rtl8169.c revision 1.11 1 1.11 yamt /* $NetBSD: rtl8169.c,v 1.11 2005/02/23 09:20:46 yamt Exp $ */
2 1.1 jonathan
3 1.1 jonathan /*
4 1.1 jonathan * Copyright (c) 1997, 1998-2003
5 1.1 jonathan * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 1.1 jonathan *
7 1.1 jonathan * Redistribution and use in source and binary forms, with or without
8 1.1 jonathan * modification, are permitted provided that the following conditions
9 1.1 jonathan * are met:
10 1.1 jonathan * 1. Redistributions of source code must retain the above copyright
11 1.1 jonathan * notice, this list of conditions and the following disclaimer.
12 1.1 jonathan * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jonathan * notice, this list of conditions and the following disclaimer in the
14 1.1 jonathan * documentation and/or other materials provided with the distribution.
15 1.1 jonathan * 3. All advertising materials mentioning features or use of this software
16 1.1 jonathan * must display the following acknowledgement:
17 1.1 jonathan * This product includes software developed by Bill Paul.
18 1.1 jonathan * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 jonathan * may be used to endorse or promote products derived from this software
20 1.1 jonathan * without specific prior written permission.
21 1.1 jonathan *
22 1.1 jonathan * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 jonathan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 jonathan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 jonathan * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 jonathan * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 jonathan * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 jonathan * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 jonathan * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 jonathan * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 jonathan * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 jonathan * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 jonathan */
34 1.1 jonathan
35 1.1 jonathan #include <sys/cdefs.h>
36 1.1 jonathan /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37 1.1 jonathan
38 1.1 jonathan /*
39 1.1 jonathan * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 1.1 jonathan *
41 1.1 jonathan * Written by Bill Paul <wpaul (at) windriver.com>
42 1.1 jonathan * Senior Networking Software Engineer
43 1.1 jonathan * Wind River Systems
44 1.1 jonathan */
45 1.1 jonathan
46 1.1 jonathan /*
47 1.1 jonathan * This driver is designed to support RealTek's next generation of
48 1.1 jonathan * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 1.1 jonathan * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 1.1 jonathan * and the RTL8110S.
51 1.1 jonathan *
52 1.1 jonathan * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 1.1 jonathan * with the older 8139 family, however it also supports a special
54 1.1 jonathan * C+ mode of operation that provides several new performance enhancing
55 1.1 jonathan * features. These include:
56 1.1 jonathan *
57 1.1 jonathan * o Descriptor based DMA mechanism. Each descriptor represents
58 1.1 jonathan * a single packet fragment. Data buffers may be aligned on
59 1.1 jonathan * any byte boundary.
60 1.1 jonathan *
61 1.1 jonathan * o 64-bit DMA
62 1.1 jonathan *
63 1.1 jonathan * o TCP/IP checksum offload for both RX and TX
64 1.1 jonathan *
65 1.1 jonathan * o High and normal priority transmit DMA rings
66 1.1 jonathan *
67 1.1 jonathan * o VLAN tag insertion and extraction
68 1.1 jonathan *
69 1.1 jonathan * o TCP large send (segmentation offload)
70 1.1 jonathan *
71 1.1 jonathan * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 1.1 jonathan * programming API is fairly straightforward. The RX filtering, EEPROM
73 1.1 jonathan * access and PHY access is the same as it is on the older 8139 series
74 1.1 jonathan * chips.
75 1.1 jonathan *
76 1.1 jonathan * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 1.1 jonathan * same programming API and feature set as the 8139C+ with the following
78 1.1 jonathan * differences and additions:
79 1.1 jonathan *
80 1.1 jonathan * o 1000Mbps mode
81 1.1 jonathan *
82 1.1 jonathan * o Jumbo frames
83 1.1 jonathan *
84 1.1 jonathan * o GMII and TBI ports/registers for interfacing with copper
85 1.1 jonathan * or fiber PHYs
86 1.1 jonathan *
87 1.1 jonathan * o RX and TX DMA rings can have up to 1024 descriptors
88 1.1 jonathan * (the 8139C+ allows a maximum of 64)
89 1.1 jonathan *
90 1.1 jonathan * o Slight differences in register layout from the 8139C+
91 1.1 jonathan *
92 1.1 jonathan * The TX start and timer interrupt registers are at different locations
93 1.1 jonathan * on the 8169 than they are on the 8139C+. Also, the status word in the
94 1.1 jonathan * RX descriptor has a slightly different bit layout. The 8169 does not
95 1.1 jonathan * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 1.1 jonathan * copper gigE PHY.
97 1.1 jonathan *
98 1.1 jonathan * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 1.1 jonathan * (the 'S' stands for 'single-chip'). These devices have the same
100 1.1 jonathan * programming API as the older 8169, but also have some vendor-specific
101 1.1 jonathan * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 1.1 jonathan * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 1.1 jonathan *
104 1.1 jonathan * This driver takes advantage of the RX and TX checksum offload and
105 1.1 jonathan * VLAN tag insertion/extraction features. It also implements TX
106 1.1 jonathan * interrupt moderation using the timer interrupt registers, which
107 1.1 jonathan * significantly reduces TX interrupt load. There is also support
108 1.1 jonathan * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 1.1 jonathan * jumbo frames larger than 7.5K, so the max MTU possible with this
110 1.1 jonathan * driver is 7500 bytes.
111 1.1 jonathan */
112 1.1 jonathan
113 1.1 jonathan #include "bpfilter.h"
114 1.1 jonathan #include "vlan.h"
115 1.1 jonathan
116 1.1 jonathan #include <sys/param.h>
117 1.1 jonathan #include <sys/endian.h>
118 1.1 jonathan #include <sys/systm.h>
119 1.1 jonathan #include <sys/sockio.h>
120 1.1 jonathan #include <sys/mbuf.h>
121 1.1 jonathan #include <sys/malloc.h>
122 1.1 jonathan #include <sys/kernel.h>
123 1.1 jonathan #include <sys/socket.h>
124 1.1 jonathan #include <sys/device.h>
125 1.1 jonathan
126 1.1 jonathan #include <net/if.h>
127 1.1 jonathan #include <net/if_arp.h>
128 1.1 jonathan #include <net/if_dl.h>
129 1.1 jonathan #include <net/if_ether.h>
130 1.1 jonathan #include <net/if_media.h>
131 1.1 jonathan #include <net/if_vlanvar.h>
132 1.1 jonathan
133 1.1 jonathan #if NBPFILTER > 0
134 1.1 jonathan #include <net/bpf.h>
135 1.1 jonathan #endif
136 1.1 jonathan
137 1.1 jonathan #include <machine/bus.h>
138 1.1 jonathan
139 1.1 jonathan #include <dev/mii/mii.h>
140 1.1 jonathan #include <dev/mii/miivar.h>
141 1.1 jonathan
142 1.1 jonathan #include <dev/pci/pcireg.h>
143 1.1 jonathan #include <dev/pci/pcivar.h>
144 1.1 jonathan #include <dev/pci/pcidevs.h>
145 1.1 jonathan
146 1.1 jonathan #include <dev/ic/rtl81x9reg.h>
147 1.1 jonathan #include <dev/ic/rtl81x9var.h>
148 1.1 jonathan
149 1.1 jonathan #include <dev/ic/rtl8169var.h>
150 1.1 jonathan
151 1.1 jonathan
152 1.4 kanaoka static int re_encap(struct rtk_softc *, struct mbuf *, int *);
153 1.1 jonathan
154 1.4 kanaoka static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 1.4 kanaoka static int re_rx_list_init(struct rtk_softc *);
156 1.4 kanaoka static int re_tx_list_init(struct rtk_softc *);
157 1.4 kanaoka static void re_rxeof(struct rtk_softc *);
158 1.4 kanaoka static void re_txeof(struct rtk_softc *);
159 1.4 kanaoka static void re_tick(void *);
160 1.4 kanaoka static void re_start(struct ifnet *);
161 1.4 kanaoka static int re_ioctl(struct ifnet *, u_long, caddr_t);
162 1.4 kanaoka static int re_init(struct ifnet *);
163 1.4 kanaoka static void re_stop(struct ifnet *, int);
164 1.4 kanaoka static void re_watchdog(struct ifnet *);
165 1.4 kanaoka
166 1.4 kanaoka static void re_shutdown(void *);
167 1.4 kanaoka static int re_enable(struct rtk_softc *);
168 1.4 kanaoka static void re_disable(struct rtk_softc *);
169 1.4 kanaoka static void re_power(int, void *);
170 1.4 kanaoka
171 1.4 kanaoka static int re_ifmedia_upd(struct ifnet *);
172 1.4 kanaoka static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
173 1.4 kanaoka
174 1.4 kanaoka static int re_gmii_readreg(struct device *, int, int);
175 1.4 kanaoka static void re_gmii_writereg(struct device *, int, int, int);
176 1.4 kanaoka
177 1.4 kanaoka static int re_miibus_readreg(struct device *, int, int);
178 1.4 kanaoka static void re_miibus_writereg(struct device *, int, int, int);
179 1.4 kanaoka static void re_miibus_statchg(struct device *);
180 1.1 jonathan
181 1.4 kanaoka static void re_reset(struct rtk_softc *);
182 1.1 jonathan
183 1.1 jonathan static int
184 1.1 jonathan re_gmii_readreg(struct device *self, int phy, int reg)
185 1.1 jonathan {
186 1.1 jonathan struct rtk_softc *sc = (void *)self;
187 1.1 jonathan u_int32_t rval;
188 1.1 jonathan int i;
189 1.1 jonathan
190 1.1 jonathan if (phy != 7)
191 1.4 kanaoka return 0;
192 1.1 jonathan
193 1.1 jonathan /* Let the rgephy driver read the GMEDIASTAT register */
194 1.1 jonathan
195 1.1 jonathan if (reg == RTK_GMEDIASTAT) {
196 1.1 jonathan rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
197 1.4 kanaoka return rval;
198 1.1 jonathan }
199 1.1 jonathan
200 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
201 1.1 jonathan DELAY(1000);
202 1.1 jonathan
203 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
204 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
205 1.1 jonathan if (rval & RTK_PHYAR_BUSY)
206 1.1 jonathan break;
207 1.1 jonathan DELAY(100);
208 1.1 jonathan }
209 1.1 jonathan
210 1.1 jonathan if (i == RTK_TIMEOUT) {
211 1.4 kanaoka aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
212 1.4 kanaoka return 0;
213 1.1 jonathan }
214 1.1 jonathan
215 1.4 kanaoka return rval & RTK_PHYAR_PHYDATA;
216 1.1 jonathan }
217 1.1 jonathan
218 1.1 jonathan static void
219 1.1 jonathan re_gmii_writereg(struct device *dev, int phy, int reg, int data)
220 1.1 jonathan {
221 1.1 jonathan struct rtk_softc *sc = (void *)dev;
222 1.1 jonathan u_int32_t rval;
223 1.1 jonathan int i;
224 1.1 jonathan
225 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
226 1.1 jonathan (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
227 1.1 jonathan DELAY(1000);
228 1.1 jonathan
229 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
230 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
231 1.1 jonathan if (!(rval & RTK_PHYAR_BUSY))
232 1.1 jonathan break;
233 1.1 jonathan DELAY(100);
234 1.1 jonathan }
235 1.1 jonathan
236 1.1 jonathan if (i == RTK_TIMEOUT) {
237 1.4 kanaoka aprint_error("%s: PHY write reg %x <- %x failed\n",
238 1.4 kanaoka sc->sc_dev.dv_xname, reg, data);
239 1.1 jonathan return;
240 1.1 jonathan }
241 1.1 jonathan
242 1.1 jonathan return;
243 1.1 jonathan }
244 1.1 jonathan
245 1.1 jonathan static int
246 1.1 jonathan re_miibus_readreg(struct device *dev, int phy, int reg)
247 1.1 jonathan {
248 1.1 jonathan struct rtk_softc *sc = (void *)dev;
249 1.1 jonathan u_int16_t rval = 0;
250 1.1 jonathan u_int16_t re8139_reg = 0;
251 1.1 jonathan int s;
252 1.1 jonathan
253 1.1 jonathan s = splnet();
254 1.1 jonathan
255 1.1 jonathan if (sc->rtk_type == RTK_8169) {
256 1.1 jonathan rval = re_gmii_readreg(dev, phy, reg);
257 1.1 jonathan splx(s);
258 1.4 kanaoka return rval;
259 1.1 jonathan }
260 1.1 jonathan
261 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
262 1.1 jonathan if (phy) {
263 1.1 jonathan splx(s);
264 1.4 kanaoka return 0;
265 1.1 jonathan }
266 1.4 kanaoka switch (reg) {
267 1.1 jonathan case MII_BMCR:
268 1.1 jonathan re8139_reg = RTK_BMCR;
269 1.1 jonathan break;
270 1.1 jonathan case MII_BMSR:
271 1.1 jonathan re8139_reg = RTK_BMSR;
272 1.1 jonathan break;
273 1.1 jonathan case MII_ANAR:
274 1.1 jonathan re8139_reg = RTK_ANAR;
275 1.1 jonathan break;
276 1.1 jonathan case MII_ANER:
277 1.1 jonathan re8139_reg = RTK_ANER;
278 1.1 jonathan break;
279 1.1 jonathan case MII_ANLPAR:
280 1.1 jonathan re8139_reg = RTK_LPAR;
281 1.1 jonathan break;
282 1.1 jonathan case MII_PHYIDR1:
283 1.1 jonathan case MII_PHYIDR2:
284 1.1 jonathan splx(s);
285 1.4 kanaoka return 0;
286 1.1 jonathan /*
287 1.1 jonathan * Allow the rlphy driver to read the media status
288 1.1 jonathan * register. If we have a link partner which does not
289 1.1 jonathan * support NWAY, this is the register which will tell
290 1.1 jonathan * us the results of parallel detection.
291 1.1 jonathan */
292 1.1 jonathan case RTK_MEDIASTAT:
293 1.1 jonathan rval = CSR_READ_1(sc, RTK_MEDIASTAT);
294 1.1 jonathan splx(s);
295 1.4 kanaoka return rval;
296 1.1 jonathan default:
297 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
298 1.1 jonathan splx(s);
299 1.4 kanaoka return 0;
300 1.1 jonathan }
301 1.1 jonathan rval = CSR_READ_2(sc, re8139_reg);
302 1.1 jonathan splx(s);
303 1.4 kanaoka return rval;
304 1.1 jonathan }
305 1.1 jonathan
306 1.1 jonathan static void
307 1.1 jonathan re_miibus_writereg(struct device *dev, int phy, int reg, int data)
308 1.1 jonathan {
309 1.1 jonathan struct rtk_softc *sc = (void *)dev;
310 1.1 jonathan u_int16_t re8139_reg = 0;
311 1.1 jonathan int s;
312 1.1 jonathan
313 1.1 jonathan s = splnet();
314 1.1 jonathan
315 1.1 jonathan if (sc->rtk_type == RTK_8169) {
316 1.1 jonathan re_gmii_writereg(dev, phy, reg, data);
317 1.1 jonathan splx(s);
318 1.1 jonathan return;
319 1.1 jonathan }
320 1.1 jonathan
321 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
322 1.1 jonathan if (phy) {
323 1.1 jonathan splx(s);
324 1.1 jonathan return;
325 1.1 jonathan }
326 1.4 kanaoka switch (reg) {
327 1.1 jonathan case MII_BMCR:
328 1.1 jonathan re8139_reg = RTK_BMCR;
329 1.1 jonathan break;
330 1.1 jonathan case MII_BMSR:
331 1.1 jonathan re8139_reg = RTK_BMSR;
332 1.1 jonathan break;
333 1.1 jonathan case MII_ANAR:
334 1.1 jonathan re8139_reg = RTK_ANAR;
335 1.1 jonathan break;
336 1.1 jonathan case MII_ANER:
337 1.1 jonathan re8139_reg = RTK_ANER;
338 1.1 jonathan break;
339 1.1 jonathan case MII_ANLPAR:
340 1.1 jonathan re8139_reg = RTK_LPAR;
341 1.1 jonathan break;
342 1.1 jonathan case MII_PHYIDR1:
343 1.1 jonathan case MII_PHYIDR2:
344 1.1 jonathan splx(s);
345 1.1 jonathan return;
346 1.1 jonathan break;
347 1.1 jonathan default:
348 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
349 1.1 jonathan splx(s);
350 1.1 jonathan return;
351 1.1 jonathan }
352 1.1 jonathan CSR_WRITE_2(sc, re8139_reg, data);
353 1.1 jonathan splx(s);
354 1.1 jonathan return;
355 1.1 jonathan }
356 1.1 jonathan
357 1.1 jonathan static void
358 1.1 jonathan re_miibus_statchg(struct device *dev)
359 1.1 jonathan {
360 1.1 jonathan
361 1.1 jonathan return;
362 1.1 jonathan }
363 1.1 jonathan
364 1.1 jonathan static void
365 1.1 jonathan re_reset(struct rtk_softc *sc)
366 1.1 jonathan {
367 1.1 jonathan register int i;
368 1.1 jonathan
369 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
370 1.1 jonathan
371 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
372 1.1 jonathan DELAY(10);
373 1.1 jonathan if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
374 1.1 jonathan break;
375 1.1 jonathan }
376 1.1 jonathan if (i == RTK_TIMEOUT)
377 1.4 kanaoka aprint_error("%s: reset never completed!\n",
378 1.4 kanaoka sc->sc_dev.dv_xname);
379 1.1 jonathan
380 1.1 jonathan /*
381 1.1 jonathan * NB: Realtek-supplied Linux driver does this only for
382 1.1 jonathan * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
383 1.1 jonathan */
384 1.4 kanaoka if (1) /* XXX check softc flag for 8169s version */
385 1.4 kanaoka CSR_WRITE_1(sc, 0x82, 1);
386 1.1 jonathan
387 1.1 jonathan return;
388 1.1 jonathan }
389 1.1 jonathan
390 1.1 jonathan /*
391 1.1 jonathan * The following routine is designed to test for a defect on some
392 1.1 jonathan * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
393 1.1 jonathan * lines connected to the bus, however for a 32-bit only card, they
394 1.1 jonathan * should be pulled high. The result of this defect is that the
395 1.1 jonathan * NIC will not work right if you plug it into a 64-bit slot: DMA
396 1.1 jonathan * operations will be done with 64-bit transfers, which will fail
397 1.1 jonathan * because the 64-bit data lines aren't connected.
398 1.1 jonathan *
399 1.1 jonathan * There's no way to work around this (short of talking a soldering
400 1.1 jonathan * iron to the board), however we can detect it. The method we use
401 1.1 jonathan * here is to put the NIC into digital loopback mode, set the receiver
402 1.1 jonathan * to promiscuous mode, and then try to send a frame. We then compare
403 1.1 jonathan * the frame data we sent to what was received. If the data matches,
404 1.1 jonathan * then the NIC is working correctly, otherwise we know the user has
405 1.1 jonathan * a defective NIC which has been mistakenly plugged into a 64-bit PCI
406 1.1 jonathan * slot. In the latter case, there's no way the NIC can work correctly,
407 1.1 jonathan * so we print out a message on the console and abort the device attach.
408 1.1 jonathan */
409 1.1 jonathan
410 1.6 kanaoka int
411 1.1 jonathan re_diag(struct rtk_softc *sc)
412 1.1 jonathan {
413 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
414 1.1 jonathan struct mbuf *m0;
415 1.1 jonathan struct ether_header *eh;
416 1.1 jonathan struct rtk_desc *cur_rx;
417 1.1 jonathan bus_dmamap_t dmamap;
418 1.1 jonathan u_int16_t status;
419 1.1 jonathan u_int32_t rxstat;
420 1.1 jonathan int total_len, i, s, error = 0;
421 1.1 jonathan u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
422 1.1 jonathan u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
423 1.1 jonathan
424 1.1 jonathan /* Allocate a single mbuf */
425 1.1 jonathan
426 1.1 jonathan MGETHDR(m0, M_DONTWAIT, MT_DATA);
427 1.1 jonathan if (m0 == NULL)
428 1.4 kanaoka return ENOBUFS;
429 1.1 jonathan
430 1.1 jonathan /*
431 1.1 jonathan * Initialize the NIC in test mode. This sets the chip up
432 1.1 jonathan * so that it can send and receive frames, but performs the
433 1.1 jonathan * following special functions:
434 1.1 jonathan * - Puts receiver in promiscuous mode
435 1.1 jonathan * - Enables digital loopback mode
436 1.1 jonathan * - Leaves interrupts turned off
437 1.1 jonathan */
438 1.1 jonathan
439 1.1 jonathan ifp->if_flags |= IFF_PROMISC;
440 1.1 jonathan sc->rtk_testmode = 1;
441 1.1 jonathan re_init(ifp);
442 1.6 kanaoka re_stop(ifp, 0);
443 1.1 jonathan DELAY(100000);
444 1.1 jonathan re_init(ifp);
445 1.1 jonathan
446 1.1 jonathan /* Put some data in the mbuf */
447 1.1 jonathan
448 1.1 jonathan eh = mtod(m0, struct ether_header *);
449 1.4 kanaoka bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
450 1.4 kanaoka bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
451 1.1 jonathan eh->ether_type = htons(ETHERTYPE_IP);
452 1.1 jonathan m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
453 1.1 jonathan
454 1.1 jonathan /*
455 1.1 jonathan * Queue the packet, start transmission.
456 1.1 jonathan */
457 1.1 jonathan
458 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
459 1.1 jonathan s = splnet();
460 1.1 jonathan IF_ENQUEUE(&ifp->if_snd, m0);
461 1.1 jonathan re_start(ifp);
462 1.1 jonathan splx(s);
463 1.1 jonathan m0 = NULL;
464 1.1 jonathan
465 1.1 jonathan /* Wait for it to propagate through the chip */
466 1.1 jonathan
467 1.1 jonathan DELAY(100000);
468 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
469 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
470 1.4 kanaoka if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
471 1.4 kanaoka (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
472 1.1 jonathan break;
473 1.1 jonathan DELAY(10);
474 1.1 jonathan }
475 1.1 jonathan if (i == RTK_TIMEOUT) {
476 1.4 kanaoka aprint_error("%s: diagnostic failed, failed to receive packet "
477 1.1 jonathan "in loopback mode\n", sc->sc_dev.dv_xname);
478 1.1 jonathan error = EIO;
479 1.1 jonathan goto done;
480 1.1 jonathan }
481 1.1 jonathan
482 1.1 jonathan /*
483 1.1 jonathan * The packet should have been dumped into the first
484 1.1 jonathan * entry in the RX DMA ring. Grab it from there.
485 1.1 jonathan */
486 1.1 jonathan
487 1.1 jonathan dmamap = sc->rtk_ldata.rtk_rx_list_map;
488 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
489 1.1 jonathan dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
490 1.1 jonathan dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
491 1.1 jonathan bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
492 1.1 jonathan BUS_DMASYNC_POSTWRITE);
493 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
494 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[0]);
495 1.1 jonathan
496 1.1 jonathan m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
497 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
498 1.1 jonathan eh = mtod(m0, struct ether_header *);
499 1.1 jonathan
500 1.1 jonathan cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
501 1.1 jonathan total_len = RTK_RXBYTES(cur_rx);
502 1.1 jonathan rxstat = le32toh(cur_rx->rtk_cmdstat);
503 1.1 jonathan
504 1.1 jonathan if (total_len != ETHER_MIN_LEN) {
505 1.4 kanaoka aprint_error("%s: diagnostic failed, received short packet\n",
506 1.1 jonathan sc->sc_dev.dv_xname);
507 1.1 jonathan error = EIO;
508 1.1 jonathan goto done;
509 1.1 jonathan }
510 1.1 jonathan
511 1.1 jonathan /* Test that the received packet data matches what we sent. */
512 1.1 jonathan
513 1.1 jonathan if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
514 1.1 jonathan bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
515 1.1 jonathan ntohs(eh->ether_type) != ETHERTYPE_IP) {
516 1.4 kanaoka aprint_error("%s: WARNING, DMA FAILURE!\n",
517 1.4 kanaoka sc->sc_dev.dv_xname);
518 1.4 kanaoka aprint_error("%s: expected TX data: %s",
519 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(dst));
520 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
521 1.4 kanaoka aprint_error("%s: received RX data: %s",
522 1.1 jonathan sc->sc_dev.dv_xname,
523 1.1 jonathan ether_sprintf(eh->ether_dhost));
524 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
525 1.1 jonathan ntohs(eh->ether_type));
526 1.4 kanaoka aprint_error("%s: You may have a defective 32-bit NIC plugged "
527 1.1 jonathan "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
528 1.4 kanaoka aprint_error("%s: Please re-install the NIC in a 32-bit slot "
529 1.1 jonathan "for proper operation.\n", sc->sc_dev.dv_xname);
530 1.4 kanaoka aprint_error("%s: Read the re(4) man page for more details.\n",
531 1.1 jonathan sc->sc_dev.dv_xname);
532 1.1 jonathan error = EIO;
533 1.1 jonathan }
534 1.1 jonathan
535 1.1 jonathan done:
536 1.1 jonathan /* Turn interface off, release resources */
537 1.1 jonathan
538 1.1 jonathan sc->rtk_testmode = 0;
539 1.1 jonathan ifp->if_flags &= ~IFF_PROMISC;
540 1.6 kanaoka re_stop(ifp, 0);
541 1.1 jonathan if (m0 != NULL)
542 1.1 jonathan m_freem(m0);
543 1.1 jonathan
544 1.4 kanaoka return error;
545 1.1 jonathan }
546 1.1 jonathan
547 1.1 jonathan
548 1.1 jonathan /*
549 1.1 jonathan * Attach the interface. Allocate softc structures, do ifmedia
550 1.1 jonathan * setup and ethernet/BPF attach.
551 1.1 jonathan */
552 1.1 jonathan void
553 1.1 jonathan re_attach(struct rtk_softc *sc)
554 1.1 jonathan {
555 1.1 jonathan u_char eaddr[ETHER_ADDR_LEN];
556 1.1 jonathan u_int16_t val;
557 1.1 jonathan struct ifnet *ifp;
558 1.1 jonathan int error = 0, i, addr_len;
559 1.1 jonathan
560 1.5 kanaoka
561 1.1 jonathan /* XXX JRS: bus-attach-independent code begins approximately here */
562 1.1 jonathan
563 1.1 jonathan /* Reset the adapter. */
564 1.1 jonathan re_reset(sc);
565 1.1 jonathan
566 1.1 jonathan if (sc->rtk_type == RTK_8169) {
567 1.1 jonathan uint32_t hwrev;
568 1.1 jonathan
569 1.1 jonathan /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
570 1.1 jonathan hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
571 1.1 jonathan if (hwrev == (0x1 << 28)) {
572 1.1 jonathan sc->sc_rev = 4;
573 1.1 jonathan } else if (hwrev == (0x1 << 26)) {
574 1.1 jonathan sc->sc_rev = 3;
575 1.1 jonathan } else if (hwrev == (0x1 << 23)) {
576 1.1 jonathan sc->sc_rev = 2;
577 1.1 jonathan } else
578 1.1 jonathan sc->sc_rev = 1;
579 1.1 jonathan
580 1.1 jonathan /* Set RX length mask */
581 1.1 jonathan
582 1.1 jonathan sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
583 1.1 jonathan
584 1.1 jonathan /* Force station address autoload from the EEPROM */
585 1.1 jonathan
586 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
587 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
588 1.1 jonathan if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
589 1.1 jonathan break;
590 1.1 jonathan DELAY(100);
591 1.1 jonathan }
592 1.1 jonathan if (i == RTK_TIMEOUT)
593 1.4 kanaoka aprint_error("%s: eeprom autoload timed out\n",
594 1.4 kanaoka sc->sc_dev.dv_xname);
595 1.1 jonathan
596 1.4 kanaoka for (i = 0; i < ETHER_ADDR_LEN; i++)
597 1.4 kanaoka eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
598 1.1 jonathan } else {
599 1.1 jonathan
600 1.1 jonathan /* Set RX length mask */
601 1.1 jonathan
602 1.1 jonathan sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
603 1.1 jonathan
604 1.1 jonathan if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
605 1.1 jonathan addr_len = RTK_EEADDR_LEN1;
606 1.1 jonathan else
607 1.1 jonathan addr_len = RTK_EEADDR_LEN0;
608 1.1 jonathan
609 1.1 jonathan /*
610 1.1 jonathan * Get station address from the EEPROM.
611 1.1 jonathan */
612 1.1 jonathan for (i = 0; i < 3; i++) {
613 1.1 jonathan val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
614 1.1 jonathan eaddr[(i * 2) + 0] = val & 0xff;
615 1.1 jonathan eaddr[(i * 2) + 1] = val >> 8;
616 1.1 jonathan }
617 1.1 jonathan }
618 1.1 jonathan
619 1.1 jonathan aprint_normal("%s: Ethernet address %s\n",
620 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(eaddr));
621 1.1 jonathan
622 1.1 jonathan
623 1.5 kanaoka /* Allocate DMA'able memory for the TX ring */
624 1.5 kanaoka if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
625 1.5 kanaoka RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
626 1.5 kanaoka 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
627 1.5 kanaoka aprint_error("%s: can't allocate tx listseg, error = %d\n",
628 1.5 kanaoka sc->sc_dev.dv_xname, error);
629 1.5 kanaoka goto fail_0;
630 1.5 kanaoka }
631 1.5 kanaoka
632 1.5 kanaoka /* Load the map for the TX ring. */
633 1.5 kanaoka if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
634 1.5 kanaoka sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ,
635 1.5 kanaoka (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
636 1.5 kanaoka BUS_DMA_NOWAIT)) != 0) {
637 1.5 kanaoka aprint_error("%s: can't map tx list, error = %d\n",
638 1.5 kanaoka sc->sc_dev.dv_xname, error);
639 1.5 kanaoka goto fail_1;
640 1.5 kanaoka }
641 1.5 kanaoka memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
642 1.5 kanaoka
643 1.5 kanaoka if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
644 1.5 kanaoka RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
645 1.5 kanaoka &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
646 1.5 kanaoka aprint_error("%s: can't create tx list map, error = %d\n",
647 1.5 kanaoka sc->sc_dev.dv_xname, error);
648 1.5 kanaoka goto fail_2;
649 1.5 kanaoka }
650 1.5 kanaoka
651 1.5 kanaoka
652 1.5 kanaoka if ((error = bus_dmamap_load(sc->sc_dmat,
653 1.5 kanaoka sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
654 1.5 kanaoka RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
655 1.5 kanaoka aprint_error("%s: can't load tx list, error = %d\n",
656 1.5 kanaoka sc->sc_dev.dv_xname, error);
657 1.5 kanaoka goto fail_3;
658 1.5 kanaoka }
659 1.5 kanaoka
660 1.5 kanaoka /* Create DMA maps for TX buffers */
661 1.5 kanaoka for (i = 0; i < RTK_TX_DESC_CNT; i++) {
662 1.5 kanaoka error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * RTK_NTXSEGS,
663 1.5 kanaoka RTK_NTXSEGS, MCLBYTES, 0, BUS_DMA_ALLOCNOW,
664 1.5 kanaoka &sc->rtk_ldata.rtk_tx_dmamap[i]);
665 1.5 kanaoka if (error) {
666 1.5 kanaoka aprint_error("%s: can't create DMA map for TX\n",
667 1.5 kanaoka sc->sc_dev.dv_xname);
668 1.5 kanaoka goto fail_4;
669 1.5 kanaoka }
670 1.5 kanaoka }
671 1.5 kanaoka
672 1.5 kanaoka /* Allocate DMA'able memory for the RX ring */
673 1.5 kanaoka if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
674 1.5 kanaoka RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
675 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
676 1.5 kanaoka aprint_error("%s: can't allocate rx listseg, error = %d\n",
677 1.5 kanaoka sc->sc_dev.dv_xname, error);
678 1.5 kanaoka goto fail_4;
679 1.5 kanaoka }
680 1.5 kanaoka
681 1.5 kanaoka /* Load the map for the RX ring. */
682 1.5 kanaoka if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
683 1.5 kanaoka sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
684 1.5 kanaoka (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
685 1.5 kanaoka BUS_DMA_NOWAIT)) != 0) {
686 1.5 kanaoka aprint_error("%s: can't map rx list, error = %d\n",
687 1.5 kanaoka sc->sc_dev.dv_xname, error);
688 1.5 kanaoka goto fail_5;
689 1.5 kanaoka }
690 1.5 kanaoka memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
691 1.5 kanaoka
692 1.5 kanaoka if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
693 1.5 kanaoka RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
694 1.5 kanaoka &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
695 1.5 kanaoka aprint_error("%s: can't create rx list map, error = %d\n",
696 1.5 kanaoka sc->sc_dev.dv_xname, error);
697 1.5 kanaoka goto fail_6;
698 1.5 kanaoka }
699 1.5 kanaoka
700 1.5 kanaoka if ((error = bus_dmamap_load(sc->sc_dmat,
701 1.5 kanaoka sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
702 1.5 kanaoka RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
703 1.5 kanaoka aprint_error("%s: can't load rx list, error = %d\n",
704 1.5 kanaoka sc->sc_dev.dv_xname, error);
705 1.5 kanaoka goto fail_7;
706 1.5 kanaoka }
707 1.5 kanaoka
708 1.5 kanaoka /* Create DMA maps for RX buffers */
709 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++) {
710 1.5 kanaoka error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
711 1.5 kanaoka 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
712 1.5 kanaoka if (error) {
713 1.5 kanaoka aprint_error("%s: can't create DMA map for RX\n",
714 1.5 kanaoka sc->sc_dev.dv_xname);
715 1.5 kanaoka goto fail_8;
716 1.5 kanaoka }
717 1.1 jonathan }
718 1.1 jonathan
719 1.6 kanaoka /*
720 1.6 kanaoka * Record interface as attached. From here, we should not fail.
721 1.6 kanaoka */
722 1.6 kanaoka sc->sc_flags |= RTK_ATTACHED;
723 1.6 kanaoka
724 1.1 jonathan ifp = &sc->ethercom.ec_if;
725 1.1 jonathan ifp->if_softc = sc;
726 1.1 jonathan strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
727 1.1 jonathan ifp->if_mtu = ETHERMTU;
728 1.1 jonathan ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
729 1.1 jonathan ifp->if_ioctl = re_ioctl;
730 1.1 jonathan sc->ethercom.ec_capabilities |=
731 1.1 jonathan ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
732 1.1 jonathan ifp->if_start = re_start;
733 1.3 kanaoka ifp->if_stop = re_stop;
734 1.1 jonathan ifp->if_capabilities |=
735 1.1 jonathan IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
736 1.1 jonathan ifp->if_watchdog = re_watchdog;
737 1.1 jonathan ifp->if_init = re_init;
738 1.1 jonathan if (sc->rtk_type == RTK_8169)
739 1.1 jonathan ifp->if_baudrate = 1000000000;
740 1.1 jonathan else
741 1.1 jonathan ifp->if_baudrate = 100000000;
742 1.1 jonathan ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
743 1.1 jonathan ifp->if_capenable = ifp->if_capabilities;
744 1.1 jonathan IFQ_SET_READY(&ifp->if_snd);
745 1.1 jonathan
746 1.1 jonathan callout_init(&sc->rtk_tick_ch);
747 1.1 jonathan
748 1.1 jonathan /* Do MII setup */
749 1.1 jonathan sc->mii.mii_ifp = ifp;
750 1.1 jonathan sc->mii.mii_readreg = re_miibus_readreg;
751 1.1 jonathan sc->mii.mii_writereg = re_miibus_writereg;
752 1.1 jonathan sc->mii.mii_statchg = re_miibus_statchg;
753 1.1 jonathan ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
754 1.1 jonathan re_ifmedia_sts);
755 1.1 jonathan mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
756 1.1 jonathan MII_OFFSET_ANY, 0);
757 1.4 kanaoka ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
758 1.1 jonathan
759 1.1 jonathan /*
760 1.1 jonathan * Call MI attach routine.
761 1.1 jonathan */
762 1.1 jonathan if_attach(ifp);
763 1.1 jonathan ether_ifattach(ifp, eaddr);
764 1.1 jonathan
765 1.1 jonathan
766 1.1 jonathan /*
767 1.1 jonathan * Make sure the interface is shutdown during reboot.
768 1.1 jonathan */
769 1.1 jonathan sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
770 1.1 jonathan if (sc->sc_sdhook == NULL)
771 1.4 kanaoka aprint_error("%s: WARNING: unable to establish shutdown hook\n",
772 1.1 jonathan sc->sc_dev.dv_xname);
773 1.1 jonathan /*
774 1.1 jonathan * Add a suspend hook to make sure we come back up after a
775 1.1 jonathan * resume.
776 1.1 jonathan */
777 1.1 jonathan sc->sc_powerhook = powerhook_establish(re_power, sc);
778 1.1 jonathan if (sc->sc_powerhook == NULL)
779 1.4 kanaoka aprint_error("%s: WARNING: unable to establish power hook\n",
780 1.1 jonathan sc->sc_dev.dv_xname);
781 1.1 jonathan
782 1.1 jonathan
783 1.5 kanaoka return;
784 1.5 kanaoka
785 1.5 kanaoka fail_8:
786 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
787 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++)
788 1.5 kanaoka if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
789 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
790 1.5 kanaoka sc->rtk_ldata.rtk_rx_dmamap[i]);
791 1.5 kanaoka
792 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
793 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
794 1.5 kanaoka fail_7:
795 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
796 1.5 kanaoka fail_6:
797 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
798 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
799 1.5 kanaoka fail_5:
800 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
801 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
802 1.5 kanaoka
803 1.5 kanaoka fail_4:
804 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
805 1.5 kanaoka for (i = 0; i < RTK_TX_DESC_CNT; i++)
806 1.5 kanaoka if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
807 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
808 1.5 kanaoka sc->rtk_ldata.rtk_tx_dmamap[i]);
809 1.5 kanaoka
810 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
811 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
812 1.5 kanaoka fail_3:
813 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
814 1.5 kanaoka fail_2:
815 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
816 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
817 1.5 kanaoka fail_1:
818 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
819 1.5 kanaoka &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
820 1.5 kanaoka fail_0:
821 1.1 jonathan return;
822 1.1 jonathan }
823 1.1 jonathan
824 1.1 jonathan
825 1.1 jonathan /*
826 1.1 jonathan * re_activate:
827 1.1 jonathan * Handle device activation/deactivation requests.
828 1.1 jonathan */
829 1.1 jonathan int
830 1.1 jonathan re_activate(struct device *self, enum devact act)
831 1.1 jonathan {
832 1.1 jonathan struct rtk_softc *sc = (void *) self;
833 1.1 jonathan int s, error = 0;
834 1.1 jonathan
835 1.1 jonathan s = splnet();
836 1.1 jonathan switch (act) {
837 1.1 jonathan case DVACT_ACTIVATE:
838 1.1 jonathan error = EOPNOTSUPP;
839 1.1 jonathan break;
840 1.1 jonathan case DVACT_DEACTIVATE:
841 1.1 jonathan mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
842 1.1 jonathan if_deactivate(&sc->ethercom.ec_if);
843 1.1 jonathan break;
844 1.1 jonathan }
845 1.1 jonathan splx(s);
846 1.1 jonathan
847 1.4 kanaoka return error;
848 1.1 jonathan }
849 1.1 jonathan
850 1.1 jonathan /*
851 1.1 jonathan * re_detach:
852 1.1 jonathan * Detach a rtk interface.
853 1.1 jonathan */
854 1.1 jonathan int
855 1.1 jonathan re_detach(struct rtk_softc *sc)
856 1.1 jonathan {
857 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
858 1.5 kanaoka int i;
859 1.1 jonathan
860 1.1 jonathan /*
861 1.1 jonathan * Succeed now if there isn't any work to do.
862 1.1 jonathan */
863 1.1 jonathan if ((sc->sc_flags & RTK_ATTACHED) == 0)
864 1.4 kanaoka return 0;
865 1.1 jonathan
866 1.1 jonathan /* Unhook our tick handler. */
867 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
868 1.1 jonathan
869 1.1 jonathan /* Detach all PHYs. */
870 1.1 jonathan mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
871 1.1 jonathan
872 1.1 jonathan /* Delete all remaining media. */
873 1.1 jonathan ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
874 1.1 jonathan
875 1.1 jonathan ether_ifdetach(ifp);
876 1.1 jonathan if_detach(ifp);
877 1.1 jonathan
878 1.1 jonathan /* XXX undo re_allocmem() */
879 1.1 jonathan
880 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
881 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++)
882 1.5 kanaoka if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
883 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
884 1.5 kanaoka sc->rtk_ldata.rtk_rx_dmamap[i]);
885 1.5 kanaoka
886 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
887 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
888 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
889 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
890 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
891 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
892 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
893 1.5 kanaoka
894 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
895 1.5 kanaoka for (i = 0; i < RTK_TX_DESC_CNT; i++)
896 1.5 kanaoka if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
897 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
898 1.5 kanaoka sc->rtk_ldata.rtk_tx_dmamap[i]);
899 1.5 kanaoka
900 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
901 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
902 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
903 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
904 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
905 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
906 1.5 kanaoka &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
907 1.5 kanaoka
908 1.5 kanaoka
909 1.1 jonathan shutdownhook_disestablish(sc->sc_sdhook);
910 1.1 jonathan powerhook_disestablish(sc->sc_powerhook);
911 1.1 jonathan
912 1.4 kanaoka return 0;
913 1.1 jonathan }
914 1.1 jonathan
915 1.1 jonathan /*
916 1.1 jonathan * re_enable:
917 1.1 jonathan * Enable the RTL81X9 chip.
918 1.1 jonathan */
919 1.1 jonathan static int
920 1.1 jonathan re_enable(struct rtk_softc *sc)
921 1.1 jonathan {
922 1.1 jonathan if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
923 1.1 jonathan if ((*sc->sc_enable)(sc) != 0) {
924 1.4 kanaoka aprint_error("%s: device enable failed\n",
925 1.1 jonathan sc->sc_dev.dv_xname);
926 1.4 kanaoka return EIO;
927 1.1 jonathan }
928 1.1 jonathan sc->sc_flags |= RTK_ENABLED;
929 1.1 jonathan }
930 1.4 kanaoka return 0;
931 1.1 jonathan }
932 1.1 jonathan
933 1.1 jonathan /*
934 1.1 jonathan * re_disable:
935 1.1 jonathan * Disable the RTL81X9 chip.
936 1.1 jonathan */
937 1.1 jonathan static void
938 1.1 jonathan re_disable(struct rtk_softc *sc)
939 1.1 jonathan {
940 1.1 jonathan
941 1.1 jonathan if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
942 1.1 jonathan (*sc->sc_disable)(sc);
943 1.1 jonathan sc->sc_flags &= ~RTK_ENABLED;
944 1.1 jonathan }
945 1.1 jonathan }
946 1.1 jonathan
947 1.1 jonathan /*
948 1.1 jonathan * re_power:
949 1.1 jonathan * Power management (suspend/resume) hook.
950 1.1 jonathan */
951 1.1 jonathan void
952 1.1 jonathan re_power(int why, void *arg)
953 1.1 jonathan {
954 1.1 jonathan struct rtk_softc *sc = (void *) arg;
955 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
956 1.1 jonathan int s;
957 1.1 jonathan
958 1.1 jonathan s = splnet();
959 1.1 jonathan switch (why) {
960 1.1 jonathan case PWR_SUSPEND:
961 1.1 jonathan case PWR_STANDBY:
962 1.3 kanaoka re_stop(ifp, 0);
963 1.1 jonathan if (sc->sc_power != NULL)
964 1.1 jonathan (*sc->sc_power)(sc, why);
965 1.1 jonathan break;
966 1.1 jonathan case PWR_RESUME:
967 1.1 jonathan if (ifp->if_flags & IFF_UP) {
968 1.1 jonathan if (sc->sc_power != NULL)
969 1.1 jonathan (*sc->sc_power)(sc, why);
970 1.1 jonathan re_init(ifp);
971 1.1 jonathan }
972 1.1 jonathan break;
973 1.1 jonathan case PWR_SOFTSUSPEND:
974 1.1 jonathan case PWR_SOFTSTANDBY:
975 1.1 jonathan case PWR_SOFTRESUME:
976 1.1 jonathan break;
977 1.1 jonathan }
978 1.1 jonathan splx(s);
979 1.1 jonathan }
980 1.1 jonathan
981 1.1 jonathan
982 1.1 jonathan static int
983 1.1 jonathan re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
984 1.1 jonathan {
985 1.1 jonathan struct mbuf *n = NULL;
986 1.1 jonathan bus_dmamap_t map;
987 1.1 jonathan struct rtk_desc *d;
988 1.1 jonathan u_int32_t cmdstat;
989 1.1 jonathan int error;
990 1.1 jonathan
991 1.1 jonathan if (m == NULL) {
992 1.1 jonathan MGETHDR(n, M_DONTWAIT, MT_DATA);
993 1.1 jonathan if (n == NULL)
994 1.4 kanaoka return ENOBUFS;
995 1.1 jonathan m = n;
996 1.1 jonathan
997 1.1 jonathan MCLGET(m, M_DONTWAIT);
998 1.4 kanaoka if (!(m->m_flags & M_EXT)) {
999 1.1 jonathan m_freem(m);
1000 1.4 kanaoka return ENOBUFS;
1001 1.1 jonathan }
1002 1.1 jonathan } else
1003 1.1 jonathan m->m_data = m->m_ext.ext_buf;
1004 1.1 jonathan
1005 1.1 jonathan /*
1006 1.1 jonathan * Initialize mbuf length fields and fixup
1007 1.1 jonathan * alignment so that the frame payload is
1008 1.1 jonathan * longword aligned.
1009 1.1 jonathan */
1010 1.1 jonathan m->m_len = m->m_pkthdr.len = MCLBYTES;
1011 1.1 jonathan m_adj(m, RTK_ETHER_ALIGN);
1012 1.1 jonathan
1013 1.1 jonathan map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1014 1.4 kanaoka error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1015 1.1 jonathan
1016 1.1 jonathan if (error)
1017 1.1 jonathan goto out;
1018 1.1 jonathan
1019 1.1 jonathan d = &sc->rtk_ldata.rtk_rx_list[idx];
1020 1.1 jonathan if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1021 1.1 jonathan goto out;
1022 1.1 jonathan
1023 1.1 jonathan cmdstat = map->dm_segs[0].ds_len;
1024 1.1 jonathan d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1025 1.1 jonathan d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1026 1.1 jonathan cmdstat |= RTK_TDESC_CMD_SOF;
1027 1.1 jonathan if (idx == (RTK_RX_DESC_CNT - 1))
1028 1.1 jonathan cmdstat |= RTK_TDESC_CMD_EOR;
1029 1.1 jonathan d->rtk_cmdstat = htole32(cmdstat);
1030 1.1 jonathan
1031 1.1 jonathan d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1032 1.1 jonathan
1033 1.1 jonathan
1034 1.4 kanaoka sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1035 1.4 kanaoka htole32(RTK_RDESC_CMD_OWN);
1036 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1037 1.1 jonathan
1038 1.4 kanaoka bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1039 1.4 kanaoka sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1040 1.1 jonathan BUS_DMASYNC_PREREAD);
1041 1.1 jonathan
1042 1.1 jonathan return 0;
1043 1.1 jonathan out:
1044 1.1 jonathan if (n != NULL)
1045 1.1 jonathan m_freem(n);
1046 1.1 jonathan return ENOMEM;
1047 1.1 jonathan }
1048 1.1 jonathan
1049 1.1 jonathan static int
1050 1.1 jonathan re_tx_list_init(struct rtk_softc *sc)
1051 1.1 jonathan {
1052 1.1 jonathan memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
1053 1.1 jonathan memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
1054 1.1 jonathan (RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
1055 1.1 jonathan
1056 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1057 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map, 0,
1058 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1059 1.1 jonathan sc->rtk_ldata.rtk_tx_prodidx = 0;
1060 1.1 jonathan sc->rtk_ldata.rtk_tx_considx = 0;
1061 1.1 jonathan sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
1062 1.1 jonathan
1063 1.4 kanaoka return 0;
1064 1.1 jonathan }
1065 1.1 jonathan
1066 1.1 jonathan static int
1067 1.1 jonathan re_rx_list_init(struct rtk_softc *sc)
1068 1.1 jonathan {
1069 1.1 jonathan int i;
1070 1.1 jonathan
1071 1.1 jonathan memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1072 1.1 jonathan memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1073 1.1 jonathan (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1074 1.1 jonathan
1075 1.1 jonathan for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1076 1.1 jonathan if (re_newbuf(sc, i, NULL) == ENOBUFS)
1077 1.4 kanaoka return ENOBUFS;
1078 1.1 jonathan }
1079 1.1 jonathan
1080 1.1 jonathan /* Flush the RX descriptors */
1081 1.1 jonathan
1082 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1083 1.1 jonathan sc->rtk_ldata.rtk_rx_list_map,
1084 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1085 1.4 kanaoka BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1086 1.1 jonathan
1087 1.1 jonathan sc->rtk_ldata.rtk_rx_prodidx = 0;
1088 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1089 1.1 jonathan
1090 1.4 kanaoka return 0;
1091 1.1 jonathan }
1092 1.1 jonathan
1093 1.1 jonathan /*
1094 1.1 jonathan * RX handler for C+ and 8169. For the gigE chips, we support
1095 1.1 jonathan * the reception of jumbo frames that have been fragmented
1096 1.1 jonathan * across multiple 2K mbuf cluster buffers.
1097 1.1 jonathan */
1098 1.1 jonathan static void
1099 1.1 jonathan re_rxeof(struct rtk_softc *sc)
1100 1.1 jonathan {
1101 1.1 jonathan struct mbuf *m;
1102 1.1 jonathan struct ifnet *ifp;
1103 1.1 jonathan int i, total_len;
1104 1.1 jonathan struct rtk_desc *cur_rx;
1105 1.1 jonathan u_int32_t rxstat, rxvlan;
1106 1.1 jonathan
1107 1.1 jonathan ifp = &sc->ethercom.ec_if;
1108 1.1 jonathan i = sc->rtk_ldata.rtk_rx_prodidx;
1109 1.1 jonathan
1110 1.1 jonathan /* Invalidate the descriptor memory */
1111 1.1 jonathan
1112 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1113 1.1 jonathan sc->rtk_ldata.rtk_rx_list_map,
1114 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1115 1.1 jonathan BUS_DMASYNC_POSTREAD);
1116 1.1 jonathan
1117 1.1 jonathan while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1118 1.1 jonathan
1119 1.1 jonathan cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1120 1.1 jonathan m = sc->rtk_ldata.rtk_rx_mbuf[i];
1121 1.1 jonathan total_len = RTK_RXBYTES(cur_rx);
1122 1.1 jonathan rxstat = le32toh(cur_rx->rtk_cmdstat);
1123 1.1 jonathan rxvlan = le32toh(cur_rx->rtk_vlanctl);
1124 1.1 jonathan
1125 1.1 jonathan /* Invalidate the RX mbuf and unload its map */
1126 1.1 jonathan
1127 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1128 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i],
1129 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1130 1.1 jonathan BUS_DMASYNC_POSTWRITE);
1131 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
1132 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i]);
1133 1.1 jonathan
1134 1.1 jonathan if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1135 1.1 jonathan m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1136 1.1 jonathan if (sc->rtk_head == NULL)
1137 1.1 jonathan sc->rtk_head = sc->rtk_tail = m;
1138 1.1 jonathan else {
1139 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1140 1.1 jonathan sc->rtk_tail->m_next = m;
1141 1.1 jonathan sc->rtk_tail = m;
1142 1.1 jonathan }
1143 1.1 jonathan re_newbuf(sc, i, NULL);
1144 1.1 jonathan RTK_DESC_INC(i);
1145 1.1 jonathan continue;
1146 1.1 jonathan }
1147 1.1 jonathan
1148 1.1 jonathan /*
1149 1.1 jonathan * NOTE: for the 8139C+, the frame length field
1150 1.1 jonathan * is always 12 bits in size, but for the gigE chips,
1151 1.1 jonathan * it is 13 bits (since the max RX frame length is 16K).
1152 1.1 jonathan * Unfortunately, all 32 bits in the status word
1153 1.1 jonathan * were already used, so to make room for the extra
1154 1.1 jonathan * length bit, RealTek took out the 'frame alignment
1155 1.1 jonathan * error' bit and shifted the other status bits
1156 1.1 jonathan * over one slot. The OWN, EOR, FS and LS bits are
1157 1.1 jonathan * still in the same places. We have already extracted
1158 1.1 jonathan * the frame length and checked the OWN bit, so rather
1159 1.1 jonathan * than using an alternate bit mapping, we shift the
1160 1.1 jonathan * status bits one space to the right so we can evaluate
1161 1.1 jonathan * them using the 8169 status as though it was in the
1162 1.1 jonathan * same format as that of the 8139C+.
1163 1.1 jonathan */
1164 1.1 jonathan if (sc->rtk_type == RTK_8169)
1165 1.1 jonathan rxstat >>= 1;
1166 1.1 jonathan
1167 1.1 jonathan if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1168 1.1 jonathan ifp->if_ierrors++;
1169 1.1 jonathan /*
1170 1.1 jonathan * If this is part of a multi-fragment packet,
1171 1.1 jonathan * discard all the pieces.
1172 1.1 jonathan */
1173 1.1 jonathan if (sc->rtk_head != NULL) {
1174 1.1 jonathan m_freem(sc->rtk_head);
1175 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1176 1.1 jonathan }
1177 1.1 jonathan re_newbuf(sc, i, m);
1178 1.1 jonathan RTK_DESC_INC(i);
1179 1.1 jonathan continue;
1180 1.1 jonathan }
1181 1.1 jonathan
1182 1.1 jonathan /*
1183 1.1 jonathan * If allocating a replacement mbuf fails,
1184 1.1 jonathan * reload the current one.
1185 1.1 jonathan */
1186 1.1 jonathan
1187 1.1 jonathan if (re_newbuf(sc, i, NULL)) {
1188 1.1 jonathan ifp->if_ierrors++;
1189 1.1 jonathan if (sc->rtk_head != NULL) {
1190 1.1 jonathan m_freem(sc->rtk_head);
1191 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1192 1.1 jonathan }
1193 1.1 jonathan re_newbuf(sc, i, m);
1194 1.1 jonathan RTK_DESC_INC(i);
1195 1.1 jonathan continue;
1196 1.1 jonathan }
1197 1.1 jonathan
1198 1.1 jonathan RTK_DESC_INC(i);
1199 1.1 jonathan
1200 1.1 jonathan if (sc->rtk_head != NULL) {
1201 1.1 jonathan m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1202 1.1 jonathan /*
1203 1.1 jonathan * Special case: if there's 4 bytes or less
1204 1.1 jonathan * in this buffer, the mbuf can be discarded:
1205 1.1 jonathan * the last 4 bytes is the CRC, which we don't
1206 1.1 jonathan * care about anyway.
1207 1.1 jonathan */
1208 1.1 jonathan if (m->m_len <= ETHER_CRC_LEN) {
1209 1.1 jonathan sc->rtk_tail->m_len -=
1210 1.1 jonathan (ETHER_CRC_LEN - m->m_len);
1211 1.1 jonathan m_freem(m);
1212 1.1 jonathan } else {
1213 1.1 jonathan m->m_len -= ETHER_CRC_LEN;
1214 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1215 1.1 jonathan sc->rtk_tail->m_next = m;
1216 1.1 jonathan }
1217 1.1 jonathan m = sc->rtk_head;
1218 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1219 1.1 jonathan m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1220 1.1 jonathan } else
1221 1.1 jonathan m->m_pkthdr.len = m->m_len =
1222 1.1 jonathan (total_len - ETHER_CRC_LEN);
1223 1.1 jonathan
1224 1.1 jonathan ifp->if_ipackets++;
1225 1.1 jonathan m->m_pkthdr.rcvif = ifp;
1226 1.1 jonathan
1227 1.1 jonathan /* Do RX checksumming if enabled */
1228 1.1 jonathan
1229 1.1 jonathan if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
1230 1.1 jonathan
1231 1.1 jonathan /* Check IP header checksum */
1232 1.1 jonathan if (rxstat & RTK_RDESC_STAT_PROTOID)
1233 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1234 1.1 jonathan if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1235 1.4 kanaoka m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1236 1.1 jonathan }
1237 1.1 jonathan
1238 1.1 jonathan /* Check TCP/UDP checksum */
1239 1.1 jonathan if (RTK_TCPPKT(rxstat) &&
1240 1.1 jonathan (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
1241 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1242 1.1 jonathan if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1243 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1244 1.1 jonathan }
1245 1.1 jonathan if (RTK_UDPPKT(rxstat) &&
1246 1.1 jonathan (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
1247 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1248 1.1 jonathan if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1249 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1250 1.1 jonathan }
1251 1.1 jonathan
1252 1.1 jonathan if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1253 1.9 jdolecek VLAN_INPUT_TAG(ifp, m,
1254 1.9 jdolecek be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1255 1.9 jdolecek continue);
1256 1.1 jonathan }
1257 1.1 jonathan #if NBPFILTER > 0
1258 1.1 jonathan if (ifp->if_bpf)
1259 1.1 jonathan bpf_mtap(ifp->if_bpf, m);
1260 1.1 jonathan #endif
1261 1.1 jonathan (*ifp->if_input)(ifp, m);
1262 1.1 jonathan }
1263 1.1 jonathan
1264 1.1 jonathan /* Flush the RX DMA ring */
1265 1.1 jonathan
1266 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1267 1.1 jonathan sc->rtk_ldata.rtk_rx_list_map,
1268 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1269 1.4 kanaoka BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1270 1.1 jonathan
1271 1.1 jonathan sc->rtk_ldata.rtk_rx_prodidx = i;
1272 1.1 jonathan
1273 1.1 jonathan return;
1274 1.1 jonathan }
1275 1.1 jonathan
1276 1.1 jonathan static void
1277 1.1 jonathan re_txeof(struct rtk_softc *sc)
1278 1.1 jonathan {
1279 1.1 jonathan struct ifnet *ifp;
1280 1.1 jonathan u_int32_t txstat;
1281 1.1 jonathan int idx;
1282 1.1 jonathan
1283 1.1 jonathan ifp = &sc->ethercom.ec_if;
1284 1.1 jonathan idx = sc->rtk_ldata.rtk_tx_considx;
1285 1.1 jonathan
1286 1.1 jonathan /* Invalidate the TX descriptor list */
1287 1.1 jonathan
1288 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1289 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map,
1290 1.1 jonathan 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1291 1.1 jonathan BUS_DMASYNC_POSTREAD);
1292 1.1 jonathan
1293 1.1 jonathan while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
1294 1.1 jonathan
1295 1.1 jonathan txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
1296 1.1 jonathan if (txstat & RTK_TDESC_CMD_OWN)
1297 1.1 jonathan break;
1298 1.1 jonathan
1299 1.1 jonathan /*
1300 1.1 jonathan * We only stash mbufs in the last descriptor
1301 1.1 jonathan * in a fragment chain, which also happens to
1302 1.1 jonathan * be the only place where the TX status bits
1303 1.1 jonathan * are valid.
1304 1.1 jonathan */
1305 1.1 jonathan
1306 1.1 jonathan if (txstat & RTK_TDESC_CMD_EOF) {
1307 1.1 jonathan m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
1308 1.1 jonathan sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
1309 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
1310 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[idx]);
1311 1.4 kanaoka if (txstat & (RTK_TDESC_STAT_EXCESSCOL |
1312 1.1 jonathan RTK_TDESC_STAT_COLCNT))
1313 1.1 jonathan ifp->if_collisions++;
1314 1.1 jonathan if (txstat & RTK_TDESC_STAT_TXERRSUM)
1315 1.1 jonathan ifp->if_oerrors++;
1316 1.1 jonathan else
1317 1.1 jonathan ifp->if_opackets++;
1318 1.1 jonathan }
1319 1.1 jonathan sc->rtk_ldata.rtk_tx_free++;
1320 1.1 jonathan RTK_DESC_INC(idx);
1321 1.1 jonathan }
1322 1.1 jonathan
1323 1.1 jonathan /* No changes made to the TX ring, so no flush needed */
1324 1.1 jonathan
1325 1.1 jonathan if (idx != sc->rtk_ldata.rtk_tx_considx) {
1326 1.1 jonathan sc->rtk_ldata.rtk_tx_considx = idx;
1327 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1328 1.1 jonathan ifp->if_timer = 0;
1329 1.1 jonathan }
1330 1.1 jonathan
1331 1.1 jonathan /*
1332 1.1 jonathan * If not all descriptors have been released reaped yet,
1333 1.1 jonathan * reload the timer so that we will eventually get another
1334 1.1 jonathan * interrupt that will cause us to re-enter this routine.
1335 1.1 jonathan * This is done in case the transmitter has gone idle.
1336 1.1 jonathan */
1337 1.1 jonathan if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
1338 1.4 kanaoka CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1339 1.1 jonathan
1340 1.1 jonathan return;
1341 1.1 jonathan }
1342 1.1 jonathan
1343 1.1 jonathan /*
1344 1.1 jonathan * Stop all chip I/O so that the kernel's probe routines don't
1345 1.1 jonathan * get confused by errant DMAs when rebooting.
1346 1.1 jonathan */
1347 1.1 jonathan static void
1348 1.1 jonathan re_shutdown(void *vsc)
1349 1.1 jonathan
1350 1.1 jonathan {
1351 1.1 jonathan struct rtk_softc *sc = (struct rtk_softc *)vsc;
1352 1.1 jonathan
1353 1.3 kanaoka re_stop(&sc->ethercom.ec_if, 0);
1354 1.1 jonathan }
1355 1.1 jonathan
1356 1.1 jonathan
1357 1.1 jonathan static void
1358 1.1 jonathan re_tick(void *xsc)
1359 1.1 jonathan {
1360 1.1 jonathan struct rtk_softc *sc = xsc;
1361 1.1 jonathan int s;
1362 1.1 jonathan
1363 1.1 jonathan /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1364 1.1 jonathan s = splnet();
1365 1.1 jonathan
1366 1.1 jonathan mii_tick(&sc->mii);
1367 1.1 jonathan splx(s);
1368 1.1 jonathan
1369 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1370 1.1 jonathan }
1371 1.1 jonathan
1372 1.1 jonathan #ifdef DEVICE_POLLING
1373 1.1 jonathan static void
1374 1.1 jonathan re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1375 1.1 jonathan {
1376 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1377 1.1 jonathan
1378 1.1 jonathan RTK_LOCK(sc);
1379 1.1 jonathan if (!(ifp->if_capenable & IFCAP_POLLING)) {
1380 1.1 jonathan ether_poll_deregister(ifp);
1381 1.1 jonathan cmd = POLL_DEREGISTER;
1382 1.1 jonathan }
1383 1.1 jonathan if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1384 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1385 1.1 jonathan goto done;
1386 1.1 jonathan }
1387 1.1 jonathan
1388 1.1 jonathan sc->rxcycles = count;
1389 1.1 jonathan re_rxeof(sc);
1390 1.1 jonathan re_txeof(sc);
1391 1.1 jonathan
1392 1.1 jonathan if (ifp->if_snd.ifq_head != NULL)
1393 1.1 jonathan (*ifp->if_start)(ifp);
1394 1.1 jonathan
1395 1.1 jonathan if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1396 1.1 jonathan u_int16_t status;
1397 1.1 jonathan
1398 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1399 1.1 jonathan if (status == 0xffff)
1400 1.1 jonathan goto done;
1401 1.1 jonathan if (status)
1402 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1403 1.1 jonathan
1404 1.1 jonathan /*
1405 1.1 jonathan * XXX check behaviour on receiver stalls.
1406 1.1 jonathan */
1407 1.1 jonathan
1408 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1409 1.1 jonathan re_reset(sc);
1410 1.1 jonathan re_init(sc);
1411 1.1 jonathan }
1412 1.1 jonathan }
1413 1.1 jonathan done:
1414 1.1 jonathan RTK_UNLOCK(sc);
1415 1.1 jonathan }
1416 1.1 jonathan #endif /* DEVICE_POLLING */
1417 1.1 jonathan
1418 1.1 jonathan int
1419 1.1 jonathan re_intr(void *arg)
1420 1.1 jonathan {
1421 1.1 jonathan struct rtk_softc *sc = arg;
1422 1.1 jonathan struct ifnet *ifp;
1423 1.1 jonathan u_int16_t status;
1424 1.1 jonathan int handled = 0;
1425 1.1 jonathan
1426 1.1 jonathan ifp = &sc->ethercom.ec_if;
1427 1.1 jonathan
1428 1.1 jonathan if (!(ifp->if_flags & IFF_UP))
1429 1.1 jonathan return 0;
1430 1.1 jonathan
1431 1.1 jonathan #ifdef DEVICE_POLLING
1432 1.4 kanaoka if (ifp->if_flags & IFF_POLLING)
1433 1.1 jonathan goto done;
1434 1.1 jonathan if ((ifp->if_capenable & IFCAP_POLLING) &&
1435 1.1 jonathan ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1436 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1437 1.1 jonathan re_poll(ifp, 0, 1);
1438 1.1 jonathan goto done;
1439 1.1 jonathan }
1440 1.1 jonathan #endif /* DEVICE_POLLING */
1441 1.1 jonathan
1442 1.1 jonathan for (;;) {
1443 1.1 jonathan
1444 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1445 1.1 jonathan /* If the card has gone away the read returns 0xffff. */
1446 1.1 jonathan if (status == 0xffff)
1447 1.1 jonathan break;
1448 1.1 jonathan if (status) {
1449 1.1 jonathan handled = 1;
1450 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1451 1.1 jonathan }
1452 1.1 jonathan
1453 1.1 jonathan if ((status & RTK_INTRS_CPLUS) == 0)
1454 1.1 jonathan break;
1455 1.1 jonathan
1456 1.8 jdolecek if ((status & RTK_ISR_RX_OK) ||
1457 1.8 jdolecek (status & RTK_ISR_RX_ERR))
1458 1.1 jonathan re_rxeof(sc);
1459 1.1 jonathan
1460 1.1 jonathan if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1461 1.1 jonathan (status & RTK_ISR_TX_ERR) ||
1462 1.1 jonathan (status & RTK_ISR_TX_DESC_UNAVAIL))
1463 1.1 jonathan re_txeof(sc);
1464 1.1 jonathan
1465 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1466 1.1 jonathan re_reset(sc);
1467 1.1 jonathan re_init(ifp);
1468 1.1 jonathan }
1469 1.1 jonathan
1470 1.1 jonathan if (status & RTK_ISR_LINKCHG) {
1471 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
1472 1.1 jonathan re_tick(sc);
1473 1.1 jonathan }
1474 1.1 jonathan }
1475 1.1 jonathan
1476 1.4 kanaoka if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1477 1.4 kanaoka if (ifp->if_snd.ifq_head != NULL)
1478 1.4 kanaoka (*ifp->if_start)(ifp);
1479 1.1 jonathan
1480 1.1 jonathan #ifdef DEVICE_POLLING
1481 1.1 jonathan done:
1482 1.1 jonathan #endif
1483 1.1 jonathan
1484 1.1 jonathan return handled;
1485 1.1 jonathan }
1486 1.1 jonathan
1487 1.1 jonathan static int
1488 1.1 jonathan re_encap(struct rtk_softc *sc, struct mbuf *m_head, int *idx)
1489 1.1 jonathan {
1490 1.1 jonathan bus_dmamap_t map;
1491 1.1 jonathan int error, i, curidx;
1492 1.1 jonathan struct m_tag *mtag;
1493 1.1 jonathan struct rtk_desc *d;
1494 1.1 jonathan u_int32_t cmdstat, rtk_flags;
1495 1.1 jonathan
1496 1.1 jonathan if (sc->rtk_ldata.rtk_tx_free <= 4)
1497 1.4 kanaoka return EFBIG;
1498 1.1 jonathan
1499 1.1 jonathan /*
1500 1.1 jonathan * Set up checksum offload. Note: checksum offload bits must
1501 1.1 jonathan * appear in all descriptors of a multi-descriptor transmit
1502 1.1 jonathan * attempt. (This is according to testing done with an 8169
1503 1.1 jonathan * chip. I'm not sure if this is a requirement or a bug.)
1504 1.1 jonathan */
1505 1.1 jonathan
1506 1.1 jonathan rtk_flags = 0;
1507 1.1 jonathan
1508 1.1 jonathan if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1509 1.1 jonathan rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1510 1.1 jonathan if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1511 1.1 jonathan rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1512 1.1 jonathan if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1513 1.1 jonathan rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1514 1.1 jonathan
1515 1.1 jonathan map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
1516 1.1 jonathan error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1517 1.1 jonathan m_head, BUS_DMA_NOWAIT);
1518 1.1 jonathan
1519 1.1 jonathan if (error) {
1520 1.4 kanaoka aprint_error("%s: can't map mbuf (error %d)\n",
1521 1.1 jonathan sc->sc_dev.dv_xname, error);
1522 1.1 jonathan return ENOBUFS;
1523 1.1 jonathan }
1524 1.1 jonathan
1525 1.1 jonathan if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4)
1526 1.1 jonathan return ENOBUFS;
1527 1.1 jonathan /*
1528 1.1 jonathan * Map the segment array into descriptors. Note that we set the
1529 1.1 jonathan * start-of-frame and end-of-frame markers for either TX or RX, but
1530 1.1 jonathan * they really only have meaning in the TX case. (In the RX case,
1531 1.1 jonathan * it's the chip that tells us where packets begin and end.)
1532 1.1 jonathan * We also keep track of the end of the ring and set the
1533 1.1 jonathan * end-of-ring bits as needed, and we set the ownership bits
1534 1.1 jonathan * in all except the very first descriptor. (The caller will
1535 1.1 jonathan * set this descriptor later when it start transmission or
1536 1.1 jonathan * reception.)
1537 1.1 jonathan */
1538 1.1 jonathan i = 0;
1539 1.1 jonathan curidx = *idx;
1540 1.1 jonathan while (1) {
1541 1.1 jonathan d = &sc->rtk_ldata.rtk_tx_list[curidx];
1542 1.1 jonathan if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1543 1.1 jonathan return ENOBUFS;
1544 1.1 jonathan
1545 1.1 jonathan cmdstat = map->dm_segs[i].ds_len;
1546 1.1 jonathan d->rtk_bufaddr_lo =
1547 1.1 jonathan htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1548 1.1 jonathan d->rtk_bufaddr_hi =
1549 1.1 jonathan htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1550 1.1 jonathan if (i == 0)
1551 1.1 jonathan cmdstat |= RTK_TDESC_CMD_SOF;
1552 1.1 jonathan else
1553 1.1 jonathan cmdstat |= RTK_TDESC_CMD_OWN;
1554 1.1 jonathan if (curidx == (RTK_RX_DESC_CNT - 1))
1555 1.1 jonathan cmdstat |= RTK_TDESC_CMD_EOR;
1556 1.1 jonathan d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1557 1.1 jonathan i++;
1558 1.1 jonathan if (i == map->dm_nsegs)
1559 1.1 jonathan break;
1560 1.1 jonathan RTK_DESC_INC(curidx);
1561 1.1 jonathan }
1562 1.1 jonathan
1563 1.1 jonathan d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1564 1.1 jonathan
1565 1.1 jonathan /*
1566 1.1 jonathan * Insure that the map for this transmission
1567 1.1 jonathan * is placed at the array index of the last descriptor
1568 1.1 jonathan * in this chain.
1569 1.1 jonathan */
1570 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[*idx] =
1571 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[curidx];
1572 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
1573 1.1 jonathan sc->rtk_ldata.rtk_tx_mbuf[curidx] = m_head;
1574 1.1 jonathan sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1575 1.1 jonathan
1576 1.1 jonathan /*
1577 1.1 jonathan * Set up hardware VLAN tagging. Note: vlan tag info must
1578 1.1 jonathan * appear in the first descriptor of a multi-descriptor
1579 1.1 jonathan * transmission attempt.
1580 1.1 jonathan */
1581 1.1 jonathan
1582 1.9 jdolecek if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head)) != NULL) {
1583 1.1 jonathan sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
1584 1.9 jdolecek htole32(htons(VLAN_TAG_VALUE(mtag)) |
1585 1.1 jonathan RTK_TDESC_VLANCTL_TAG);
1586 1.9 jdolecek }
1587 1.1 jonathan
1588 1.1 jonathan /* Transfer ownership of packet to the chip. */
1589 1.1 jonathan
1590 1.1 jonathan sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1591 1.1 jonathan htole32(RTK_TDESC_CMD_OWN);
1592 1.1 jonathan if (*idx != curidx)
1593 1.1 jonathan sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
1594 1.1 jonathan htole32(RTK_TDESC_CMD_OWN);
1595 1.1 jonathan
1596 1.1 jonathan RTK_DESC_INC(curidx);
1597 1.1 jonathan *idx = curidx;
1598 1.1 jonathan
1599 1.1 jonathan return 0;
1600 1.1 jonathan }
1601 1.1 jonathan
1602 1.1 jonathan /*
1603 1.1 jonathan * Main transmit routine for C+ and gigE NICs.
1604 1.1 jonathan */
1605 1.1 jonathan
1606 1.1 jonathan static void
1607 1.1 jonathan re_start(struct ifnet *ifp)
1608 1.1 jonathan {
1609 1.1 jonathan struct rtk_softc *sc;
1610 1.1 jonathan struct mbuf *m_head = NULL;
1611 1.1 jonathan int idx;
1612 1.1 jonathan
1613 1.1 jonathan sc = ifp->if_softc;
1614 1.1 jonathan
1615 1.1 jonathan idx = sc->rtk_ldata.rtk_tx_prodidx;
1616 1.1 jonathan while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
1617 1.1 jonathan IF_DEQUEUE(&ifp->if_snd, m_head);
1618 1.1 jonathan if (m_head == NULL)
1619 1.1 jonathan break;
1620 1.1 jonathan
1621 1.1 jonathan if (re_encap(sc, m_head, &idx)) {
1622 1.1 jonathan IF_PREPEND(&ifp->if_snd, m_head);
1623 1.1 jonathan ifp->if_flags |= IFF_OACTIVE;
1624 1.1 jonathan break;
1625 1.1 jonathan }
1626 1.1 jonathan #if NBPFILTER > 0
1627 1.1 jonathan /*
1628 1.1 jonathan * If there's a BPF listener, bounce a copy of this frame
1629 1.1 jonathan * to him.
1630 1.1 jonathan */
1631 1.1 jonathan if (ifp->if_bpf)
1632 1.1 jonathan bpf_mtap(ifp->if_bpf, m_head);
1633 1.1 jonathan #endif
1634 1.1 jonathan }
1635 1.1 jonathan
1636 1.1 jonathan /* Flush the TX descriptors */
1637 1.1 jonathan
1638 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1639 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map,
1640 1.1 jonathan 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1641 1.4 kanaoka BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1642 1.1 jonathan
1643 1.1 jonathan sc->rtk_ldata.rtk_tx_prodidx = idx;
1644 1.1 jonathan
1645 1.1 jonathan /*
1646 1.1 jonathan * RealTek put the TX poll request register in a different
1647 1.1 jonathan * location on the 8169 gigE chip. I don't know why.
1648 1.1 jonathan */
1649 1.1 jonathan
1650 1.1 jonathan if (sc->rtk_type == RTK_8169)
1651 1.1 jonathan CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1652 1.1 jonathan else
1653 1.1 jonathan CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1654 1.1 jonathan
1655 1.1 jonathan /*
1656 1.1 jonathan * Use the countdown timer for interrupt moderation.
1657 1.1 jonathan * 'TX done' interrupts are disabled. Instead, we reset the
1658 1.1 jonathan * countdown timer, which will begin counting until it hits
1659 1.1 jonathan * the value in the TIMERINT register, and then trigger an
1660 1.1 jonathan * interrupt. Each time we write to the TIMERCNT register,
1661 1.1 jonathan * the timer count is reset to 0.
1662 1.1 jonathan */
1663 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1664 1.1 jonathan
1665 1.1 jonathan /*
1666 1.1 jonathan * Set a timeout in case the chip goes out to lunch.
1667 1.1 jonathan */
1668 1.1 jonathan ifp->if_timer = 5;
1669 1.1 jonathan
1670 1.1 jonathan return;
1671 1.1 jonathan }
1672 1.1 jonathan
1673 1.1 jonathan static int
1674 1.1 jonathan re_init(struct ifnet *ifp)
1675 1.1 jonathan {
1676 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1677 1.1 jonathan u_int32_t rxcfg = 0;
1678 1.1 jonathan u_int32_t reg;
1679 1.1 jonathan int error;
1680 1.1 jonathan
1681 1.1 jonathan if ((error = re_enable(sc)) != 0)
1682 1.1 jonathan goto out;
1683 1.1 jonathan
1684 1.1 jonathan /*
1685 1.1 jonathan * Cancel pending I/O and free all RX/TX buffers.
1686 1.1 jonathan */
1687 1.3 kanaoka re_stop(ifp, 0);
1688 1.1 jonathan
1689 1.1 jonathan /*
1690 1.1 jonathan * Enable C+ RX and TX mode, as well as VLAN stripping and
1691 1.1 jonathan * RX checksum offload. We must configure the C+ register
1692 1.1 jonathan * before all others.
1693 1.1 jonathan */
1694 1.1 jonathan reg = 0;
1695 1.1 jonathan
1696 1.1 jonathan /*
1697 1.1 jonathan * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1698 1.1 jonathan * FreeBSD drivers set these bits anyway (for 8139C+?).
1699 1.1 jonathan * So far, it works.
1700 1.1 jonathan */
1701 1.1 jonathan
1702 1.1 jonathan /*
1703 1.1 jonathan * XXX: For 8169 and 8196S revs below 2, set bit 14.
1704 1.1 jonathan * For 8169S/8110S rev 2 and above, do not set bit 14.
1705 1.1 jonathan */
1706 1.1 jonathan if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1707 1.4 kanaoka reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1708 1.1 jonathan
1709 1.4 kanaoka if (1) {/* not for 8169S ? */
1710 1.4 kanaoka reg |= RTK_CPLUSCMD_VLANSTRIP |
1711 1.4 kanaoka (ifp->if_capenable &
1712 1.4 kanaoka (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
1713 1.4 kanaoka RTK_CPLUSCMD_RXCSUM_ENB : 0);
1714 1.4 kanaoka }
1715 1.1 jonathan
1716 1.1 jonathan CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1717 1.4 kanaoka reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1718 1.1 jonathan
1719 1.1 jonathan /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1720 1.1 jonathan if (sc->rtk_type == RTK_8169)
1721 1.1 jonathan CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1722 1.1 jonathan
1723 1.1 jonathan DELAY(10000);
1724 1.1 jonathan
1725 1.1 jonathan /*
1726 1.1 jonathan * Init our MAC address. Even though the chipset
1727 1.1 jonathan * documentation doesn't mention it, we need to enter "Config
1728 1.1 jonathan * register write enable" mode to modify the ID registers.
1729 1.1 jonathan */
1730 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1731 1.1 jonathan memcpy(®, LLADDR(ifp->if_sadl), 4);
1732 1.1 jonathan CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1733 1.1 jonathan reg = 0;
1734 1.1 jonathan memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1735 1.1 jonathan CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1736 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1737 1.1 jonathan
1738 1.1 jonathan /*
1739 1.1 jonathan * For C+ mode, initialize the RX descriptors and mbufs.
1740 1.1 jonathan */
1741 1.1 jonathan re_rx_list_init(sc);
1742 1.1 jonathan re_tx_list_init(sc);
1743 1.1 jonathan
1744 1.1 jonathan /*
1745 1.1 jonathan * Enable transmit and receive.
1746 1.1 jonathan */
1747 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1748 1.1 jonathan
1749 1.1 jonathan /*
1750 1.1 jonathan * Set the initial TX and RX configuration.
1751 1.1 jonathan */
1752 1.1 jonathan if (sc->rtk_testmode) {
1753 1.1 jonathan if (sc->rtk_type == RTK_8169)
1754 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG,
1755 1.4 kanaoka RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1756 1.1 jonathan else
1757 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG,
1758 1.4 kanaoka RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1759 1.1 jonathan } else
1760 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1761 1.1 jonathan CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1762 1.1 jonathan
1763 1.1 jonathan /* Set the individual bit to receive frames for this host only. */
1764 1.1 jonathan rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1765 1.1 jonathan rxcfg |= RTK_RXCFG_RX_INDIV;
1766 1.1 jonathan
1767 1.1 jonathan /* If we want promiscuous mode, set the allframes bit. */
1768 1.8 jdolecek if (ifp->if_flags & IFF_PROMISC)
1769 1.1 jonathan rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1770 1.8 jdolecek else
1771 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1772 1.8 jdolecek CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1773 1.1 jonathan
1774 1.1 jonathan /*
1775 1.1 jonathan * Set capture broadcast bit to capture broadcast frames.
1776 1.1 jonathan */
1777 1.8 jdolecek if (ifp->if_flags & IFF_BROADCAST)
1778 1.1 jonathan rxcfg |= RTK_RXCFG_RX_BROAD;
1779 1.8 jdolecek else
1780 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_BROAD;
1781 1.8 jdolecek CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1782 1.1 jonathan
1783 1.1 jonathan /*
1784 1.1 jonathan * Program the multicast filter, if necessary.
1785 1.1 jonathan */
1786 1.1 jonathan rtk_setmulti(sc);
1787 1.1 jonathan
1788 1.1 jonathan #ifdef DEVICE_POLLING
1789 1.1 jonathan /*
1790 1.1 jonathan * Disable interrupts if we are polling.
1791 1.1 jonathan */
1792 1.1 jonathan if (ifp->if_flags & IFF_POLLING)
1793 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1794 1.1 jonathan else /* otherwise ... */
1795 1.1 jonathan #endif /* DEVICE_POLLING */
1796 1.1 jonathan /*
1797 1.1 jonathan * Enable interrupts.
1798 1.1 jonathan */
1799 1.1 jonathan if (sc->rtk_testmode)
1800 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1801 1.1 jonathan else
1802 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1803 1.1 jonathan
1804 1.1 jonathan /* Start RX/TX process. */
1805 1.1 jonathan CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1806 1.1 jonathan #ifdef notdef
1807 1.1 jonathan /* Enable receiver and transmitter. */
1808 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1809 1.1 jonathan #endif
1810 1.1 jonathan /*
1811 1.1 jonathan * Load the addresses of the RX and TX lists into the chip.
1812 1.1 jonathan */
1813 1.1 jonathan
1814 1.1 jonathan CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1815 1.11 yamt RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1816 1.1 jonathan CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1817 1.11 yamt RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1818 1.1 jonathan
1819 1.1 jonathan CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1820 1.11 yamt RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1821 1.1 jonathan CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1822 1.11 yamt RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1823 1.1 jonathan
1824 1.1 jonathan CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1825 1.1 jonathan
1826 1.1 jonathan /*
1827 1.1 jonathan * Initialize the timer interrupt register so that
1828 1.1 jonathan * a timer interrupt will be generated once the timer
1829 1.1 jonathan * reaches a certain number of ticks. The timer is
1830 1.1 jonathan * reloaded on each transmit. This gives us TX interrupt
1831 1.1 jonathan * moderation, which dramatically improves TX frame rate.
1832 1.1 jonathan */
1833 1.1 jonathan
1834 1.1 jonathan if (sc->rtk_type == RTK_8169)
1835 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1836 1.1 jonathan else
1837 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1838 1.1 jonathan
1839 1.1 jonathan /*
1840 1.1 jonathan * For 8169 gigE NICs, set the max allowed RX packet
1841 1.1 jonathan * size so we can receive jumbo frames.
1842 1.1 jonathan */
1843 1.1 jonathan if (sc->rtk_type == RTK_8169)
1844 1.1 jonathan CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1845 1.1 jonathan
1846 1.1 jonathan if (sc->rtk_testmode)
1847 1.1 jonathan return 0;
1848 1.1 jonathan
1849 1.1 jonathan mii_mediachg(&sc->mii);
1850 1.1 jonathan
1851 1.4 kanaoka CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1852 1.1 jonathan
1853 1.1 jonathan ifp->if_flags |= IFF_RUNNING;
1854 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1855 1.1 jonathan
1856 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1857 1.1 jonathan
1858 1.1 jonathan out:
1859 1.1 jonathan if (error) {
1860 1.4 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1861 1.1 jonathan ifp->if_timer = 0;
1862 1.4 kanaoka aprint_error("%s: interface not running\n",
1863 1.4 kanaoka sc->sc_dev.dv_xname);
1864 1.1 jonathan }
1865 1.1 jonathan
1866 1.1 jonathan return error;
1867 1.1 jonathan
1868 1.1 jonathan }
1869 1.1 jonathan
1870 1.1 jonathan /*
1871 1.1 jonathan * Set media options.
1872 1.1 jonathan */
1873 1.1 jonathan static int
1874 1.1 jonathan re_ifmedia_upd(struct ifnet *ifp)
1875 1.1 jonathan {
1876 1.1 jonathan struct rtk_softc *sc;
1877 1.1 jonathan
1878 1.1 jonathan sc = ifp->if_softc;
1879 1.1 jonathan
1880 1.4 kanaoka return mii_mediachg(&sc->mii);
1881 1.1 jonathan }
1882 1.1 jonathan
1883 1.1 jonathan /*
1884 1.1 jonathan * Report current media status.
1885 1.1 jonathan */
1886 1.1 jonathan static void
1887 1.1 jonathan re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1888 1.1 jonathan {
1889 1.1 jonathan struct rtk_softc *sc;
1890 1.1 jonathan
1891 1.1 jonathan sc = ifp->if_softc;
1892 1.1 jonathan
1893 1.1 jonathan mii_pollstat(&sc->mii);
1894 1.1 jonathan ifmr->ifm_active = sc->mii.mii_media_active;
1895 1.1 jonathan ifmr->ifm_status = sc->mii.mii_media_status;
1896 1.1 jonathan
1897 1.1 jonathan return;
1898 1.1 jonathan }
1899 1.1 jonathan
1900 1.1 jonathan static int
1901 1.1 jonathan re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1902 1.1 jonathan {
1903 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1904 1.1 jonathan struct ifreq *ifr = (struct ifreq *) data;
1905 1.1 jonathan int s, error = 0;
1906 1.1 jonathan
1907 1.1 jonathan s = splnet();
1908 1.1 jonathan
1909 1.4 kanaoka switch (command) {
1910 1.1 jonathan case SIOCSIFMTU:
1911 1.1 jonathan if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1912 1.1 jonathan error = EINVAL;
1913 1.1 jonathan ifp->if_mtu = ifr->ifr_mtu;
1914 1.1 jonathan break;
1915 1.1 jonathan case SIOCGIFMEDIA:
1916 1.1 jonathan case SIOCSIFMEDIA:
1917 1.1 jonathan error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1918 1.1 jonathan break;
1919 1.1 jonathan default:
1920 1.1 jonathan error = ether_ioctl(ifp, command, data);
1921 1.1 jonathan if (error == ENETRESET) {
1922 1.2 kanaoka if (ifp->if_flags & IFF_RUNNING)
1923 1.1 jonathan rtk_setmulti(sc);
1924 1.1 jonathan error = 0;
1925 1.1 jonathan }
1926 1.1 jonathan break;
1927 1.1 jonathan }
1928 1.1 jonathan
1929 1.1 jonathan splx(s);
1930 1.1 jonathan
1931 1.4 kanaoka return error;
1932 1.1 jonathan }
1933 1.1 jonathan
1934 1.1 jonathan static void
1935 1.1 jonathan re_watchdog(struct ifnet *ifp)
1936 1.1 jonathan {
1937 1.1 jonathan struct rtk_softc *sc;
1938 1.1 jonathan int s;
1939 1.1 jonathan
1940 1.1 jonathan sc = ifp->if_softc;
1941 1.1 jonathan s = splnet();
1942 1.4 kanaoka aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1943 1.1 jonathan ifp->if_oerrors++;
1944 1.1 jonathan
1945 1.1 jonathan re_txeof(sc);
1946 1.1 jonathan re_rxeof(sc);
1947 1.1 jonathan
1948 1.1 jonathan re_init(ifp);
1949 1.1 jonathan
1950 1.1 jonathan splx(s);
1951 1.1 jonathan }
1952 1.1 jonathan
1953 1.1 jonathan /*
1954 1.1 jonathan * Stop the adapter and free any mbufs allocated to the
1955 1.1 jonathan * RX and TX lists.
1956 1.1 jonathan */
1957 1.1 jonathan static void
1958 1.3 kanaoka re_stop(struct ifnet *ifp, int disable)
1959 1.1 jonathan {
1960 1.1 jonathan register int i;
1961 1.3 kanaoka struct rtk_softc *sc = ifp->if_softc;
1962 1.1 jonathan
1963 1.3 kanaoka callout_stop(&sc->rtk_tick_ch);
1964 1.1 jonathan
1965 1.1 jonathan #ifdef DEVICE_POLLING
1966 1.1 jonathan ether_poll_deregister(ifp);
1967 1.1 jonathan #endif /* DEVICE_POLLING */
1968 1.1 jonathan
1969 1.3 kanaoka mii_down(&sc->mii);
1970 1.3 kanaoka
1971 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1972 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1973 1.1 jonathan
1974 1.1 jonathan if (sc->rtk_head != NULL) {
1975 1.1 jonathan m_freem(sc->rtk_head);
1976 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1977 1.1 jonathan }
1978 1.1 jonathan
1979 1.1 jonathan /* Free the TX list buffers. */
1980 1.1 jonathan for (i = 0; i < RTK_TX_DESC_CNT; i++) {
1981 1.1 jonathan if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
1982 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
1983 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[i]);
1984 1.1 jonathan m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
1985 1.1 jonathan sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
1986 1.1 jonathan }
1987 1.1 jonathan }
1988 1.1 jonathan
1989 1.1 jonathan /* Free the RX list buffers. */
1990 1.1 jonathan for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1991 1.1 jonathan if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
1992 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
1993 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i]);
1994 1.1 jonathan m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
1995 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
1996 1.1 jonathan }
1997 1.1 jonathan }
1998 1.1 jonathan
1999 1.3 kanaoka if (disable)
2000 1.3 kanaoka re_disable(sc);
2001 1.3 kanaoka
2002 1.3 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2003 1.4 kanaoka ifp->if_timer = 0;
2004 1.1 jonathan
2005 1.1 jonathan return;
2006 1.1 jonathan }
2007