rtl8169.c revision 1.14.2.7 1 1.14.2.7 bouyer /* $NetBSD: rtl8169.c,v 1.14.2.7 2007/10/04 18:50:22 bouyer Exp $ */
2 1.1 jonathan
3 1.1 jonathan /*
4 1.1 jonathan * Copyright (c) 1997, 1998-2003
5 1.1 jonathan * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 1.1 jonathan *
7 1.1 jonathan * Redistribution and use in source and binary forms, with or without
8 1.1 jonathan * modification, are permitted provided that the following conditions
9 1.1 jonathan * are met:
10 1.1 jonathan * 1. Redistributions of source code must retain the above copyright
11 1.1 jonathan * notice, this list of conditions and the following disclaimer.
12 1.1 jonathan * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jonathan * notice, this list of conditions and the following disclaimer in the
14 1.1 jonathan * documentation and/or other materials provided with the distribution.
15 1.1 jonathan * 3. All advertising materials mentioning features or use of this software
16 1.1 jonathan * must display the following acknowledgement:
17 1.1 jonathan * This product includes software developed by Bill Paul.
18 1.1 jonathan * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 jonathan * may be used to endorse or promote products derived from this software
20 1.1 jonathan * without specific prior written permission.
21 1.1 jonathan *
22 1.1 jonathan * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 jonathan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 jonathan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 jonathan * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 jonathan * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 jonathan * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 jonathan * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 jonathan * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 jonathan * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 jonathan * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 jonathan * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 jonathan */
34 1.1 jonathan
35 1.1 jonathan #include <sys/cdefs.h>
36 1.1 jonathan /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37 1.1 jonathan
38 1.1 jonathan /*
39 1.1 jonathan * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 1.1 jonathan *
41 1.1 jonathan * Written by Bill Paul <wpaul (at) windriver.com>
42 1.1 jonathan * Senior Networking Software Engineer
43 1.1 jonathan * Wind River Systems
44 1.1 jonathan */
45 1.1 jonathan
46 1.1 jonathan /*
47 1.1 jonathan * This driver is designed to support RealTek's next generation of
48 1.1 jonathan * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 1.1 jonathan * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 1.1 jonathan * and the RTL8110S.
51 1.1 jonathan *
52 1.1 jonathan * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 1.1 jonathan * with the older 8139 family, however it also supports a special
54 1.1 jonathan * C+ mode of operation that provides several new performance enhancing
55 1.1 jonathan * features. These include:
56 1.1 jonathan *
57 1.1 jonathan * o Descriptor based DMA mechanism. Each descriptor represents
58 1.1 jonathan * a single packet fragment. Data buffers may be aligned on
59 1.1 jonathan * any byte boundary.
60 1.1 jonathan *
61 1.1 jonathan * o 64-bit DMA
62 1.1 jonathan *
63 1.1 jonathan * o TCP/IP checksum offload for both RX and TX
64 1.1 jonathan *
65 1.1 jonathan * o High and normal priority transmit DMA rings
66 1.1 jonathan *
67 1.1 jonathan * o VLAN tag insertion and extraction
68 1.1 jonathan *
69 1.1 jonathan * o TCP large send (segmentation offload)
70 1.1 jonathan *
71 1.1 jonathan * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 1.1 jonathan * programming API is fairly straightforward. The RX filtering, EEPROM
73 1.1 jonathan * access and PHY access is the same as it is on the older 8139 series
74 1.1 jonathan * chips.
75 1.1 jonathan *
76 1.1 jonathan * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 1.1 jonathan * same programming API and feature set as the 8139C+ with the following
78 1.1 jonathan * differences and additions:
79 1.1 jonathan *
80 1.1 jonathan * o 1000Mbps mode
81 1.1 jonathan *
82 1.1 jonathan * o Jumbo frames
83 1.1 jonathan *
84 1.1 jonathan * o GMII and TBI ports/registers for interfacing with copper
85 1.1 jonathan * or fiber PHYs
86 1.1 jonathan *
87 1.1 jonathan * o RX and TX DMA rings can have up to 1024 descriptors
88 1.1 jonathan * (the 8139C+ allows a maximum of 64)
89 1.1 jonathan *
90 1.1 jonathan * o Slight differences in register layout from the 8139C+
91 1.1 jonathan *
92 1.1 jonathan * The TX start and timer interrupt registers are at different locations
93 1.1 jonathan * on the 8169 than they are on the 8139C+. Also, the status word in the
94 1.1 jonathan * RX descriptor has a slightly different bit layout. The 8169 does not
95 1.1 jonathan * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 1.1 jonathan * copper gigE PHY.
97 1.1 jonathan *
98 1.1 jonathan * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 1.1 jonathan * (the 'S' stands for 'single-chip'). These devices have the same
100 1.1 jonathan * programming API as the older 8169, but also have some vendor-specific
101 1.1 jonathan * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 1.1 jonathan * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 1.12 perry *
104 1.1 jonathan * This driver takes advantage of the RX and TX checksum offload and
105 1.1 jonathan * VLAN tag insertion/extraction features. It also implements TX
106 1.1 jonathan * interrupt moderation using the timer interrupt registers, which
107 1.1 jonathan * significantly reduces TX interrupt load. There is also support
108 1.1 jonathan * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 1.1 jonathan * jumbo frames larger than 7.5K, so the max MTU possible with this
110 1.1 jonathan * driver is 7500 bytes.
111 1.1 jonathan */
112 1.1 jonathan
113 1.1 jonathan #include "bpfilter.h"
114 1.1 jonathan #include "vlan.h"
115 1.1 jonathan
116 1.1 jonathan #include <sys/param.h>
117 1.1 jonathan #include <sys/endian.h>
118 1.1 jonathan #include <sys/systm.h>
119 1.1 jonathan #include <sys/sockio.h>
120 1.1 jonathan #include <sys/mbuf.h>
121 1.1 jonathan #include <sys/malloc.h>
122 1.1 jonathan #include <sys/kernel.h>
123 1.1 jonathan #include <sys/socket.h>
124 1.1 jonathan #include <sys/device.h>
125 1.1 jonathan
126 1.1 jonathan #include <net/if.h>
127 1.1 jonathan #include <net/if_arp.h>
128 1.1 jonathan #include <net/if_dl.h>
129 1.1 jonathan #include <net/if_ether.h>
130 1.1 jonathan #include <net/if_media.h>
131 1.1 jonathan #include <net/if_vlanvar.h>
132 1.1 jonathan
133 1.13 yamt #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 1.13 yamt #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 1.13 yamt #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136 1.13 yamt
137 1.1 jonathan #if NBPFILTER > 0
138 1.1 jonathan #include <net/bpf.h>
139 1.1 jonathan #endif
140 1.1 jonathan
141 1.1 jonathan #include <machine/bus.h>
142 1.1 jonathan
143 1.1 jonathan #include <dev/mii/mii.h>
144 1.1 jonathan #include <dev/mii/miivar.h>
145 1.1 jonathan
146 1.1 jonathan #include <dev/ic/rtl81x9reg.h>
147 1.1 jonathan #include <dev/ic/rtl81x9var.h>
148 1.1 jonathan
149 1.1 jonathan #include <dev/ic/rtl8169var.h>
150 1.1 jonathan
151 1.14.2.6 bouyer static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152 1.1 jonathan
153 1.4 kanaoka static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 1.4 kanaoka static int re_rx_list_init(struct rtk_softc *);
155 1.4 kanaoka static int re_tx_list_init(struct rtk_softc *);
156 1.4 kanaoka static void re_rxeof(struct rtk_softc *);
157 1.4 kanaoka static void re_txeof(struct rtk_softc *);
158 1.4 kanaoka static void re_tick(void *);
159 1.4 kanaoka static void re_start(struct ifnet *);
160 1.4 kanaoka static int re_ioctl(struct ifnet *, u_long, caddr_t);
161 1.4 kanaoka static int re_init(struct ifnet *);
162 1.4 kanaoka static void re_stop(struct ifnet *, int);
163 1.4 kanaoka static void re_watchdog(struct ifnet *);
164 1.4 kanaoka
165 1.4 kanaoka static void re_shutdown(void *);
166 1.4 kanaoka static int re_enable(struct rtk_softc *);
167 1.4 kanaoka static void re_disable(struct rtk_softc *);
168 1.4 kanaoka static void re_power(int, void *);
169 1.4 kanaoka
170 1.4 kanaoka static int re_ifmedia_upd(struct ifnet *);
171 1.4 kanaoka static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172 1.4 kanaoka
173 1.4 kanaoka static int re_gmii_readreg(struct device *, int, int);
174 1.4 kanaoka static void re_gmii_writereg(struct device *, int, int, int);
175 1.4 kanaoka
176 1.4 kanaoka static int re_miibus_readreg(struct device *, int, int);
177 1.4 kanaoka static void re_miibus_writereg(struct device *, int, int, int);
178 1.4 kanaoka static void re_miibus_statchg(struct device *);
179 1.1 jonathan
180 1.4 kanaoka static void re_reset(struct rtk_softc *);
181 1.1 jonathan
182 1.14.2.6 bouyer static inline void
183 1.14.2.6 bouyer re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
184 1.14.2.6 bouyer {
185 1.14.2.6 bouyer
186 1.14.2.6 bouyer d->re_bufaddr_lo = htole32((uint32_t)addr);
187 1.14.2.6 bouyer if (sizeof(bus_addr_t) == sizeof(uint64_t))
188 1.14.2.6 bouyer d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
189 1.14.2.6 bouyer else
190 1.14.2.6 bouyer d->re_bufaddr_hi = 0;
191 1.14.2.6 bouyer }
192 1.14.2.6 bouyer
193 1.1 jonathan static int
194 1.1 jonathan re_gmii_readreg(struct device *self, int phy, int reg)
195 1.1 jonathan {
196 1.1 jonathan struct rtk_softc *sc = (void *)self;
197 1.14.2.6 bouyer uint32_t rval;
198 1.1 jonathan int i;
199 1.1 jonathan
200 1.1 jonathan if (phy != 7)
201 1.4 kanaoka return 0;
202 1.1 jonathan
203 1.1 jonathan /* Let the rgephy driver read the GMEDIASTAT register */
204 1.1 jonathan
205 1.1 jonathan if (reg == RTK_GMEDIASTAT) {
206 1.1 jonathan rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
207 1.4 kanaoka return rval;
208 1.1 jonathan }
209 1.1 jonathan
210 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
211 1.1 jonathan DELAY(1000);
212 1.1 jonathan
213 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
214 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
215 1.1 jonathan if (rval & RTK_PHYAR_BUSY)
216 1.1 jonathan break;
217 1.1 jonathan DELAY(100);
218 1.1 jonathan }
219 1.1 jonathan
220 1.1 jonathan if (i == RTK_TIMEOUT) {
221 1.4 kanaoka aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
222 1.4 kanaoka return 0;
223 1.1 jonathan }
224 1.1 jonathan
225 1.4 kanaoka return rval & RTK_PHYAR_PHYDATA;
226 1.1 jonathan }
227 1.1 jonathan
228 1.1 jonathan static void
229 1.1 jonathan re_gmii_writereg(struct device *dev, int phy, int reg, int data)
230 1.1 jonathan {
231 1.1 jonathan struct rtk_softc *sc = (void *)dev;
232 1.14.2.6 bouyer uint32_t rval;
233 1.1 jonathan int i;
234 1.1 jonathan
235 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
236 1.1 jonathan (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
237 1.1 jonathan DELAY(1000);
238 1.1 jonathan
239 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
240 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
241 1.1 jonathan if (!(rval & RTK_PHYAR_BUSY))
242 1.1 jonathan break;
243 1.1 jonathan DELAY(100);
244 1.1 jonathan }
245 1.1 jonathan
246 1.1 jonathan if (i == RTK_TIMEOUT) {
247 1.4 kanaoka aprint_error("%s: PHY write reg %x <- %x failed\n",
248 1.4 kanaoka sc->sc_dev.dv_xname, reg, data);
249 1.1 jonathan }
250 1.1 jonathan }
251 1.1 jonathan
252 1.1 jonathan static int
253 1.1 jonathan re_miibus_readreg(struct device *dev, int phy, int reg)
254 1.1 jonathan {
255 1.1 jonathan struct rtk_softc *sc = (void *)dev;
256 1.14.2.6 bouyer uint16_t rval = 0;
257 1.14.2.6 bouyer uint16_t re8139_reg = 0;
258 1.1 jonathan int s;
259 1.1 jonathan
260 1.1 jonathan s = splnet();
261 1.1 jonathan
262 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
263 1.1 jonathan rval = re_gmii_readreg(dev, phy, reg);
264 1.1 jonathan splx(s);
265 1.4 kanaoka return rval;
266 1.1 jonathan }
267 1.1 jonathan
268 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
269 1.1 jonathan if (phy) {
270 1.1 jonathan splx(s);
271 1.4 kanaoka return 0;
272 1.1 jonathan }
273 1.4 kanaoka switch (reg) {
274 1.1 jonathan case MII_BMCR:
275 1.1 jonathan re8139_reg = RTK_BMCR;
276 1.1 jonathan break;
277 1.1 jonathan case MII_BMSR:
278 1.1 jonathan re8139_reg = RTK_BMSR;
279 1.1 jonathan break;
280 1.1 jonathan case MII_ANAR:
281 1.1 jonathan re8139_reg = RTK_ANAR;
282 1.1 jonathan break;
283 1.1 jonathan case MII_ANER:
284 1.1 jonathan re8139_reg = RTK_ANER;
285 1.1 jonathan break;
286 1.1 jonathan case MII_ANLPAR:
287 1.1 jonathan re8139_reg = RTK_LPAR;
288 1.1 jonathan break;
289 1.1 jonathan case MII_PHYIDR1:
290 1.1 jonathan case MII_PHYIDR2:
291 1.1 jonathan splx(s);
292 1.4 kanaoka return 0;
293 1.1 jonathan /*
294 1.1 jonathan * Allow the rlphy driver to read the media status
295 1.1 jonathan * register. If we have a link partner which does not
296 1.1 jonathan * support NWAY, this is the register which will tell
297 1.1 jonathan * us the results of parallel detection.
298 1.1 jonathan */
299 1.1 jonathan case RTK_MEDIASTAT:
300 1.1 jonathan rval = CSR_READ_1(sc, RTK_MEDIASTAT);
301 1.1 jonathan splx(s);
302 1.4 kanaoka return rval;
303 1.1 jonathan default:
304 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
305 1.1 jonathan splx(s);
306 1.4 kanaoka return 0;
307 1.1 jonathan }
308 1.1 jonathan rval = CSR_READ_2(sc, re8139_reg);
309 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
310 1.14.2.6 bouyer /* 8139C+ has different bit layout. */
311 1.14.2.6 bouyer rval &= ~(BMCR_LOOP | BMCR_ISO);
312 1.14.2.6 bouyer }
313 1.1 jonathan splx(s);
314 1.4 kanaoka return rval;
315 1.1 jonathan }
316 1.1 jonathan
317 1.1 jonathan static void
318 1.1 jonathan re_miibus_writereg(struct device *dev, int phy, int reg, int data)
319 1.1 jonathan {
320 1.1 jonathan struct rtk_softc *sc = (void *)dev;
321 1.14.2.6 bouyer uint16_t re8139_reg = 0;
322 1.1 jonathan int s;
323 1.1 jonathan
324 1.1 jonathan s = splnet();
325 1.1 jonathan
326 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
327 1.1 jonathan re_gmii_writereg(dev, phy, reg, data);
328 1.1 jonathan splx(s);
329 1.1 jonathan return;
330 1.1 jonathan }
331 1.1 jonathan
332 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
333 1.1 jonathan if (phy) {
334 1.1 jonathan splx(s);
335 1.1 jonathan return;
336 1.1 jonathan }
337 1.4 kanaoka switch (reg) {
338 1.1 jonathan case MII_BMCR:
339 1.1 jonathan re8139_reg = RTK_BMCR;
340 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
341 1.14.2.6 bouyer /* 8139C+ has different bit layout. */
342 1.14.2.6 bouyer data &= ~(BMCR_LOOP | BMCR_ISO);
343 1.14.2.6 bouyer }
344 1.1 jonathan break;
345 1.1 jonathan case MII_BMSR:
346 1.1 jonathan re8139_reg = RTK_BMSR;
347 1.1 jonathan break;
348 1.1 jonathan case MII_ANAR:
349 1.1 jonathan re8139_reg = RTK_ANAR;
350 1.1 jonathan break;
351 1.1 jonathan case MII_ANER:
352 1.1 jonathan re8139_reg = RTK_ANER;
353 1.1 jonathan break;
354 1.1 jonathan case MII_ANLPAR:
355 1.1 jonathan re8139_reg = RTK_LPAR;
356 1.1 jonathan break;
357 1.1 jonathan case MII_PHYIDR1:
358 1.1 jonathan case MII_PHYIDR2:
359 1.1 jonathan splx(s);
360 1.1 jonathan return;
361 1.1 jonathan break;
362 1.1 jonathan default:
363 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
364 1.1 jonathan splx(s);
365 1.1 jonathan return;
366 1.1 jonathan }
367 1.1 jonathan CSR_WRITE_2(sc, re8139_reg, data);
368 1.1 jonathan splx(s);
369 1.1 jonathan return;
370 1.1 jonathan }
371 1.1 jonathan
372 1.1 jonathan static void
373 1.1 jonathan re_miibus_statchg(struct device *dev)
374 1.1 jonathan {
375 1.1 jonathan
376 1.1 jonathan return;
377 1.1 jonathan }
378 1.1 jonathan
379 1.1 jonathan static void
380 1.1 jonathan re_reset(struct rtk_softc *sc)
381 1.1 jonathan {
382 1.14.2.6 bouyer int i;
383 1.1 jonathan
384 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
385 1.1 jonathan
386 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
387 1.1 jonathan DELAY(10);
388 1.14.2.6 bouyer if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
389 1.1 jonathan break;
390 1.1 jonathan }
391 1.1 jonathan if (i == RTK_TIMEOUT)
392 1.4 kanaoka aprint_error("%s: reset never completed!\n",
393 1.4 kanaoka sc->sc_dev.dv_xname);
394 1.1 jonathan
395 1.1 jonathan /*
396 1.1 jonathan * NB: Realtek-supplied Linux driver does this only for
397 1.1 jonathan * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
398 1.1 jonathan */
399 1.4 kanaoka if (1) /* XXX check softc flag for 8169s version */
400 1.14.2.6 bouyer CSR_WRITE_1(sc, RTK_LDPS, 1);
401 1.1 jonathan
402 1.1 jonathan return;
403 1.1 jonathan }
404 1.1 jonathan
405 1.1 jonathan /*
406 1.1 jonathan * The following routine is designed to test for a defect on some
407 1.1 jonathan * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
408 1.1 jonathan * lines connected to the bus, however for a 32-bit only card, they
409 1.1 jonathan * should be pulled high. The result of this defect is that the
410 1.1 jonathan * NIC will not work right if you plug it into a 64-bit slot: DMA
411 1.1 jonathan * operations will be done with 64-bit transfers, which will fail
412 1.1 jonathan * because the 64-bit data lines aren't connected.
413 1.1 jonathan *
414 1.1 jonathan * There's no way to work around this (short of talking a soldering
415 1.1 jonathan * iron to the board), however we can detect it. The method we use
416 1.1 jonathan * here is to put the NIC into digital loopback mode, set the receiver
417 1.1 jonathan * to promiscuous mode, and then try to send a frame. We then compare
418 1.1 jonathan * the frame data we sent to what was received. If the data matches,
419 1.1 jonathan * then the NIC is working correctly, otherwise we know the user has
420 1.1 jonathan * a defective NIC which has been mistakenly plugged into a 64-bit PCI
421 1.1 jonathan * slot. In the latter case, there's no way the NIC can work correctly,
422 1.1 jonathan * so we print out a message on the console and abort the device attach.
423 1.1 jonathan */
424 1.1 jonathan
425 1.6 kanaoka int
426 1.1 jonathan re_diag(struct rtk_softc *sc)
427 1.1 jonathan {
428 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
429 1.1 jonathan struct mbuf *m0;
430 1.1 jonathan struct ether_header *eh;
431 1.14.2.6 bouyer struct re_rxsoft *rxs;
432 1.14.2.6 bouyer struct re_desc *cur_rx;
433 1.1 jonathan bus_dmamap_t dmamap;
434 1.14.2.6 bouyer uint16_t status;
435 1.14.2.6 bouyer uint32_t rxstat;
436 1.1 jonathan int total_len, i, s, error = 0;
437 1.14.2.6 bouyer static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
438 1.14.2.6 bouyer static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
439 1.1 jonathan
440 1.1 jonathan /* Allocate a single mbuf */
441 1.1 jonathan
442 1.1 jonathan MGETHDR(m0, M_DONTWAIT, MT_DATA);
443 1.1 jonathan if (m0 == NULL)
444 1.4 kanaoka return ENOBUFS;
445 1.1 jonathan
446 1.1 jonathan /*
447 1.1 jonathan * Initialize the NIC in test mode. This sets the chip up
448 1.1 jonathan * so that it can send and receive frames, but performs the
449 1.1 jonathan * following special functions:
450 1.1 jonathan * - Puts receiver in promiscuous mode
451 1.1 jonathan * - Enables digital loopback mode
452 1.1 jonathan * - Leaves interrupts turned off
453 1.1 jonathan */
454 1.1 jonathan
455 1.1 jonathan ifp->if_flags |= IFF_PROMISC;
456 1.14.2.6 bouyer sc->re_testmode = 1;
457 1.1 jonathan re_init(ifp);
458 1.6 kanaoka re_stop(ifp, 0);
459 1.1 jonathan DELAY(100000);
460 1.1 jonathan re_init(ifp);
461 1.1 jonathan
462 1.1 jonathan /* Put some data in the mbuf */
463 1.1 jonathan
464 1.1 jonathan eh = mtod(m0, struct ether_header *);
465 1.14.2.6 bouyer memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
466 1.14.2.6 bouyer memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
467 1.1 jonathan eh->ether_type = htons(ETHERTYPE_IP);
468 1.1 jonathan m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
469 1.1 jonathan
470 1.1 jonathan /*
471 1.1 jonathan * Queue the packet, start transmission.
472 1.1 jonathan */
473 1.1 jonathan
474 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
475 1.1 jonathan s = splnet();
476 1.1 jonathan IF_ENQUEUE(&ifp->if_snd, m0);
477 1.1 jonathan re_start(ifp);
478 1.1 jonathan splx(s);
479 1.1 jonathan m0 = NULL;
480 1.1 jonathan
481 1.1 jonathan /* Wait for it to propagate through the chip */
482 1.1 jonathan
483 1.1 jonathan DELAY(100000);
484 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
485 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
486 1.4 kanaoka if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
487 1.4 kanaoka (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
488 1.1 jonathan break;
489 1.1 jonathan DELAY(10);
490 1.1 jonathan }
491 1.1 jonathan if (i == RTK_TIMEOUT) {
492 1.4 kanaoka aprint_error("%s: diagnostic failed, failed to receive packet "
493 1.1 jonathan "in loopback mode\n", sc->sc_dev.dv_xname);
494 1.1 jonathan error = EIO;
495 1.1 jonathan goto done;
496 1.1 jonathan }
497 1.1 jonathan
498 1.1 jonathan /*
499 1.1 jonathan * The packet should have been dumped into the first
500 1.1 jonathan * entry in the RX DMA ring. Grab it from there.
501 1.1 jonathan */
502 1.1 jonathan
503 1.14.2.6 bouyer rxs = &sc->re_ldata.re_rxsoft[0];
504 1.14.2.6 bouyer dmamap = rxs->rxs_dmamap;
505 1.1 jonathan bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
506 1.14.2.6 bouyer BUS_DMASYNC_POSTREAD);
507 1.14.2.6 bouyer bus_dmamap_unload(sc->sc_dmat, dmamap);
508 1.1 jonathan
509 1.14.2.6 bouyer m0 = rxs->rxs_mbuf;
510 1.14.2.6 bouyer rxs->rxs_mbuf = NULL;
511 1.1 jonathan eh = mtod(m0, struct ether_header *);
512 1.1 jonathan
513 1.14.2.6 bouyer RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
514 1.14.2.6 bouyer cur_rx = &sc->re_ldata.re_rx_list[0];
515 1.14.2.6 bouyer rxstat = le32toh(cur_rx->re_cmdstat);
516 1.14.2.6 bouyer total_len = rxstat & sc->re_rxlenmask;
517 1.1 jonathan
518 1.1 jonathan if (total_len != ETHER_MIN_LEN) {
519 1.4 kanaoka aprint_error("%s: diagnostic failed, received short packet\n",
520 1.1 jonathan sc->sc_dev.dv_xname);
521 1.1 jonathan error = EIO;
522 1.1 jonathan goto done;
523 1.1 jonathan }
524 1.1 jonathan
525 1.1 jonathan /* Test that the received packet data matches what we sent. */
526 1.1 jonathan
527 1.14.2.6 bouyer if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
528 1.14.2.6 bouyer memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
529 1.1 jonathan ntohs(eh->ether_type) != ETHERTYPE_IP) {
530 1.4 kanaoka aprint_error("%s: WARNING, DMA FAILURE!\n",
531 1.4 kanaoka sc->sc_dev.dv_xname);
532 1.4 kanaoka aprint_error("%s: expected TX data: %s",
533 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(dst));
534 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
535 1.4 kanaoka aprint_error("%s: received RX data: %s",
536 1.1 jonathan sc->sc_dev.dv_xname,
537 1.1 jonathan ether_sprintf(eh->ether_dhost));
538 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
539 1.1 jonathan ntohs(eh->ether_type));
540 1.4 kanaoka aprint_error("%s: You may have a defective 32-bit NIC plugged "
541 1.1 jonathan "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
542 1.4 kanaoka aprint_error("%s: Please re-install the NIC in a 32-bit slot "
543 1.1 jonathan "for proper operation.\n", sc->sc_dev.dv_xname);
544 1.4 kanaoka aprint_error("%s: Read the re(4) man page for more details.\n",
545 1.1 jonathan sc->sc_dev.dv_xname);
546 1.1 jonathan error = EIO;
547 1.1 jonathan }
548 1.1 jonathan
549 1.14.2.6 bouyer done:
550 1.1 jonathan /* Turn interface off, release resources */
551 1.1 jonathan
552 1.14.2.6 bouyer sc->re_testmode = 0;
553 1.1 jonathan ifp->if_flags &= ~IFF_PROMISC;
554 1.6 kanaoka re_stop(ifp, 0);
555 1.1 jonathan if (m0 != NULL)
556 1.1 jonathan m_freem(m0);
557 1.1 jonathan
558 1.4 kanaoka return error;
559 1.1 jonathan }
560 1.1 jonathan
561 1.1 jonathan
562 1.1 jonathan /*
563 1.1 jonathan * Attach the interface. Allocate softc structures, do ifmedia
564 1.1 jonathan * setup and ethernet/BPF attach.
565 1.1 jonathan */
566 1.1 jonathan void
567 1.1 jonathan re_attach(struct rtk_softc *sc)
568 1.1 jonathan {
569 1.1 jonathan u_char eaddr[ETHER_ADDR_LEN];
570 1.14.2.6 bouyer uint16_t val;
571 1.1 jonathan struct ifnet *ifp;
572 1.1 jonathan int error = 0, i, addr_len;
573 1.1 jonathan
574 1.1 jonathan /* Reset the adapter. */
575 1.1 jonathan re_reset(sc);
576 1.1 jonathan
577 1.14.2.6 bouyer if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
578 1.14.2.6 bouyer addr_len = RTK_EEADDR_LEN1;
579 1.14.2.6 bouyer else
580 1.14.2.6 bouyer addr_len = RTK_EEADDR_LEN0;
581 1.14.2.6 bouyer
582 1.14.2.6 bouyer /*
583 1.14.2.6 bouyer * Get station address from the EEPROM.
584 1.14.2.6 bouyer */
585 1.14.2.6 bouyer for (i = 0; i < 3; i++) {
586 1.14.2.6 bouyer val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
587 1.14.2.6 bouyer eaddr[(i * 2) + 0] = val & 0xff;
588 1.14.2.6 bouyer eaddr[(i * 2) + 1] = val >> 8;
589 1.14.2.6 bouyer }
590 1.14.2.6 bouyer
591 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
592 1.1 jonathan uint32_t hwrev;
593 1.1 jonathan
594 1.1 jonathan /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
595 1.14.2.6 bouyer hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
596 1.14.2.6 bouyer /* These rev numbers are taken from Realtek's driver */
597 1.14.2.6 bouyer if ( hwrev == RTK_HWREV_8100E_SPIN2) {
598 1.14.2.6 bouyer sc->sc_rev = 15;
599 1.14.2.6 bouyer } else if (hwrev == RTK_HWREV_8100E) {
600 1.14.2.6 bouyer sc->sc_rev = 14;
601 1.14.2.6 bouyer } else if (hwrev == RTK_HWREV_8101E) {
602 1.14.2.6 bouyer sc->sc_rev = 13;
603 1.14.2.7 bouyer } else if (hwrev == RTK_HWREV_8168_SPIN2 ||
604 1.14.2.7 bouyer hwrev == RTK_HWREV_8168_SPIN3) {
605 1.14.2.6 bouyer sc->sc_rev = 12;
606 1.14.2.6 bouyer } else if (hwrev == RTK_HWREV_8168_SPIN1) {
607 1.14.2.6 bouyer sc->sc_rev = 11;
608 1.14.2.6 bouyer } else if (hwrev == RTK_HWREV_8169_8110SC) {
609 1.14.2.6 bouyer sc->sc_rev = 5;
610 1.14.2.6 bouyer } else if (hwrev == RTK_HWREV_8169_8110SB) {
611 1.1 jonathan sc->sc_rev = 4;
612 1.14.2.6 bouyer } else if (hwrev == RTK_HWREV_8169S) {
613 1.1 jonathan sc->sc_rev = 3;
614 1.14.2.6 bouyer } else if (hwrev == RTK_HWREV_8110S) {
615 1.1 jonathan sc->sc_rev = 2;
616 1.14.2.7 bouyer } else if (hwrev == RTK_HWREV_8169) {
617 1.1 jonathan sc->sc_rev = 1;
618 1.14.2.7 bouyer sc->sc_quirk |= RTKQ_8169NONS;
619 1.14.2.7 bouyer } else {
620 1.14.2.7 bouyer aprint_normal("%s: Unknown revision (0x%08x)\n",
621 1.14.2.7 bouyer sc->sc_dev.dv_xname, hwrev);
622 1.14.2.7 bouyer /* assume the latest one */
623 1.14.2.7 bouyer sc->sc_rev = 15;
624 1.14.2.7 bouyer }
625 1.1 jonathan
626 1.1 jonathan /* Set RX length mask */
627 1.14.2.6 bouyer sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
628 1.14.2.6 bouyer sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
629 1.1 jonathan } else {
630 1.1 jonathan /* Set RX length mask */
631 1.14.2.6 bouyer sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
632 1.14.2.6 bouyer sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
633 1.1 jonathan }
634 1.1 jonathan
635 1.1 jonathan aprint_normal("%s: Ethernet address %s\n",
636 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(eaddr));
637 1.1 jonathan
638 1.14.2.6 bouyer if (sc->re_ldata.re_tx_desc_cnt >
639 1.14.2.6 bouyer PAGE_SIZE / sizeof(struct re_desc)) {
640 1.14.2.6 bouyer sc->re_ldata.re_tx_desc_cnt =
641 1.14.2.6 bouyer PAGE_SIZE / sizeof(struct re_desc);
642 1.14.2.1 tron }
643 1.14.2.1 tron
644 1.14.2.1 tron aprint_verbose("%s: using %d tx descriptors\n",
645 1.14.2.6 bouyer sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
646 1.14.2.6 bouyer KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
647 1.1 jonathan
648 1.5 kanaoka /* Allocate DMA'able memory for the TX ring */
649 1.14.2.6 bouyer if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
650 1.14.2.6 bouyer RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
651 1.14.2.6 bouyer &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
652 1.5 kanaoka aprint_error("%s: can't allocate tx listseg, error = %d\n",
653 1.5 kanaoka sc->sc_dev.dv_xname, error);
654 1.5 kanaoka goto fail_0;
655 1.5 kanaoka }
656 1.5 kanaoka
657 1.5 kanaoka /* Load the map for the TX ring. */
658 1.14.2.6 bouyer if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
659 1.14.2.6 bouyer sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
660 1.14.2.6 bouyer (caddr_t *)&sc->re_ldata.re_tx_list,
661 1.14.2.6 bouyer BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
662 1.5 kanaoka aprint_error("%s: can't map tx list, error = %d\n",
663 1.5 kanaoka sc->sc_dev.dv_xname, error);
664 1.5 kanaoka goto fail_1;
665 1.5 kanaoka }
666 1.14.2.6 bouyer memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
667 1.5 kanaoka
668 1.14.2.6 bouyer if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
669 1.14.2.6 bouyer RE_TX_LIST_SZ(sc), 0, 0,
670 1.14.2.6 bouyer &sc->re_ldata.re_tx_list_map)) != 0) {
671 1.5 kanaoka aprint_error("%s: can't create tx list map, error = %d\n",
672 1.5 kanaoka sc->sc_dev.dv_xname, error);
673 1.5 kanaoka goto fail_2;
674 1.5 kanaoka }
675 1.5 kanaoka
676 1.5 kanaoka
677 1.12 perry if ((error = bus_dmamap_load(sc->sc_dmat,
678 1.14.2.6 bouyer sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
679 1.14.2.6 bouyer RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
680 1.5 kanaoka aprint_error("%s: can't load tx list, error = %d\n",
681 1.5 kanaoka sc->sc_dev.dv_xname, error);
682 1.5 kanaoka goto fail_3;
683 1.5 kanaoka }
684 1.5 kanaoka
685 1.5 kanaoka /* Create DMA maps for TX buffers */
686 1.14.2.6 bouyer for (i = 0; i < RE_TX_QLEN; i++) {
687 1.13 yamt error = bus_dmamap_create(sc->sc_dmat,
688 1.13 yamt round_page(IP_MAXPACKET),
689 1.14.2.6 bouyer RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
690 1.14.2.6 bouyer 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
691 1.5 kanaoka if (error) {
692 1.5 kanaoka aprint_error("%s: can't create DMA map for TX\n",
693 1.5 kanaoka sc->sc_dev.dv_xname);
694 1.5 kanaoka goto fail_4;
695 1.5 kanaoka }
696 1.5 kanaoka }
697 1.5 kanaoka
698 1.5 kanaoka /* Allocate DMA'able memory for the RX ring */
699 1.14.2.6 bouyer /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
700 1.14.2.6 bouyer if ((error = bus_dmamem_alloc(sc->sc_dmat,
701 1.14.2.6 bouyer RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
702 1.14.2.6 bouyer &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
703 1.5 kanaoka aprint_error("%s: can't allocate rx listseg, error = %d\n",
704 1.5 kanaoka sc->sc_dev.dv_xname, error);
705 1.5 kanaoka goto fail_4;
706 1.5 kanaoka }
707 1.5 kanaoka
708 1.5 kanaoka /* Load the map for the RX ring. */
709 1.14.2.6 bouyer if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
710 1.14.2.6 bouyer sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
711 1.14.2.6 bouyer (caddr_t *)&sc->re_ldata.re_rx_list,
712 1.14.2.6 bouyer BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
713 1.5 kanaoka aprint_error("%s: can't map rx list, error = %d\n",
714 1.5 kanaoka sc->sc_dev.dv_xname, error);
715 1.5 kanaoka goto fail_5;
716 1.5 kanaoka }
717 1.14.2.6 bouyer memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
718 1.5 kanaoka
719 1.14.2.6 bouyer if ((error = bus_dmamap_create(sc->sc_dmat,
720 1.14.2.6 bouyer RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
721 1.14.2.6 bouyer &sc->re_ldata.re_rx_list_map)) != 0) {
722 1.5 kanaoka aprint_error("%s: can't create rx list map, error = %d\n",
723 1.5 kanaoka sc->sc_dev.dv_xname, error);
724 1.5 kanaoka goto fail_6;
725 1.5 kanaoka }
726 1.5 kanaoka
727 1.5 kanaoka if ((error = bus_dmamap_load(sc->sc_dmat,
728 1.14.2.6 bouyer sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
729 1.14.2.6 bouyer RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
730 1.5 kanaoka aprint_error("%s: can't load rx list, error = %d\n",
731 1.5 kanaoka sc->sc_dev.dv_xname, error);
732 1.5 kanaoka goto fail_7;
733 1.5 kanaoka }
734 1.5 kanaoka
735 1.5 kanaoka /* Create DMA maps for RX buffers */
736 1.14.2.6 bouyer for (i = 0; i < RE_RX_DESC_CNT; i++) {
737 1.5 kanaoka error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
738 1.14.2.6 bouyer 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
739 1.5 kanaoka if (error) {
740 1.5 kanaoka aprint_error("%s: can't create DMA map for RX\n",
741 1.5 kanaoka sc->sc_dev.dv_xname);
742 1.5 kanaoka goto fail_8;
743 1.5 kanaoka }
744 1.1 jonathan }
745 1.1 jonathan
746 1.6 kanaoka /*
747 1.6 kanaoka * Record interface as attached. From here, we should not fail.
748 1.6 kanaoka */
749 1.6 kanaoka sc->sc_flags |= RTK_ATTACHED;
750 1.6 kanaoka
751 1.1 jonathan ifp = &sc->ethercom.ec_if;
752 1.1 jonathan ifp->if_softc = sc;
753 1.1 jonathan strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
754 1.1 jonathan ifp->if_mtu = ETHERMTU;
755 1.1 jonathan ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
756 1.1 jonathan ifp->if_ioctl = re_ioctl;
757 1.14.2.6 bouyer sc->ethercom.ec_capabilities |=
758 1.14.2.6 bouyer ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
759 1.1 jonathan ifp->if_start = re_start;
760 1.3 kanaoka ifp->if_stop = re_stop;
761 1.14.2.6 bouyer
762 1.14.2.6 bouyer /*
763 1.14.2.6 bouyer * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
764 1.14.2.6 bouyer * so we have a workaround to handle the bug by padding
765 1.14.2.6 bouyer * such packets manually.
766 1.14.2.6 bouyer */
767 1.1 jonathan ifp->if_capabilities |=
768 1.14.2.6 bouyer IFCAP_CSUM_IPv4 |
769 1.14.2.6 bouyer IFCAP_CSUM_TCPv4 |
770 1.14.2.6 bouyer IFCAP_CSUM_UDPv4 |
771 1.13 yamt IFCAP_TSOv4;
772 1.1 jonathan ifp->if_watchdog = re_watchdog;
773 1.1 jonathan ifp->if_init = re_init;
774 1.14.2.6 bouyer ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
775 1.1 jonathan ifp->if_capenable = ifp->if_capabilities;
776 1.1 jonathan IFQ_SET_READY(&ifp->if_snd);
777 1.1 jonathan
778 1.1 jonathan callout_init(&sc->rtk_tick_ch);
779 1.1 jonathan
780 1.1 jonathan /* Do MII setup */
781 1.1 jonathan sc->mii.mii_ifp = ifp;
782 1.1 jonathan sc->mii.mii_readreg = re_miibus_readreg;
783 1.1 jonathan sc->mii.mii_writereg = re_miibus_writereg;
784 1.1 jonathan sc->mii.mii_statchg = re_miibus_statchg;
785 1.1 jonathan ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
786 1.1 jonathan re_ifmedia_sts);
787 1.1 jonathan mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
788 1.1 jonathan MII_OFFSET_ANY, 0);
789 1.4 kanaoka ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
790 1.1 jonathan
791 1.1 jonathan /*
792 1.1 jonathan * Call MI attach routine.
793 1.1 jonathan */
794 1.1 jonathan if_attach(ifp);
795 1.1 jonathan ether_ifattach(ifp, eaddr);
796 1.1 jonathan
797 1.1 jonathan
798 1.1 jonathan /*
799 1.1 jonathan * Make sure the interface is shutdown during reboot.
800 1.1 jonathan */
801 1.1 jonathan sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
802 1.1 jonathan if (sc->sc_sdhook == NULL)
803 1.4 kanaoka aprint_error("%s: WARNING: unable to establish shutdown hook\n",
804 1.1 jonathan sc->sc_dev.dv_xname);
805 1.1 jonathan /*
806 1.1 jonathan * Add a suspend hook to make sure we come back up after a
807 1.1 jonathan * resume.
808 1.1 jonathan */
809 1.1 jonathan sc->sc_powerhook = powerhook_establish(re_power, sc);
810 1.1 jonathan if (sc->sc_powerhook == NULL)
811 1.4 kanaoka aprint_error("%s: WARNING: unable to establish power hook\n",
812 1.1 jonathan sc->sc_dev.dv_xname);
813 1.1 jonathan
814 1.1 jonathan
815 1.5 kanaoka return;
816 1.5 kanaoka
817 1.14.2.6 bouyer fail_8:
818 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
819 1.14.2.6 bouyer for (i = 0; i < RE_RX_DESC_CNT; i++)
820 1.14.2.6 bouyer if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
821 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
822 1.14.2.6 bouyer sc->re_ldata.re_rxsoft[i].rxs_dmamap);
823 1.5 kanaoka
824 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
825 1.14.2.6 bouyer bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
826 1.14.2.6 bouyer fail_7:
827 1.14.2.6 bouyer bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
828 1.14.2.6 bouyer fail_6:
829 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
830 1.14.2.6 bouyer (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
831 1.14.2.6 bouyer fail_5:
832 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
833 1.14.2.6 bouyer &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
834 1.5 kanaoka
835 1.14.2.6 bouyer fail_4:
836 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
837 1.14.2.6 bouyer for (i = 0; i < RE_TX_QLEN; i++)
838 1.14.2.6 bouyer if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
839 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
840 1.14.2.6 bouyer sc->re_ldata.re_txq[i].txq_dmamap);
841 1.5 kanaoka
842 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
843 1.14.2.6 bouyer bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
844 1.14.2.6 bouyer fail_3:
845 1.14.2.6 bouyer bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
846 1.14.2.6 bouyer fail_2:
847 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
848 1.14.2.6 bouyer (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
849 1.14.2.6 bouyer fail_1:
850 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
851 1.14.2.6 bouyer &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
852 1.14.2.6 bouyer fail_0:
853 1.1 jonathan return;
854 1.1 jonathan }
855 1.1 jonathan
856 1.1 jonathan
857 1.1 jonathan /*
858 1.1 jonathan * re_activate:
859 1.1 jonathan * Handle device activation/deactivation requests.
860 1.1 jonathan */
861 1.1 jonathan int
862 1.1 jonathan re_activate(struct device *self, enum devact act)
863 1.1 jonathan {
864 1.14.2.6 bouyer struct rtk_softc *sc = (void *)self;
865 1.1 jonathan int s, error = 0;
866 1.1 jonathan
867 1.1 jonathan s = splnet();
868 1.1 jonathan switch (act) {
869 1.1 jonathan case DVACT_ACTIVATE:
870 1.1 jonathan error = EOPNOTSUPP;
871 1.1 jonathan break;
872 1.1 jonathan case DVACT_DEACTIVATE:
873 1.1 jonathan mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
874 1.1 jonathan if_deactivate(&sc->ethercom.ec_if);
875 1.1 jonathan break;
876 1.1 jonathan }
877 1.1 jonathan splx(s);
878 1.1 jonathan
879 1.4 kanaoka return error;
880 1.1 jonathan }
881 1.1 jonathan
882 1.1 jonathan /*
883 1.1 jonathan * re_detach:
884 1.1 jonathan * Detach a rtk interface.
885 1.1 jonathan */
886 1.1 jonathan int
887 1.1 jonathan re_detach(struct rtk_softc *sc)
888 1.1 jonathan {
889 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
890 1.5 kanaoka int i;
891 1.1 jonathan
892 1.1 jonathan /*
893 1.1 jonathan * Succeed now if there isn't any work to do.
894 1.1 jonathan */
895 1.1 jonathan if ((sc->sc_flags & RTK_ATTACHED) == 0)
896 1.4 kanaoka return 0;
897 1.1 jonathan
898 1.1 jonathan /* Unhook our tick handler. */
899 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
900 1.1 jonathan
901 1.1 jonathan /* Detach all PHYs. */
902 1.1 jonathan mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
903 1.1 jonathan
904 1.1 jonathan /* Delete all remaining media. */
905 1.1 jonathan ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
906 1.1 jonathan
907 1.1 jonathan ether_ifdetach(ifp);
908 1.1 jonathan if_detach(ifp);
909 1.1 jonathan
910 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
911 1.14.2.6 bouyer for (i = 0; i < RE_RX_DESC_CNT; i++)
912 1.14.2.6 bouyer if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
913 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
914 1.14.2.6 bouyer sc->re_ldata.re_rxsoft[i].rxs_dmamap);
915 1.5 kanaoka
916 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
917 1.14.2.6 bouyer bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
918 1.14.2.6 bouyer bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
919 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
920 1.14.2.6 bouyer (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
921 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
922 1.14.2.6 bouyer &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
923 1.5 kanaoka
924 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
925 1.14.2.6 bouyer for (i = 0; i < RE_TX_QLEN; i++)
926 1.14.2.6 bouyer if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
927 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
928 1.14.2.6 bouyer sc->re_ldata.re_txq[i].txq_dmamap);
929 1.5 kanaoka
930 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
931 1.14.2.6 bouyer bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
932 1.14.2.6 bouyer bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
933 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
934 1.14.2.6 bouyer (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
935 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
936 1.14.2.6 bouyer &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
937 1.5 kanaoka
938 1.12 perry
939 1.1 jonathan shutdownhook_disestablish(sc->sc_sdhook);
940 1.1 jonathan powerhook_disestablish(sc->sc_powerhook);
941 1.1 jonathan
942 1.4 kanaoka return 0;
943 1.1 jonathan }
944 1.1 jonathan
945 1.1 jonathan /*
946 1.1 jonathan * re_enable:
947 1.1 jonathan * Enable the RTL81X9 chip.
948 1.1 jonathan */
949 1.12 perry static int
950 1.1 jonathan re_enable(struct rtk_softc *sc)
951 1.1 jonathan {
952 1.14.2.6 bouyer
953 1.1 jonathan if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
954 1.1 jonathan if ((*sc->sc_enable)(sc) != 0) {
955 1.4 kanaoka aprint_error("%s: device enable failed\n",
956 1.1 jonathan sc->sc_dev.dv_xname);
957 1.4 kanaoka return EIO;
958 1.1 jonathan }
959 1.1 jonathan sc->sc_flags |= RTK_ENABLED;
960 1.1 jonathan }
961 1.4 kanaoka return 0;
962 1.1 jonathan }
963 1.1 jonathan
964 1.1 jonathan /*
965 1.1 jonathan * re_disable:
966 1.1 jonathan * Disable the RTL81X9 chip.
967 1.1 jonathan */
968 1.12 perry static void
969 1.1 jonathan re_disable(struct rtk_softc *sc)
970 1.1 jonathan {
971 1.1 jonathan
972 1.1 jonathan if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
973 1.1 jonathan (*sc->sc_disable)(sc);
974 1.1 jonathan sc->sc_flags &= ~RTK_ENABLED;
975 1.1 jonathan }
976 1.1 jonathan }
977 1.1 jonathan
978 1.1 jonathan /*
979 1.1 jonathan * re_power:
980 1.1 jonathan * Power management (suspend/resume) hook.
981 1.1 jonathan */
982 1.12 perry void
983 1.1 jonathan re_power(int why, void *arg)
984 1.1 jonathan {
985 1.14.2.6 bouyer struct rtk_softc *sc = (void *)arg;
986 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
987 1.1 jonathan int s;
988 1.1 jonathan
989 1.1 jonathan s = splnet();
990 1.1 jonathan switch (why) {
991 1.1 jonathan case PWR_SUSPEND:
992 1.1 jonathan case PWR_STANDBY:
993 1.3 kanaoka re_stop(ifp, 0);
994 1.1 jonathan if (sc->sc_power != NULL)
995 1.1 jonathan (*sc->sc_power)(sc, why);
996 1.1 jonathan break;
997 1.1 jonathan case PWR_RESUME:
998 1.1 jonathan if (ifp->if_flags & IFF_UP) {
999 1.1 jonathan if (sc->sc_power != NULL)
1000 1.1 jonathan (*sc->sc_power)(sc, why);
1001 1.1 jonathan re_init(ifp);
1002 1.1 jonathan }
1003 1.1 jonathan break;
1004 1.1 jonathan case PWR_SOFTSUSPEND:
1005 1.1 jonathan case PWR_SOFTSTANDBY:
1006 1.1 jonathan case PWR_SOFTRESUME:
1007 1.1 jonathan break;
1008 1.1 jonathan }
1009 1.1 jonathan splx(s);
1010 1.1 jonathan }
1011 1.1 jonathan
1012 1.1 jonathan
1013 1.1 jonathan static int
1014 1.1 jonathan re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1015 1.1 jonathan {
1016 1.1 jonathan struct mbuf *n = NULL;
1017 1.1 jonathan bus_dmamap_t map;
1018 1.14.2.6 bouyer struct re_desc *d;
1019 1.14.2.6 bouyer struct re_rxsoft *rxs;
1020 1.14.2.6 bouyer uint32_t cmdstat;
1021 1.1 jonathan int error;
1022 1.1 jonathan
1023 1.1 jonathan if (m == NULL) {
1024 1.1 jonathan MGETHDR(n, M_DONTWAIT, MT_DATA);
1025 1.1 jonathan if (n == NULL)
1026 1.4 kanaoka return ENOBUFS;
1027 1.1 jonathan
1028 1.14.2.6 bouyer MCLGET(n, M_DONTWAIT);
1029 1.14.2.6 bouyer if ((n->m_flags & M_EXT) == 0) {
1030 1.14.2.6 bouyer m_freem(n);
1031 1.4 kanaoka return ENOBUFS;
1032 1.1 jonathan }
1033 1.14.2.6 bouyer m = n;
1034 1.1 jonathan } else
1035 1.1 jonathan m->m_data = m->m_ext.ext_buf;
1036 1.1 jonathan
1037 1.1 jonathan /*
1038 1.1 jonathan * Initialize mbuf length fields and fixup
1039 1.1 jonathan * alignment so that the frame payload is
1040 1.1 jonathan * longword aligned.
1041 1.1 jonathan */
1042 1.14.2.6 bouyer m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1043 1.14.2.6 bouyer m->m_data += RE_ETHER_ALIGN;
1044 1.1 jonathan
1045 1.14.2.6 bouyer rxs = &sc->re_ldata.re_rxsoft[idx];
1046 1.14.2.6 bouyer map = rxs->rxs_dmamap;
1047 1.14.2.4 tron error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1048 1.14.2.4 tron BUS_DMA_READ|BUS_DMA_NOWAIT);
1049 1.1 jonathan
1050 1.1 jonathan if (error)
1051 1.1 jonathan goto out;
1052 1.1 jonathan
1053 1.14.2.6 bouyer bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1054 1.14.2.6 bouyer BUS_DMASYNC_PREREAD);
1055 1.1 jonathan
1056 1.14.2.6 bouyer d = &sc->re_ldata.re_rx_list[idx];
1057 1.14.2.6 bouyer #ifdef DIAGNOSTIC
1058 1.14.2.6 bouyer RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1059 1.14.2.6 bouyer cmdstat = le32toh(d->re_cmdstat);
1060 1.14.2.6 bouyer RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1061 1.14.2.6 bouyer if (cmdstat & RE_RDESC_STAT_OWN) {
1062 1.14.2.6 bouyer panic("%s: tried to map busy RX descriptor",
1063 1.14.2.6 bouyer sc->sc_dev.dv_xname);
1064 1.14.2.6 bouyer }
1065 1.14.2.6 bouyer #endif
1066 1.1 jonathan
1067 1.14.2.6 bouyer rxs->rxs_mbuf = m;
1068 1.14.2.6 bouyer
1069 1.14.2.6 bouyer d->re_vlanctl = 0;
1070 1.14.2.6 bouyer cmdstat = map->dm_segs[0].ds_len;
1071 1.14.2.6 bouyer if (idx == (RE_RX_DESC_CNT - 1))
1072 1.14.2.6 bouyer cmdstat |= RE_RDESC_CMD_EOR;
1073 1.14.2.6 bouyer re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1074 1.14.2.6 bouyer d->re_cmdstat = htole32(cmdstat);
1075 1.14.2.6 bouyer RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1076 1.14.2.6 bouyer cmdstat |= RE_RDESC_CMD_OWN;
1077 1.14.2.6 bouyer d->re_cmdstat = htole32(cmdstat);
1078 1.14.2.6 bouyer RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1079 1.1 jonathan
1080 1.1 jonathan return 0;
1081 1.14.2.6 bouyer out:
1082 1.1 jonathan if (n != NULL)
1083 1.1 jonathan m_freem(n);
1084 1.1 jonathan return ENOMEM;
1085 1.1 jonathan }
1086 1.1 jonathan
1087 1.1 jonathan static int
1088 1.1 jonathan re_tx_list_init(struct rtk_softc *sc)
1089 1.1 jonathan {
1090 1.14.2.1 tron int i;
1091 1.14.2.1 tron
1092 1.14.2.6 bouyer memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1093 1.14.2.6 bouyer for (i = 0; i < RE_TX_QLEN; i++) {
1094 1.14.2.6 bouyer sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1095 1.14.2.1 tron }
1096 1.1 jonathan
1097 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1098 1.14.2.6 bouyer sc->re_ldata.re_tx_list_map, 0,
1099 1.14.2.6 bouyer sc->re_ldata.re_tx_list_map->dm_mapsize,
1100 1.14.2.6 bouyer BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1101 1.14.2.6 bouyer sc->re_ldata.re_txq_prodidx = 0;
1102 1.14.2.6 bouyer sc->re_ldata.re_txq_considx = 0;
1103 1.14.2.6 bouyer sc->re_ldata.re_txq_free = RE_TX_QLEN;
1104 1.14.2.6 bouyer sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1105 1.14.2.6 bouyer sc->re_ldata.re_tx_nextfree = 0;
1106 1.1 jonathan
1107 1.4 kanaoka return 0;
1108 1.1 jonathan }
1109 1.1 jonathan
1110 1.1 jonathan static int
1111 1.1 jonathan re_rx_list_init(struct rtk_softc *sc)
1112 1.1 jonathan {
1113 1.1 jonathan int i;
1114 1.1 jonathan
1115 1.14.2.6 bouyer memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1116 1.1 jonathan
1117 1.14.2.6 bouyer for (i = 0; i < RE_RX_DESC_CNT; i++) {
1118 1.1 jonathan if (re_newbuf(sc, i, NULL) == ENOBUFS)
1119 1.4 kanaoka return ENOBUFS;
1120 1.1 jonathan }
1121 1.1 jonathan
1122 1.14.2.6 bouyer sc->re_ldata.re_rx_prodidx = 0;
1123 1.14.2.6 bouyer sc->re_head = sc->re_tail = NULL;
1124 1.1 jonathan
1125 1.4 kanaoka return 0;
1126 1.1 jonathan }
1127 1.1 jonathan
1128 1.1 jonathan /*
1129 1.1 jonathan * RX handler for C+ and 8169. For the gigE chips, we support
1130 1.1 jonathan * the reception of jumbo frames that have been fragmented
1131 1.1 jonathan * across multiple 2K mbuf cluster buffers.
1132 1.1 jonathan */
1133 1.1 jonathan static void
1134 1.1 jonathan re_rxeof(struct rtk_softc *sc)
1135 1.1 jonathan {
1136 1.1 jonathan struct mbuf *m;
1137 1.1 jonathan struct ifnet *ifp;
1138 1.1 jonathan int i, total_len;
1139 1.14.2.6 bouyer struct re_desc *cur_rx;
1140 1.14.2.6 bouyer struct re_rxsoft *rxs;
1141 1.14.2.6 bouyer uint32_t rxstat, rxvlan;
1142 1.1 jonathan
1143 1.1 jonathan ifp = &sc->ethercom.ec_if;
1144 1.1 jonathan
1145 1.14.2.6 bouyer for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1146 1.14.2.6 bouyer cur_rx = &sc->re_ldata.re_rx_list[i];
1147 1.14.2.6 bouyer RE_RXDESCSYNC(sc, i,
1148 1.14.2.6 bouyer BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1149 1.14.2.6 bouyer rxstat = le32toh(cur_rx->re_cmdstat);
1150 1.14.2.6 bouyer RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1151 1.14.2.6 bouyer if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1152 1.14.2.6 bouyer break;
1153 1.14.2.6 bouyer }
1154 1.14.2.6 bouyer total_len = rxstat & sc->re_rxlenmask;
1155 1.14.2.6 bouyer rxvlan = le32toh(cur_rx->re_vlanctl);
1156 1.14.2.6 bouyer rxs = &sc->re_ldata.re_rxsoft[i];
1157 1.14.2.6 bouyer m = rxs->rxs_mbuf;
1158 1.1 jonathan
1159 1.1 jonathan /* Invalidate the RX mbuf and unload its map */
1160 1.1 jonathan
1161 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1162 1.14.2.6 bouyer rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1163 1.14.2.6 bouyer BUS_DMASYNC_POSTREAD);
1164 1.14.2.6 bouyer bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1165 1.14.2.6 bouyer
1166 1.14.2.6 bouyer if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1167 1.14.2.6 bouyer m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1168 1.14.2.6 bouyer if (sc->re_head == NULL)
1169 1.14.2.6 bouyer sc->re_head = sc->re_tail = m;
1170 1.1 jonathan else {
1171 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1172 1.14.2.6 bouyer sc->re_tail->m_next = m;
1173 1.14.2.6 bouyer sc->re_tail = m;
1174 1.1 jonathan }
1175 1.1 jonathan re_newbuf(sc, i, NULL);
1176 1.1 jonathan continue;
1177 1.1 jonathan }
1178 1.1 jonathan
1179 1.1 jonathan /*
1180 1.1 jonathan * NOTE: for the 8139C+, the frame length field
1181 1.1 jonathan * is always 12 bits in size, but for the gigE chips,
1182 1.1 jonathan * it is 13 bits (since the max RX frame length is 16K).
1183 1.1 jonathan * Unfortunately, all 32 bits in the status word
1184 1.1 jonathan * were already used, so to make room for the extra
1185 1.1 jonathan * length bit, RealTek took out the 'frame alignment
1186 1.1 jonathan * error' bit and shifted the other status bits
1187 1.1 jonathan * over one slot. The OWN, EOR, FS and LS bits are
1188 1.1 jonathan * still in the same places. We have already extracted
1189 1.1 jonathan * the frame length and checked the OWN bit, so rather
1190 1.1 jonathan * than using an alternate bit mapping, we shift the
1191 1.1 jonathan * status bits one space to the right so we can evaluate
1192 1.1 jonathan * them using the 8169 status as though it was in the
1193 1.1 jonathan * same format as that of the 8139C+.
1194 1.1 jonathan */
1195 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1196 1.1 jonathan rxstat >>= 1;
1197 1.1 jonathan
1198 1.14.2.6 bouyer if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1199 1.14.2.6 bouyer #ifdef RE_DEBUG
1200 1.14.2.6 bouyer aprint_error("%s: RX error (rxstat = 0x%08x)",
1201 1.14.2.6 bouyer sc->sc_dev.dv_xname, rxstat);
1202 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_FRALIGN)
1203 1.14.2.6 bouyer aprint_error(", frame alignment error");
1204 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1205 1.14.2.6 bouyer aprint_error(", out of buffer space");
1206 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1207 1.14.2.6 bouyer aprint_error(", FIFO overrun");
1208 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_GIANT)
1209 1.14.2.6 bouyer aprint_error(", giant packet");
1210 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_RUNT)
1211 1.14.2.6 bouyer aprint_error(", runt packet");
1212 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_CRCERR)
1213 1.14.2.6 bouyer aprint_error(", CRC error");
1214 1.14.2.6 bouyer aprint_error("\n");
1215 1.14.2.6 bouyer #endif
1216 1.1 jonathan ifp->if_ierrors++;
1217 1.1 jonathan /*
1218 1.1 jonathan * If this is part of a multi-fragment packet,
1219 1.1 jonathan * discard all the pieces.
1220 1.1 jonathan */
1221 1.14.2.6 bouyer if (sc->re_head != NULL) {
1222 1.14.2.6 bouyer m_freem(sc->re_head);
1223 1.14.2.6 bouyer sc->re_head = sc->re_tail = NULL;
1224 1.1 jonathan }
1225 1.1 jonathan re_newbuf(sc, i, m);
1226 1.1 jonathan continue;
1227 1.1 jonathan }
1228 1.1 jonathan
1229 1.1 jonathan /*
1230 1.1 jonathan * If allocating a replacement mbuf fails,
1231 1.1 jonathan * reload the current one.
1232 1.1 jonathan */
1233 1.1 jonathan
1234 1.14.2.6 bouyer if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1235 1.1 jonathan ifp->if_ierrors++;
1236 1.14.2.6 bouyer if (sc->re_head != NULL) {
1237 1.14.2.6 bouyer m_freem(sc->re_head);
1238 1.14.2.6 bouyer sc->re_head = sc->re_tail = NULL;
1239 1.1 jonathan }
1240 1.1 jonathan re_newbuf(sc, i, m);
1241 1.1 jonathan continue;
1242 1.1 jonathan }
1243 1.1 jonathan
1244 1.14.2.6 bouyer if (sc->re_head != NULL) {
1245 1.14.2.6 bouyer m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1246 1.12 perry /*
1247 1.1 jonathan * Special case: if there's 4 bytes or less
1248 1.1 jonathan * in this buffer, the mbuf can be discarded:
1249 1.1 jonathan * the last 4 bytes is the CRC, which we don't
1250 1.1 jonathan * care about anyway.
1251 1.1 jonathan */
1252 1.1 jonathan if (m->m_len <= ETHER_CRC_LEN) {
1253 1.14.2.6 bouyer sc->re_tail->m_len -=
1254 1.1 jonathan (ETHER_CRC_LEN - m->m_len);
1255 1.1 jonathan m_freem(m);
1256 1.1 jonathan } else {
1257 1.1 jonathan m->m_len -= ETHER_CRC_LEN;
1258 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1259 1.14.2.6 bouyer sc->re_tail->m_next = m;
1260 1.1 jonathan }
1261 1.14.2.6 bouyer m = sc->re_head;
1262 1.14.2.6 bouyer sc->re_head = sc->re_tail = NULL;
1263 1.1 jonathan m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1264 1.1 jonathan } else
1265 1.1 jonathan m->m_pkthdr.len = m->m_len =
1266 1.1 jonathan (total_len - ETHER_CRC_LEN);
1267 1.1 jonathan
1268 1.1 jonathan ifp->if_ipackets++;
1269 1.1 jonathan m->m_pkthdr.rcvif = ifp;
1270 1.1 jonathan
1271 1.14.2.6 bouyer /* Do RX checksumming */
1272 1.1 jonathan
1273 1.14.2.6 bouyer /* Check IP header checksum */
1274 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_PROTOID) {
1275 1.14.2.6 bouyer m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1276 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1277 1.4 kanaoka m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1278 1.1 jonathan }
1279 1.1 jonathan
1280 1.1 jonathan /* Check TCP/UDP checksum */
1281 1.14.2.6 bouyer if (RE_TCPPKT(rxstat)) {
1282 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1283 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1284 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1285 1.14.2.6 bouyer } else if (RE_UDPPKT(rxstat)) {
1286 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1287 1.14.2.6 bouyer if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1288 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1289 1.1 jonathan }
1290 1.1 jonathan
1291 1.14.2.6 bouyer if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1292 1.9 jdolecek VLAN_INPUT_TAG(ifp, m,
1293 1.14.2.6 bouyer bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1294 1.9 jdolecek continue);
1295 1.1 jonathan }
1296 1.1 jonathan #if NBPFILTER > 0
1297 1.1 jonathan if (ifp->if_bpf)
1298 1.1 jonathan bpf_mtap(ifp->if_bpf, m);
1299 1.1 jonathan #endif
1300 1.1 jonathan (*ifp->if_input)(ifp, m);
1301 1.1 jonathan }
1302 1.1 jonathan
1303 1.14.2.6 bouyer sc->re_ldata.re_rx_prodidx = i;
1304 1.1 jonathan }
1305 1.1 jonathan
1306 1.1 jonathan static void
1307 1.1 jonathan re_txeof(struct rtk_softc *sc)
1308 1.1 jonathan {
1309 1.1 jonathan struct ifnet *ifp;
1310 1.14.2.6 bouyer struct re_txq *txq;
1311 1.14.2.6 bouyer uint32_t txstat;
1312 1.14.2.6 bouyer int idx, descidx;
1313 1.1 jonathan
1314 1.1 jonathan ifp = &sc->ethercom.ec_if;
1315 1.1 jonathan
1316 1.14.2.6 bouyer for (idx = sc->re_ldata.re_txq_considx;
1317 1.14.2.6 bouyer sc->re_ldata.re_txq_free < RE_TX_QLEN;
1318 1.14.2.6 bouyer idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1319 1.14.2.6 bouyer txq = &sc->re_ldata.re_txq[idx];
1320 1.14.2.6 bouyer KASSERT(txq->txq_mbuf != NULL);
1321 1.14.2.1 tron
1322 1.14.2.3 tron descidx = txq->txq_descidx;
1323 1.14.2.6 bouyer RE_TXDESCSYNC(sc, descidx,
1324 1.14.2.6 bouyer BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1325 1.14.2.1 tron txstat =
1326 1.14.2.6 bouyer le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1327 1.14.2.6 bouyer RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1328 1.14.2.6 bouyer KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1329 1.14.2.6 bouyer if (txstat & RE_TDESC_CMD_OWN) {
1330 1.1 jonathan break;
1331 1.14.2.6 bouyer }
1332 1.1 jonathan
1333 1.14.2.6 bouyer sc->re_ldata.re_tx_free += txq->txq_nsegs;
1334 1.14.2.6 bouyer KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1335 1.14.2.6 bouyer bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1336 1.14.2.6 bouyer 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1337 1.14.2.1 tron bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1338 1.14.2.1 tron m_freem(txq->txq_mbuf);
1339 1.14.2.1 tron txq->txq_mbuf = NULL;
1340 1.14.2.1 tron
1341 1.14.2.6 bouyer if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1342 1.14.2.1 tron ifp->if_collisions++;
1343 1.14.2.6 bouyer if (txstat & RE_TDESC_STAT_TXERRSUM)
1344 1.14.2.1 tron ifp->if_oerrors++;
1345 1.14.2.1 tron else
1346 1.14.2.1 tron ifp->if_opackets++;
1347 1.1 jonathan }
1348 1.1 jonathan
1349 1.14.2.6 bouyer sc->re_ldata.re_txq_considx = idx;
1350 1.1 jonathan
1351 1.14.2.6 bouyer if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1352 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1353 1.1 jonathan
1354 1.1 jonathan /*
1355 1.1 jonathan * If not all descriptors have been released reaped yet,
1356 1.1 jonathan * reload the timer so that we will eventually get another
1357 1.1 jonathan * interrupt that will cause us to re-enter this routine.
1358 1.1 jonathan * This is done in case the transmitter has gone idle.
1359 1.1 jonathan */
1360 1.14.2.7 bouyer if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1361 1.4 kanaoka CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1362 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1363 1.14.2.7 bouyer /*
1364 1.14.2.7 bouyer * Some chips will ignore a second TX request
1365 1.14.2.7 bouyer * issued while an existing transmission is in
1366 1.14.2.7 bouyer * progress. If the transmitter goes idle but
1367 1.14.2.7 bouyer * there are still packets waiting to be sent,
1368 1.14.2.7 bouyer * we need to restart the channel here to flush
1369 1.14.2.7 bouyer * them out. This only seems to be required with
1370 1.14.2.7 bouyer * the PCIe devices.
1371 1.14.2.7 bouyer */
1372 1.14.2.7 bouyer CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1373 1.14.2.7 bouyer }
1374 1.14.2.7 bouyer } else
1375 1.14.2.6 bouyer ifp->if_timer = 0;
1376 1.1 jonathan }
1377 1.1 jonathan
1378 1.1 jonathan /*
1379 1.1 jonathan * Stop all chip I/O so that the kernel's probe routines don't
1380 1.1 jonathan * get confused by errant DMAs when rebooting.
1381 1.1 jonathan */
1382 1.1 jonathan static void
1383 1.1 jonathan re_shutdown(void *vsc)
1384 1.1 jonathan
1385 1.1 jonathan {
1386 1.14.2.6 bouyer struct rtk_softc *sc = vsc;
1387 1.1 jonathan
1388 1.3 kanaoka re_stop(&sc->ethercom.ec_if, 0);
1389 1.1 jonathan }
1390 1.1 jonathan
1391 1.1 jonathan
1392 1.1 jonathan static void
1393 1.1 jonathan re_tick(void *xsc)
1394 1.1 jonathan {
1395 1.1 jonathan struct rtk_softc *sc = xsc;
1396 1.1 jonathan int s;
1397 1.1 jonathan
1398 1.1 jonathan /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1399 1.1 jonathan s = splnet();
1400 1.1 jonathan
1401 1.1 jonathan mii_tick(&sc->mii);
1402 1.1 jonathan splx(s);
1403 1.1 jonathan
1404 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1405 1.1 jonathan }
1406 1.1 jonathan
1407 1.1 jonathan #ifdef DEVICE_POLLING
1408 1.1 jonathan static void
1409 1.1 jonathan re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1410 1.1 jonathan {
1411 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1412 1.1 jonathan
1413 1.1 jonathan RTK_LOCK(sc);
1414 1.14.2.6 bouyer if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1415 1.1 jonathan ether_poll_deregister(ifp);
1416 1.1 jonathan cmd = POLL_DEREGISTER;
1417 1.1 jonathan }
1418 1.1 jonathan if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1419 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1420 1.1 jonathan goto done;
1421 1.1 jonathan }
1422 1.1 jonathan
1423 1.1 jonathan sc->rxcycles = count;
1424 1.1 jonathan re_rxeof(sc);
1425 1.1 jonathan re_txeof(sc);
1426 1.1 jonathan
1427 1.14.2.6 bouyer if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1428 1.1 jonathan (*ifp->if_start)(ifp);
1429 1.1 jonathan
1430 1.1 jonathan if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1431 1.14.2.6 bouyer uint16_t status;
1432 1.1 jonathan
1433 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1434 1.1 jonathan if (status == 0xffff)
1435 1.1 jonathan goto done;
1436 1.1 jonathan if (status)
1437 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1438 1.1 jonathan
1439 1.1 jonathan /*
1440 1.1 jonathan * XXX check behaviour on receiver stalls.
1441 1.1 jonathan */
1442 1.1 jonathan
1443 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1444 1.1 jonathan re_init(sc);
1445 1.1 jonathan }
1446 1.1 jonathan }
1447 1.14.2.6 bouyer done:
1448 1.1 jonathan RTK_UNLOCK(sc);
1449 1.1 jonathan }
1450 1.1 jonathan #endif /* DEVICE_POLLING */
1451 1.1 jonathan
1452 1.1 jonathan int
1453 1.1 jonathan re_intr(void *arg)
1454 1.1 jonathan {
1455 1.1 jonathan struct rtk_softc *sc = arg;
1456 1.1 jonathan struct ifnet *ifp;
1457 1.14.2.6 bouyer uint16_t status;
1458 1.1 jonathan int handled = 0;
1459 1.1 jonathan
1460 1.1 jonathan ifp = &sc->ethercom.ec_if;
1461 1.1 jonathan
1462 1.14.2.6 bouyer if ((ifp->if_flags & IFF_UP) == 0)
1463 1.1 jonathan return 0;
1464 1.1 jonathan
1465 1.1 jonathan #ifdef DEVICE_POLLING
1466 1.4 kanaoka if (ifp->if_flags & IFF_POLLING)
1467 1.1 jonathan goto done;
1468 1.1 jonathan if ((ifp->if_capenable & IFCAP_POLLING) &&
1469 1.1 jonathan ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1470 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1471 1.1 jonathan re_poll(ifp, 0, 1);
1472 1.1 jonathan goto done;
1473 1.1 jonathan }
1474 1.1 jonathan #endif /* DEVICE_POLLING */
1475 1.1 jonathan
1476 1.1 jonathan for (;;) {
1477 1.1 jonathan
1478 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1479 1.1 jonathan /* If the card has gone away the read returns 0xffff. */
1480 1.1 jonathan if (status == 0xffff)
1481 1.1 jonathan break;
1482 1.1 jonathan if (status) {
1483 1.1 jonathan handled = 1;
1484 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1485 1.1 jonathan }
1486 1.1 jonathan
1487 1.1 jonathan if ((status & RTK_INTRS_CPLUS) == 0)
1488 1.1 jonathan break;
1489 1.1 jonathan
1490 1.14.2.6 bouyer if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1491 1.1 jonathan re_rxeof(sc);
1492 1.1 jonathan
1493 1.14.2.6 bouyer if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1494 1.14.2.6 bouyer RTK_ISR_TX_DESC_UNAVAIL))
1495 1.1 jonathan re_txeof(sc);
1496 1.1 jonathan
1497 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1498 1.1 jonathan re_init(ifp);
1499 1.1 jonathan }
1500 1.1 jonathan
1501 1.1 jonathan if (status & RTK_ISR_LINKCHG) {
1502 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
1503 1.1 jonathan re_tick(sc);
1504 1.1 jonathan }
1505 1.1 jonathan }
1506 1.1 jonathan
1507 1.14.2.6 bouyer if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1508 1.14.2.6 bouyer re_start(ifp);
1509 1.1 jonathan
1510 1.1 jonathan #ifdef DEVICE_POLLING
1511 1.14.2.6 bouyer done:
1512 1.1 jonathan #endif
1513 1.1 jonathan
1514 1.1 jonathan return handled;
1515 1.1 jonathan }
1516 1.1 jonathan
1517 1.14.2.2 tron
1518 1.1 jonathan
1519 1.1 jonathan /*
1520 1.1 jonathan * Main transmit routine for C+ and gigE NICs.
1521 1.1 jonathan */
1522 1.1 jonathan
1523 1.1 jonathan static void
1524 1.1 jonathan re_start(struct ifnet *ifp)
1525 1.1 jonathan {
1526 1.1 jonathan struct rtk_softc *sc;
1527 1.14.2.6 bouyer struct mbuf *m;
1528 1.14.2.6 bouyer bus_dmamap_t map;
1529 1.14.2.6 bouyer struct re_txq *txq;
1530 1.14.2.6 bouyer struct re_desc *d;
1531 1.14.2.6 bouyer struct m_tag *mtag;
1532 1.14.2.6 bouyer uint32_t cmdstat, re_flags;
1533 1.14.2.6 bouyer int ofree, idx, error, nsegs, seg;
1534 1.14.2.6 bouyer int startdesc, curdesc, lastdesc;
1535 1.14.2.6 bouyer boolean_t pad;
1536 1.1 jonathan
1537 1.1 jonathan sc = ifp->if_softc;
1538 1.14.2.6 bouyer ofree = sc->re_ldata.re_txq_free;
1539 1.1 jonathan
1540 1.14.2.6 bouyer for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1541 1.13 yamt
1542 1.14.2.3 tron IFQ_POLL(&ifp->if_snd, m);
1543 1.14.2.3 tron if (m == NULL)
1544 1.1 jonathan break;
1545 1.1 jonathan
1546 1.14.2.6 bouyer if (sc->re_ldata.re_txq_free == 0 ||
1547 1.14.2.6 bouyer sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1548 1.14.2.6 bouyer /* no more free slots left */
1549 1.14.2.3 tron ifp->if_flags |= IFF_OACTIVE;
1550 1.14.2.3 tron break;
1551 1.14.2.3 tron }
1552 1.14.2.3 tron
1553 1.14.2.6 bouyer /*
1554 1.14.2.6 bouyer * Set up checksum offload. Note: checksum offload bits must
1555 1.14.2.6 bouyer * appear in all descriptors of a multi-descriptor transmit
1556 1.14.2.6 bouyer * attempt. (This is according to testing done with an 8169
1557 1.14.2.6 bouyer * chip. I'm not sure if this is a requirement or a bug.)
1558 1.14.2.6 bouyer */
1559 1.14.2.6 bouyer
1560 1.14.2.6 bouyer if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1561 1.14.2.6 bouyer uint32_t segsz = m->m_pkthdr.segsz;
1562 1.14.2.6 bouyer
1563 1.14.2.6 bouyer re_flags = RE_TDESC_CMD_LGSEND |
1564 1.14.2.6 bouyer (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1565 1.14.2.6 bouyer } else {
1566 1.14.2.6 bouyer /*
1567 1.14.2.6 bouyer * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1568 1.14.2.6 bouyer * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1569 1.14.2.6 bouyer * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1570 1.14.2.6 bouyer */
1571 1.14.2.6 bouyer re_flags = 0;
1572 1.14.2.6 bouyer if ((m->m_pkthdr.csum_flags &
1573 1.14.2.6 bouyer (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1574 1.14.2.6 bouyer != 0) {
1575 1.14.2.6 bouyer re_flags |= RE_TDESC_CMD_IPCSUM;
1576 1.14.2.6 bouyer if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1577 1.14.2.6 bouyer re_flags |= RE_TDESC_CMD_TCPCSUM;
1578 1.14.2.6 bouyer } else if (m->m_pkthdr.csum_flags &
1579 1.14.2.6 bouyer M_CSUM_UDPv4) {
1580 1.14.2.6 bouyer re_flags |= RE_TDESC_CMD_UDPCSUM;
1581 1.14.2.6 bouyer }
1582 1.14.2.6 bouyer }
1583 1.14.2.6 bouyer }
1584 1.14.2.6 bouyer
1585 1.14.2.6 bouyer txq = &sc->re_ldata.re_txq[idx];
1586 1.14.2.6 bouyer map = txq->txq_dmamap;
1587 1.14.2.6 bouyer error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1588 1.14.2.6 bouyer BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1589 1.14.2.6 bouyer
1590 1.14.2.6 bouyer if (__predict_false(error)) {
1591 1.14.2.6 bouyer /* XXX try to defrag if EFBIG? */
1592 1.14.2.6 bouyer aprint_error("%s: can't map mbuf (error %d)\n",
1593 1.14.2.6 bouyer sc->sc_dev.dv_xname, error);
1594 1.14.2.6 bouyer
1595 1.14.2.3 tron IFQ_DEQUEUE(&ifp->if_snd, m);
1596 1.14.2.3 tron m_freem(m);
1597 1.13 yamt ifp->if_oerrors++;
1598 1.13 yamt continue;
1599 1.13 yamt }
1600 1.14.2.6 bouyer
1601 1.14.2.6 bouyer nsegs = map->dm_nsegs;
1602 1.14.2.6 bouyer pad = FALSE;
1603 1.14.2.6 bouyer if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1604 1.14.2.6 bouyer (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1605 1.14.2.6 bouyer pad = TRUE;
1606 1.14.2.6 bouyer nsegs++;
1607 1.14.2.6 bouyer }
1608 1.14.2.6 bouyer
1609 1.14.2.6 bouyer if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1610 1.14.2.6 bouyer /*
1611 1.14.2.6 bouyer * Not enough free descriptors to transmit this packet.
1612 1.14.2.6 bouyer */
1613 1.1 jonathan ifp->if_flags |= IFF_OACTIVE;
1614 1.14.2.6 bouyer bus_dmamap_unload(sc->sc_dmat, map);
1615 1.1 jonathan break;
1616 1.1 jonathan }
1617 1.14.2.3 tron
1618 1.14.2.3 tron IFQ_DEQUEUE(&ifp->if_snd, m);
1619 1.14.2.3 tron
1620 1.14.2.6 bouyer /*
1621 1.14.2.6 bouyer * Make sure that the caches are synchronized before we
1622 1.14.2.6 bouyer * ask the chip to start DMA for the packet data.
1623 1.14.2.6 bouyer */
1624 1.14.2.6 bouyer bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1625 1.14.2.6 bouyer BUS_DMASYNC_PREWRITE);
1626 1.14.2.6 bouyer
1627 1.14.2.6 bouyer /*
1628 1.14.2.6 bouyer * Map the segment array into descriptors.
1629 1.14.2.6 bouyer * Note that we set the start-of-frame and
1630 1.14.2.6 bouyer * end-of-frame markers for either TX or RX,
1631 1.14.2.6 bouyer * but they really only have meaning in the TX case.
1632 1.14.2.6 bouyer * (In the RX case, it's the chip that tells us
1633 1.14.2.6 bouyer * where packets begin and end.)
1634 1.14.2.6 bouyer * We also keep track of the end of the ring
1635 1.14.2.6 bouyer * and set the end-of-ring bits as needed,
1636 1.14.2.6 bouyer * and we set the ownership bits in all except
1637 1.14.2.6 bouyer * the very first descriptor. (The caller will
1638 1.14.2.6 bouyer * set this descriptor later when it start
1639 1.14.2.6 bouyer * transmission or reception.)
1640 1.14.2.6 bouyer */
1641 1.14.2.6 bouyer curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1642 1.14.2.6 bouyer lastdesc = -1;
1643 1.14.2.6 bouyer for (seg = 0; seg < map->dm_nsegs;
1644 1.14.2.6 bouyer seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1645 1.14.2.6 bouyer d = &sc->re_ldata.re_tx_list[curdesc];
1646 1.14.2.6 bouyer #ifdef DIAGNOSTIC
1647 1.14.2.6 bouyer RE_TXDESCSYNC(sc, curdesc,
1648 1.14.2.6 bouyer BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1649 1.14.2.6 bouyer cmdstat = le32toh(d->re_cmdstat);
1650 1.14.2.6 bouyer RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1651 1.14.2.6 bouyer if (cmdstat & RE_TDESC_STAT_OWN) {
1652 1.14.2.6 bouyer panic("%s: tried to map busy TX descriptor",
1653 1.14.2.6 bouyer sc->sc_dev.dv_xname);
1654 1.14.2.6 bouyer }
1655 1.14.2.6 bouyer #endif
1656 1.14.2.6 bouyer
1657 1.14.2.6 bouyer d->re_vlanctl = 0;
1658 1.14.2.6 bouyer re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1659 1.14.2.6 bouyer cmdstat = re_flags | map->dm_segs[seg].ds_len;
1660 1.14.2.6 bouyer if (seg == 0)
1661 1.14.2.6 bouyer cmdstat |= RE_TDESC_CMD_SOF;
1662 1.14.2.6 bouyer else
1663 1.14.2.6 bouyer cmdstat |= RE_TDESC_CMD_OWN;
1664 1.14.2.6 bouyer if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1665 1.14.2.6 bouyer cmdstat |= RE_TDESC_CMD_EOR;
1666 1.14.2.6 bouyer if (seg == nsegs - 1) {
1667 1.14.2.6 bouyer cmdstat |= RE_TDESC_CMD_EOF;
1668 1.14.2.6 bouyer lastdesc = curdesc;
1669 1.14.2.6 bouyer }
1670 1.14.2.6 bouyer d->re_cmdstat = htole32(cmdstat);
1671 1.14.2.6 bouyer RE_TXDESCSYNC(sc, curdesc,
1672 1.14.2.6 bouyer BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1673 1.14.2.6 bouyer }
1674 1.14.2.6 bouyer if (__predict_false(pad)) {
1675 1.14.2.6 bouyer bus_addr_t paddaddr;
1676 1.14.2.6 bouyer
1677 1.14.2.6 bouyer d = &sc->re_ldata.re_tx_list[curdesc];
1678 1.14.2.6 bouyer d->re_vlanctl = 0;
1679 1.14.2.6 bouyer paddaddr = RE_TXPADDADDR(sc);
1680 1.14.2.6 bouyer re_set_bufaddr(d, paddaddr);
1681 1.14.2.6 bouyer cmdstat = re_flags |
1682 1.14.2.6 bouyer RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1683 1.14.2.6 bouyer (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1684 1.14.2.6 bouyer if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1685 1.14.2.6 bouyer cmdstat |= RE_TDESC_CMD_EOR;
1686 1.14.2.6 bouyer d->re_cmdstat = htole32(cmdstat);
1687 1.14.2.6 bouyer RE_TXDESCSYNC(sc, curdesc,
1688 1.14.2.6 bouyer BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1689 1.14.2.6 bouyer lastdesc = curdesc;
1690 1.14.2.6 bouyer curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1691 1.14.2.6 bouyer }
1692 1.14.2.6 bouyer KASSERT(lastdesc != -1);
1693 1.14.2.6 bouyer
1694 1.14.2.6 bouyer /*
1695 1.14.2.6 bouyer * Set up hardware VLAN tagging. Note: vlan tag info must
1696 1.14.2.6 bouyer * appear in the first descriptor of a multi-descriptor
1697 1.14.2.6 bouyer * transmission attempt.
1698 1.14.2.6 bouyer */
1699 1.14.2.6 bouyer if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1700 1.14.2.6 bouyer sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1701 1.14.2.6 bouyer htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1702 1.14.2.6 bouyer RE_TDESC_VLANCTL_TAG);
1703 1.14.2.6 bouyer }
1704 1.14.2.6 bouyer
1705 1.14.2.6 bouyer /* Transfer ownership of packet to the chip. */
1706 1.14.2.6 bouyer
1707 1.14.2.6 bouyer sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1708 1.14.2.6 bouyer htole32(RE_TDESC_CMD_OWN);
1709 1.14.2.6 bouyer RE_TXDESCSYNC(sc, startdesc,
1710 1.14.2.6 bouyer BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1711 1.14.2.6 bouyer
1712 1.14.2.6 bouyer /* update info of TX queue and descriptors */
1713 1.14.2.6 bouyer txq->txq_mbuf = m;
1714 1.14.2.6 bouyer txq->txq_descidx = lastdesc;
1715 1.14.2.6 bouyer txq->txq_nsegs = nsegs;
1716 1.14.2.6 bouyer
1717 1.14.2.6 bouyer sc->re_ldata.re_txq_free--;
1718 1.14.2.6 bouyer sc->re_ldata.re_tx_free -= nsegs;
1719 1.14.2.6 bouyer sc->re_ldata.re_tx_nextfree = curdesc;
1720 1.14.2.6 bouyer
1721 1.1 jonathan #if NBPFILTER > 0
1722 1.1 jonathan /*
1723 1.1 jonathan * If there's a BPF listener, bounce a copy of this frame
1724 1.1 jonathan * to him.
1725 1.1 jonathan */
1726 1.1 jonathan if (ifp->if_bpf)
1727 1.14.2.3 tron bpf_mtap(ifp->if_bpf, m);
1728 1.1 jonathan #endif
1729 1.1 jonathan }
1730 1.1 jonathan
1731 1.14.2.6 bouyer if (sc->re_ldata.re_txq_free < ofree) {
1732 1.14.2.6 bouyer /*
1733 1.14.2.6 bouyer * TX packets are enqueued.
1734 1.14.2.6 bouyer */
1735 1.14.2.6 bouyer sc->re_ldata.re_txq_prodidx = idx;
1736 1.1 jonathan
1737 1.14.2.6 bouyer /*
1738 1.14.2.6 bouyer * Start the transmitter to poll.
1739 1.14.2.6 bouyer *
1740 1.14.2.6 bouyer * RealTek put the TX poll request register in a different
1741 1.14.2.6 bouyer * location on the 8169 gigE chip. I don't know why.
1742 1.14.2.6 bouyer */
1743 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1744 1.14.2.6 bouyer CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1745 1.14.2.7 bouyer else
1746 1.14.2.7 bouyer CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1747 1.1 jonathan
1748 1.14.2.6 bouyer /*
1749 1.14.2.6 bouyer * Use the countdown timer for interrupt moderation.
1750 1.14.2.6 bouyer * 'TX done' interrupts are disabled. Instead, we reset the
1751 1.14.2.6 bouyer * countdown timer, which will begin counting until it hits
1752 1.14.2.6 bouyer * the value in the TIMERINT register, and then trigger an
1753 1.14.2.6 bouyer * interrupt. Each time we write to the TIMERCNT register,
1754 1.14.2.6 bouyer * the timer count is reset to 0.
1755 1.14.2.6 bouyer */
1756 1.14.2.6 bouyer CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1757 1.1 jonathan
1758 1.14.2.6 bouyer /*
1759 1.14.2.6 bouyer * Set a timeout in case the chip goes out to lunch.
1760 1.14.2.6 bouyer */
1761 1.14.2.6 bouyer ifp->if_timer = 5;
1762 1.14.2.6 bouyer }
1763 1.1 jonathan }
1764 1.1 jonathan
1765 1.1 jonathan static int
1766 1.1 jonathan re_init(struct ifnet *ifp)
1767 1.1 jonathan {
1768 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1769 1.14.2.6 bouyer uint8_t *enaddr;
1770 1.14.2.6 bouyer uint32_t rxcfg = 0;
1771 1.14.2.6 bouyer uint32_t reg;
1772 1.1 jonathan int error;
1773 1.12 perry
1774 1.1 jonathan if ((error = re_enable(sc)) != 0)
1775 1.1 jonathan goto out;
1776 1.1 jonathan
1777 1.1 jonathan /*
1778 1.1 jonathan * Cancel pending I/O and free all RX/TX buffers.
1779 1.1 jonathan */
1780 1.3 kanaoka re_stop(ifp, 0);
1781 1.1 jonathan
1782 1.14.2.6 bouyer re_reset(sc);
1783 1.14.2.6 bouyer
1784 1.1 jonathan /*
1785 1.1 jonathan * Enable C+ RX and TX mode, as well as VLAN stripping and
1786 1.1 jonathan * RX checksum offload. We must configure the C+ register
1787 1.1 jonathan * before all others.
1788 1.1 jonathan */
1789 1.1 jonathan reg = 0;
1790 1.1 jonathan
1791 1.1 jonathan /*
1792 1.1 jonathan * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1793 1.1 jonathan * FreeBSD drivers set these bits anyway (for 8139C+?).
1794 1.1 jonathan * So far, it works.
1795 1.1 jonathan */
1796 1.1 jonathan
1797 1.1 jonathan /*
1798 1.14.2.7 bouyer * XXX: For old 8169 set bit 14.
1799 1.14.2.7 bouyer * For 8169S/8110S and above, do not set bit 14.
1800 1.1 jonathan */
1801 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1802 1.4 kanaoka reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1803 1.1 jonathan
1804 1.4 kanaoka if (1) {/* not for 8169S ? */
1805 1.14.2.6 bouyer reg |=
1806 1.14.2.5 tron RTK_CPLUSCMD_VLANSTRIP |
1807 1.4 kanaoka (ifp->if_capenable &
1808 1.14.2.6 bouyer (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1809 1.14.2.6 bouyer IFCAP_CSUM_UDPv4) ?
1810 1.4 kanaoka RTK_CPLUSCMD_RXCSUM_ENB : 0);
1811 1.4 kanaoka }
1812 1.12 perry
1813 1.1 jonathan CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1814 1.4 kanaoka reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1815 1.1 jonathan
1816 1.1 jonathan /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1817 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1818 1.14.2.6 bouyer CSR_WRITE_2(sc, RTK_IM, 0x0000);
1819 1.1 jonathan
1820 1.1 jonathan DELAY(10000);
1821 1.1 jonathan
1822 1.1 jonathan /*
1823 1.1 jonathan * Init our MAC address. Even though the chipset
1824 1.1 jonathan * documentation doesn't mention it, we need to enter "Config
1825 1.1 jonathan * register write enable" mode to modify the ID registers.
1826 1.1 jonathan */
1827 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1828 1.14.2.6 bouyer enaddr = LLADDR(ifp->if_sadl);
1829 1.14.2.6 bouyer reg = enaddr[0] | (enaddr[1] << 8) |
1830 1.14.2.6 bouyer (enaddr[2] << 16) | (enaddr[3] << 24);
1831 1.14.2.6 bouyer CSR_WRITE_4(sc, RTK_IDR0, reg);
1832 1.14.2.6 bouyer reg = enaddr[4] | (enaddr[5] << 8);
1833 1.14.2.6 bouyer CSR_WRITE_4(sc, RTK_IDR4, reg);
1834 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1835 1.1 jonathan
1836 1.1 jonathan /*
1837 1.1 jonathan * For C+ mode, initialize the RX descriptors and mbufs.
1838 1.1 jonathan */
1839 1.1 jonathan re_rx_list_init(sc);
1840 1.1 jonathan re_tx_list_init(sc);
1841 1.1 jonathan
1842 1.1 jonathan /*
1843 1.14.2.6 bouyer * Load the addresses of the RX and TX lists into the chip.
1844 1.14.2.6 bouyer */
1845 1.14.2.6 bouyer CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1846 1.14.2.6 bouyer RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1847 1.14.2.6 bouyer CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1848 1.14.2.6 bouyer RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1849 1.14.2.6 bouyer
1850 1.14.2.6 bouyer CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1851 1.14.2.6 bouyer RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1852 1.14.2.6 bouyer CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1853 1.14.2.6 bouyer RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1854 1.14.2.6 bouyer
1855 1.14.2.6 bouyer /*
1856 1.1 jonathan * Enable transmit and receive.
1857 1.1 jonathan */
1858 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1859 1.1 jonathan
1860 1.1 jonathan /*
1861 1.1 jonathan * Set the initial TX and RX configuration.
1862 1.1 jonathan */
1863 1.14.2.7 bouyer if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1864 1.14.2.7 bouyer /* test mode is needed only for old 8169 */
1865 1.14.2.7 bouyer CSR_WRITE_4(sc, RTK_TXCFG,
1866 1.14.2.7 bouyer RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1867 1.1 jonathan } else
1868 1.14.2.6 bouyer CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1869 1.14.2.6 bouyer
1870 1.14.2.6 bouyer CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1871 1.14.2.6 bouyer
1872 1.14.2.6 bouyer CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1873 1.1 jonathan
1874 1.1 jonathan /* Set the individual bit to receive frames for this host only. */
1875 1.1 jonathan rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1876 1.1 jonathan rxcfg |= RTK_RXCFG_RX_INDIV;
1877 1.1 jonathan
1878 1.1 jonathan /* If we want promiscuous mode, set the allframes bit. */
1879 1.8 jdolecek if (ifp->if_flags & IFF_PROMISC)
1880 1.1 jonathan rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1881 1.8 jdolecek else
1882 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1883 1.8 jdolecek CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1884 1.1 jonathan
1885 1.1 jonathan /*
1886 1.1 jonathan * Set capture broadcast bit to capture broadcast frames.
1887 1.1 jonathan */
1888 1.8 jdolecek if (ifp->if_flags & IFF_BROADCAST)
1889 1.1 jonathan rxcfg |= RTK_RXCFG_RX_BROAD;
1890 1.8 jdolecek else
1891 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_BROAD;
1892 1.8 jdolecek CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1893 1.1 jonathan
1894 1.1 jonathan /*
1895 1.1 jonathan * Program the multicast filter, if necessary.
1896 1.1 jonathan */
1897 1.1 jonathan rtk_setmulti(sc);
1898 1.1 jonathan
1899 1.1 jonathan #ifdef DEVICE_POLLING
1900 1.1 jonathan /*
1901 1.1 jonathan * Disable interrupts if we are polling.
1902 1.1 jonathan */
1903 1.1 jonathan if (ifp->if_flags & IFF_POLLING)
1904 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1905 1.1 jonathan else /* otherwise ... */
1906 1.1 jonathan #endif /* DEVICE_POLLING */
1907 1.1 jonathan /*
1908 1.1 jonathan * Enable interrupts.
1909 1.1 jonathan */
1910 1.14.2.6 bouyer if (sc->re_testmode)
1911 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1912 1.1 jonathan else
1913 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1914 1.1 jonathan
1915 1.1 jonathan /* Start RX/TX process. */
1916 1.1 jonathan CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1917 1.1 jonathan #ifdef notdef
1918 1.1 jonathan /* Enable receiver and transmitter. */
1919 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1920 1.1 jonathan #endif
1921 1.1 jonathan
1922 1.1 jonathan /*
1923 1.1 jonathan * Initialize the timer interrupt register so that
1924 1.1 jonathan * a timer interrupt will be generated once the timer
1925 1.1 jonathan * reaches a certain number of ticks. The timer is
1926 1.1 jonathan * reloaded on each transmit. This gives us TX interrupt
1927 1.1 jonathan * moderation, which dramatically improves TX frame rate.
1928 1.1 jonathan */
1929 1.1 jonathan
1930 1.14.2.7 bouyer if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1931 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1932 1.14.2.7 bouyer else {
1933 1.14.2.7 bouyer CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1934 1.1 jonathan
1935 1.14.2.7 bouyer /*
1936 1.14.2.7 bouyer * For 8169 gigE NICs, set the max allowed RX packet
1937 1.14.2.7 bouyer * size so we can receive jumbo frames.
1938 1.14.2.7 bouyer */
1939 1.1 jonathan CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1940 1.14.2.7 bouyer }
1941 1.1 jonathan
1942 1.14.2.6 bouyer if (sc->re_testmode)
1943 1.1 jonathan return 0;
1944 1.1 jonathan
1945 1.4 kanaoka CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1946 1.1 jonathan
1947 1.1 jonathan ifp->if_flags |= IFF_RUNNING;
1948 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1949 1.1 jonathan
1950 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1951 1.1 jonathan
1952 1.14.2.6 bouyer out:
1953 1.1 jonathan if (error) {
1954 1.4 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1955 1.1 jonathan ifp->if_timer = 0;
1956 1.4 kanaoka aprint_error("%s: interface not running\n",
1957 1.4 kanaoka sc->sc_dev.dv_xname);
1958 1.1 jonathan }
1959 1.12 perry
1960 1.1 jonathan return error;
1961 1.1 jonathan }
1962 1.1 jonathan
1963 1.1 jonathan /*
1964 1.1 jonathan * Set media options.
1965 1.1 jonathan */
1966 1.1 jonathan static int
1967 1.1 jonathan re_ifmedia_upd(struct ifnet *ifp)
1968 1.1 jonathan {
1969 1.1 jonathan struct rtk_softc *sc;
1970 1.1 jonathan
1971 1.1 jonathan sc = ifp->if_softc;
1972 1.1 jonathan
1973 1.4 kanaoka return mii_mediachg(&sc->mii);
1974 1.1 jonathan }
1975 1.1 jonathan
1976 1.1 jonathan /*
1977 1.1 jonathan * Report current media status.
1978 1.1 jonathan */
1979 1.1 jonathan static void
1980 1.1 jonathan re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1981 1.1 jonathan {
1982 1.1 jonathan struct rtk_softc *sc;
1983 1.1 jonathan
1984 1.1 jonathan sc = ifp->if_softc;
1985 1.1 jonathan
1986 1.1 jonathan mii_pollstat(&sc->mii);
1987 1.1 jonathan ifmr->ifm_active = sc->mii.mii_media_active;
1988 1.1 jonathan ifmr->ifm_status = sc->mii.mii_media_status;
1989 1.1 jonathan }
1990 1.1 jonathan
1991 1.1 jonathan static int
1992 1.1 jonathan re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1993 1.1 jonathan {
1994 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1995 1.1 jonathan struct ifreq *ifr = (struct ifreq *) data;
1996 1.1 jonathan int s, error = 0;
1997 1.1 jonathan
1998 1.1 jonathan s = splnet();
1999 1.1 jonathan
2000 1.4 kanaoka switch (command) {
2001 1.1 jonathan case SIOCSIFMTU:
2002 1.14.2.6 bouyer if (ifr->ifr_mtu > RE_JUMBO_MTU)
2003 1.1 jonathan error = EINVAL;
2004 1.1 jonathan ifp->if_mtu = ifr->ifr_mtu;
2005 1.1 jonathan break;
2006 1.1 jonathan case SIOCGIFMEDIA:
2007 1.1 jonathan case SIOCSIFMEDIA:
2008 1.1 jonathan error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2009 1.1 jonathan break;
2010 1.1 jonathan default:
2011 1.1 jonathan error = ether_ioctl(ifp, command, data);
2012 1.1 jonathan if (error == ENETRESET) {
2013 1.2 kanaoka if (ifp->if_flags & IFF_RUNNING)
2014 1.1 jonathan rtk_setmulti(sc);
2015 1.1 jonathan error = 0;
2016 1.1 jonathan }
2017 1.1 jonathan break;
2018 1.1 jonathan }
2019 1.1 jonathan
2020 1.1 jonathan splx(s);
2021 1.1 jonathan
2022 1.4 kanaoka return error;
2023 1.1 jonathan }
2024 1.1 jonathan
2025 1.1 jonathan static void
2026 1.1 jonathan re_watchdog(struct ifnet *ifp)
2027 1.1 jonathan {
2028 1.1 jonathan struct rtk_softc *sc;
2029 1.1 jonathan int s;
2030 1.1 jonathan
2031 1.1 jonathan sc = ifp->if_softc;
2032 1.1 jonathan s = splnet();
2033 1.4 kanaoka aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2034 1.1 jonathan ifp->if_oerrors++;
2035 1.1 jonathan
2036 1.1 jonathan re_txeof(sc);
2037 1.1 jonathan re_rxeof(sc);
2038 1.1 jonathan
2039 1.1 jonathan re_init(ifp);
2040 1.1 jonathan
2041 1.1 jonathan splx(s);
2042 1.1 jonathan }
2043 1.1 jonathan
2044 1.1 jonathan /*
2045 1.1 jonathan * Stop the adapter and free any mbufs allocated to the
2046 1.1 jonathan * RX and TX lists.
2047 1.1 jonathan */
2048 1.1 jonathan static void
2049 1.3 kanaoka re_stop(struct ifnet *ifp, int disable)
2050 1.1 jonathan {
2051 1.14.2.6 bouyer int i;
2052 1.3 kanaoka struct rtk_softc *sc = ifp->if_softc;
2053 1.1 jonathan
2054 1.3 kanaoka callout_stop(&sc->rtk_tick_ch);
2055 1.1 jonathan
2056 1.1 jonathan #ifdef DEVICE_POLLING
2057 1.1 jonathan ether_poll_deregister(ifp);
2058 1.1 jonathan #endif /* DEVICE_POLLING */
2059 1.1 jonathan
2060 1.3 kanaoka mii_down(&sc->mii);
2061 1.3 kanaoka
2062 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2063 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2064 1.1 jonathan
2065 1.14.2.6 bouyer if (sc->re_head != NULL) {
2066 1.14.2.6 bouyer m_freem(sc->re_head);
2067 1.14.2.6 bouyer sc->re_head = sc->re_tail = NULL;
2068 1.1 jonathan }
2069 1.1 jonathan
2070 1.1 jonathan /* Free the TX list buffers. */
2071 1.14.2.6 bouyer for (i = 0; i < RE_TX_QLEN; i++) {
2072 1.14.2.6 bouyer if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2073 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
2074 1.14.2.6 bouyer sc->re_ldata.re_txq[i].txq_dmamap);
2075 1.14.2.6 bouyer m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2076 1.14.2.6 bouyer sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2077 1.1 jonathan }
2078 1.1 jonathan }
2079 1.1 jonathan
2080 1.1 jonathan /* Free the RX list buffers. */
2081 1.14.2.6 bouyer for (i = 0; i < RE_RX_DESC_CNT; i++) {
2082 1.14.2.6 bouyer if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2083 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
2084 1.14.2.6 bouyer sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2085 1.14.2.6 bouyer m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2086 1.14.2.6 bouyer sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2087 1.1 jonathan }
2088 1.1 jonathan }
2089 1.1 jonathan
2090 1.3 kanaoka if (disable)
2091 1.3 kanaoka re_disable(sc);
2092 1.3 kanaoka
2093 1.3 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2094 1.4 kanaoka ifp->if_timer = 0;
2095 1.1 jonathan }
2096