rtl8169.c revision 1.21 1 1.21 yamt /* $NetBSD: rtl8169.c,v 1.21 2005/07/11 21:42:58 yamt Exp $ */
2 1.1 jonathan
3 1.1 jonathan /*
4 1.1 jonathan * Copyright (c) 1997, 1998-2003
5 1.1 jonathan * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 1.1 jonathan *
7 1.1 jonathan * Redistribution and use in source and binary forms, with or without
8 1.1 jonathan * modification, are permitted provided that the following conditions
9 1.1 jonathan * are met:
10 1.1 jonathan * 1. Redistributions of source code must retain the above copyright
11 1.1 jonathan * notice, this list of conditions and the following disclaimer.
12 1.1 jonathan * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jonathan * notice, this list of conditions and the following disclaimer in the
14 1.1 jonathan * documentation and/or other materials provided with the distribution.
15 1.1 jonathan * 3. All advertising materials mentioning features or use of this software
16 1.1 jonathan * must display the following acknowledgement:
17 1.1 jonathan * This product includes software developed by Bill Paul.
18 1.1 jonathan * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 jonathan * may be used to endorse or promote products derived from this software
20 1.1 jonathan * without specific prior written permission.
21 1.1 jonathan *
22 1.1 jonathan * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 jonathan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 jonathan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 jonathan * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 jonathan * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 jonathan * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 jonathan * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 jonathan * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 jonathan * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 jonathan * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 jonathan * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 jonathan */
34 1.1 jonathan
35 1.1 jonathan #include <sys/cdefs.h>
36 1.1 jonathan /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37 1.1 jonathan
38 1.1 jonathan /*
39 1.1 jonathan * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 1.1 jonathan *
41 1.1 jonathan * Written by Bill Paul <wpaul (at) windriver.com>
42 1.1 jonathan * Senior Networking Software Engineer
43 1.1 jonathan * Wind River Systems
44 1.1 jonathan */
45 1.1 jonathan
46 1.1 jonathan /*
47 1.1 jonathan * This driver is designed to support RealTek's next generation of
48 1.1 jonathan * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 1.1 jonathan * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 1.1 jonathan * and the RTL8110S.
51 1.1 jonathan *
52 1.1 jonathan * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 1.1 jonathan * with the older 8139 family, however it also supports a special
54 1.1 jonathan * C+ mode of operation that provides several new performance enhancing
55 1.1 jonathan * features. These include:
56 1.1 jonathan *
57 1.1 jonathan * o Descriptor based DMA mechanism. Each descriptor represents
58 1.1 jonathan * a single packet fragment. Data buffers may be aligned on
59 1.1 jonathan * any byte boundary.
60 1.1 jonathan *
61 1.1 jonathan * o 64-bit DMA
62 1.1 jonathan *
63 1.1 jonathan * o TCP/IP checksum offload for both RX and TX
64 1.1 jonathan *
65 1.1 jonathan * o High and normal priority transmit DMA rings
66 1.1 jonathan *
67 1.1 jonathan * o VLAN tag insertion and extraction
68 1.1 jonathan *
69 1.1 jonathan * o TCP large send (segmentation offload)
70 1.1 jonathan *
71 1.1 jonathan * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 1.1 jonathan * programming API is fairly straightforward. The RX filtering, EEPROM
73 1.1 jonathan * access and PHY access is the same as it is on the older 8139 series
74 1.1 jonathan * chips.
75 1.1 jonathan *
76 1.1 jonathan * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 1.1 jonathan * same programming API and feature set as the 8139C+ with the following
78 1.1 jonathan * differences and additions:
79 1.1 jonathan *
80 1.1 jonathan * o 1000Mbps mode
81 1.1 jonathan *
82 1.1 jonathan * o Jumbo frames
83 1.1 jonathan *
84 1.1 jonathan * o GMII and TBI ports/registers for interfacing with copper
85 1.1 jonathan * or fiber PHYs
86 1.1 jonathan *
87 1.1 jonathan * o RX and TX DMA rings can have up to 1024 descriptors
88 1.1 jonathan * (the 8139C+ allows a maximum of 64)
89 1.1 jonathan *
90 1.1 jonathan * o Slight differences in register layout from the 8139C+
91 1.1 jonathan *
92 1.1 jonathan * The TX start and timer interrupt registers are at different locations
93 1.1 jonathan * on the 8169 than they are on the 8139C+. Also, the status word in the
94 1.1 jonathan * RX descriptor has a slightly different bit layout. The 8169 does not
95 1.1 jonathan * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 1.1 jonathan * copper gigE PHY.
97 1.1 jonathan *
98 1.1 jonathan * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 1.1 jonathan * (the 'S' stands for 'single-chip'). These devices have the same
100 1.1 jonathan * programming API as the older 8169, but also have some vendor-specific
101 1.1 jonathan * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 1.1 jonathan * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 1.12 perry *
104 1.1 jonathan * This driver takes advantage of the RX and TX checksum offload and
105 1.1 jonathan * VLAN tag insertion/extraction features. It also implements TX
106 1.1 jonathan * interrupt moderation using the timer interrupt registers, which
107 1.1 jonathan * significantly reduces TX interrupt load. There is also support
108 1.1 jonathan * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 1.1 jonathan * jumbo frames larger than 7.5K, so the max MTU possible with this
110 1.1 jonathan * driver is 7500 bytes.
111 1.1 jonathan */
112 1.1 jonathan
113 1.1 jonathan #include "bpfilter.h"
114 1.1 jonathan #include "vlan.h"
115 1.1 jonathan
116 1.1 jonathan #include <sys/param.h>
117 1.1 jonathan #include <sys/endian.h>
118 1.1 jonathan #include <sys/systm.h>
119 1.1 jonathan #include <sys/sockio.h>
120 1.1 jonathan #include <sys/mbuf.h>
121 1.1 jonathan #include <sys/malloc.h>
122 1.1 jonathan #include <sys/kernel.h>
123 1.1 jonathan #include <sys/socket.h>
124 1.1 jonathan #include <sys/device.h>
125 1.1 jonathan
126 1.1 jonathan #include <net/if.h>
127 1.1 jonathan #include <net/if_arp.h>
128 1.1 jonathan #include <net/if_dl.h>
129 1.1 jonathan #include <net/if_ether.h>
130 1.1 jonathan #include <net/if_media.h>
131 1.1 jonathan #include <net/if_vlanvar.h>
132 1.1 jonathan
133 1.13 yamt #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 1.13 yamt #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 1.13 yamt #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136 1.13 yamt
137 1.1 jonathan #if NBPFILTER > 0
138 1.1 jonathan #include <net/bpf.h>
139 1.1 jonathan #endif
140 1.1 jonathan
141 1.1 jonathan #include <machine/bus.h>
142 1.1 jonathan
143 1.1 jonathan #include <dev/mii/mii.h>
144 1.1 jonathan #include <dev/mii/miivar.h>
145 1.1 jonathan
146 1.1 jonathan #include <dev/pci/pcireg.h>
147 1.1 jonathan #include <dev/pci/pcivar.h>
148 1.1 jonathan #include <dev/pci/pcidevs.h>
149 1.1 jonathan
150 1.1 jonathan #include <dev/ic/rtl81x9reg.h>
151 1.1 jonathan #include <dev/ic/rtl81x9var.h>
152 1.1 jonathan
153 1.1 jonathan #include <dev/ic/rtl8169var.h>
154 1.1 jonathan
155 1.1 jonathan
156 1.4 kanaoka static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157 1.1 jonathan
158 1.4 kanaoka static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 1.4 kanaoka static int re_rx_list_init(struct rtk_softc *);
160 1.4 kanaoka static int re_tx_list_init(struct rtk_softc *);
161 1.4 kanaoka static void re_rxeof(struct rtk_softc *);
162 1.4 kanaoka static void re_txeof(struct rtk_softc *);
163 1.4 kanaoka static void re_tick(void *);
164 1.4 kanaoka static void re_start(struct ifnet *);
165 1.4 kanaoka static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 1.4 kanaoka static int re_init(struct ifnet *);
167 1.4 kanaoka static void re_stop(struct ifnet *, int);
168 1.4 kanaoka static void re_watchdog(struct ifnet *);
169 1.4 kanaoka
170 1.4 kanaoka static void re_shutdown(void *);
171 1.4 kanaoka static int re_enable(struct rtk_softc *);
172 1.4 kanaoka static void re_disable(struct rtk_softc *);
173 1.4 kanaoka static void re_power(int, void *);
174 1.4 kanaoka
175 1.4 kanaoka static int re_ifmedia_upd(struct ifnet *);
176 1.4 kanaoka static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177 1.4 kanaoka
178 1.4 kanaoka static int re_gmii_readreg(struct device *, int, int);
179 1.4 kanaoka static void re_gmii_writereg(struct device *, int, int, int);
180 1.4 kanaoka
181 1.4 kanaoka static int re_miibus_readreg(struct device *, int, int);
182 1.4 kanaoka static void re_miibus_writereg(struct device *, int, int, int);
183 1.4 kanaoka static void re_miibus_statchg(struct device *);
184 1.1 jonathan
185 1.4 kanaoka static void re_reset(struct rtk_softc *);
186 1.1 jonathan
187 1.1 jonathan static int
188 1.1 jonathan re_gmii_readreg(struct device *self, int phy, int reg)
189 1.1 jonathan {
190 1.1 jonathan struct rtk_softc *sc = (void *)self;
191 1.1 jonathan u_int32_t rval;
192 1.1 jonathan int i;
193 1.1 jonathan
194 1.1 jonathan if (phy != 7)
195 1.4 kanaoka return 0;
196 1.1 jonathan
197 1.1 jonathan /* Let the rgephy driver read the GMEDIASTAT register */
198 1.1 jonathan
199 1.1 jonathan if (reg == RTK_GMEDIASTAT) {
200 1.1 jonathan rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 1.4 kanaoka return rval;
202 1.1 jonathan }
203 1.1 jonathan
204 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 1.1 jonathan DELAY(1000);
206 1.1 jonathan
207 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
208 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
209 1.1 jonathan if (rval & RTK_PHYAR_BUSY)
210 1.1 jonathan break;
211 1.1 jonathan DELAY(100);
212 1.1 jonathan }
213 1.1 jonathan
214 1.1 jonathan if (i == RTK_TIMEOUT) {
215 1.4 kanaoka aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 1.4 kanaoka return 0;
217 1.1 jonathan }
218 1.1 jonathan
219 1.4 kanaoka return rval & RTK_PHYAR_PHYDATA;
220 1.1 jonathan }
221 1.1 jonathan
222 1.1 jonathan static void
223 1.1 jonathan re_gmii_writereg(struct device *dev, int phy, int reg, int data)
224 1.1 jonathan {
225 1.1 jonathan struct rtk_softc *sc = (void *)dev;
226 1.1 jonathan u_int32_t rval;
227 1.1 jonathan int i;
228 1.1 jonathan
229 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 1.1 jonathan (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 1.1 jonathan DELAY(1000);
232 1.1 jonathan
233 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
234 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
235 1.1 jonathan if (!(rval & RTK_PHYAR_BUSY))
236 1.1 jonathan break;
237 1.1 jonathan DELAY(100);
238 1.1 jonathan }
239 1.1 jonathan
240 1.1 jonathan if (i == RTK_TIMEOUT) {
241 1.4 kanaoka aprint_error("%s: PHY write reg %x <- %x failed\n",
242 1.4 kanaoka sc->sc_dev.dv_xname, reg, data);
243 1.1 jonathan return;
244 1.1 jonathan }
245 1.1 jonathan
246 1.1 jonathan return;
247 1.1 jonathan }
248 1.1 jonathan
249 1.1 jonathan static int
250 1.1 jonathan re_miibus_readreg(struct device *dev, int phy, int reg)
251 1.1 jonathan {
252 1.1 jonathan struct rtk_softc *sc = (void *)dev;
253 1.1 jonathan u_int16_t rval = 0;
254 1.1 jonathan u_int16_t re8139_reg = 0;
255 1.1 jonathan int s;
256 1.1 jonathan
257 1.1 jonathan s = splnet();
258 1.1 jonathan
259 1.1 jonathan if (sc->rtk_type == RTK_8169) {
260 1.1 jonathan rval = re_gmii_readreg(dev, phy, reg);
261 1.1 jonathan splx(s);
262 1.4 kanaoka return rval;
263 1.1 jonathan }
264 1.1 jonathan
265 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
266 1.1 jonathan if (phy) {
267 1.1 jonathan splx(s);
268 1.4 kanaoka return 0;
269 1.1 jonathan }
270 1.4 kanaoka switch (reg) {
271 1.1 jonathan case MII_BMCR:
272 1.1 jonathan re8139_reg = RTK_BMCR;
273 1.1 jonathan break;
274 1.1 jonathan case MII_BMSR:
275 1.1 jonathan re8139_reg = RTK_BMSR;
276 1.1 jonathan break;
277 1.1 jonathan case MII_ANAR:
278 1.1 jonathan re8139_reg = RTK_ANAR;
279 1.1 jonathan break;
280 1.1 jonathan case MII_ANER:
281 1.1 jonathan re8139_reg = RTK_ANER;
282 1.1 jonathan break;
283 1.1 jonathan case MII_ANLPAR:
284 1.1 jonathan re8139_reg = RTK_LPAR;
285 1.1 jonathan break;
286 1.1 jonathan case MII_PHYIDR1:
287 1.1 jonathan case MII_PHYIDR2:
288 1.1 jonathan splx(s);
289 1.4 kanaoka return 0;
290 1.1 jonathan /*
291 1.1 jonathan * Allow the rlphy driver to read the media status
292 1.1 jonathan * register. If we have a link partner which does not
293 1.1 jonathan * support NWAY, this is the register which will tell
294 1.1 jonathan * us the results of parallel detection.
295 1.1 jonathan */
296 1.1 jonathan case RTK_MEDIASTAT:
297 1.1 jonathan rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 1.1 jonathan splx(s);
299 1.4 kanaoka return rval;
300 1.1 jonathan default:
301 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 1.1 jonathan splx(s);
303 1.4 kanaoka return 0;
304 1.1 jonathan }
305 1.1 jonathan rval = CSR_READ_2(sc, re8139_reg);
306 1.1 jonathan splx(s);
307 1.4 kanaoka return rval;
308 1.1 jonathan }
309 1.1 jonathan
310 1.1 jonathan static void
311 1.1 jonathan re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 1.1 jonathan {
313 1.1 jonathan struct rtk_softc *sc = (void *)dev;
314 1.1 jonathan u_int16_t re8139_reg = 0;
315 1.1 jonathan int s;
316 1.1 jonathan
317 1.1 jonathan s = splnet();
318 1.1 jonathan
319 1.1 jonathan if (sc->rtk_type == RTK_8169) {
320 1.1 jonathan re_gmii_writereg(dev, phy, reg, data);
321 1.1 jonathan splx(s);
322 1.1 jonathan return;
323 1.1 jonathan }
324 1.1 jonathan
325 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
326 1.1 jonathan if (phy) {
327 1.1 jonathan splx(s);
328 1.1 jonathan return;
329 1.1 jonathan }
330 1.4 kanaoka switch (reg) {
331 1.1 jonathan case MII_BMCR:
332 1.1 jonathan re8139_reg = RTK_BMCR;
333 1.1 jonathan break;
334 1.1 jonathan case MII_BMSR:
335 1.1 jonathan re8139_reg = RTK_BMSR;
336 1.1 jonathan break;
337 1.1 jonathan case MII_ANAR:
338 1.1 jonathan re8139_reg = RTK_ANAR;
339 1.1 jonathan break;
340 1.1 jonathan case MII_ANER:
341 1.1 jonathan re8139_reg = RTK_ANER;
342 1.1 jonathan break;
343 1.1 jonathan case MII_ANLPAR:
344 1.1 jonathan re8139_reg = RTK_LPAR;
345 1.1 jonathan break;
346 1.1 jonathan case MII_PHYIDR1:
347 1.1 jonathan case MII_PHYIDR2:
348 1.1 jonathan splx(s);
349 1.1 jonathan return;
350 1.1 jonathan break;
351 1.1 jonathan default:
352 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 1.1 jonathan splx(s);
354 1.1 jonathan return;
355 1.1 jonathan }
356 1.1 jonathan CSR_WRITE_2(sc, re8139_reg, data);
357 1.1 jonathan splx(s);
358 1.1 jonathan return;
359 1.1 jonathan }
360 1.1 jonathan
361 1.1 jonathan static void
362 1.1 jonathan re_miibus_statchg(struct device *dev)
363 1.1 jonathan {
364 1.1 jonathan
365 1.1 jonathan return;
366 1.1 jonathan }
367 1.1 jonathan
368 1.1 jonathan static void
369 1.1 jonathan re_reset(struct rtk_softc *sc)
370 1.1 jonathan {
371 1.1 jonathan register int i;
372 1.1 jonathan
373 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374 1.1 jonathan
375 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
376 1.1 jonathan DELAY(10);
377 1.1 jonathan if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 1.1 jonathan break;
379 1.1 jonathan }
380 1.1 jonathan if (i == RTK_TIMEOUT)
381 1.4 kanaoka aprint_error("%s: reset never completed!\n",
382 1.4 kanaoka sc->sc_dev.dv_xname);
383 1.1 jonathan
384 1.1 jonathan /*
385 1.1 jonathan * NB: Realtek-supplied Linux driver does this only for
386 1.1 jonathan * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 1.1 jonathan */
388 1.4 kanaoka if (1) /* XXX check softc flag for 8169s version */
389 1.4 kanaoka CSR_WRITE_1(sc, 0x82, 1);
390 1.1 jonathan
391 1.1 jonathan return;
392 1.1 jonathan }
393 1.1 jonathan
394 1.1 jonathan /*
395 1.1 jonathan * The following routine is designed to test for a defect on some
396 1.1 jonathan * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 1.1 jonathan * lines connected to the bus, however for a 32-bit only card, they
398 1.1 jonathan * should be pulled high. The result of this defect is that the
399 1.1 jonathan * NIC will not work right if you plug it into a 64-bit slot: DMA
400 1.1 jonathan * operations will be done with 64-bit transfers, which will fail
401 1.1 jonathan * because the 64-bit data lines aren't connected.
402 1.1 jonathan *
403 1.1 jonathan * There's no way to work around this (short of talking a soldering
404 1.1 jonathan * iron to the board), however we can detect it. The method we use
405 1.1 jonathan * here is to put the NIC into digital loopback mode, set the receiver
406 1.1 jonathan * to promiscuous mode, and then try to send a frame. We then compare
407 1.1 jonathan * the frame data we sent to what was received. If the data matches,
408 1.1 jonathan * then the NIC is working correctly, otherwise we know the user has
409 1.1 jonathan * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 1.1 jonathan * slot. In the latter case, there's no way the NIC can work correctly,
411 1.1 jonathan * so we print out a message on the console and abort the device attach.
412 1.1 jonathan */
413 1.1 jonathan
414 1.6 kanaoka int
415 1.1 jonathan re_diag(struct rtk_softc *sc)
416 1.1 jonathan {
417 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
418 1.1 jonathan struct mbuf *m0;
419 1.1 jonathan struct ether_header *eh;
420 1.1 jonathan struct rtk_desc *cur_rx;
421 1.1 jonathan bus_dmamap_t dmamap;
422 1.1 jonathan u_int16_t status;
423 1.1 jonathan u_int32_t rxstat;
424 1.1 jonathan int total_len, i, s, error = 0;
425 1.1 jonathan u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 1.1 jonathan u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427 1.1 jonathan
428 1.1 jonathan /* Allocate a single mbuf */
429 1.1 jonathan
430 1.1 jonathan MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 1.1 jonathan if (m0 == NULL)
432 1.4 kanaoka return ENOBUFS;
433 1.1 jonathan
434 1.1 jonathan /*
435 1.1 jonathan * Initialize the NIC in test mode. This sets the chip up
436 1.1 jonathan * so that it can send and receive frames, but performs the
437 1.1 jonathan * following special functions:
438 1.1 jonathan * - Puts receiver in promiscuous mode
439 1.1 jonathan * - Enables digital loopback mode
440 1.1 jonathan * - Leaves interrupts turned off
441 1.1 jonathan */
442 1.1 jonathan
443 1.1 jonathan ifp->if_flags |= IFF_PROMISC;
444 1.1 jonathan sc->rtk_testmode = 1;
445 1.1 jonathan re_init(ifp);
446 1.6 kanaoka re_stop(ifp, 0);
447 1.1 jonathan DELAY(100000);
448 1.1 jonathan re_init(ifp);
449 1.1 jonathan
450 1.1 jonathan /* Put some data in the mbuf */
451 1.1 jonathan
452 1.1 jonathan eh = mtod(m0, struct ether_header *);
453 1.4 kanaoka bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 1.4 kanaoka bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 1.1 jonathan eh->ether_type = htons(ETHERTYPE_IP);
456 1.1 jonathan m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457 1.1 jonathan
458 1.1 jonathan /*
459 1.1 jonathan * Queue the packet, start transmission.
460 1.1 jonathan */
461 1.1 jonathan
462 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 1.1 jonathan s = splnet();
464 1.1 jonathan IF_ENQUEUE(&ifp->if_snd, m0);
465 1.1 jonathan re_start(ifp);
466 1.1 jonathan splx(s);
467 1.1 jonathan m0 = NULL;
468 1.1 jonathan
469 1.1 jonathan /* Wait for it to propagate through the chip */
470 1.1 jonathan
471 1.1 jonathan DELAY(100000);
472 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
473 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
474 1.4 kanaoka if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 1.4 kanaoka (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 1.1 jonathan break;
477 1.1 jonathan DELAY(10);
478 1.1 jonathan }
479 1.1 jonathan if (i == RTK_TIMEOUT) {
480 1.4 kanaoka aprint_error("%s: diagnostic failed, failed to receive packet "
481 1.1 jonathan "in loopback mode\n", sc->sc_dev.dv_xname);
482 1.1 jonathan error = EIO;
483 1.1 jonathan goto done;
484 1.1 jonathan }
485 1.1 jonathan
486 1.1 jonathan /*
487 1.1 jonathan * The packet should have been dumped into the first
488 1.1 jonathan * entry in the RX DMA ring. Grab it from there.
489 1.1 jonathan */
490 1.1 jonathan
491 1.1 jonathan dmamap = sc->rtk_ldata.rtk_rx_list_map;
492 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
493 1.1 jonathan dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 1.1 jonathan dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
495 1.1 jonathan bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
496 1.20 briggs BUS_DMASYNC_POSTREAD);
497 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
498 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[0]);
499 1.1 jonathan
500 1.1 jonathan m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
501 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
502 1.1 jonathan eh = mtod(m0, struct ether_header *);
503 1.1 jonathan
504 1.1 jonathan cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
505 1.1 jonathan total_len = RTK_RXBYTES(cur_rx);
506 1.1 jonathan rxstat = le32toh(cur_rx->rtk_cmdstat);
507 1.1 jonathan
508 1.1 jonathan if (total_len != ETHER_MIN_LEN) {
509 1.4 kanaoka aprint_error("%s: diagnostic failed, received short packet\n",
510 1.1 jonathan sc->sc_dev.dv_xname);
511 1.1 jonathan error = EIO;
512 1.1 jonathan goto done;
513 1.1 jonathan }
514 1.1 jonathan
515 1.1 jonathan /* Test that the received packet data matches what we sent. */
516 1.1 jonathan
517 1.1 jonathan if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
518 1.1 jonathan bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
519 1.1 jonathan ntohs(eh->ether_type) != ETHERTYPE_IP) {
520 1.4 kanaoka aprint_error("%s: WARNING, DMA FAILURE!\n",
521 1.4 kanaoka sc->sc_dev.dv_xname);
522 1.4 kanaoka aprint_error("%s: expected TX data: %s",
523 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(dst));
524 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
525 1.4 kanaoka aprint_error("%s: received RX data: %s",
526 1.1 jonathan sc->sc_dev.dv_xname,
527 1.1 jonathan ether_sprintf(eh->ether_dhost));
528 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
529 1.1 jonathan ntohs(eh->ether_type));
530 1.4 kanaoka aprint_error("%s: You may have a defective 32-bit NIC plugged "
531 1.1 jonathan "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
532 1.4 kanaoka aprint_error("%s: Please re-install the NIC in a 32-bit slot "
533 1.1 jonathan "for proper operation.\n", sc->sc_dev.dv_xname);
534 1.4 kanaoka aprint_error("%s: Read the re(4) man page for more details.\n",
535 1.1 jonathan sc->sc_dev.dv_xname);
536 1.1 jonathan error = EIO;
537 1.1 jonathan }
538 1.1 jonathan
539 1.1 jonathan done:
540 1.1 jonathan /* Turn interface off, release resources */
541 1.1 jonathan
542 1.1 jonathan sc->rtk_testmode = 0;
543 1.1 jonathan ifp->if_flags &= ~IFF_PROMISC;
544 1.6 kanaoka re_stop(ifp, 0);
545 1.1 jonathan if (m0 != NULL)
546 1.1 jonathan m_freem(m0);
547 1.1 jonathan
548 1.4 kanaoka return error;
549 1.1 jonathan }
550 1.1 jonathan
551 1.1 jonathan
552 1.1 jonathan /*
553 1.1 jonathan * Attach the interface. Allocate softc structures, do ifmedia
554 1.1 jonathan * setup and ethernet/BPF attach.
555 1.1 jonathan */
556 1.1 jonathan void
557 1.1 jonathan re_attach(struct rtk_softc *sc)
558 1.1 jonathan {
559 1.1 jonathan u_char eaddr[ETHER_ADDR_LEN];
560 1.1 jonathan u_int16_t val;
561 1.1 jonathan struct ifnet *ifp;
562 1.1 jonathan int error = 0, i, addr_len;
563 1.1 jonathan
564 1.5 kanaoka
565 1.1 jonathan /* XXX JRS: bus-attach-independent code begins approximately here */
566 1.1 jonathan
567 1.1 jonathan /* Reset the adapter. */
568 1.1 jonathan re_reset(sc);
569 1.1 jonathan
570 1.1 jonathan if (sc->rtk_type == RTK_8169) {
571 1.1 jonathan uint32_t hwrev;
572 1.1 jonathan
573 1.1 jonathan /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 1.1 jonathan hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
575 1.1 jonathan if (hwrev == (0x1 << 28)) {
576 1.1 jonathan sc->sc_rev = 4;
577 1.1 jonathan } else if (hwrev == (0x1 << 26)) {
578 1.1 jonathan sc->sc_rev = 3;
579 1.1 jonathan } else if (hwrev == (0x1 << 23)) {
580 1.1 jonathan sc->sc_rev = 2;
581 1.1 jonathan } else
582 1.1 jonathan sc->sc_rev = 1;
583 1.1 jonathan
584 1.1 jonathan /* Set RX length mask */
585 1.1 jonathan
586 1.1 jonathan sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
587 1.1 jonathan
588 1.1 jonathan /* Force station address autoload from the EEPROM */
589 1.1 jonathan
590 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
591 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
592 1.1 jonathan if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
593 1.1 jonathan break;
594 1.1 jonathan DELAY(100);
595 1.1 jonathan }
596 1.1 jonathan if (i == RTK_TIMEOUT)
597 1.4 kanaoka aprint_error("%s: eeprom autoload timed out\n",
598 1.4 kanaoka sc->sc_dev.dv_xname);
599 1.1 jonathan
600 1.4 kanaoka for (i = 0; i < ETHER_ADDR_LEN; i++)
601 1.4 kanaoka eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
602 1.15 yamt
603 1.15 yamt sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
604 1.1 jonathan } else {
605 1.1 jonathan
606 1.1 jonathan /* Set RX length mask */
607 1.1 jonathan
608 1.1 jonathan sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
609 1.1 jonathan
610 1.1 jonathan if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
611 1.1 jonathan addr_len = RTK_EEADDR_LEN1;
612 1.1 jonathan else
613 1.1 jonathan addr_len = RTK_EEADDR_LEN0;
614 1.1 jonathan
615 1.1 jonathan /*
616 1.1 jonathan * Get station address from the EEPROM.
617 1.1 jonathan */
618 1.1 jonathan for (i = 0; i < 3; i++) {
619 1.1 jonathan val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
620 1.1 jonathan eaddr[(i * 2) + 0] = val & 0xff;
621 1.1 jonathan eaddr[(i * 2) + 1] = val >> 8;
622 1.1 jonathan }
623 1.15 yamt
624 1.15 yamt sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
625 1.1 jonathan }
626 1.1 jonathan
627 1.1 jonathan aprint_normal("%s: Ethernet address %s\n",
628 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629 1.1 jonathan
630 1.15 yamt if (sc->rtk_ldata.rtk_tx_desc_cnt >
631 1.15 yamt PAGE_SIZE / sizeof(struct rtk_desc)) {
632 1.15 yamt sc->rtk_ldata.rtk_tx_desc_cnt =
633 1.15 yamt PAGE_SIZE / sizeof(struct rtk_desc);
634 1.15 yamt }
635 1.15 yamt
636 1.15 yamt aprint_verbose("%s: using %d tx descriptors\n",
637 1.15 yamt sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
638 1.1 jonathan
639 1.5 kanaoka /* Allocate DMA'able memory for the TX ring */
640 1.15 yamt if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
641 1.12 perry RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
642 1.5 kanaoka 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
643 1.5 kanaoka aprint_error("%s: can't allocate tx listseg, error = %d\n",
644 1.5 kanaoka sc->sc_dev.dv_xname, error);
645 1.5 kanaoka goto fail_0;
646 1.5 kanaoka }
647 1.5 kanaoka
648 1.5 kanaoka /* Load the map for the TX ring. */
649 1.5 kanaoka if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
650 1.15 yamt sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
651 1.5 kanaoka (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
652 1.5 kanaoka BUS_DMA_NOWAIT)) != 0) {
653 1.5 kanaoka aprint_error("%s: can't map tx list, error = %d\n",
654 1.5 kanaoka sc->sc_dev.dv_xname, error);
655 1.5 kanaoka goto fail_1;
656 1.5 kanaoka }
657 1.15 yamt memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
658 1.5 kanaoka
659 1.15 yamt if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
660 1.15 yamt RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
661 1.5 kanaoka &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
662 1.5 kanaoka aprint_error("%s: can't create tx list map, error = %d\n",
663 1.5 kanaoka sc->sc_dev.dv_xname, error);
664 1.5 kanaoka goto fail_2;
665 1.5 kanaoka }
666 1.5 kanaoka
667 1.5 kanaoka
668 1.12 perry if ((error = bus_dmamap_load(sc->sc_dmat,
669 1.12 perry sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
670 1.15 yamt RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
671 1.5 kanaoka aprint_error("%s: can't load tx list, error = %d\n",
672 1.5 kanaoka sc->sc_dev.dv_xname, error);
673 1.5 kanaoka goto fail_3;
674 1.5 kanaoka }
675 1.5 kanaoka
676 1.5 kanaoka /* Create DMA maps for TX buffers */
677 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++) {
678 1.13 yamt error = bus_dmamap_create(sc->sc_dmat,
679 1.13 yamt round_page(IP_MAXPACKET),
680 1.15 yamt RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
681 1.13 yamt 0, BUS_DMA_ALLOCNOW,
682 1.15 yamt &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
683 1.5 kanaoka if (error) {
684 1.5 kanaoka aprint_error("%s: can't create DMA map for TX\n",
685 1.5 kanaoka sc->sc_dev.dv_xname);
686 1.5 kanaoka goto fail_4;
687 1.5 kanaoka }
688 1.5 kanaoka }
689 1.5 kanaoka
690 1.5 kanaoka /* Allocate DMA'able memory for the RX ring */
691 1.5 kanaoka if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
692 1.5 kanaoka RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
693 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
694 1.5 kanaoka aprint_error("%s: can't allocate rx listseg, error = %d\n",
695 1.5 kanaoka sc->sc_dev.dv_xname, error);
696 1.5 kanaoka goto fail_4;
697 1.5 kanaoka }
698 1.5 kanaoka
699 1.5 kanaoka /* Load the map for the RX ring. */
700 1.5 kanaoka if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
701 1.5 kanaoka sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
702 1.5 kanaoka (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
703 1.5 kanaoka BUS_DMA_NOWAIT)) != 0) {
704 1.5 kanaoka aprint_error("%s: can't map rx list, error = %d\n",
705 1.5 kanaoka sc->sc_dev.dv_xname, error);
706 1.5 kanaoka goto fail_5;
707 1.5 kanaoka }
708 1.15 yamt memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
709 1.5 kanaoka
710 1.5 kanaoka if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
711 1.5 kanaoka RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
712 1.5 kanaoka &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
713 1.5 kanaoka aprint_error("%s: can't create rx list map, error = %d\n",
714 1.5 kanaoka sc->sc_dev.dv_xname, error);
715 1.5 kanaoka goto fail_6;
716 1.5 kanaoka }
717 1.5 kanaoka
718 1.5 kanaoka if ((error = bus_dmamap_load(sc->sc_dmat,
719 1.5 kanaoka sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
720 1.5 kanaoka RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
721 1.5 kanaoka aprint_error("%s: can't load rx list, error = %d\n",
722 1.5 kanaoka sc->sc_dev.dv_xname, error);
723 1.5 kanaoka goto fail_7;
724 1.5 kanaoka }
725 1.5 kanaoka
726 1.5 kanaoka /* Create DMA maps for RX buffers */
727 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++) {
728 1.5 kanaoka error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
729 1.5 kanaoka 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
730 1.5 kanaoka if (error) {
731 1.5 kanaoka aprint_error("%s: can't create DMA map for RX\n",
732 1.5 kanaoka sc->sc_dev.dv_xname);
733 1.5 kanaoka goto fail_8;
734 1.5 kanaoka }
735 1.1 jonathan }
736 1.1 jonathan
737 1.6 kanaoka /*
738 1.6 kanaoka * Record interface as attached. From here, we should not fail.
739 1.6 kanaoka */
740 1.6 kanaoka sc->sc_flags |= RTK_ATTACHED;
741 1.6 kanaoka
742 1.1 jonathan ifp = &sc->ethercom.ec_if;
743 1.1 jonathan ifp->if_softc = sc;
744 1.1 jonathan strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
745 1.1 jonathan ifp->if_mtu = ETHERMTU;
746 1.1 jonathan ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747 1.1 jonathan ifp->if_ioctl = re_ioctl;
748 1.1 jonathan sc->ethercom.ec_capabilities |=
749 1.1 jonathan ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
750 1.1 jonathan ifp->if_start = re_start;
751 1.3 kanaoka ifp->if_stop = re_stop;
752 1.19 yamt
753 1.19 yamt /*
754 1.19 yamt * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
755 1.19 yamt */
756 1.19 yamt
757 1.1 jonathan ifp->if_capabilities |=
758 1.19 yamt /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
759 1.18 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
760 1.18 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
761 1.13 yamt IFCAP_TSOv4;
762 1.1 jonathan ifp->if_watchdog = re_watchdog;
763 1.1 jonathan ifp->if_init = re_init;
764 1.1 jonathan if (sc->rtk_type == RTK_8169)
765 1.1 jonathan ifp->if_baudrate = 1000000000;
766 1.1 jonathan else
767 1.1 jonathan ifp->if_baudrate = 100000000;
768 1.1 jonathan ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
769 1.1 jonathan ifp->if_capenable = ifp->if_capabilities;
770 1.1 jonathan IFQ_SET_READY(&ifp->if_snd);
771 1.1 jonathan
772 1.1 jonathan callout_init(&sc->rtk_tick_ch);
773 1.1 jonathan
774 1.1 jonathan /* Do MII setup */
775 1.1 jonathan sc->mii.mii_ifp = ifp;
776 1.1 jonathan sc->mii.mii_readreg = re_miibus_readreg;
777 1.1 jonathan sc->mii.mii_writereg = re_miibus_writereg;
778 1.1 jonathan sc->mii.mii_statchg = re_miibus_statchg;
779 1.1 jonathan ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
780 1.1 jonathan re_ifmedia_sts);
781 1.1 jonathan mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
782 1.1 jonathan MII_OFFSET_ANY, 0);
783 1.4 kanaoka ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
784 1.1 jonathan
785 1.1 jonathan /*
786 1.1 jonathan * Call MI attach routine.
787 1.1 jonathan */
788 1.1 jonathan if_attach(ifp);
789 1.1 jonathan ether_ifattach(ifp, eaddr);
790 1.1 jonathan
791 1.1 jonathan
792 1.1 jonathan /*
793 1.1 jonathan * Make sure the interface is shutdown during reboot.
794 1.1 jonathan */
795 1.1 jonathan sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
796 1.1 jonathan if (sc->sc_sdhook == NULL)
797 1.4 kanaoka aprint_error("%s: WARNING: unable to establish shutdown hook\n",
798 1.1 jonathan sc->sc_dev.dv_xname);
799 1.1 jonathan /*
800 1.1 jonathan * Add a suspend hook to make sure we come back up after a
801 1.1 jonathan * resume.
802 1.1 jonathan */
803 1.1 jonathan sc->sc_powerhook = powerhook_establish(re_power, sc);
804 1.1 jonathan if (sc->sc_powerhook == NULL)
805 1.4 kanaoka aprint_error("%s: WARNING: unable to establish power hook\n",
806 1.1 jonathan sc->sc_dev.dv_xname);
807 1.1 jonathan
808 1.1 jonathan
809 1.5 kanaoka return;
810 1.5 kanaoka
811 1.5 kanaoka fail_8:
812 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
813 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++)
814 1.5 kanaoka if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
815 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
816 1.5 kanaoka sc->rtk_ldata.rtk_rx_dmamap[i]);
817 1.5 kanaoka
818 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
819 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
820 1.5 kanaoka fail_7:
821 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
822 1.5 kanaoka fail_6:
823 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
824 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
825 1.5 kanaoka fail_5:
826 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
827 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
828 1.5 kanaoka
829 1.5 kanaoka fail_4:
830 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
831 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++)
832 1.15 yamt if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
833 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
834 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_dmamap);
835 1.5 kanaoka
836 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
837 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
838 1.5 kanaoka fail_3:
839 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
840 1.5 kanaoka fail_2:
841 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
842 1.15 yamt (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
843 1.5 kanaoka fail_1:
844 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
845 1.5 kanaoka &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
846 1.5 kanaoka fail_0:
847 1.1 jonathan return;
848 1.1 jonathan }
849 1.1 jonathan
850 1.1 jonathan
851 1.1 jonathan /*
852 1.1 jonathan * re_activate:
853 1.1 jonathan * Handle device activation/deactivation requests.
854 1.1 jonathan */
855 1.1 jonathan int
856 1.1 jonathan re_activate(struct device *self, enum devact act)
857 1.1 jonathan {
858 1.1 jonathan struct rtk_softc *sc = (void *) self;
859 1.1 jonathan int s, error = 0;
860 1.1 jonathan
861 1.1 jonathan s = splnet();
862 1.1 jonathan switch (act) {
863 1.1 jonathan case DVACT_ACTIVATE:
864 1.1 jonathan error = EOPNOTSUPP;
865 1.1 jonathan break;
866 1.1 jonathan case DVACT_DEACTIVATE:
867 1.1 jonathan mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
868 1.1 jonathan if_deactivate(&sc->ethercom.ec_if);
869 1.1 jonathan break;
870 1.1 jonathan }
871 1.1 jonathan splx(s);
872 1.1 jonathan
873 1.4 kanaoka return error;
874 1.1 jonathan }
875 1.1 jonathan
876 1.1 jonathan /*
877 1.1 jonathan * re_detach:
878 1.1 jonathan * Detach a rtk interface.
879 1.1 jonathan */
880 1.1 jonathan int
881 1.1 jonathan re_detach(struct rtk_softc *sc)
882 1.1 jonathan {
883 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
884 1.5 kanaoka int i;
885 1.1 jonathan
886 1.1 jonathan /*
887 1.1 jonathan * Succeed now if there isn't any work to do.
888 1.1 jonathan */
889 1.1 jonathan if ((sc->sc_flags & RTK_ATTACHED) == 0)
890 1.4 kanaoka return 0;
891 1.1 jonathan
892 1.1 jonathan /* Unhook our tick handler. */
893 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
894 1.1 jonathan
895 1.1 jonathan /* Detach all PHYs. */
896 1.1 jonathan mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
897 1.1 jonathan
898 1.1 jonathan /* Delete all remaining media. */
899 1.1 jonathan ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
900 1.1 jonathan
901 1.1 jonathan ether_ifdetach(ifp);
902 1.1 jonathan if_detach(ifp);
903 1.1 jonathan
904 1.1 jonathan /* XXX undo re_allocmem() */
905 1.1 jonathan
906 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
907 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++)
908 1.5 kanaoka if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
909 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
910 1.5 kanaoka sc->rtk_ldata.rtk_rx_dmamap[i]);
911 1.5 kanaoka
912 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
913 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
914 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
915 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
916 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
917 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
918 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
919 1.5 kanaoka
920 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
921 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++)
922 1.15 yamt if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
923 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
924 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_dmamap);
925 1.5 kanaoka
926 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
927 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
928 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
929 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
930 1.15 yamt (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
931 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
932 1.5 kanaoka &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
933 1.5 kanaoka
934 1.12 perry
935 1.1 jonathan shutdownhook_disestablish(sc->sc_sdhook);
936 1.1 jonathan powerhook_disestablish(sc->sc_powerhook);
937 1.1 jonathan
938 1.4 kanaoka return 0;
939 1.1 jonathan }
940 1.1 jonathan
941 1.1 jonathan /*
942 1.1 jonathan * re_enable:
943 1.1 jonathan * Enable the RTL81X9 chip.
944 1.1 jonathan */
945 1.12 perry static int
946 1.1 jonathan re_enable(struct rtk_softc *sc)
947 1.1 jonathan {
948 1.1 jonathan if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
949 1.1 jonathan if ((*sc->sc_enable)(sc) != 0) {
950 1.4 kanaoka aprint_error("%s: device enable failed\n",
951 1.1 jonathan sc->sc_dev.dv_xname);
952 1.4 kanaoka return EIO;
953 1.1 jonathan }
954 1.1 jonathan sc->sc_flags |= RTK_ENABLED;
955 1.1 jonathan }
956 1.4 kanaoka return 0;
957 1.1 jonathan }
958 1.1 jonathan
959 1.1 jonathan /*
960 1.1 jonathan * re_disable:
961 1.1 jonathan * Disable the RTL81X9 chip.
962 1.1 jonathan */
963 1.12 perry static void
964 1.1 jonathan re_disable(struct rtk_softc *sc)
965 1.1 jonathan {
966 1.1 jonathan
967 1.1 jonathan if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
968 1.1 jonathan (*sc->sc_disable)(sc);
969 1.1 jonathan sc->sc_flags &= ~RTK_ENABLED;
970 1.1 jonathan }
971 1.1 jonathan }
972 1.1 jonathan
973 1.1 jonathan /*
974 1.1 jonathan * re_power:
975 1.1 jonathan * Power management (suspend/resume) hook.
976 1.1 jonathan */
977 1.12 perry void
978 1.1 jonathan re_power(int why, void *arg)
979 1.1 jonathan {
980 1.1 jonathan struct rtk_softc *sc = (void *) arg;
981 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
982 1.1 jonathan int s;
983 1.1 jonathan
984 1.1 jonathan s = splnet();
985 1.1 jonathan switch (why) {
986 1.1 jonathan case PWR_SUSPEND:
987 1.1 jonathan case PWR_STANDBY:
988 1.3 kanaoka re_stop(ifp, 0);
989 1.1 jonathan if (sc->sc_power != NULL)
990 1.1 jonathan (*sc->sc_power)(sc, why);
991 1.1 jonathan break;
992 1.1 jonathan case PWR_RESUME:
993 1.1 jonathan if (ifp->if_flags & IFF_UP) {
994 1.1 jonathan if (sc->sc_power != NULL)
995 1.1 jonathan (*sc->sc_power)(sc, why);
996 1.1 jonathan re_init(ifp);
997 1.1 jonathan }
998 1.1 jonathan break;
999 1.1 jonathan case PWR_SOFTSUSPEND:
1000 1.1 jonathan case PWR_SOFTSTANDBY:
1001 1.1 jonathan case PWR_SOFTRESUME:
1002 1.1 jonathan break;
1003 1.1 jonathan }
1004 1.1 jonathan splx(s);
1005 1.1 jonathan }
1006 1.1 jonathan
1007 1.1 jonathan
1008 1.1 jonathan static int
1009 1.1 jonathan re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1010 1.1 jonathan {
1011 1.1 jonathan struct mbuf *n = NULL;
1012 1.1 jonathan bus_dmamap_t map;
1013 1.1 jonathan struct rtk_desc *d;
1014 1.1 jonathan u_int32_t cmdstat;
1015 1.1 jonathan int error;
1016 1.1 jonathan
1017 1.1 jonathan if (m == NULL) {
1018 1.1 jonathan MGETHDR(n, M_DONTWAIT, MT_DATA);
1019 1.1 jonathan if (n == NULL)
1020 1.4 kanaoka return ENOBUFS;
1021 1.1 jonathan m = n;
1022 1.1 jonathan
1023 1.1 jonathan MCLGET(m, M_DONTWAIT);
1024 1.4 kanaoka if (!(m->m_flags & M_EXT)) {
1025 1.1 jonathan m_freem(m);
1026 1.4 kanaoka return ENOBUFS;
1027 1.1 jonathan }
1028 1.1 jonathan } else
1029 1.1 jonathan m->m_data = m->m_ext.ext_buf;
1030 1.1 jonathan
1031 1.1 jonathan /*
1032 1.1 jonathan * Initialize mbuf length fields and fixup
1033 1.1 jonathan * alignment so that the frame payload is
1034 1.1 jonathan * longword aligned.
1035 1.1 jonathan */
1036 1.1 jonathan m->m_len = m->m_pkthdr.len = MCLBYTES;
1037 1.1 jonathan m_adj(m, RTK_ETHER_ALIGN);
1038 1.1 jonathan
1039 1.1 jonathan map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1040 1.21 yamt error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1041 1.21 yamt BUS_DMA_READ|BUS_DMA_NOWAIT);
1042 1.1 jonathan
1043 1.1 jonathan if (error)
1044 1.1 jonathan goto out;
1045 1.1 jonathan
1046 1.1 jonathan d = &sc->rtk_ldata.rtk_rx_list[idx];
1047 1.1 jonathan if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1048 1.1 jonathan goto out;
1049 1.1 jonathan
1050 1.1 jonathan cmdstat = map->dm_segs[0].ds_len;
1051 1.1 jonathan d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1052 1.1 jonathan d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1053 1.1 jonathan if (idx == (RTK_RX_DESC_CNT - 1))
1054 1.15 yamt cmdstat |= RTK_RDESC_CMD_EOR;
1055 1.1 jonathan d->rtk_cmdstat = htole32(cmdstat);
1056 1.1 jonathan
1057 1.4 kanaoka sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1058 1.4 kanaoka htole32(RTK_RDESC_CMD_OWN);
1059 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1060 1.1 jonathan
1061 1.4 kanaoka bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1062 1.4 kanaoka sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1063 1.1 jonathan BUS_DMASYNC_PREREAD);
1064 1.1 jonathan
1065 1.1 jonathan return 0;
1066 1.1 jonathan out:
1067 1.1 jonathan if (n != NULL)
1068 1.1 jonathan m_freem(n);
1069 1.1 jonathan return ENOMEM;
1070 1.1 jonathan }
1071 1.1 jonathan
1072 1.1 jonathan static int
1073 1.1 jonathan re_tx_list_init(struct rtk_softc *sc)
1074 1.1 jonathan {
1075 1.15 yamt int i;
1076 1.15 yamt
1077 1.15 yamt memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1078 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++) {
1079 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1080 1.15 yamt }
1081 1.1 jonathan
1082 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1083 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map, 0,
1084 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1085 1.15 yamt sc->rtk_ldata.rtk_txq_prodidx = 0;
1086 1.15 yamt sc->rtk_ldata.rtk_txq_considx = 0;
1087 1.15 yamt sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1088 1.15 yamt sc->rtk_ldata.rtk_tx_nextfree = 0;
1089 1.1 jonathan
1090 1.4 kanaoka return 0;
1091 1.1 jonathan }
1092 1.1 jonathan
1093 1.1 jonathan static int
1094 1.1 jonathan re_rx_list_init(struct rtk_softc *sc)
1095 1.1 jonathan {
1096 1.1 jonathan int i;
1097 1.1 jonathan
1098 1.1 jonathan memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1099 1.1 jonathan memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1100 1.1 jonathan (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1101 1.1 jonathan
1102 1.1 jonathan for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1103 1.1 jonathan if (re_newbuf(sc, i, NULL) == ENOBUFS)
1104 1.4 kanaoka return ENOBUFS;
1105 1.1 jonathan }
1106 1.1 jonathan
1107 1.1 jonathan /* Flush the RX descriptors */
1108 1.1 jonathan
1109 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1110 1.1 jonathan sc->rtk_ldata.rtk_rx_list_map,
1111 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1112 1.4 kanaoka BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1113 1.1 jonathan
1114 1.1 jonathan sc->rtk_ldata.rtk_rx_prodidx = 0;
1115 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1116 1.1 jonathan
1117 1.4 kanaoka return 0;
1118 1.1 jonathan }
1119 1.1 jonathan
1120 1.1 jonathan /*
1121 1.1 jonathan * RX handler for C+ and 8169. For the gigE chips, we support
1122 1.1 jonathan * the reception of jumbo frames that have been fragmented
1123 1.1 jonathan * across multiple 2K mbuf cluster buffers.
1124 1.1 jonathan */
1125 1.1 jonathan static void
1126 1.1 jonathan re_rxeof(struct rtk_softc *sc)
1127 1.1 jonathan {
1128 1.1 jonathan struct mbuf *m;
1129 1.1 jonathan struct ifnet *ifp;
1130 1.1 jonathan int i, total_len;
1131 1.1 jonathan struct rtk_desc *cur_rx;
1132 1.1 jonathan u_int32_t rxstat, rxvlan;
1133 1.1 jonathan
1134 1.1 jonathan ifp = &sc->ethercom.ec_if;
1135 1.1 jonathan i = sc->rtk_ldata.rtk_rx_prodidx;
1136 1.1 jonathan
1137 1.1 jonathan /* Invalidate the descriptor memory */
1138 1.1 jonathan
1139 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1140 1.1 jonathan sc->rtk_ldata.rtk_rx_list_map,
1141 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1142 1.1 jonathan BUS_DMASYNC_POSTREAD);
1143 1.1 jonathan
1144 1.1 jonathan while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1145 1.1 jonathan
1146 1.1 jonathan cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1147 1.1 jonathan m = sc->rtk_ldata.rtk_rx_mbuf[i];
1148 1.1 jonathan total_len = RTK_RXBYTES(cur_rx);
1149 1.1 jonathan rxstat = le32toh(cur_rx->rtk_cmdstat);
1150 1.1 jonathan rxvlan = le32toh(cur_rx->rtk_vlanctl);
1151 1.1 jonathan
1152 1.1 jonathan /* Invalidate the RX mbuf and unload its map */
1153 1.1 jonathan
1154 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1155 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i],
1156 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1157 1.20 briggs BUS_DMASYNC_POSTREAD);
1158 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
1159 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i]);
1160 1.1 jonathan
1161 1.1 jonathan if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1162 1.1 jonathan m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1163 1.1 jonathan if (sc->rtk_head == NULL)
1164 1.1 jonathan sc->rtk_head = sc->rtk_tail = m;
1165 1.1 jonathan else {
1166 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1167 1.1 jonathan sc->rtk_tail->m_next = m;
1168 1.1 jonathan sc->rtk_tail = m;
1169 1.1 jonathan }
1170 1.1 jonathan re_newbuf(sc, i, NULL);
1171 1.15 yamt RTK_RX_DESC_INC(sc, i);
1172 1.1 jonathan continue;
1173 1.1 jonathan }
1174 1.1 jonathan
1175 1.1 jonathan /*
1176 1.1 jonathan * NOTE: for the 8139C+, the frame length field
1177 1.1 jonathan * is always 12 bits in size, but for the gigE chips,
1178 1.1 jonathan * it is 13 bits (since the max RX frame length is 16K).
1179 1.1 jonathan * Unfortunately, all 32 bits in the status word
1180 1.1 jonathan * were already used, so to make room for the extra
1181 1.1 jonathan * length bit, RealTek took out the 'frame alignment
1182 1.1 jonathan * error' bit and shifted the other status bits
1183 1.1 jonathan * over one slot. The OWN, EOR, FS and LS bits are
1184 1.1 jonathan * still in the same places. We have already extracted
1185 1.1 jonathan * the frame length and checked the OWN bit, so rather
1186 1.1 jonathan * than using an alternate bit mapping, we shift the
1187 1.1 jonathan * status bits one space to the right so we can evaluate
1188 1.1 jonathan * them using the 8169 status as though it was in the
1189 1.1 jonathan * same format as that of the 8139C+.
1190 1.1 jonathan */
1191 1.1 jonathan if (sc->rtk_type == RTK_8169)
1192 1.1 jonathan rxstat >>= 1;
1193 1.1 jonathan
1194 1.1 jonathan if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1195 1.1 jonathan ifp->if_ierrors++;
1196 1.1 jonathan /*
1197 1.1 jonathan * If this is part of a multi-fragment packet,
1198 1.1 jonathan * discard all the pieces.
1199 1.1 jonathan */
1200 1.1 jonathan if (sc->rtk_head != NULL) {
1201 1.1 jonathan m_freem(sc->rtk_head);
1202 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1203 1.1 jonathan }
1204 1.1 jonathan re_newbuf(sc, i, m);
1205 1.15 yamt RTK_RX_DESC_INC(sc, i);
1206 1.1 jonathan continue;
1207 1.1 jonathan }
1208 1.1 jonathan
1209 1.1 jonathan /*
1210 1.1 jonathan * If allocating a replacement mbuf fails,
1211 1.1 jonathan * reload the current one.
1212 1.1 jonathan */
1213 1.1 jonathan
1214 1.1 jonathan if (re_newbuf(sc, i, NULL)) {
1215 1.1 jonathan ifp->if_ierrors++;
1216 1.1 jonathan if (sc->rtk_head != NULL) {
1217 1.1 jonathan m_freem(sc->rtk_head);
1218 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1219 1.1 jonathan }
1220 1.1 jonathan re_newbuf(sc, i, m);
1221 1.15 yamt RTK_RX_DESC_INC(sc, i);
1222 1.1 jonathan continue;
1223 1.1 jonathan }
1224 1.1 jonathan
1225 1.15 yamt RTK_RX_DESC_INC(sc, i);
1226 1.1 jonathan
1227 1.1 jonathan if (sc->rtk_head != NULL) {
1228 1.1 jonathan m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1229 1.12 perry /*
1230 1.1 jonathan * Special case: if there's 4 bytes or less
1231 1.1 jonathan * in this buffer, the mbuf can be discarded:
1232 1.1 jonathan * the last 4 bytes is the CRC, which we don't
1233 1.1 jonathan * care about anyway.
1234 1.1 jonathan */
1235 1.1 jonathan if (m->m_len <= ETHER_CRC_LEN) {
1236 1.1 jonathan sc->rtk_tail->m_len -=
1237 1.1 jonathan (ETHER_CRC_LEN - m->m_len);
1238 1.1 jonathan m_freem(m);
1239 1.1 jonathan } else {
1240 1.1 jonathan m->m_len -= ETHER_CRC_LEN;
1241 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1242 1.1 jonathan sc->rtk_tail->m_next = m;
1243 1.1 jonathan }
1244 1.1 jonathan m = sc->rtk_head;
1245 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1246 1.1 jonathan m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1247 1.1 jonathan } else
1248 1.1 jonathan m->m_pkthdr.len = m->m_len =
1249 1.1 jonathan (total_len - ETHER_CRC_LEN);
1250 1.1 jonathan
1251 1.1 jonathan ifp->if_ipackets++;
1252 1.1 jonathan m->m_pkthdr.rcvif = ifp;
1253 1.1 jonathan
1254 1.1 jonathan /* Do RX checksumming if enabled */
1255 1.1 jonathan
1256 1.18 yamt if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1257 1.1 jonathan
1258 1.1 jonathan /* Check IP header checksum */
1259 1.1 jonathan if (rxstat & RTK_RDESC_STAT_PROTOID)
1260 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1261 1.1 jonathan if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1262 1.4 kanaoka m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1263 1.1 jonathan }
1264 1.1 jonathan
1265 1.1 jonathan /* Check TCP/UDP checksum */
1266 1.1 jonathan if (RTK_TCPPKT(rxstat) &&
1267 1.18 yamt (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1268 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1269 1.1 jonathan if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1270 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1271 1.1 jonathan }
1272 1.1 jonathan if (RTK_UDPPKT(rxstat) &&
1273 1.18 yamt (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1274 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1275 1.1 jonathan if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1276 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1277 1.1 jonathan }
1278 1.1 jonathan
1279 1.1 jonathan if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1280 1.9 jdolecek VLAN_INPUT_TAG(ifp, m,
1281 1.9 jdolecek be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1282 1.9 jdolecek continue);
1283 1.1 jonathan }
1284 1.1 jonathan #if NBPFILTER > 0
1285 1.1 jonathan if (ifp->if_bpf)
1286 1.1 jonathan bpf_mtap(ifp->if_bpf, m);
1287 1.1 jonathan #endif
1288 1.1 jonathan (*ifp->if_input)(ifp, m);
1289 1.1 jonathan }
1290 1.1 jonathan
1291 1.1 jonathan /* Flush the RX DMA ring */
1292 1.1 jonathan
1293 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1294 1.1 jonathan sc->rtk_ldata.rtk_rx_list_map,
1295 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1296 1.4 kanaoka BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1297 1.1 jonathan
1298 1.1 jonathan sc->rtk_ldata.rtk_rx_prodidx = i;
1299 1.1 jonathan
1300 1.1 jonathan return;
1301 1.1 jonathan }
1302 1.1 jonathan
1303 1.1 jonathan static void
1304 1.1 jonathan re_txeof(struct rtk_softc *sc)
1305 1.1 jonathan {
1306 1.1 jonathan struct ifnet *ifp;
1307 1.1 jonathan int idx;
1308 1.1 jonathan
1309 1.1 jonathan ifp = &sc->ethercom.ec_if;
1310 1.15 yamt idx = sc->rtk_ldata.rtk_txq_considx;
1311 1.1 jonathan
1312 1.1 jonathan /* Invalidate the TX descriptor list */
1313 1.1 jonathan
1314 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1315 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map,
1316 1.1 jonathan 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1317 1.1 jonathan BUS_DMASYNC_POSTREAD);
1318 1.1 jonathan
1319 1.17 yamt while (/* CONSTCOND */ 1) {
1320 1.15 yamt struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1321 1.17 yamt int descidx;
1322 1.15 yamt u_int32_t txstat;
1323 1.15 yamt
1324 1.17 yamt if (txq->txq_mbuf == NULL) {
1325 1.17 yamt KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1326 1.17 yamt break;
1327 1.17 yamt }
1328 1.15 yamt
1329 1.17 yamt descidx = txq->txq_descidx;
1330 1.15 yamt txstat =
1331 1.15 yamt le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1332 1.15 yamt KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1333 1.1 jonathan if (txstat & RTK_TDESC_CMD_OWN)
1334 1.1 jonathan break;
1335 1.1 jonathan
1336 1.15 yamt sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1337 1.15 yamt KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1338 1.15 yamt bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1339 1.15 yamt m_freem(txq->txq_mbuf);
1340 1.15 yamt txq->txq_mbuf = NULL;
1341 1.15 yamt
1342 1.15 yamt if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1343 1.15 yamt ifp->if_collisions++;
1344 1.15 yamt if (txstat & RTK_TDESC_STAT_TXERRSUM)
1345 1.15 yamt ifp->if_oerrors++;
1346 1.15 yamt else
1347 1.15 yamt ifp->if_opackets++;
1348 1.1 jonathan
1349 1.15 yamt idx = (idx + 1) % RTK_TX_QLEN;
1350 1.1 jonathan }
1351 1.1 jonathan
1352 1.1 jonathan /* No changes made to the TX ring, so no flush needed */
1353 1.1 jonathan
1354 1.15 yamt if (idx != sc->rtk_ldata.rtk_txq_considx) {
1355 1.15 yamt sc->rtk_ldata.rtk_txq_considx = idx;
1356 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1357 1.1 jonathan ifp->if_timer = 0;
1358 1.1 jonathan }
1359 1.1 jonathan
1360 1.1 jonathan /*
1361 1.1 jonathan * If not all descriptors have been released reaped yet,
1362 1.1 jonathan * reload the timer so that we will eventually get another
1363 1.1 jonathan * interrupt that will cause us to re-enter this routine.
1364 1.1 jonathan * This is done in case the transmitter has gone idle.
1365 1.1 jonathan */
1366 1.15 yamt if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1367 1.4 kanaoka CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1368 1.1 jonathan
1369 1.1 jonathan return;
1370 1.1 jonathan }
1371 1.1 jonathan
1372 1.1 jonathan /*
1373 1.1 jonathan * Stop all chip I/O so that the kernel's probe routines don't
1374 1.1 jonathan * get confused by errant DMAs when rebooting.
1375 1.1 jonathan */
1376 1.1 jonathan static void
1377 1.1 jonathan re_shutdown(void *vsc)
1378 1.1 jonathan
1379 1.1 jonathan {
1380 1.1 jonathan struct rtk_softc *sc = (struct rtk_softc *)vsc;
1381 1.1 jonathan
1382 1.3 kanaoka re_stop(&sc->ethercom.ec_if, 0);
1383 1.1 jonathan }
1384 1.1 jonathan
1385 1.1 jonathan
1386 1.1 jonathan static void
1387 1.1 jonathan re_tick(void *xsc)
1388 1.1 jonathan {
1389 1.1 jonathan struct rtk_softc *sc = xsc;
1390 1.1 jonathan int s;
1391 1.1 jonathan
1392 1.1 jonathan /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1393 1.1 jonathan s = splnet();
1394 1.1 jonathan
1395 1.1 jonathan mii_tick(&sc->mii);
1396 1.1 jonathan splx(s);
1397 1.1 jonathan
1398 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1399 1.1 jonathan }
1400 1.1 jonathan
1401 1.1 jonathan #ifdef DEVICE_POLLING
1402 1.1 jonathan static void
1403 1.1 jonathan re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1404 1.1 jonathan {
1405 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1406 1.1 jonathan
1407 1.1 jonathan RTK_LOCK(sc);
1408 1.1 jonathan if (!(ifp->if_capenable & IFCAP_POLLING)) {
1409 1.1 jonathan ether_poll_deregister(ifp);
1410 1.1 jonathan cmd = POLL_DEREGISTER;
1411 1.1 jonathan }
1412 1.1 jonathan if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1413 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1414 1.1 jonathan goto done;
1415 1.1 jonathan }
1416 1.1 jonathan
1417 1.1 jonathan sc->rxcycles = count;
1418 1.1 jonathan re_rxeof(sc);
1419 1.1 jonathan re_txeof(sc);
1420 1.1 jonathan
1421 1.1 jonathan if (ifp->if_snd.ifq_head != NULL)
1422 1.1 jonathan (*ifp->if_start)(ifp);
1423 1.1 jonathan
1424 1.1 jonathan if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1425 1.1 jonathan u_int16_t status;
1426 1.1 jonathan
1427 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1428 1.1 jonathan if (status == 0xffff)
1429 1.1 jonathan goto done;
1430 1.1 jonathan if (status)
1431 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1432 1.1 jonathan
1433 1.1 jonathan /*
1434 1.1 jonathan * XXX check behaviour on receiver stalls.
1435 1.1 jonathan */
1436 1.1 jonathan
1437 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1438 1.1 jonathan re_reset(sc);
1439 1.1 jonathan re_init(sc);
1440 1.1 jonathan }
1441 1.1 jonathan }
1442 1.1 jonathan done:
1443 1.1 jonathan RTK_UNLOCK(sc);
1444 1.1 jonathan }
1445 1.1 jonathan #endif /* DEVICE_POLLING */
1446 1.1 jonathan
1447 1.1 jonathan int
1448 1.1 jonathan re_intr(void *arg)
1449 1.1 jonathan {
1450 1.1 jonathan struct rtk_softc *sc = arg;
1451 1.1 jonathan struct ifnet *ifp;
1452 1.1 jonathan u_int16_t status;
1453 1.1 jonathan int handled = 0;
1454 1.1 jonathan
1455 1.1 jonathan ifp = &sc->ethercom.ec_if;
1456 1.1 jonathan
1457 1.1 jonathan if (!(ifp->if_flags & IFF_UP))
1458 1.1 jonathan return 0;
1459 1.1 jonathan
1460 1.1 jonathan #ifdef DEVICE_POLLING
1461 1.4 kanaoka if (ifp->if_flags & IFF_POLLING)
1462 1.1 jonathan goto done;
1463 1.1 jonathan if ((ifp->if_capenable & IFCAP_POLLING) &&
1464 1.1 jonathan ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1465 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1466 1.1 jonathan re_poll(ifp, 0, 1);
1467 1.1 jonathan goto done;
1468 1.1 jonathan }
1469 1.1 jonathan #endif /* DEVICE_POLLING */
1470 1.1 jonathan
1471 1.1 jonathan for (;;) {
1472 1.1 jonathan
1473 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1474 1.1 jonathan /* If the card has gone away the read returns 0xffff. */
1475 1.1 jonathan if (status == 0xffff)
1476 1.1 jonathan break;
1477 1.1 jonathan if (status) {
1478 1.1 jonathan handled = 1;
1479 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1480 1.1 jonathan }
1481 1.1 jonathan
1482 1.1 jonathan if ((status & RTK_INTRS_CPLUS) == 0)
1483 1.1 jonathan break;
1484 1.1 jonathan
1485 1.8 jdolecek if ((status & RTK_ISR_RX_OK) ||
1486 1.8 jdolecek (status & RTK_ISR_RX_ERR))
1487 1.1 jonathan re_rxeof(sc);
1488 1.1 jonathan
1489 1.1 jonathan if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1490 1.1 jonathan (status & RTK_ISR_TX_ERR) ||
1491 1.1 jonathan (status & RTK_ISR_TX_DESC_UNAVAIL))
1492 1.1 jonathan re_txeof(sc);
1493 1.1 jonathan
1494 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1495 1.1 jonathan re_reset(sc);
1496 1.1 jonathan re_init(ifp);
1497 1.1 jonathan }
1498 1.1 jonathan
1499 1.1 jonathan if (status & RTK_ISR_LINKCHG) {
1500 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
1501 1.1 jonathan re_tick(sc);
1502 1.1 jonathan }
1503 1.1 jonathan }
1504 1.1 jonathan
1505 1.4 kanaoka if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1506 1.4 kanaoka if (ifp->if_snd.ifq_head != NULL)
1507 1.4 kanaoka (*ifp->if_start)(ifp);
1508 1.1 jonathan
1509 1.1 jonathan #ifdef DEVICE_POLLING
1510 1.1 jonathan done:
1511 1.1 jonathan #endif
1512 1.1 jonathan
1513 1.1 jonathan return handled;
1514 1.1 jonathan }
1515 1.1 jonathan
1516 1.1 jonathan static int
1517 1.13 yamt re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1518 1.1 jonathan {
1519 1.1 jonathan bus_dmamap_t map;
1520 1.15 yamt int error, i, startidx, curidx;
1521 1.1 jonathan struct m_tag *mtag;
1522 1.1 jonathan struct rtk_desc *d;
1523 1.1 jonathan u_int32_t cmdstat, rtk_flags;
1524 1.15 yamt struct rtk_txq *txq;
1525 1.1 jonathan
1526 1.17 yamt if (sc->rtk_ldata.rtk_tx_free <= 4) {
1527 1.4 kanaoka return EFBIG;
1528 1.17 yamt }
1529 1.1 jonathan
1530 1.1 jonathan /*
1531 1.1 jonathan * Set up checksum offload. Note: checksum offload bits must
1532 1.1 jonathan * appear in all descriptors of a multi-descriptor transmit
1533 1.1 jonathan * attempt. (This is according to testing done with an 8169
1534 1.1 jonathan * chip. I'm not sure if this is a requirement or a bug.)
1535 1.1 jonathan */
1536 1.1 jonathan
1537 1.13 yamt if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1538 1.13 yamt u_int32_t segsz = m->m_pkthdr.segsz;
1539 1.1 jonathan
1540 1.13 yamt rtk_flags = RTK_TDESC_CMD_LGSEND |
1541 1.13 yamt (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1542 1.13 yamt } else {
1543 1.16 yamt
1544 1.16 yamt /*
1545 1.16 yamt * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1546 1.16 yamt * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1547 1.16 yamt * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1548 1.16 yamt */
1549 1.16 yamt
1550 1.13 yamt rtk_flags = 0;
1551 1.16 yamt if ((m->m_pkthdr.csum_flags &
1552 1.16 yamt (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1553 1.13 yamt rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1554 1.16 yamt if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1555 1.16 yamt rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1556 1.16 yamt } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1557 1.16 yamt rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1558 1.16 yamt }
1559 1.16 yamt }
1560 1.13 yamt }
1561 1.1 jonathan
1562 1.15 yamt txq = &sc->rtk_ldata.rtk_txq[*idx];
1563 1.15 yamt map = txq->txq_dmamap;
1564 1.21 yamt error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1565 1.21 yamt BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1566 1.1 jonathan
1567 1.1 jonathan if (error) {
1568 1.13 yamt /* XXX try to defrag if EFBIG? */
1569 1.13 yamt
1570 1.4 kanaoka aprint_error("%s: can't map mbuf (error %d)\n",
1571 1.1 jonathan sc->sc_dev.dv_xname, error);
1572 1.13 yamt
1573 1.14 yamt return error;
1574 1.1 jonathan }
1575 1.1 jonathan
1576 1.13 yamt if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1577 1.14 yamt error = EFBIG;
1578 1.13 yamt goto fail_unload;
1579 1.13 yamt }
1580 1.20 briggs
1581 1.20 briggs /*
1582 1.20 briggs * Make sure that the caches are synchronized before we
1583 1.20 briggs * ask the chip to start DMA for the packet data.
1584 1.20 briggs */
1585 1.20 briggs bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1586 1.20 briggs BUS_DMASYNC_PREWRITE);
1587 1.20 briggs
1588 1.1 jonathan /*
1589 1.1 jonathan * Map the segment array into descriptors. Note that we set the
1590 1.1 jonathan * start-of-frame and end-of-frame markers for either TX or RX, but
1591 1.1 jonathan * they really only have meaning in the TX case. (In the RX case,
1592 1.1 jonathan * it's the chip that tells us where packets begin and end.)
1593 1.1 jonathan * We also keep track of the end of the ring and set the
1594 1.1 jonathan * end-of-ring bits as needed, and we set the ownership bits
1595 1.1 jonathan * in all except the very first descriptor. (The caller will
1596 1.1 jonathan * set this descriptor later when it start transmission or
1597 1.1 jonathan * reception.)
1598 1.1 jonathan */
1599 1.1 jonathan i = 0;
1600 1.15 yamt curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1601 1.1 jonathan while (1) {
1602 1.1 jonathan d = &sc->rtk_ldata.rtk_tx_list[curidx];
1603 1.15 yamt if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1604 1.13 yamt while (i > 0) {
1605 1.13 yamt sc->rtk_ldata.rtk_tx_list[
1606 1.15 yamt (curidx + RTK_TX_DESC_CNT(sc) - i) %
1607 1.15 yamt RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
1608 1.13 yamt i--;
1609 1.13 yamt }
1610 1.13 yamt error = ENOBUFS;
1611 1.13 yamt goto fail_unload;
1612 1.13 yamt }
1613 1.1 jonathan
1614 1.1 jonathan cmdstat = map->dm_segs[i].ds_len;
1615 1.1 jonathan d->rtk_bufaddr_lo =
1616 1.1 jonathan htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1617 1.1 jonathan d->rtk_bufaddr_hi =
1618 1.1 jonathan htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1619 1.1 jonathan if (i == 0)
1620 1.1 jonathan cmdstat |= RTK_TDESC_CMD_SOF;
1621 1.1 jonathan else
1622 1.1 jonathan cmdstat |= RTK_TDESC_CMD_OWN;
1623 1.15 yamt if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1624 1.1 jonathan cmdstat |= RTK_TDESC_CMD_EOR;
1625 1.1 jonathan d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1626 1.1 jonathan i++;
1627 1.1 jonathan if (i == map->dm_nsegs)
1628 1.1 jonathan break;
1629 1.15 yamt RTK_TX_DESC_INC(sc, curidx);
1630 1.1 jonathan }
1631 1.1 jonathan
1632 1.1 jonathan d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1633 1.1 jonathan
1634 1.15 yamt txq->txq_mbuf = m;
1635 1.1 jonathan sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1636 1.1 jonathan
1637 1.1 jonathan /*
1638 1.1 jonathan * Set up hardware VLAN tagging. Note: vlan tag info must
1639 1.1 jonathan * appear in the first descriptor of a multi-descriptor
1640 1.1 jonathan * transmission attempt.
1641 1.1 jonathan */
1642 1.1 jonathan
1643 1.13 yamt if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1644 1.15 yamt sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1645 1.9 jdolecek htole32(htons(VLAN_TAG_VALUE(mtag)) |
1646 1.1 jonathan RTK_TDESC_VLANCTL_TAG);
1647 1.9 jdolecek }
1648 1.1 jonathan
1649 1.1 jonathan /* Transfer ownership of packet to the chip. */
1650 1.1 jonathan
1651 1.1 jonathan sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1652 1.1 jonathan htole32(RTK_TDESC_CMD_OWN);
1653 1.15 yamt if (startidx != curidx)
1654 1.15 yamt sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1655 1.1 jonathan htole32(RTK_TDESC_CMD_OWN);
1656 1.1 jonathan
1657 1.15 yamt txq->txq_descidx = curidx;
1658 1.15 yamt RTK_TX_DESC_INC(sc, curidx);
1659 1.15 yamt sc->rtk_ldata.rtk_tx_nextfree = curidx;
1660 1.15 yamt *idx = (*idx + 1) % RTK_TX_QLEN;
1661 1.1 jonathan
1662 1.1 jonathan return 0;
1663 1.13 yamt
1664 1.13 yamt fail_unload:
1665 1.13 yamt bus_dmamap_unload(sc->sc_dmat, map);
1666 1.13 yamt
1667 1.13 yamt return error;
1668 1.1 jonathan }
1669 1.1 jonathan
1670 1.1 jonathan /*
1671 1.1 jonathan * Main transmit routine for C+ and gigE NICs.
1672 1.1 jonathan */
1673 1.1 jonathan
1674 1.1 jonathan static void
1675 1.1 jonathan re_start(struct ifnet *ifp)
1676 1.1 jonathan {
1677 1.1 jonathan struct rtk_softc *sc;
1678 1.1 jonathan int idx;
1679 1.1 jonathan
1680 1.1 jonathan sc = ifp->if_softc;
1681 1.1 jonathan
1682 1.15 yamt idx = sc->rtk_ldata.rtk_txq_prodidx;
1683 1.17 yamt while (/* CONSTCOND */ 1) {
1684 1.17 yamt struct mbuf *m;
1685 1.13 yamt int error;
1686 1.13 yamt
1687 1.17 yamt IFQ_POLL(&ifp->if_snd, m);
1688 1.17 yamt if (m == NULL)
1689 1.1 jonathan break;
1690 1.1 jonathan
1691 1.17 yamt if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1692 1.17 yamt KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1693 1.17 yamt ifp->if_flags |= IFF_OACTIVE;
1694 1.17 yamt break;
1695 1.17 yamt }
1696 1.17 yamt
1697 1.17 yamt error = re_encap(sc, m, &idx);
1698 1.14 yamt if (error == EFBIG &&
1699 1.15 yamt sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1700 1.17 yamt IFQ_DEQUEUE(&ifp->if_snd, m);
1701 1.17 yamt m_freem(m);
1702 1.13 yamt ifp->if_oerrors++;
1703 1.13 yamt continue;
1704 1.13 yamt }
1705 1.13 yamt if (error) {
1706 1.1 jonathan ifp->if_flags |= IFF_OACTIVE;
1707 1.1 jonathan break;
1708 1.1 jonathan }
1709 1.17 yamt
1710 1.17 yamt IFQ_DEQUEUE(&ifp->if_snd, m);
1711 1.17 yamt
1712 1.1 jonathan #if NBPFILTER > 0
1713 1.1 jonathan /*
1714 1.1 jonathan * If there's a BPF listener, bounce a copy of this frame
1715 1.1 jonathan * to him.
1716 1.1 jonathan */
1717 1.1 jonathan if (ifp->if_bpf)
1718 1.17 yamt bpf_mtap(ifp->if_bpf, m);
1719 1.1 jonathan #endif
1720 1.1 jonathan }
1721 1.1 jonathan
1722 1.17 yamt if (sc->rtk_ldata.rtk_txq_prodidx == idx) {
1723 1.17 yamt return;
1724 1.17 yamt }
1725 1.17 yamt sc->rtk_ldata.rtk_txq_prodidx = idx;
1726 1.17 yamt
1727 1.1 jonathan /* Flush the TX descriptors */
1728 1.1 jonathan
1729 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1730 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map,
1731 1.1 jonathan 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1732 1.4 kanaoka BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1733 1.1 jonathan
1734 1.1 jonathan /*
1735 1.1 jonathan * RealTek put the TX poll request register in a different
1736 1.1 jonathan * location on the 8169 gigE chip. I don't know why.
1737 1.1 jonathan */
1738 1.1 jonathan
1739 1.1 jonathan if (sc->rtk_type == RTK_8169)
1740 1.1 jonathan CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1741 1.1 jonathan else
1742 1.1 jonathan CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1743 1.1 jonathan
1744 1.1 jonathan /*
1745 1.1 jonathan * Use the countdown timer for interrupt moderation.
1746 1.1 jonathan * 'TX done' interrupts are disabled. Instead, we reset the
1747 1.1 jonathan * countdown timer, which will begin counting until it hits
1748 1.1 jonathan * the value in the TIMERINT register, and then trigger an
1749 1.1 jonathan * interrupt. Each time we write to the TIMERCNT register,
1750 1.1 jonathan * the timer count is reset to 0.
1751 1.1 jonathan */
1752 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1753 1.1 jonathan
1754 1.1 jonathan /*
1755 1.1 jonathan * Set a timeout in case the chip goes out to lunch.
1756 1.1 jonathan */
1757 1.1 jonathan ifp->if_timer = 5;
1758 1.1 jonathan
1759 1.1 jonathan return;
1760 1.1 jonathan }
1761 1.1 jonathan
1762 1.1 jonathan static int
1763 1.1 jonathan re_init(struct ifnet *ifp)
1764 1.1 jonathan {
1765 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1766 1.1 jonathan u_int32_t rxcfg = 0;
1767 1.1 jonathan u_int32_t reg;
1768 1.1 jonathan int error;
1769 1.12 perry
1770 1.1 jonathan if ((error = re_enable(sc)) != 0)
1771 1.1 jonathan goto out;
1772 1.1 jonathan
1773 1.1 jonathan /*
1774 1.1 jonathan * Cancel pending I/O and free all RX/TX buffers.
1775 1.1 jonathan */
1776 1.3 kanaoka re_stop(ifp, 0);
1777 1.1 jonathan
1778 1.1 jonathan /*
1779 1.1 jonathan * Enable C+ RX and TX mode, as well as VLAN stripping and
1780 1.1 jonathan * RX checksum offload. We must configure the C+ register
1781 1.1 jonathan * before all others.
1782 1.1 jonathan */
1783 1.1 jonathan reg = 0;
1784 1.1 jonathan
1785 1.1 jonathan /*
1786 1.1 jonathan * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1787 1.1 jonathan * FreeBSD drivers set these bits anyway (for 8139C+?).
1788 1.1 jonathan * So far, it works.
1789 1.1 jonathan */
1790 1.1 jonathan
1791 1.1 jonathan /*
1792 1.1 jonathan * XXX: For 8169 and 8196S revs below 2, set bit 14.
1793 1.1 jonathan * For 8169S/8110S rev 2 and above, do not set bit 14.
1794 1.1 jonathan */
1795 1.1 jonathan if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1796 1.4 kanaoka reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1797 1.1 jonathan
1798 1.4 kanaoka if (1) {/* not for 8169S ? */
1799 1.4 kanaoka reg |= RTK_CPLUSCMD_VLANSTRIP |
1800 1.4 kanaoka (ifp->if_capenable &
1801 1.18 yamt (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1802 1.18 yamt IFCAP_CSUM_UDPv4_Rx) ?
1803 1.4 kanaoka RTK_CPLUSCMD_RXCSUM_ENB : 0);
1804 1.4 kanaoka }
1805 1.12 perry
1806 1.1 jonathan CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1807 1.4 kanaoka reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1808 1.1 jonathan
1809 1.1 jonathan /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1810 1.1 jonathan if (sc->rtk_type == RTK_8169)
1811 1.1 jonathan CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1812 1.1 jonathan
1813 1.1 jonathan DELAY(10000);
1814 1.1 jonathan
1815 1.1 jonathan /*
1816 1.1 jonathan * Init our MAC address. Even though the chipset
1817 1.1 jonathan * documentation doesn't mention it, we need to enter "Config
1818 1.1 jonathan * register write enable" mode to modify the ID registers.
1819 1.1 jonathan */
1820 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1821 1.1 jonathan memcpy(®, LLADDR(ifp->if_sadl), 4);
1822 1.1 jonathan CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1823 1.1 jonathan reg = 0;
1824 1.1 jonathan memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1825 1.1 jonathan CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1826 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1827 1.1 jonathan
1828 1.1 jonathan /*
1829 1.1 jonathan * For C+ mode, initialize the RX descriptors and mbufs.
1830 1.1 jonathan */
1831 1.1 jonathan re_rx_list_init(sc);
1832 1.1 jonathan re_tx_list_init(sc);
1833 1.1 jonathan
1834 1.1 jonathan /*
1835 1.1 jonathan * Enable transmit and receive.
1836 1.1 jonathan */
1837 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1838 1.1 jonathan
1839 1.1 jonathan /*
1840 1.1 jonathan * Set the initial TX and RX configuration.
1841 1.1 jonathan */
1842 1.1 jonathan if (sc->rtk_testmode) {
1843 1.1 jonathan if (sc->rtk_type == RTK_8169)
1844 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG,
1845 1.4 kanaoka RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1846 1.1 jonathan else
1847 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG,
1848 1.4 kanaoka RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1849 1.1 jonathan } else
1850 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1851 1.1 jonathan CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1852 1.1 jonathan
1853 1.1 jonathan /* Set the individual bit to receive frames for this host only. */
1854 1.1 jonathan rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1855 1.1 jonathan rxcfg |= RTK_RXCFG_RX_INDIV;
1856 1.1 jonathan
1857 1.1 jonathan /* If we want promiscuous mode, set the allframes bit. */
1858 1.8 jdolecek if (ifp->if_flags & IFF_PROMISC)
1859 1.1 jonathan rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1860 1.8 jdolecek else
1861 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1862 1.8 jdolecek CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1863 1.1 jonathan
1864 1.1 jonathan /*
1865 1.1 jonathan * Set capture broadcast bit to capture broadcast frames.
1866 1.1 jonathan */
1867 1.8 jdolecek if (ifp->if_flags & IFF_BROADCAST)
1868 1.1 jonathan rxcfg |= RTK_RXCFG_RX_BROAD;
1869 1.8 jdolecek else
1870 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_BROAD;
1871 1.8 jdolecek CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1872 1.1 jonathan
1873 1.1 jonathan /*
1874 1.1 jonathan * Program the multicast filter, if necessary.
1875 1.1 jonathan */
1876 1.1 jonathan rtk_setmulti(sc);
1877 1.1 jonathan
1878 1.1 jonathan #ifdef DEVICE_POLLING
1879 1.1 jonathan /*
1880 1.1 jonathan * Disable interrupts if we are polling.
1881 1.1 jonathan */
1882 1.1 jonathan if (ifp->if_flags & IFF_POLLING)
1883 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1884 1.1 jonathan else /* otherwise ... */
1885 1.1 jonathan #endif /* DEVICE_POLLING */
1886 1.1 jonathan /*
1887 1.1 jonathan * Enable interrupts.
1888 1.1 jonathan */
1889 1.1 jonathan if (sc->rtk_testmode)
1890 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1891 1.1 jonathan else
1892 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1893 1.1 jonathan
1894 1.1 jonathan /* Start RX/TX process. */
1895 1.1 jonathan CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1896 1.1 jonathan #ifdef notdef
1897 1.1 jonathan /* Enable receiver and transmitter. */
1898 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1899 1.1 jonathan #endif
1900 1.1 jonathan /*
1901 1.1 jonathan * Load the addresses of the RX and TX lists into the chip.
1902 1.1 jonathan */
1903 1.1 jonathan
1904 1.1 jonathan CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1905 1.11 yamt RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1906 1.1 jonathan CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1907 1.11 yamt RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1908 1.1 jonathan
1909 1.1 jonathan CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1910 1.11 yamt RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1911 1.1 jonathan CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1912 1.11 yamt RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1913 1.1 jonathan
1914 1.1 jonathan CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1915 1.1 jonathan
1916 1.1 jonathan /*
1917 1.1 jonathan * Initialize the timer interrupt register so that
1918 1.1 jonathan * a timer interrupt will be generated once the timer
1919 1.1 jonathan * reaches a certain number of ticks. The timer is
1920 1.1 jonathan * reloaded on each transmit. This gives us TX interrupt
1921 1.1 jonathan * moderation, which dramatically improves TX frame rate.
1922 1.1 jonathan */
1923 1.1 jonathan
1924 1.1 jonathan if (sc->rtk_type == RTK_8169)
1925 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1926 1.1 jonathan else
1927 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1928 1.1 jonathan
1929 1.1 jonathan /*
1930 1.1 jonathan * For 8169 gigE NICs, set the max allowed RX packet
1931 1.1 jonathan * size so we can receive jumbo frames.
1932 1.1 jonathan */
1933 1.1 jonathan if (sc->rtk_type == RTK_8169)
1934 1.1 jonathan CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1935 1.1 jonathan
1936 1.1 jonathan if (sc->rtk_testmode)
1937 1.1 jonathan return 0;
1938 1.1 jonathan
1939 1.1 jonathan mii_mediachg(&sc->mii);
1940 1.1 jonathan
1941 1.4 kanaoka CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1942 1.1 jonathan
1943 1.1 jonathan ifp->if_flags |= IFF_RUNNING;
1944 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1945 1.1 jonathan
1946 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1947 1.1 jonathan
1948 1.1 jonathan out:
1949 1.1 jonathan if (error) {
1950 1.4 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1951 1.1 jonathan ifp->if_timer = 0;
1952 1.4 kanaoka aprint_error("%s: interface not running\n",
1953 1.4 kanaoka sc->sc_dev.dv_xname);
1954 1.1 jonathan }
1955 1.12 perry
1956 1.1 jonathan return error;
1957 1.1 jonathan
1958 1.1 jonathan }
1959 1.1 jonathan
1960 1.1 jonathan /*
1961 1.1 jonathan * Set media options.
1962 1.1 jonathan */
1963 1.1 jonathan static int
1964 1.1 jonathan re_ifmedia_upd(struct ifnet *ifp)
1965 1.1 jonathan {
1966 1.1 jonathan struct rtk_softc *sc;
1967 1.1 jonathan
1968 1.1 jonathan sc = ifp->if_softc;
1969 1.1 jonathan
1970 1.4 kanaoka return mii_mediachg(&sc->mii);
1971 1.1 jonathan }
1972 1.1 jonathan
1973 1.1 jonathan /*
1974 1.1 jonathan * Report current media status.
1975 1.1 jonathan */
1976 1.1 jonathan static void
1977 1.1 jonathan re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1978 1.1 jonathan {
1979 1.1 jonathan struct rtk_softc *sc;
1980 1.1 jonathan
1981 1.1 jonathan sc = ifp->if_softc;
1982 1.1 jonathan
1983 1.1 jonathan mii_pollstat(&sc->mii);
1984 1.1 jonathan ifmr->ifm_active = sc->mii.mii_media_active;
1985 1.1 jonathan ifmr->ifm_status = sc->mii.mii_media_status;
1986 1.1 jonathan
1987 1.1 jonathan return;
1988 1.1 jonathan }
1989 1.1 jonathan
1990 1.1 jonathan static int
1991 1.1 jonathan re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1992 1.1 jonathan {
1993 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1994 1.1 jonathan struct ifreq *ifr = (struct ifreq *) data;
1995 1.1 jonathan int s, error = 0;
1996 1.1 jonathan
1997 1.1 jonathan s = splnet();
1998 1.1 jonathan
1999 1.4 kanaoka switch (command) {
2000 1.1 jonathan case SIOCSIFMTU:
2001 1.1 jonathan if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2002 1.1 jonathan error = EINVAL;
2003 1.1 jonathan ifp->if_mtu = ifr->ifr_mtu;
2004 1.1 jonathan break;
2005 1.1 jonathan case SIOCGIFMEDIA:
2006 1.1 jonathan case SIOCSIFMEDIA:
2007 1.1 jonathan error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2008 1.1 jonathan break;
2009 1.1 jonathan default:
2010 1.1 jonathan error = ether_ioctl(ifp, command, data);
2011 1.1 jonathan if (error == ENETRESET) {
2012 1.2 kanaoka if (ifp->if_flags & IFF_RUNNING)
2013 1.1 jonathan rtk_setmulti(sc);
2014 1.1 jonathan error = 0;
2015 1.1 jonathan }
2016 1.1 jonathan break;
2017 1.1 jonathan }
2018 1.1 jonathan
2019 1.1 jonathan splx(s);
2020 1.1 jonathan
2021 1.4 kanaoka return error;
2022 1.1 jonathan }
2023 1.1 jonathan
2024 1.1 jonathan static void
2025 1.1 jonathan re_watchdog(struct ifnet *ifp)
2026 1.1 jonathan {
2027 1.1 jonathan struct rtk_softc *sc;
2028 1.1 jonathan int s;
2029 1.1 jonathan
2030 1.1 jonathan sc = ifp->if_softc;
2031 1.1 jonathan s = splnet();
2032 1.4 kanaoka aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2033 1.1 jonathan ifp->if_oerrors++;
2034 1.1 jonathan
2035 1.1 jonathan re_txeof(sc);
2036 1.1 jonathan re_rxeof(sc);
2037 1.1 jonathan
2038 1.1 jonathan re_init(ifp);
2039 1.1 jonathan
2040 1.1 jonathan splx(s);
2041 1.1 jonathan }
2042 1.1 jonathan
2043 1.1 jonathan /*
2044 1.1 jonathan * Stop the adapter and free any mbufs allocated to the
2045 1.1 jonathan * RX and TX lists.
2046 1.1 jonathan */
2047 1.1 jonathan static void
2048 1.3 kanaoka re_stop(struct ifnet *ifp, int disable)
2049 1.1 jonathan {
2050 1.1 jonathan register int i;
2051 1.3 kanaoka struct rtk_softc *sc = ifp->if_softc;
2052 1.1 jonathan
2053 1.3 kanaoka callout_stop(&sc->rtk_tick_ch);
2054 1.1 jonathan
2055 1.1 jonathan #ifdef DEVICE_POLLING
2056 1.1 jonathan ether_poll_deregister(ifp);
2057 1.1 jonathan #endif /* DEVICE_POLLING */
2058 1.1 jonathan
2059 1.3 kanaoka mii_down(&sc->mii);
2060 1.3 kanaoka
2061 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2062 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2063 1.1 jonathan
2064 1.1 jonathan if (sc->rtk_head != NULL) {
2065 1.1 jonathan m_freem(sc->rtk_head);
2066 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
2067 1.1 jonathan }
2068 1.1 jonathan
2069 1.1 jonathan /* Free the TX list buffers. */
2070 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++) {
2071 1.15 yamt if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2072 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
2073 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2074 1.15 yamt m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2075 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2076 1.1 jonathan }
2077 1.1 jonathan }
2078 1.1 jonathan
2079 1.1 jonathan /* Free the RX list buffers. */
2080 1.1 jonathan for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2081 1.1 jonathan if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2082 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
2083 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i]);
2084 1.1 jonathan m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2085 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2086 1.1 jonathan }
2087 1.1 jonathan }
2088 1.1 jonathan
2089 1.3 kanaoka if (disable)
2090 1.3 kanaoka re_disable(sc);
2091 1.3 kanaoka
2092 1.3 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2093 1.4 kanaoka ifp->if_timer = 0;
2094 1.1 jonathan
2095 1.1 jonathan return;
2096 1.1 jonathan }
2097