661_EEPROM_CTL(sc, 0);
1032
1033 /* clear Chip Select and clock C */
1034 RT2661_EEPROM_CTL(sc, RT2661_S);
1035 RT2661_EEPROM_CTL(sc, 0);
1036 RT2661_EEPROM_CTL(sc, RT2661_C);
1037
1038 return val;
1039 }
1040
1041 static void
1042 rt2661_tx_intr(struct rt2661_softc *sc)
1043 {
1044 struct ieee80211com *ic = &sc->sc_ic;
1045 struct ifnet *ifp = &sc->sc_if;
1046 struct rt2661_tx_ring *txq;
1047 struct rt2661_tx_data *data;
1048 struct rt2661_node *rn;
1049 uint32_t val;
1050 int qid, retrycnt;
1051
1052 for (;;) {
1053 val = RAL_READ(sc, RT2661_STA_CSR4);
1054 if (!(val & RT2661_TX_STAT_VALID))
1055 break;
1056
1057 /* retrieve the queue in which this frame was sent */
1058 qid = RT2661_TX_QID(val);
1059 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
1060
1061 /* retrieve rate control algorithm context */
1062 data = &txq->data[txq->stat];
1063 rn = (struct rt2661_node *)data->ni;
1064
1065 /* if no frame has been sent, ignore */
1066 if (rn == NULL)
1067 continue;
1068
1069 switch (RT2661_TX_RESULT(val)) {
1070 case RT2661_TX_SUCCESS:
1071 retrycnt = RT2661_TX_RETRYCNT(val);
1072
1073 DPRINTFN(10, ("data frame sent successfully after "
1074 "%d retries\n", retrycnt));
1075 if (retrycnt == 0 && data->id.id_node != NULL) {
1076 ieee80211_rssadapt_raise_rate(ic,
1077 &rn->rssadapt, &data->id);
1078 }
1079 ifp->if_opackets++;
1080 break;
1081
1082 case RT2661_TX_RETRY_FAIL:
1083 DPRINTFN(9, ("sending data frame failed (too much "
1084 "retries)\n"));
1085 if (data->id.id_node != NULL) {
1086 ieee80211_rssadapt_lower_rate(ic, data->ni,
1087 &rn->rssadapt, &data->id);
1088 }
1089 ifp->if_oerrors++;
1090 break;
1091
1092 default:
1093 /* other failure */
1094 printf("%s: sending data frame failed 0x%08x\n",
1095 sc->sc_dev.dv_xname, val);
1096 ifp->if_oerrors++;
1097 }
1098
1099 ieee80211_free_node(data->ni);
1100 data->ni = NULL;
1101
1102 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
1103
1104 txq->queued--;
1105 if (++txq->stat >= txq->count) /* faster than % count */
1106 txq->stat = 0;
1107 }
1108
1109 sc->sc_tx_timer = 0;
1110 ifp->if_flags &= ~IFF_OACTIVE;
1111 rt2661_start(ifp);
1112 }
1113
1114 static void
1115 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1116 {
1117 struct rt2661_tx_desc *desc;
1118 struct rt2661_tx_data *data;
1119
1120 for (;;) {
1121 desc = &txq->desc[txq->next];
1122 data = &txq->data[txq->next];
1123
1124 bus_dmamap_sync(sc->sc_dmat, txq->map,
1125 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1126 BUS_DMASYNC_POSTREAD);
1127
1128 if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1129 !(le32toh(desc->flags) & RT2661_TX_VALID))
1130 break;
1131
1132 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1133 data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1134 bus_dmamap_unload(sc->sc_dmat, data->map);
1135 m_freem(data->m);
1136 data->m = NULL;
1137 /* node reference is released in rt2661_tx_intr() */
1138
1139 /* descriptor is no longer valid */
1140 desc->flags &= ~htole32(RT2661_TX_VALID);
1141
1142 bus_dmamap_sync(sc->sc_dmat, txq->map,
1143 txq->next * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1144 BUS_DMASYNC_PREWRITE);
1145
1146 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1147
1148 if (++txq->next >= txq->count) /* faster than % count */
1149 txq->next = 0;
1150 }
1151 }
1152
1153 static void
1154 rt2661_rx_intr(struct rt2661_softc *sc)
1155 {
1156 struct ieee80211com *ic = &sc->sc_ic;
1157 struct ifnet *ifp = &sc->sc_if;
1158 struct rt2661_rx_desc *desc;
1159 struct rt2661_rx_data *data;
1160 struct rt2661_node *rn;
1161 struct ieee80211_frame *wh;
1162 struct ieee80211_node *ni;
1163 struct mbuf *mnew, *m;
1164 int error, rssi;
1165
1166 for (;;) {
1167 desc = &sc->rxq.desc[sc->rxq.cur];
1168 data = &sc->rxq.data[sc->rxq.cur];
1169
1170 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1171 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1172 BUS_DMASYNC_POSTREAD);
1173
1174 if (le32toh(desc->flags) & RT2661_RX_BUSY)
1175 break;
1176
1177 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1178 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1179 /*
1180 * This should not happen since we did not request
1181 * to receive those frames when we filled TXRX_CSR0.
1182 */
1183 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1184 le32toh(desc->flags)));
1185 ifp->if_ierrors++;
1186 goto skip;
1187 }
1188
1189 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1190 ifp->if_ierrors++;
1191 goto skip;
1192 }
1193
1194 /*
1195 * Try to allocate a new mbuf for this ring element and load it
1196 * before processing the current mbuf. If the ring element
1197 * cannot be loaded, drop the received packet and reuse the old
1198 * mbuf. In the unlikely case that the old mbuf can't be
1199 * reloaded either, explicitly panic.
1200 */
1201 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1202 if (mnew == NULL) {
1203 ifp->if_ierrors++;
1204 goto skip;
1205 }
1206
1207 MCLGET(mnew, M_DONTWAIT);
1208 if (!(mnew->m_flags & M_EXT)) {
1209 m_freem(mnew);
1210 ifp->if_ierrors++;
1211 goto skip;
1212 }
1213
1214 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1215 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1216 bus_dmamap_unload(sc->sc_dmat, data->map);
1217
1218 error = bus_dmamap_load(sc->sc_dmat, data->map,
1219 mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
1220 if (error != 0) {
1221 m_freem(mnew);
1222
1223 /* try to reload the old mbuf */
1224 error = bus_dmamap_load(sc->sc_dmat, data->map,
1225 mtod(data->m, void *), MCLBYTES, NULL,
1226 BUS_DMA_NOWAIT);
1227 if (error != 0) {
1228 /* very unlikely that it will fail... */
1229 panic("%s: could not load old rx mbuf",
1230 sc->sc_dev.dv_xname);
1231 }
1232 ifp->if_ierrors++;
1233 goto skip;
1234 }
1235
1236 /*
1237 * New mbuf successfully loaded, update Rx ring and continue
1238 * processing.
1239 */
1240 m = data->m;
1241 data->m = mnew;
1242 desc->physaddr = htole32(data->map->dm_segs->ds_addr);
1243
1244 /* finalize mbuf */
1245 m->m_pkthdr.rcvif = ifp;
1246 m->m_pkthdr.len = m->m_len =
1247 (le32toh(desc->flags) >> 16) & 0xfff;
1248
1249 #if NBPFILTER > 0
1250 if (sc->sc_drvbpf != NULL) {
1251 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1252 uint32_t tsf_lo, tsf_hi;
1253
1254 /* get timestamp (low and high 32 bits) */
1255 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1256 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1257
1258 tap->wr_tsf =
1259 htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1260 tap->wr_flags = 0;
1261 tap->wr_rate = rt2661_rxrate(desc);
1262 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1263 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1264 tap->wr_antsignal = desc->rssi;
1265
1266 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1267 }
1268 #endif
1269
1270 wh = mtod(m, struct ieee80211_frame *);
1271 ni = ieee80211_find_rxnode(ic,
1272 (struct ieee80211_frame_min *)wh);
1273
1274 /* send the frame to the 802.11 layer */
1275 ieee80211_input(ic, m, ni, desc->rssi, 0);
1276
1277
1278 /* give rssi to the rate adatation algorithm */
1279 rn = (struct rt2661_node *)ni;
1280 rssi = rt2661_get_rssi(sc, desc->rssi);
1281 ieee80211_rssadapt_input(ic, ni, &rn->rssadapt, rssi);
1282
1283 /*-
1284 * Keep track of the average RSSI using an Exponential Moving
1285 * Average (EMA) of 8 Wilder's days:
1286 * avg = (1 / N) x rssi + ((N - 1) / N) x avg
1287 */
1288 sc->avg_rssi = (rssi + 7 * sc->avg_rssi) / 8;
1289
1290 /* node is no longer needed */
1291 ieee80211_free_node(ni);
1292
1293 skip: desc->flags |= htole32(RT2661_RX_BUSY);
1294
1295 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
1296 sc->rxq.cur * RT2661_RX_DESC_SIZE, RT2661_RX_DESC_SIZE,
1297 BUS_DMASYNC_PREWRITE);
1298
1299 DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1300
1301 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1302 }
1303
1304 /*
1305 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1306 * without calling if_start().
1307 */
1308 if (!IFQ_IS_EMPTY(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
1309 rt2661_start(ifp);
1310 }
1311
1312 /* ARGSUSED */
1313 static void
1314 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1315 {
1316 /* do nothing */
1317 }
1318
1319 static void
1320 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1321 {
1322 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1323
1324 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1325 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1326 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1327
1328 /* send wakeup command to MCU */
1329 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1330 }
1331
1332 static void
1333 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1334 {
1335 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1336 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1337 }
1338
1339 int
1340 rt2661_intr(void *arg)
1341 {
1342 struct rt2661_softc *sc = arg;
1343 struct ifnet *ifp = &sc->sc_if;
1344 uint32_t r1, r2;
1345
1346 /* disable MAC and MCU interrupts */
1347 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1348 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1349
1350 /* don't re-enable interrupts if we're shutting down */
1351 if (!(ifp->if_flags & IFF_RUNNING))
1352 return 0;
1353
1354 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1355 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1356
1357 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1358 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1359
1360 if (r1 & RT2661_MGT_DONE)
1361 rt2661_tx_dma_intr(sc, &sc->mgtq);
1362
1363 if (r1 & RT2661_RX_DONE)
1364 rt2661_rx_intr(sc);
1365
1366 if (r1 & RT2661_TX0_DMA_DONE)
1367 rt2661_tx_dma_intr(sc, &sc->txq[0]);
1368
1369 if (r1 & RT2661_TX1_DMA_DONE)
1370 rt2661_tx_dma_intr(sc, &sc->txq[1]);
1371
1372 if (r1 & RT2661_TX2_DMA_DONE)
1373 rt2661_tx_dma_intr(sc, &sc->txq[2]);
1374
1375 if (r1 & RT2661_TX3_DMA_DONE)
1376 rt2661_tx_dma_intr(sc, &sc->txq[3]);
1377
1378 if (r1 & RT2661_TX_DONE)
1379 rt2661_tx_intr(sc);
1380
1381 if (r2 & RT2661_MCU_CMD_DONE)
1382 rt2661_mcu_cmd_intr(sc);
1383
1384 if (r2 & RT2661_MCU_BEACON_EXPIRE)
1385 rt2661_mcu_beacon_expire(sc);
1386
1387 if (r2 & RT2661_MCU_WAKEUP)
1388 rt2661_mcu_wakeup(sc);
1389
1390 /* re-enable MAC and MCU interrupts */
1391 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1392 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1393
1394 return 1;
1395 }
1396
1397 /* quickly determine if a given rate is CCK or OFDM */
1398 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1399
1400 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1401 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1402
1403 #define RAL_SIFS 10 /* us */
1404
1405 /*
1406 * This function is only used by the Rx radiotap code. It returns the rate at
1407 * which a given frame was received.
1408 */
1409 #if NBPFILTER > 0
1410 static uint8_t
1411 rt2661_rxrate(struct rt2661_rx_desc *desc)
1412 {
1413 if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1414 /* reverse function of rt2661_plcp_signal */
1415 switch (desc->rate & 0xf) {
1416 case 0xb: return 12;
1417 case 0xf: return 18;
1418 case 0xa: return 24;
1419 case 0xe: return 36;
1420 case 0x9: return 48;
1421 case 0xd: return 72;
1422 case 0x8: return 96;
1423 case 0xc: return 108;
1424 }
1425 } else {
1426 if (desc->rate == 10)
1427 return 2;
1428 if (desc->rate == 20)
1429 return 4;
1430 if (desc->rate == 55)
1431 return 11;
1432 if (desc->rate == 110)
1433 return 22;
1434 }
1435 return 2; /* should not get there */
1436 }
1437 #endif
1438
1439 /*
1440 * Return the expected ack rate for a frame transmitted at rate `rate'.
1441 * XXX: this should depend on the destination node basic rate set.
1442 */
1443 static int
1444 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1445 {
1446 switch (rate) {
1447 /* CCK rates */
1448 case 2:
1449 return 2;
1450 case 4:
1451 case 11:
1452 case 22:
1453 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1454
1455 /* OFDM rates */
1456 case 12:
1457 case 18:
1458 return 12;
1459 case 24:
1460 case 36:
1461 return 24;
1462 case 48:
1463 case 72:
1464 case 96:
1465 case 108:
1466 return 48;
1467 }
1468
1469 /* default to 1Mbps */
1470 return 2;
1471 }
1472
1473 /*
1474 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1475 * The function automatically determines the operating mode depending on the
1476 * given rate. `flags' indicates whether short preamble is in use or not.
1477 */
1478 static uint16_t
1479 rt2661_txtime(int len, int rate, uint32_t flags)
1480 {
1481 uint16_t txtime;
1482
1483 if (RAL_RATE_IS_OFDM(rate)) {
1484 /* IEEE Std 802.11a-1999, pp. 37 */
1485 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1486 txtime = 16 + 4 + 4 * txtime + 6;
1487 } else {
1488 /* IEEE Std 802.11b-1999, pp. 28 */
1489 txtime = (16 * len + rate - 1) / rate;
1490 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1491 txtime += 72 + 24;
1492 else
1493 txtime += 144 + 48;
1494 }
1495 return txtime;
1496 }
1497
1498 static uint8_t
1499 rt2661_plcp_signal(int rate)
1500 {
1501 switch (rate) {
1502 /* CCK rates (returned values are device-dependent) */
1503 case 2: return 0x0;
1504 case 4: return 0x1;
1505 case 11: return 0x2;
1506 case 22: return 0x3;
1507
1508 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1509 case 12: return 0xb;
1510 case 18: return 0xf;
1511 case 24: return 0xa;
1512 case 36: return 0xe;
1513 case 48: return 0x9;
1514 case 72: return 0xd;
1515 case 96: return 0x8;
1516 case 108: return 0xc;
1517
1518 /* unsupported rates (should not get there) */
1519 default: return 0xff;
1520 }
1521 }
1522
1523 static void
1524 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1525 uint32_t flags, uint16_t xflags, int len, int rate,
1526 const bus_dma_segment_t *segs, int nsegs, int ac)
1527 {
1528 struct ieee80211com *ic = &sc->sc_ic;
1529 uint16_t plcp_length;
1530 int i, remainder;
1531
1532 desc->flags = htole32(flags);
1533 desc->flags |= htole32(len << 16);
1534 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1535
1536 desc->xflags = htole16(xflags);
1537 desc->xflags |= htole16(nsegs << 13);
1538
1539 desc->wme = htole16(
1540 RT2661_QID(ac) |
1541 RT2661_AIFSN(2) |
1542 RT2661_LOGCWMIN(4) |
1543 RT2661_LOGCWMAX(10));
1544
1545 /*
1546 * Remember in which queue this frame was sent. This field is driver
1547 * private data only. It will be made available by the NIC in STA_CSR4
1548 * on Tx interrupts.
1549 */
1550 desc->qid = ac;
1551
1552 /* setup PLCP fields */
1553 desc->plcp_signal = rt2661_plcp_signal(rate);
1554 desc->plcp_service = 4;
1555
1556 len += IEEE80211_CRC_LEN;
1557 if (RAL_RATE_IS_OFDM(rate)) {
1558 desc->flags |= htole32(RT2661_TX_OFDM);
1559
1560 plcp_length = len & 0xfff;
1561 desc->plcp_length_hi = plcp_length >> 6;
1562 desc->plcp_length_lo = plcp_length & 0x3f;
1563 } else {
1564 plcp_length = (16 * len + rate - 1) / rate;
1565 if (rate == 22) {
1566 remainder = (16 * len) % 22;
1567 if (remainder != 0 && remainder < 7)
1568 desc->plcp_service |= RT2661_PLCP_LENGEXT;
1569 }
1570 desc->plcp_length_hi = plcp_length >> 8;
1571 desc->plcp_length_lo = plcp_length & 0xff;
1572
1573 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1574 desc->plcp_signal |= 0x08;
1575 }
1576
1577 /* RT2x61 supports scatter with up to 5 segments */
1578 for (i = 0; i < nsegs; i++) {
1579 desc->addr[i] = htole32(segs[i].ds_addr);
1580 desc->len [i] = htole16(segs[i].ds_len);
1581 }
1582 }
1583
1584 static int
1585 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1586 struct ieee80211_node *ni)
1587 {
1588 struct ieee80211com *ic = &sc->sc_ic;
1589 struct rt2661_tx_desc *desc;
1590 struct rt2661_tx_data *data;
1591 struct ieee80211_frame *wh;
1592 uint16_t dur;
1593 uint32_t flags = 0;
1594 int rate, error;
1595
1596 desc = &sc->mgtq.desc[sc->mgtq.cur];
1597 data = &sc->mgtq.data[sc->mgtq.cur];
1598
1599 /* send mgt frames at the lowest available rate */
1600 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1601
1602 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1603 BUS_DMA_NOWAIT);
1604 if (error != 0) {
1605 printf("%s: could not map mbuf (error %d)\n",
1606 sc->sc_dev.dv_xname, error);
1607 m_freem(m0);
1608 return error;
1609 }
1610
1611 #if NBPFILTER > 0
1612 if (sc->sc_drvbpf != NULL) {
1613 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1614
1615 tap->wt_flags = 0;
1616 tap->wt_rate = rate;
1617 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1618 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1619
1620 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1621 }
1622 #endif
1623
1624 data->m = m0;
1625 data->ni = ni;
1626
1627 wh = mtod(m0, struct ieee80211_frame *);
1628
1629 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1630 flags |= RT2661_TX_NEED_ACK;
1631
1632 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1633 RAL_SIFS;
1634 *(uint16_t *)wh->i_dur = htole16(dur);
1635
1636 /* tell hardware to add timestamp in probe responses */
1637 if ((wh->i_fc[0] &
1638 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1639 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1640 flags |= RT2661_TX_TIMESTAMP;
1641 }
1642
1643 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1644 m0->m_pkthdr.len, rate, data->map->dm_segs, data->map->dm_nsegs,
1645 RT2661_QID_MGT);
1646
1647 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1648 BUS_DMASYNC_PREWRITE);
1649 bus_dmamap_sync(sc->sc_dmat, sc->mgtq.map,
1650 sc->mgtq.cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1651 BUS_DMASYNC_PREWRITE);
1652
1653 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1654 m0->m_pkthdr.len, sc->mgtq.cur, rate));
1655
1656 /* kick mgt */
1657 sc->mgtq.queued++;
1658 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1659 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1660
1661 return 0;
1662 }
1663
1664 /*
1665 * Build a RTS control frame.
1666 */
1667 static struct mbuf *
1668 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1669 uint16_t dur)
1670 {
1671 struct ieee80211_frame_rts *rts;
1672 struct mbuf *m;
1673
1674 MGETHDR(m, M_DONTWAIT, MT_DATA);
1675 if (m == NULL) {
1676 sc->sc_ic.ic_stats.is_tx_nobuf++;
1677 printf("%s: could not allocate RTS frame\n",
1678 sc->sc_dev.dv_xname);
1679 return NULL;
1680 }
1681
1682 rts = mtod(m, struct ieee80211_frame_rts *);
1683
1684 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1685 IEEE80211_FC0_SUBTYPE_RTS;
1686 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1687 *(uint16_t *)rts->i_dur = htole16(dur);
1688 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1689 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1690
1691 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1692
1693 return m;
1694 }
1695
1696 static int
1697 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1698 struct ieee80211_node *ni, int ac)
1699 {
1700 struct ieee80211com *ic = &sc->sc_ic;
1701 struct rt2661_tx_ring *txq = &sc->txq[ac];
1702 struct rt2661_tx_desc *desc;
1703 struct rt2661_tx_data *data;
1704 struct rt2661_node *rn;
1705 struct ieee80211_rateset *rs;
1706 struct ieee80211_frame *wh;
1707 struct ieee80211_key *k;
1708 struct mbuf *mnew;
1709 uint16_t dur;
1710 uint32_t flags = 0;
1711 int rate, error;
1712
1713 wh = mtod(m0, struct ieee80211_frame *);
1714
1715 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1716 rs = &ic->ic_sup_rates[ic->ic_curmode];
1717 rate = rs->rs_rates[ic->ic_fixed_rate];
1718 } else {
1719 rs = &ni->ni_rates;
1720 rn = (struct rt2661_node *)ni;
1721 ni->ni_txrate = ieee80211_rssadapt_choose(&rn->rssadapt, rs,
1722 wh, m0->m_pkthdr.len, -1, NULL, 0);
1723 rate = rs->rs_rates[ni->ni_txrate];
1724 }
1725 rate &= IEEE80211_RATE_VAL;
1726
1727 if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1728 k = ieee80211_crypto_encap(ic, ni, m0);
1729 if (k == NULL) {
1730 m_freem(m0);
1731 return ENOBUFS;
1732 }
1733
1734 /* packet header may have moved, reset our local pointer */
1735 wh = mtod(m0, struct ieee80211_frame *);
1736 }
1737
1738 /*
1739 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1740 * for directed frames only when the length of the MPDU is greater
1741 * than the length threshold indicated by [...]" ic_rtsthreshold.
1742 */
1743 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1744 m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
1745 struct mbuf *m;
1746 int rtsrate, ackrate;
1747
1748 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1749 ackrate = rt2661_ack_rate(ic, rate);
1750
1751 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1752 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1753 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1754 3 * RAL_SIFS;
1755
1756 m = rt2661_get_rts(sc, wh, dur);
1757
1758 desc = &txq->desc[txq->cur];
1759 data = &txq->data[txq->cur];
1760
1761 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
1762 BUS_DMA_NOWAIT);
1763 if (error != 0) {
1764 printf("%s: could not map mbuf (error %d)\n",
1765 sc->sc_dev.dv_xname, error);
1766 m_freem(m);
1767 m_freem(m0);
1768 return error;
1769 }
1770
1771 /* avoid multiple free() of the same node for each fragment */
1772 ieee80211_ref_node(ni);
1773
1774 data->m = m;
1775 data->ni = ni;
1776
1777 /* RTS frames are not taken into account for rssadapt */
1778 data->id.id_node = NULL;
1779
1780 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1781 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate,
1782 data->map->dm_segs, data->map->dm_nsegs, ac);
1783
1784 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1785 data->map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1786 bus_dmamap_sync(sc->sc_dmat, txq->map,
1787 txq->cur * RT2661_TX_DESC_SIZE, RT2661_TX_DESC_SIZE,
1788 BUS_DMASYNC_PREWRITE);
1789
1790 txq->queued++;
1791 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1792
1793 /*
1794 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1795 * asynchronous data frame shall be transmitted after the CTS
1796 * frame and a SIFS period.
1797 */
1798 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1799 }
1800
1801 data = &txq->data[txq->cur];
1802 desc = &txq->desc[txq->cur];
1803
1804 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1805 BUS_DMA_NOWAIT);
1806 if (error != 0 && error != EFBIG) {
1807 printf("%s: could not map mbuf (error %d)\n",
1808 sc->sc_dev.dv_xname, error);
1809 m_freem(m0);
1810 return error;
1811 }
1812 if (error != 0) {
1813 /* too many fragments, linearize */
1814
1815 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
1816 if (mnew == NULL) {
1817 m_freem(m0);
1818 return ENOMEM;
1819 }
1820
1821 M_COPY_PKTHDR(mnew, m0);
1822 if (m0->m_pkthdr.len > MHLEN) {
1823 MCLGET(mnew, M_DONTWAIT);
1824 if (!(mnew->m_flags & M_EXT)) {
1825 m_freem(m0);
1826 m_freem(mnew);
1827 return ENOMEM;
1828 }
1829 }
1830
1831 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t));
1832 m_freem(m0);
1833 mnew->m_len = mnew->m_pkthdr.len;
1834 m0 = mnew;
1835
1836 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
1837 BUS_DMA_NOWAIT);
1838 if (error != 0) {
1839 printf("%s: could not map mbuf (error %d)\n",
1840 sc->sc_dev.dv_xname, error);
1841 m_freem(m0);
1842 return error;
1843 }
1844
1845 /* packet header have moved, reset our local pointer */
1846 wh = mtod(m0, struct ieee80211_frame *);
1847 }
1848
1849 #if NBPFILTER > 0
1850 if (sc->sc_drvbpf != NULL) {
1851 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1852
1853 tap->wt_flags = 0;
1854 tap->wt_rate = rate;
1855 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1856 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1857
1858 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1859 }
1860 #endif
1861
1862 data->m = m0;
1863 data->ni = ni;
1864
1865 /* remember link conditions for rate control algorithm */
1866 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1867 data->id.id_len = m0->m_pkthdr.len;
1868 data->id.id_rateidx = ni->ni_txrate;
1869 data->id.id_node = ni;
1870 data->id.id_rssi = ni->ni_rssi;
1871 } else
1872 data->id.id_node = NULL;
1873
1874 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1875 flags |= RT2661_TX_NEED_ACK;
1876
1877 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1878 ic->ic_flags) + RAL_SIFS;
1879 *(uint16_t *)wh->i_dur = htole16(dur);
1880 }
1881
1882 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate,
1883 data->map->dm_segs, data->map->dm_nsegs, ac);
1884
1885 bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
1886 BUS_DMASYNC_PREWRITE);
1887 bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * RT2661_TX_DESC_SIZE,
1888 RT2661_TX_DESC_SIZE, BUS_DMASYNC_PREWRITE);
1889
1890 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1891 m0->m_pkthdr.len, txq->cur, rate));
1892
1893 /* kick Tx */
1894 txq->queued++;
1895 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1896 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1);
1897
1898 return 0;
1899 }
1900
1901 static void
1902 rt2661_start(struct ifnet *ifp)
1903 {
1904 struct rt2661_softc *sc = ifp->if_softc;
1905 struct ieee80211com *ic = &sc->sc_ic;
1906 struct mbuf *m0;
1907 struct ether_header *eh;
1908 struct ieee80211_node *ni = NULL;
1909 int ac;
1910
1911 /*
1912 * net80211 may still try to send management frames even if the
1913 * IFF_RUNNING flag is not set...
1914 */
1915 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1916 return;
1917
1918 for (;;) {
1919 IF_POLL(&ic->ic_mgtq, m0);
1920 if (m0 != NULL) {
1921 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1922 ifp->if_flags |= IFF_OACTIVE;
1923 break;
1924 }
1925 IF_DEQUEUE(&ic->ic_mgtq, m0);
1926
1927 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1928 m0->m_pkthdr.rcvif = NULL;
1929 #if NBPFILTER > 0
1930 if (ic->ic_rawbpf != NULL)
1931 bpf_mtap(ic->ic_rawbpf, m0);
1932 #endif
1933 if (rt2661_tx_mgt(sc, m0, ni) != 0)
1934 break;
1935
1936 } else {
1937 if (ic->ic_state != IEEE80211_S_RUN)
1938 break;
1939 IFQ_DEQUEUE(&ifp->if_snd, m0);
1940 if (m0 == NULL)
1941 break;
1942
1943 if (m0->m_len < sizeof (struct ether_header) &&
1944 !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1945 continue;
1946
1947 eh = mtod(m0, struct ether_header *);
1948 ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1949 if (ni == NULL) {
1950 m_freem(m0);
1951 ifp->if_oerrors++;
1952 continue;
1953 }
1954
1955
1956 /* classify mbuf so we can find which tx ring to use */
1957 if (ieee80211_classify(ic, m0, ni) != 0) {
1958 m_freem(m0);
1959 ieee80211_free_node(ni);
1960 ifp->if_oerrors++;
1961 continue;
1962 }
1963
1964 /* no QoS encapsulation for EAPOL frames */
1965 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1966 M_WME_GETAC(m0) : WME_AC_BE;
1967
1968 if (sc->txq[0].queued >= RT2661_TX_RING_COUNT - 1) {
1969 /* there is no place left in this ring */
1970 IF_PREPEND(&ifp->if_snd, m0);
1971 ifp->if_flags |= IFF_OACTIVE;
1972 break;
1973 }
1974 #if NBPFILTER > 0
1975 if (ifp->if_bpf != NULL)
1976 bpf_mtap(ifp->if_bpf, m0);
1977 #endif
1978 m0 = ieee80211_encap(ic, m0, ni);
1979 if (m0 == NULL) {
1980 ieee80211_free_node(ni);
1981 ifp->if_oerrors++;
1982 continue;
1983 }
1984 #if NBPFILTER > 0
1985 if (ic->ic_rawbpf != NULL)
1986 bpf_mtap(ic->ic_rawbpf, m0);
1987 #endif
1988 if (rt2661_tx_data(sc, m0, ni, 0) != 0) {
1989 if (ni != NULL)
1990 ieee80211_free_node(ni);
1991 ifp->if_oerrors++;
1992 break;
1993 }
1994 }
1995
1996 sc->sc_tx_timer = 5;
1997 ifp->if_timer = 1;
1998 }
1999 }
2000
2001 static void
2002 rt2661_watchdog(struct ifnet *ifp)
2003 {
2004 struct rt2661_softc *sc = ifp->if_softc;
2005
2006 ifp->if_timer = 0;
2007
2008 if (sc->sc_tx_timer > 0) {
2009 if (--sc->sc_tx_timer == 0) {
2010 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
2011 rt2661_init(ifp);
2012 ifp->if_oerrors++;
2013 return;
2014 }
2015 ifp->if_timer = 1;
2016 }
2017
2018 ieee80211_watchdog(&sc->sc_ic);
2019 }
2020
2021 /*
2022 * This function allows for fast channel switching in monitor mode (used by
2023 * kismet). In IBSS mode, we must explicitly reset the interface to
2024 * generate a new beacon frame.
2025 */
2026 static int
2027 rt2661_reset(struct ifnet *ifp)
2028 {
2029 struct rt2661_softc *sc = ifp->if_softc;
2030 struct ieee80211com *ic = &sc->sc_ic;
2031
2032 if (ic->ic_opmode != IEEE80211_M_MONITOR)
2033 return ENETRESET;
2034
2035 rt2661_set_chan(sc, ic->ic_curchan);
2036
2037 return 0;
2038 }
2039
2040 static int
2041 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2042 {
2043 struct rt2661_softc *sc = ifp->if_softc;
2044 struct ieee80211com *ic = &sc->sc_ic;
2045 struct ifreq *ifr;
2046 int s, error = 0;
2047
2048 s = splnet();
2049
2050 switch (cmd) {
2051 case SIOCSIFFLAGS:
2052 if (ifp->if_flags & IFF_UP) {
2053 if (ifp->if_flags & IFF_RUNNING)
2054 rt2661_update_promisc(sc);
2055 else
2056 rt2661_init(ifp);
2057 } else {
2058 if (ifp->if_flags & IFF_RUNNING)
2059 rt2661_stop(ifp, 1);
2060 }
2061 break;
2062
2063 case SIOCADDMULTI:
2064 case SIOCDELMULTI:
2065 ifr = (struct ifreq *)data;
2066 error = (cmd == SIOCADDMULTI) ?
2067 ether_addmulti(ifr, &sc->sc_ec) :
2068 ether_delmulti(ifr, &sc->sc_ec);
2069
2070
2071 if (error == ENETRESET)
2072 error = 0;
2073 break;
2074
2075 case SIOCS80211CHANNEL:
2076 /*
2077 * This allows for fast channel switching in monitor mode
2078 * (used by kismet). In IBSS mode, we must explicitly reset
2079 * the interface to generate a new beacon frame.
2080 */
2081 error = ieee80211_ioctl(ic, cmd, data);
2082 if (error == ENETRESET &&
2083 ic->ic_opmode == IEEE80211_M_MONITOR) {
2084 rt2661_set_chan(sc, ic->ic_ibss_chan);
2085 error = 0;
2086 }
2087 break;
2088
2089 default:
2090 error = ieee80211_ioctl(ic, cmd, data);
2091
2092 }
2093
2094 if (error == ENETRESET) {
2095 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
2096 (IFF_UP | IFF_RUNNING))
2097 rt2661_init(ifp);
2098 error = 0;
2099 }
2100
2101 splx(s);
2102
2103 return error;
2104 }
2105
2106 static void
2107 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
2108 {
2109 uint32_t tmp;
2110 int ntries;
2111
2112 for (ntries = 0; ntries < 100; ntries++) {
2113 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2114 break;
2115 DELAY(1);
2116 }
2117 if (ntries == 100) {
2118 printf("%s: could not write to BBP\n", sc->sc_dev.dv_xname);
2119 return;
2120 }
2121
2122 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
2123 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
2124
2125 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2126 }
2127
2128 static uint8_t
2129 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
2130 {
2131 uint32_t val;
2132 int ntries;
2133
2134 for (ntries = 0; ntries < 100; ntries++) {
2135 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
2136 break;
2137 DELAY(1);
2138 }
2139 if (ntries == 100) {
2140 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2141 return 0;
2142 }
2143
2144 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
2145 RAL_WRITE(sc, RT2661_PHY_CSR3, val);
2146
2147 for (ntries = 0; ntries < 100; ntries++) {
2148 val = RAL_READ(sc, RT2661_PHY_CSR3);
2149 if (!(val & RT2661_BBP_BUSY))
2150 return val & 0xff;
2151 DELAY(1);
2152 }
2153
2154 printf("%s: could not read from BBP\n", sc->sc_dev.dv_xname);
2155 return 0;
2156 }
2157
2158 static void
2159 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
2160 {
2161 uint32_t tmp;
2162 int ntries;
2163
2164 for (ntries = 0; ntries < 100; ntries++) {
2165 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
2166 break;
2167 DELAY(1);
2168 }
2169 if (ntries == 100) {
2170 printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
2171 return;
2172 }
2173
2174 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
2175 (reg & 3);
2176 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
2177
2178 /* remember last written value in sc */
2179 sc->rf_regs[reg] = val;
2180
2181 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
2182 }
2183
2184 static int
2185 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2186 {
2187 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2188 return EIO; /* there is already a command pending */
2189
2190 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2191 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2192
2193 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2194
2195 return 0;
2196 }
2197
2198 static void
2199 rt2661_select_antenna(struct rt2661_softc *sc)
2200 {
2201 uint8_t bbp4, bbp77;
2202 uint32_t tmp;
2203
2204 bbp4 = rt2661_bbp_read(sc, 4);
2205 bbp77 = rt2661_bbp_read(sc, 77);
2206
2207 /* TBD */
2208
2209 /* make sure Rx is disabled before switching antenna */
2210 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2211 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2212
2213 rt2661_bbp_write(sc, 4, bbp4);
2214 rt2661_bbp_write(sc, 77, bbp77);
2215
2216 /* restore Rx filter */
2217 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2218 }
2219
2220 /*
2221 * Enable multi-rate retries for frames sent at OFDM rates.
2222 * In 802.11b/g mode, allow fallback to CCK rates.
2223 */
2224 static void
2225 rt2661_enable_mrr(struct rt2661_softc *sc)
2226 {
2227 struct ieee80211com *ic = &sc->sc_ic;
2228 uint32_t tmp;
2229
2230 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2231
2232 tmp &= ~RT2661_MRR_CCK_FALLBACK;
2233 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2234 tmp |= RT2661_MRR_CCK_FALLBACK;
2235 tmp |= RT2661_MRR_ENABLED;
2236
2237 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2238 }
2239
2240 static void
2241 rt2661_set_txpreamble(struct rt2661_softc *sc)
2242 {
2243 uint32_t tmp;
2244
2245 tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2246
2247 tmp &= ~RT2661_SHORT_PREAMBLE;
2248 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2249 tmp |= RT2661_SHORT_PREAMBLE;
2250
2251 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2252 }
2253
2254 static void
2255 rt2661_set_basicrates(struct rt2661_softc *sc,
2256 const struct ieee80211_rateset *rs)
2257 {
2258 #define RV(r) ((r) & IEEE80211_RATE_VAL)
2259 uint32_t mask = 0;
2260 uint8_t rate;
2261 int i, j;
2262
2263 for (i = 0; i < rs->rs_nrates; i++) {
2264 rate = rs->rs_rates[i];
2265
2266 if (!(rate & IEEE80211_RATE_BASIC))
2267 continue;
2268
2269 /*
2270 * Find h/w rate index. We know it exists because the rate
2271 * set has already been negotiated.
2272 */
2273 for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++);
2274
2275 mask |= 1 << j;
2276 }
2277
2278 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2279
2280 DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2281 #undef RV
2282 }
2283
2284 /*
2285 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference
2286 * driver.
2287 */
2288 static void
2289 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2290 {
2291 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2292 uint32_t tmp;
2293
2294 /* update all BBP registers that depend on the band */
2295 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2296 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
2297 if (IEEE80211_IS_CHAN_5GHZ(c)) {
2298 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2299 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
2300 }
2301 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2302 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2303 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2304 }
2305
2306 sc->bbp17 = bbp17;
2307 rt2661_bbp_write(sc, 17, bbp17);
2308 rt2661_bbp_write(sc, 96, bbp96);
2309 rt2661_bbp_write(sc, 104, bbp104);
2310
2311 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2312 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2313 rt2661_bbp_write(sc, 75, 0x80);
2314 rt2661_bbp_write(sc, 86, 0x80);
2315 rt2661_bbp_write(sc, 88, 0x80);
2316 }
2317
2318 rt2661_bbp_write(sc, 35, bbp35);
2319 rt2661_bbp_write(sc, 97, bbp97);
2320 rt2661_bbp_write(sc, 98, bbp98);
2321
2322 tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2323 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2324 if (IEEE80211_IS_CHAN_2GHZ(c))
2325 tmp |= RT2661_PA_PE_2GHZ;
2326 else
2327 tmp |= RT2661_PA_PE_5GHZ;
2328 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2329 }
2330
2331 static void
2332 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2333 {
2334 struct ieee80211com *ic = &sc->sc_ic;
2335 const struct rfprog *rfprog;
2336 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2337 int8_t power;
2338 u_int i, chan;
2339
2340 chan = ieee80211_chan2ieee(ic, c);
2341 if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2342 return;
2343
2344 /* select the appropriate RF settings based on what EEPROM says */
2345 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2346
2347 /* find the settings for this channel (we know it exists) */
2348 for (i = 0; rfprog[i].chan != chan; i++);
2349
2350 power = sc->txpow[i];
2351 if (power < 0) {
2352 bbp94 += power;
2353 power = 0;
2354 } else if (power > 31) {
2355 bbp94 += power - 31;
2356 power = 31;
2357 }
2358
2359 /*
2360 * If we are switching from the 2GHz band to the 5GHz band or
2361 * vice-versa, BBP registers need to be reprogrammed.
2362 */
2363 if (c->ic_flags != sc->sc_curchan->ic_flags) {
2364 rt2661_select_band(sc, c);
2365 rt2661_select_antenna(sc);
2366 }
2367 sc->sc_curchan = c;
2368
2369 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2370 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2371 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2372 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2373
2374 DELAY(200);
2375
2376 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2377 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2378 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2379 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2380
2381 DELAY(200);
2382
2383 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2384 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2385 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2386 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2387
2388 /* enable smart mode for MIMO-capable RFs */
2389 bbp3 = rt2661_bbp_read(sc, 3);
2390
2391 bbp3 &= ~RT2661_SMART_MODE;
2392 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2393 bbp3 |= RT2661_SMART_MODE;
2394
2395 rt2661_bbp_write(sc, 3, bbp3);
2396
2397 if (bbp94 != RT2661_BBPR94_DEFAULT)
2398 rt2661_bbp_write(sc, 94, bbp94);
2399
2400 /* 5GHz radio needs a 1ms delay here */
2401 if (IEEE80211_IS_CHAN_5GHZ(c))
2402 DELAY(1000);
2403 }
2404
2405 static void
2406 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2407 {
2408 uint32_t tmp;
2409
2410 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2411 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2412
2413 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2414 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2415 }
2416
2417 static void
2418 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2419 {
2420 uint32_t tmp;
2421
2422 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2423 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2424
2425 tmp = addr[4] | addr[5] << 8;
2426 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2427 }
2428
2429 static void
2430 rt2661_update_promisc(struct rt2661_softc *sc)
2431 {
2432 struct ifnet *ifp = sc->sc_ic.ic_ifp;
2433 uint32_t tmp;
2434
2435 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2436
2437 tmp &= ~RT2661_DROP_NOT_TO_ME;
2438 if (!(ifp->if_flags & IFF_PROMISC))
2439 tmp |= RT2661_DROP_NOT_TO_ME;
2440
2441 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2442
2443 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2444 "entering" : "leaving"));
2445 }
2446
2447 /*
2448 * Update QoS (802.11e) settings for each h/w Tx ring.
2449 */
2450 static int
2451 rt2661_wme_update(struct ieee80211com *ic)
2452 {
2453 struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2454 const struct wmeParams *wmep;
2455
2456 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2457
2458 /* XXX: not sure about shifts. */
2459 /* XXX: the reference driver plays with AC_VI settings too. */
2460
2461 /* update TxOp */
2462 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2463 wmep[WME_AC_BE].wmep_txopLimit << 16 |
2464 wmep[WME_AC_BK].wmep_txopLimit);
2465 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2466 wmep[WME_AC_VI].wmep_txopLimit << 16 |
2467 wmep[WME_AC_VO].wmep_txopLimit);
2468
2469 /* update CWmin */
2470 RAL_WRITE(sc, RT2661_CWMIN_CSR,
2471 wmep[WME_AC_BE].wmep_logcwmin << 12 |
2472 wmep[WME_AC_BK].wmep_logcwmin << 8 |
2473 wmep[WME_AC_VI].wmep_logcwmin << 4 |
2474 wmep[WME_AC_VO].wmep_logcwmin);
2475
2476 /* update CWmax */
2477 RAL_WRITE(sc, RT2661_CWMAX_CSR,
2478 wmep[WME_AC_BE].wmep_logcwmax << 12 |
2479 wmep[WME_AC_BK].wmep_logcwmax << 8 |
2480 wmep[WME_AC_VI].wmep_logcwmax << 4 |
2481 wmep[WME_AC_VO].wmep_logcwmax);
2482
2483 /* update Aifsn */
2484 RAL_WRITE(sc, RT2661_AIFSN_CSR,
2485 wmep[WME_AC_BE].wmep_aifsn << 12 |
2486 wmep[WME_AC_BK].wmep_aifsn << 8 |
2487 wmep[WME_AC_VI].wmep_aifsn << 4 |
2488 wmep[WME_AC_VO].wmep_aifsn);
2489
2490 return 0;
2491 }
2492
2493 static void
2494 rt2661_update_slot(struct ifnet *ifp)
2495 {
2496 struct rt2661_softc *sc = ifp->if_softc;
2497 struct ieee80211com *ic = &sc->sc_ic;
2498 uint8_t slottime;
2499 uint32_t tmp;
2500
2501 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2502
2503 tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2504 tmp = (tmp & ~0xff) | slottime;
2505 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2506 }
2507
2508 static const char *
2509 rt2661_get_rf(int rev)
2510 {
2511 switch (rev) {
2512 case RT2661_RF_5225: return "RT5225";
2513 case RT2661_RF_5325: return "RT5325 (MIMO XR)";
2514 case RT2661_RF_2527: return "RT2527";
2515 case RT2661_RF_2529: return "RT2529 (MIMO XR)";
2516 default: return "unknown";
2517 }
2518 }
2519
2520 static void
2521 rt2661_read_eeprom(struct rt2661_softc *sc)
2522 {
2523 struct ieee80211com *ic = &sc->sc_ic;
2524 uint16_t val;
2525 int i;
2526
2527 /* read MAC address */
2528 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2529 ic->ic_myaddr[0] = val & 0xff;
2530 ic->ic_myaddr[1] = val >> 8;
2531
2532 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2533 ic->ic_myaddr[2] = val & 0xff;
2534 ic->ic_myaddr[3] = val >> 8;
2535
2536 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2537 ic->ic_myaddr[4] = val & 0xff;
2538 ic->ic_myaddr[5] = val >> 8;
2539
2540 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2541 /* XXX: test if different from 0xffff? */
2542 sc->rf_rev = (val >> 11) & 0x1f;
2543 sc->hw_radio = (val >> 10) & 0x1;
2544 sc->rx_ant = (val >> 4) & 0x3;
2545 sc->tx_ant = (val >> 2) & 0x3;
2546 sc->nb_ant = val & 0x3;
2547
2548 DPRINTF(("RF revision=%d\n", sc->rf_rev));
2549
2550 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2551 sc->ext_5ghz_lna = (val >> 6) & 0x1;
2552 sc->ext_2ghz_lna = (val >> 4) & 0x1;
2553
2554 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2555 sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2556
2557 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2558 if ((val & 0xff) != 0xff)
2559 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
2560
2561 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2562 if ((val & 0xff) != 0xff)
2563 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
2564
2565 /* adjust RSSI correction for external low-noise amplifier */
2566 if (sc->ext_2ghz_lna)
2567 sc->rssi_2ghz_corr -= 14;
2568 if (sc->ext_5ghz_lna)
2569 sc->rssi_5ghz_corr -= 14;
2570
2571 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2572 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2573
2574 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2575 if ((val >> 8) != 0xff)
2576 sc->rfprog = (val >> 8) & 0x3;
2577 if ((val & 0xff) != 0xff)
2578 sc->rffreq = val & 0xff;
2579
2580 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2581
2582 /* read Tx power for all a/b/g channels */
2583 for (i = 0; i < 19; i++) {
2584 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2585 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */
2586 DPRINTF(("Channel=%d Tx power=%d\n",
2587 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2588 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */
2589 DPRINTF(("Channel=%d Tx power=%d\n",
2590 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2591 }
2592
2593 /* read vendor-specific BBP values */
2594 for (i = 0; i < 16; i++) {
2595 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2596 if (val == 0 || val == 0xffff)
2597 continue; /* skip invalid entries */
2598 sc->bbp_prom[i].reg = val >> 8;
2599 sc->bbp_prom[i].val = val & 0xff;
2600 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2601 sc->bbp_prom[i].val));
2602 }
2603 }
2604
2605 static int
2606 rt2661_bbp_init(struct rt2661_softc *sc)
2607 {
2608 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2609 int i, ntries;
2610 uint8_t val;
2611
2612 /* wait for BBP to be ready */
2613 for (ntries = 0; ntries < 100; ntries++) {
2614 val = rt2661_bbp_read(sc, 0);
2615 if (val != 0 && val != 0xff)
2616 break;
2617 DELAY(100);
2618 }
2619 if (ntries == 100) {
2620 printf("%s: timeout waiting for BBP\n", sc->sc_dev.dv_xname);
2621 return EIO;
2622 }
2623
2624 /* initialize BBP registers to default values */
2625 for (i = 0; i < N(rt2661_def_bbp); i++) {
2626 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2627 rt2661_def_bbp[i].val);
2628 }
2629
2630 /* write vendor-specific BBP values (from EEPROM) */
2631 for (i = 0; i < 16; i++) {
2632 if (sc->bbp_prom[i].reg == 0)
2633 continue;
2634 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2635 }
2636
2637 return 0;
2638 #undef N
2639 }
2640
2641 static int
2642 rt2661_init(struct ifnet *ifp)
2643 {
2644 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2645 struct rt2661_softc *sc = ifp->if_softc;
2646 struct ieee80211com *ic = &sc->sc_ic;
2647 const char *name = NULL; /* make lint happy */
2648 uint8_t *ucode;
2649 size_t size;
2650 uint32_t tmp, star[3];
2651 int i, ntries;
2652 firmware_handle_t fh;
2653
2654 /* for CardBus, power on the socket */
2655 if (!(sc->sc_flags & RT2661_ENABLED)) {
2656 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
2657 printf("%s: could not enable device\n",
2658 sc->sc_dev.dv_xname);
2659 return EIO;
2660 }
2661 sc->sc_flags |= RT2661_ENABLED;
2662 }
2663
2664 rt2661_stop(ifp, 0);
2665
2666 if (!(sc->sc_flags & RT2661_FWLOADED)) {
2667 switch (sc->sc_id) {
2668 case PCI_PRODUCT_RALINK_RT2561:
2669 name = "ral-rt2561";
2670 break;
2671 case PCI_PRODUCT_RALINK_RT2561S:
2672 name = "ral-rt2561s";
2673 break;
2674 case PCI_PRODUCT_RALINK_RT2661:
2675 name = "ral-rt2661";
2676 break;
2677 }
2678
2679 if (firmware_open("ral", name, &fh) != 0) {
2680 printf("%s: could not open microcode %s\n",
2681 sc->sc_dev.dv_xname, name);
2682 rt2661_stop(ifp, 1);
2683 return EIO;
2684 }
2685
2686 size = firmware_get_size(fh);
2687 if (!(ucode = firmware_malloc(size))) {
2688 printf("%s: could not alloc microcode memory\n",
2689 sc->sc_dev.dv_xname);
2690 rt2661_stop(ifp, 1);
2691 return ENOMEM;
2692 }
2693
2694 if (firmware_read(fh, 0, ucode, size) != 0) {
2695 printf("%s: could not read microcode %s\n",
2696 sc->sc_dev.dv_xname, name);
2697 firmware_free(ucode, 0);
2698 rt2661_stop(ifp, 1);
2699 return EIO;
2700 }
2701
2702 if (rt2661_load_microcode(sc, ucode, size) != 0) {
2703 printf("%s: could not load 8051 microcode\n",
2704 sc->sc_dev.dv_xname);
2705 firmware_free(ucode, 0);
2706 rt2661_stop(ifp, 1);
2707 return EIO;
2708 }
2709
2710 firmware_free(ucode, 0);
2711 firmware_close(fh);
2712 sc->sc_flags |= RT2661_FWLOADED;
2713 }
2714
2715 /* initialize Tx rings */
2716 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2717 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2718 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2719 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2720
2721 /* initialize Mgt ring */
2722 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2723
2724 /* initialize Rx ring */
2725 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2726
2727 /* initialize Tx rings sizes */
2728 RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2729 RT2661_TX_RING_COUNT << 24 |
2730 RT2661_TX_RING_COUNT << 16 |
2731 RT2661_TX_RING_COUNT << 8 |
2732 RT2661_TX_RING_COUNT);
2733
2734 RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2735 RT2661_TX_DESC_WSIZE << 16 |
2736 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */
2737 RT2661_MGT_RING_COUNT);
2738
2739 /* initialize Rx rings */
2740 RAL_WRITE(sc, RT2661_RX_RING_CSR,
2741 RT2661_RX_DESC_BACK << 16 |
2742 RT2661_RX_DESC_WSIZE << 8 |
2743 RT2661_RX_RING_COUNT);
2744
2745 /* XXX: some magic here */
2746 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2747
2748 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2749 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2750
2751 /* load base address of Rx ring */
2752 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2753
2754 /* initialize MAC registers to default values */
2755 for (i = 0; i < N(rt2661_def_mac); i++)
2756 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2757
2758 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
2759 rt2661_set_macaddr(sc, ic->ic_myaddr);
2760
2761 /* set host ready */
2762 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2763 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2764
2765 /* wait for BBP/RF to wakeup */
2766 for (ntries = 0; ntries < 1000; ntries++) {
2767 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2768 break;
2769 DELAY(1000);
2770 }
2771 if (ntries == 1000) {
2772 printf("timeout waiting for BBP/RF to wakeup\n");
2773 rt2661_stop(ifp, 1);
2774 return EIO;
2775 }
2776
2777 if (rt2661_bbp_init(sc) != 0) {
2778 rt2661_stop(ifp, 1);
2779 return EIO;
2780 }
2781
2782 /* select default channel */
2783 sc->sc_curchan = ic->ic_curchan;
2784 rt2661_select_band(sc, sc->sc_curchan);
2785 rt2661_select_antenna(sc);
2786 rt2661_set_chan(sc, sc->sc_curchan);
2787
2788 /* update Rx filter */
2789 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2790
2791 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2792 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2793 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2794 RT2661_DROP_ACKCTS;
2795 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2796 tmp |= RT2661_DROP_TODS;
2797 if (!(ifp->if_flags & IFF_PROMISC))
2798 tmp |= RT2661_DROP_NOT_TO_ME;
2799 }
2800
2801 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2802
2803 /* clear STA registers */
2804 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, star, N(star));
2805
2806 /* initialize ASIC */
2807 RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2808
2809 /* clear any pending interrupt */
2810 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2811
2812 /* enable interrupts */
2813 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2814 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2815
2816 /* kick Rx */
2817 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2818
2819 ifp->if_flags &= ~IFF_OACTIVE;
2820 ifp->if_flags |= IFF_RUNNING;
2821
2822 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2823 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2824 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2825 } else
2826 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2827
2828 return 0;
2829 #undef N
2830 }
2831
2832 static void
2833 rt2661_stop(struct ifnet *ifp, int disable)
2834 {
2835 struct rt2661_softc *sc = ifp->if_softc;
2836 struct ieee80211com *ic = &sc->sc_ic;
2837 uint32_t tmp;
2838
2839 sc->sc_tx_timer = 0;
2840 ifp->if_timer = 0;
2841 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2842
2843 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
2844
2845 /* abort Tx (for all 5 Tx rings) */
2846 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2847
2848 /* disable Rx (value remains after reset!) */
2849 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2850 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2851
2852 /* reset ASIC */
2853 RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2854 RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2855
2856 /* disable interrupts */
2857 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
2858 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2859
2860 /* clear any pending interrupt */
2861 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2862 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2863
2864 /* reset Tx and Rx rings */
2865 rt2661_reset_tx_ring(sc, &sc->txq[0]);
2866 rt2661_reset_tx_ring(sc, &sc->txq[1]);
2867 rt2661_reset_tx_ring(sc, &sc->txq[2]);
2868 rt2661_reset_tx_ring(sc, &sc->txq[3]);
2869 rt2661_reset_tx_ring(sc, &sc->mgtq);
2870 rt2661_reset_rx_ring(sc, &sc->rxq);
2871
2872 /* for CardBus, power down the socket */
2873 if (disable && sc->sc_disable != NULL) {
2874 if (sc->sc_flags & RT2661_ENABLED) {
2875 (*sc->sc_disable)(sc);
2876 sc->sc_flags &= ~(RT2661_ENABLED | RT2661_FWLOADED);
2877 }
2878 }
2879 }
2880
2881 static int
2882 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2883 {
2884 int ntries;
2885
2886 /* reset 8051 */
2887 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2888
2889 /* cancel any pending Host to MCU command */
2890 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2891 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2892 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2893
2894 /* write 8051's microcode */
2895 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2896 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2897 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2898
2899 /* kick 8051's ass */
2900 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2901
2902 /* wait for 8051 to initialize */
2903 for (ntries = 0; ntries < 500; ntries++) {
2904 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2905 break;
2906 DELAY(100);
2907 }
2908 if (ntries == 500) {
2909 printf("timeout waiting for MCU to initialize\n");
2910 return EIO;
2911 }
2912 return 0;
2913 }
2914
2915 /*
2916 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2917 * false CCA count. This function is called periodically (every seconds) when
2918 * in the RUN state. Values taken from the reference driver.
2919 */
2920 static void
2921 rt2661_rx_tune(struct rt2661_softc *sc)
2922 {
2923 uint8_t bbp17;
2924 uint16_t cca;
2925 int lo, hi, dbm;
2926
2927 /*
2928 * Tuning range depends on operating band and on the presence of an
2929 * external low-noise amplifier.
2930 */
2931 lo = 0x20;
2932 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2933 lo += 0x08;
2934 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2935 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2936 lo += 0x10;
2937 hi = lo + 0x20;
2938
2939 dbm = sc->avg_rssi;
2940 /* retrieve false CCA count since last call (clear on read) */
2941 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2942
2943 DPRINTFN(2, ("RSSI=%ddBm false CCA=%d\n", dbm, cca));
2944 if (dbm < -74) {
2945 /* very bad RSSI, tune using false CCA count */
2946 bbp17 = sc->bbp17; /* current value */
2947
2948 hi -= 2 * (-74 - dbm);
2949 if (hi < lo)
2950 hi = lo;
2951
2952 if (bbp17 > hi)
2953 bbp17 = hi;
2954 else if (cca > 512)
2955 bbp17 = min(bbp17 + 1, hi);
2956 else if (cca < 100)
2957 bbp17 = max(bbp17 - 1, lo);
2958 } else if (dbm < -66) {
2959 bbp17 = lo + 0x08;
2960 } else if (dbm < -58) {
2961 bbp17 = lo + 0x10;
2962 } else if (dbm < -35) {
2963 bbp17 = hi;
2964 } else { /* very good RSSI >= -35dBm */
2965 bbp17 = 0x60; /* very low sensitivity */
2966 }
2967
2968 if (bbp17 != sc->bbp17) {
2969 DPRINTF(("BBP17 %x->%x\n", sc->bbp17, bbp17));
2970 rt2661_bbp_write(sc, 17, bbp17);
2971 sc->bbp17 = bbp17;
2972 }
2973 }
2974
2975 #ifdef notyet
2976 /*
2977 * Enter/Leave radar detection mode.
2978 * This is for 802.11h additional regulatory domains.
2979 */
2980 static void
2981 rt2661_radar_start(struct rt2661_softc *sc)
2982 {
2983 uint32_t tmp;
2984
2985 /* disable Rx */
2986 tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2987 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2988
2989 rt2661_bbp_write(sc, 82, 0x20);
2990 rt2661_bbp_write(sc, 83, 0x00);
2991 rt2661_bbp_write(sc, 84, 0x40);
2992
2993 /* save current BBP registers values */
2994 sc->bbp18 = rt2661_bbp_read(sc, 18);
2995 sc->bbp21 = rt2661_bbp_read(sc, 21);
2996 sc->bbp22 = rt2661_bbp_read(sc, 22);
2997 sc->bbp16 = rt2661_bbp_read(sc, 16);
2998 sc->bbp17 = rt2661_bbp_read(sc, 17);
2999 sc->bbp64 = rt2661_bbp_read(sc, 64);
3000
3001 rt2661_bbp_write(sc, 18, 0xff);
3002 rt2661_bbp_write(sc, 21, 0x3f);
3003 rt2661_bbp_write(sc, 22, 0x3f);
3004 rt2661_bbp_write(sc, 16, 0xbd);
3005 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
3006 rt2661_bbp_write(sc, 64, 0x21);
3007
3008 /* restore Rx filter */
3009 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
3010 }
3011
3012 static int
3013 rt2661_radar_stop(struct rt2661_softc *sc)
3014 {
3015 uint8_t bbp66;
3016
3017 /* read radar detection result */
3018 bbp66 = rt2661_bbp_read(sc, 66);
3019
3020 /* restore BBP registers values */
3021 rt2661_bbp_write(sc, 16, sc->bbp16);
3022 rt2661_bbp_write(sc, 17, sc->bbp17);
3023 rt2661_bbp_write(sc, 18, sc->bbp18);
3024 rt2661_bbp_write(sc, 21, sc->bbp21);
3025 rt2661_bbp_write(sc, 22, sc->bbp22);
3026 rt2661_bbp_write(sc, 64, sc->bbp64);
3027
3028 return bbp66 == 1;
3029 }
3030 #endif
3031
3032 static int
3033 rt2661_prepare_beacon(struct rt2661_softc *sc)
3034 {
3035 struct ieee80211com *ic = &sc->sc_ic;
3036 struct rt2661_tx_desc desc;
3037 struct mbuf *m0;
3038 struct ieee80211_beacon_offsets bo;
3039 int rate;
3040
3041 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
3042
3043 if (m0 == NULL) {
3044 printf("%s: could not allocate beacon frame\n",
3045 sc->sc_dev.dv_xname);
3046 return ENOBUFS;
3047 }
3048
3049 /* send beacons at the lowest available rate */
3050 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
3051
3052 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
3053 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
3054
3055 /* copy the first 24 bytes of Tx descriptor into NIC memory */
3056 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
3057
3058 /* copy beacon header and payload into NIC memory */
3059 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
3060 mtod(m0, uint8_t *), m0->m_pkthdr.len);
3061
3062 m_freem(m0);
3063
3064 return 0;
3065 }
3066
3067 /*
3068 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
3069 * and HostAP operating modes.
3070 */
3071 static void
3072 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
3073 {
3074 struct ieee80211com *ic = &sc->sc_ic;
3075 uint32_t tmp;
3076
3077 if (ic->ic_opmode != IEEE80211_M_STA) {
3078 /*
3079 * Change default 16ms TBTT adjustment to 8ms.
3080 * Must be done before enabling beacon generation.
3081 */
3082 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
3083 }
3084
3085 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
3086
3087 /* set beacon interval (in 1/16ms unit) */
3088 tmp |= ic->ic_bss->ni_intval * 16;
3089
3090 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
3091 if (ic->ic_opmode == IEEE80211_M_STA)
3092 tmp |= RT2661_TSF_MODE(1);
3093 else
3094 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
3095
3096 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
3097 }
3098
3099 /*
3100 * Retrieve the "Received Signal Strength Indicator" from the raw values
3101 * contained in Rx descriptors. The computation depends on which band the
3102 * frame was received. Correction values taken from the reference driver.
3103 */
3104 static int
3105 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
3106 {
3107 int lna, agc, rssi;
3108
3109 lna = (raw >> 5) & 0x3;
3110 agc = raw & 0x1f;
3111
3112 rssi = 2 * agc;
3113
3114 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
3115 rssi += sc->rssi_2ghz_corr;
3116
3117 if (lna == 1)
3118 rssi -= 64;
3119 else if (lna == 2)
3120 rssi -= 74;
3121 else if (lna == 3)
3122 rssi -= 90;
3123 } else {
3124 rssi += sc->rssi_5ghz_corr;
3125
3126 if (lna == 1)
3127 rssi -= 64;
3128 else if (lna == 2)
3129 rssi -= 86;
3130 else if (lna == 3)
3131 rssi -= 100;
3132 }
3133 return rssi;
3134 }
3135