Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.4
      1  1.4   kanaoka /*	$NetBSD: rtl8169.c,v 1.4 2005/01/09 12:15:36 kanaoka Exp $	*/
      2  1.1  jonathan 
      3  1.1  jonathan /*
      4  1.1  jonathan  * Copyright (c) 1997, 1998-2003
      5  1.1  jonathan  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  1.1  jonathan  *
      7  1.1  jonathan  * Redistribution and use in source and binary forms, with or without
      8  1.1  jonathan  * modification, are permitted provided that the following conditions
      9  1.1  jonathan  * are met:
     10  1.1  jonathan  * 1. Redistributions of source code must retain the above copyright
     11  1.1  jonathan  *    notice, this list of conditions and the following disclaimer.
     12  1.1  jonathan  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  jonathan  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  jonathan  *    documentation and/or other materials provided with the distribution.
     15  1.1  jonathan  * 3. All advertising materials mentioning features or use of this software
     16  1.1  jonathan  *    must display the following acknowledgement:
     17  1.1  jonathan  *	This product includes software developed by Bill Paul.
     18  1.1  jonathan  * 4. Neither the name of the author nor the names of any co-contributors
     19  1.1  jonathan  *    may be used to endorse or promote products derived from this software
     20  1.1  jonathan  *    without specific prior written permission.
     21  1.1  jonathan  *
     22  1.1  jonathan  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  1.1  jonathan  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  1.1  jonathan  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  1.1  jonathan  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  1.1  jonathan  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  1.1  jonathan  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  1.1  jonathan  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  1.1  jonathan  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  1.1  jonathan  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  1.1  jonathan  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  1.1  jonathan  * THE POSSIBILITY OF SUCH DAMAGE.
     33  1.1  jonathan  */
     34  1.1  jonathan 
     35  1.1  jonathan #include <sys/cdefs.h>
     36  1.1  jonathan /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37  1.1  jonathan 
     38  1.1  jonathan /*
     39  1.1  jonathan  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  1.1  jonathan  *
     41  1.1  jonathan  * Written by Bill Paul <wpaul (at) windriver.com>
     42  1.1  jonathan  * Senior Networking Software Engineer
     43  1.1  jonathan  * Wind River Systems
     44  1.1  jonathan  */
     45  1.1  jonathan 
     46  1.1  jonathan /*
     47  1.1  jonathan  * This driver is designed to support RealTek's next generation of
     48  1.1  jonathan  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  1.1  jonathan  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  1.1  jonathan  * and the RTL8110S.
     51  1.1  jonathan  *
     52  1.1  jonathan  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  1.1  jonathan  * with the older 8139 family, however it also supports a special
     54  1.1  jonathan  * C+ mode of operation that provides several new performance enhancing
     55  1.1  jonathan  * features. These include:
     56  1.1  jonathan  *
     57  1.1  jonathan  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  1.1  jonathan  *	  a single packet fragment. Data buffers may be aligned on
     59  1.1  jonathan  *	  any byte boundary.
     60  1.1  jonathan  *
     61  1.1  jonathan  *	o 64-bit DMA
     62  1.1  jonathan  *
     63  1.1  jonathan  *	o TCP/IP checksum offload for both RX and TX
     64  1.1  jonathan  *
     65  1.1  jonathan  *	o High and normal priority transmit DMA rings
     66  1.1  jonathan  *
     67  1.1  jonathan  *	o VLAN tag insertion and extraction
     68  1.1  jonathan  *
     69  1.1  jonathan  *	o TCP large send (segmentation offload)
     70  1.1  jonathan  *
     71  1.1  jonathan  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  1.1  jonathan  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  1.1  jonathan  * access and PHY access is the same as it is on the older 8139 series
     74  1.1  jonathan  * chips.
     75  1.1  jonathan  *
     76  1.1  jonathan  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  1.1  jonathan  * same programming API and feature set as the 8139C+ with the following
     78  1.1  jonathan  * differences and additions:
     79  1.1  jonathan  *
     80  1.1  jonathan  *	o 1000Mbps mode
     81  1.1  jonathan  *
     82  1.1  jonathan  *	o Jumbo frames
     83  1.1  jonathan  *
     84  1.1  jonathan  * 	o GMII and TBI ports/registers for interfacing with copper
     85  1.1  jonathan  *	  or fiber PHYs
     86  1.1  jonathan  *
     87  1.1  jonathan  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  1.1  jonathan  *        (the 8139C+ allows a maximum of 64)
     89  1.1  jonathan  *
     90  1.1  jonathan  *	o Slight differences in register layout from the 8139C+
     91  1.1  jonathan  *
     92  1.1  jonathan  * The TX start and timer interrupt registers are at different locations
     93  1.1  jonathan  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  1.1  jonathan  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  1.1  jonathan  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  1.1  jonathan  * copper gigE PHY.
     97  1.1  jonathan  *
     98  1.1  jonathan  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  1.1  jonathan  * (the 'S' stands for 'single-chip'). These devices have the same
    100  1.1  jonathan  * programming API as the older 8169, but also have some vendor-specific
    101  1.1  jonathan  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  1.1  jonathan  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  1.1  jonathan  *
    104  1.1  jonathan  * This driver takes advantage of the RX and TX checksum offload and
    105  1.1  jonathan  * VLAN tag insertion/extraction features. It also implements TX
    106  1.1  jonathan  * interrupt moderation using the timer interrupt registers, which
    107  1.1  jonathan  * significantly reduces TX interrupt load. There is also support
    108  1.1  jonathan  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  1.1  jonathan  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  1.1  jonathan  * driver is 7500 bytes.
    111  1.1  jonathan  */
    112  1.1  jonathan 
    113  1.1  jonathan #include "bpfilter.h"
    114  1.1  jonathan #include "vlan.h"
    115  1.1  jonathan 
    116  1.1  jonathan #include <sys/param.h>
    117  1.1  jonathan #include <sys/endian.h>
    118  1.1  jonathan #include <sys/systm.h>
    119  1.1  jonathan #include <sys/sockio.h>
    120  1.1  jonathan #include <sys/mbuf.h>
    121  1.1  jonathan #include <sys/malloc.h>
    122  1.1  jonathan #include <sys/kernel.h>
    123  1.1  jonathan #include <sys/socket.h>
    124  1.1  jonathan #include <sys/device.h>
    125  1.1  jonathan 
    126  1.1  jonathan #include <net/if.h>
    127  1.1  jonathan #include <net/if_arp.h>
    128  1.1  jonathan #include <net/if_dl.h>
    129  1.1  jonathan #include <net/if_ether.h>
    130  1.1  jonathan #include <net/if_media.h>
    131  1.1  jonathan #include <net/if_vlanvar.h>
    132  1.1  jonathan 
    133  1.1  jonathan #if NBPFILTER > 0
    134  1.1  jonathan #include <net/bpf.h>
    135  1.1  jonathan #endif
    136  1.1  jonathan 
    137  1.1  jonathan #include <machine/bus.h>
    138  1.1  jonathan 
    139  1.1  jonathan #include <dev/mii/mii.h>
    140  1.1  jonathan #include <dev/mii/miivar.h>
    141  1.1  jonathan 
    142  1.1  jonathan #include <dev/pci/pcireg.h>
    143  1.1  jonathan #include <dev/pci/pcivar.h>
    144  1.1  jonathan #include <dev/pci/pcidevs.h>
    145  1.1  jonathan 
    146  1.1  jonathan /*
    147  1.1  jonathan  * Default to using PIO access for this driver.
    148  1.1  jonathan  */
    149  1.1  jonathan #define RE_USEIOSPACE
    150  1.1  jonathan 
    151  1.1  jonathan #include <dev/ic/rtl81x9reg.h>
    152  1.1  jonathan #include <dev/ic/rtl81x9var.h>
    153  1.1  jonathan 
    154  1.1  jonathan #include <dev/ic/rtl8169var.h>
    155  1.1  jonathan 
    156  1.1  jonathan 
    157  1.4   kanaoka static int re_encap(struct rtk_softc *, struct mbuf *, int *);
    158  1.1  jonathan 
    159  1.4   kanaoka static int re_allocmem(struct rtk_softc *);
    160  1.4   kanaoka static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    161  1.4   kanaoka static int re_rx_list_init(struct rtk_softc *);
    162  1.4   kanaoka static int re_tx_list_init(struct rtk_softc *);
    163  1.4   kanaoka static void re_rxeof(struct rtk_softc *);
    164  1.4   kanaoka static void re_txeof(struct rtk_softc *);
    165  1.4   kanaoka static void re_tick(void *);
    166  1.4   kanaoka static void re_start(struct ifnet *);
    167  1.4   kanaoka static int re_ioctl(struct ifnet *, u_long, caddr_t);
    168  1.4   kanaoka static int re_init(struct ifnet *);
    169  1.4   kanaoka static void re_stop(struct ifnet *, int);
    170  1.4   kanaoka static void re_watchdog(struct ifnet *);
    171  1.4   kanaoka 
    172  1.4   kanaoka static void re_shutdown(void *);
    173  1.4   kanaoka static int re_enable(struct rtk_softc *);
    174  1.4   kanaoka static void re_disable(struct rtk_softc *);
    175  1.4   kanaoka static void re_power(int, void *);
    176  1.4   kanaoka 
    177  1.4   kanaoka static int re_ifmedia_upd(struct ifnet *);
    178  1.4   kanaoka static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    179  1.4   kanaoka 
    180  1.4   kanaoka static int re_gmii_readreg(struct device *, int, int);
    181  1.4   kanaoka static void re_gmii_writereg(struct device *, int, int, int);
    182  1.4   kanaoka 
    183  1.4   kanaoka static int re_miibus_readreg(struct device *, int, int);
    184  1.4   kanaoka static void re_miibus_writereg(struct device *, int, int, int);
    185  1.4   kanaoka static void re_miibus_statchg(struct device *);
    186  1.1  jonathan 
    187  1.4   kanaoka static void re_reset(struct rtk_softc *);
    188  1.1  jonathan 
    189  1.4   kanaoka static int re_diag(struct rtk_softc *);
    190  1.1  jonathan 
    191  1.1  jonathan #ifdef RE_USEIOSPACE
    192  1.1  jonathan #define RTK_RES			SYS_RES_IOPORT
    193  1.1  jonathan #define RTK_RID			RTK_PCI_LOIO
    194  1.1  jonathan #else
    195  1.1  jonathan #define RTK_RES			SYS_RES_MEMORY
    196  1.1  jonathan #define RTK_RID			RTK_PCI_LOMEM
    197  1.1  jonathan #endif
    198  1.1  jonathan 
    199  1.1  jonathan #define EE_SET(x)					\
    200  1.1  jonathan 	CSR_WRITE_1(sc, RTK_EECMD,			\
    201  1.1  jonathan 		CSR_READ_1(sc, RTK_EECMD) | x)
    202  1.1  jonathan 
    203  1.1  jonathan #define EE_CLR(x)					\
    204  1.1  jonathan 	CSR_WRITE_1(sc, RTK_EECMD,			\
    205  1.1  jonathan 		CSR_READ_1(sc, RTK_EECMD) & ~x)
    206  1.1  jonathan 
    207  1.1  jonathan static int
    208  1.1  jonathan re_gmii_readreg(struct device *self, int phy, int reg)
    209  1.1  jonathan {
    210  1.1  jonathan 	struct rtk_softc	*sc = (void *)self;
    211  1.1  jonathan 	u_int32_t		rval;
    212  1.1  jonathan 	int			i;
    213  1.1  jonathan 
    214  1.1  jonathan 	if (phy != 7)
    215  1.4   kanaoka 		return 0;
    216  1.1  jonathan 
    217  1.1  jonathan 	/* Let the rgephy driver read the GMEDIASTAT register */
    218  1.1  jonathan 
    219  1.1  jonathan 	if (reg == RTK_GMEDIASTAT) {
    220  1.1  jonathan 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    221  1.4   kanaoka 		return rval;
    222  1.1  jonathan 	}
    223  1.1  jonathan 
    224  1.1  jonathan 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    225  1.1  jonathan 	DELAY(1000);
    226  1.1  jonathan 
    227  1.1  jonathan 	for (i = 0; i < RTK_TIMEOUT; i++) {
    228  1.1  jonathan 		rval = CSR_READ_4(sc, RTK_PHYAR);
    229  1.1  jonathan 		if (rval & RTK_PHYAR_BUSY)
    230  1.1  jonathan 			break;
    231  1.1  jonathan 		DELAY(100);
    232  1.1  jonathan 	}
    233  1.1  jonathan 
    234  1.1  jonathan 	if (i == RTK_TIMEOUT) {
    235  1.4   kanaoka 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    236  1.4   kanaoka 		return 0;
    237  1.1  jonathan 	}
    238  1.1  jonathan 
    239  1.4   kanaoka 	return rval & RTK_PHYAR_PHYDATA;
    240  1.1  jonathan }
    241  1.1  jonathan 
    242  1.1  jonathan static void
    243  1.1  jonathan re_gmii_writereg(struct device *dev, int phy, int reg, int data)
    244  1.1  jonathan {
    245  1.1  jonathan 	struct rtk_softc	*sc = (void *)dev;
    246  1.1  jonathan 	u_int32_t		rval;
    247  1.1  jonathan 	int			i;
    248  1.1  jonathan 
    249  1.1  jonathan 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    250  1.1  jonathan 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    251  1.1  jonathan 	DELAY(1000);
    252  1.1  jonathan 
    253  1.1  jonathan 	for (i = 0; i < RTK_TIMEOUT; i++) {
    254  1.1  jonathan 		rval = CSR_READ_4(sc, RTK_PHYAR);
    255  1.1  jonathan 		if (!(rval & RTK_PHYAR_BUSY))
    256  1.1  jonathan 			break;
    257  1.1  jonathan 		DELAY(100);
    258  1.1  jonathan 	}
    259  1.1  jonathan 
    260  1.1  jonathan 	if (i == RTK_TIMEOUT) {
    261  1.4   kanaoka 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    262  1.4   kanaoka 		    sc->sc_dev.dv_xname, reg, data);
    263  1.1  jonathan 		return;
    264  1.1  jonathan 	}
    265  1.1  jonathan 
    266  1.1  jonathan 	return;
    267  1.1  jonathan }
    268  1.1  jonathan 
    269  1.1  jonathan static int
    270  1.1  jonathan re_miibus_readreg(struct device *dev, int phy, int reg)
    271  1.1  jonathan {
    272  1.1  jonathan 	struct rtk_softc	*sc = (void *)dev;
    273  1.1  jonathan 	u_int16_t		rval = 0;
    274  1.1  jonathan 	u_int16_t		re8139_reg = 0;
    275  1.1  jonathan 	int			s;
    276  1.1  jonathan 
    277  1.1  jonathan 	s = splnet();
    278  1.1  jonathan 
    279  1.1  jonathan 	if (sc->rtk_type == RTK_8169) {
    280  1.1  jonathan 		rval = re_gmii_readreg(dev, phy, reg);
    281  1.1  jonathan 		splx(s);
    282  1.4   kanaoka 		return rval;
    283  1.1  jonathan 	}
    284  1.1  jonathan 
    285  1.1  jonathan 	/* Pretend the internal PHY is only at address 0 */
    286  1.1  jonathan 	if (phy) {
    287  1.1  jonathan 		splx(s);
    288  1.4   kanaoka 		return 0;
    289  1.1  jonathan 	}
    290  1.4   kanaoka 	switch (reg) {
    291  1.1  jonathan 	case MII_BMCR:
    292  1.1  jonathan 		re8139_reg = RTK_BMCR;
    293  1.1  jonathan 		break;
    294  1.1  jonathan 	case MII_BMSR:
    295  1.1  jonathan 		re8139_reg = RTK_BMSR;
    296  1.1  jonathan 		break;
    297  1.1  jonathan 	case MII_ANAR:
    298  1.1  jonathan 		re8139_reg = RTK_ANAR;
    299  1.1  jonathan 		break;
    300  1.1  jonathan 	case MII_ANER:
    301  1.1  jonathan 		re8139_reg = RTK_ANER;
    302  1.1  jonathan 		break;
    303  1.1  jonathan 	case MII_ANLPAR:
    304  1.1  jonathan 		re8139_reg = RTK_LPAR;
    305  1.1  jonathan 		break;
    306  1.1  jonathan 	case MII_PHYIDR1:
    307  1.1  jonathan 	case MII_PHYIDR2:
    308  1.1  jonathan 		splx(s);
    309  1.4   kanaoka 		return 0;
    310  1.1  jonathan 	/*
    311  1.1  jonathan 	 * Allow the rlphy driver to read the media status
    312  1.1  jonathan 	 * register. If we have a link partner which does not
    313  1.1  jonathan 	 * support NWAY, this is the register which will tell
    314  1.1  jonathan 	 * us the results of parallel detection.
    315  1.1  jonathan 	 */
    316  1.1  jonathan 	case RTK_MEDIASTAT:
    317  1.1  jonathan 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    318  1.1  jonathan 		splx(s);
    319  1.4   kanaoka 		return rval;
    320  1.1  jonathan 	default:
    321  1.4   kanaoka 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    322  1.1  jonathan 		splx(s);
    323  1.4   kanaoka 		return 0;
    324  1.1  jonathan 	}
    325  1.1  jonathan 	rval = CSR_READ_2(sc, re8139_reg);
    326  1.1  jonathan 	splx(s);
    327  1.4   kanaoka 	return rval;
    328  1.1  jonathan }
    329  1.1  jonathan 
    330  1.1  jonathan static void
    331  1.1  jonathan re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    332  1.1  jonathan {
    333  1.1  jonathan 	struct rtk_softc	*sc = (void *)dev;
    334  1.1  jonathan 	u_int16_t		re8139_reg = 0;
    335  1.1  jonathan 	int			s;
    336  1.1  jonathan 
    337  1.1  jonathan 	s = splnet();
    338  1.1  jonathan 
    339  1.1  jonathan 	if (sc->rtk_type == RTK_8169) {
    340  1.1  jonathan 		re_gmii_writereg(dev, phy, reg, data);
    341  1.1  jonathan 		splx(s);
    342  1.1  jonathan 		return;
    343  1.1  jonathan 	}
    344  1.1  jonathan 
    345  1.1  jonathan 	/* Pretend the internal PHY is only at address 0 */
    346  1.1  jonathan 	if (phy) {
    347  1.1  jonathan 		splx(s);
    348  1.1  jonathan 		return;
    349  1.1  jonathan 	}
    350  1.4   kanaoka 	switch (reg) {
    351  1.1  jonathan 	case MII_BMCR:
    352  1.1  jonathan 		re8139_reg = RTK_BMCR;
    353  1.1  jonathan 		break;
    354  1.1  jonathan 	case MII_BMSR:
    355  1.1  jonathan 		re8139_reg = RTK_BMSR;
    356  1.1  jonathan 		break;
    357  1.1  jonathan 	case MII_ANAR:
    358  1.1  jonathan 		re8139_reg = RTK_ANAR;
    359  1.1  jonathan 		break;
    360  1.1  jonathan 	case MII_ANER:
    361  1.1  jonathan 		re8139_reg = RTK_ANER;
    362  1.1  jonathan 		break;
    363  1.1  jonathan 	case MII_ANLPAR:
    364  1.1  jonathan 		re8139_reg = RTK_LPAR;
    365  1.1  jonathan 		break;
    366  1.1  jonathan 	case MII_PHYIDR1:
    367  1.1  jonathan 	case MII_PHYIDR2:
    368  1.1  jonathan 		splx(s);
    369  1.1  jonathan 		return;
    370  1.1  jonathan 		break;
    371  1.1  jonathan 	default:
    372  1.4   kanaoka 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    373  1.1  jonathan 		splx(s);
    374  1.1  jonathan 		return;
    375  1.1  jonathan 	}
    376  1.1  jonathan 	CSR_WRITE_2(sc, re8139_reg, data);
    377  1.1  jonathan 	splx(s);
    378  1.1  jonathan 	return;
    379  1.1  jonathan }
    380  1.1  jonathan 
    381  1.1  jonathan static void
    382  1.1  jonathan re_miibus_statchg(struct device *dev)
    383  1.1  jonathan {
    384  1.1  jonathan 
    385  1.1  jonathan 	return;
    386  1.1  jonathan }
    387  1.1  jonathan 
    388  1.1  jonathan static void
    389  1.1  jonathan re_reset(struct rtk_softc *sc)
    390  1.1  jonathan {
    391  1.1  jonathan 	register int		i;
    392  1.1  jonathan 
    393  1.1  jonathan 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    394  1.1  jonathan 
    395  1.1  jonathan 	for (i = 0; i < RTK_TIMEOUT; i++) {
    396  1.1  jonathan 		DELAY(10);
    397  1.1  jonathan 		if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
    398  1.1  jonathan 			break;
    399  1.1  jonathan 	}
    400  1.1  jonathan 	if (i == RTK_TIMEOUT)
    401  1.4   kanaoka 		aprint_error("%s: reset never completed!\n",
    402  1.4   kanaoka 		    sc->sc_dev.dv_xname);
    403  1.1  jonathan 
    404  1.1  jonathan 	/*
    405  1.1  jonathan 	 * NB: Realtek-supplied Linux driver does this only for
    406  1.1  jonathan 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    407  1.1  jonathan 	 */
    408  1.4   kanaoka 	if (1) /* XXX check softc flag for 8169s version */
    409  1.4   kanaoka 		CSR_WRITE_1(sc, 0x82, 1);
    410  1.1  jonathan 
    411  1.1  jonathan 	return;
    412  1.1  jonathan }
    413  1.1  jonathan 
    414  1.1  jonathan /*
    415  1.1  jonathan  * The following routine is designed to test for a defect on some
    416  1.1  jonathan  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    417  1.1  jonathan  * lines connected to the bus, however for a 32-bit only card, they
    418  1.1  jonathan  * should be pulled high. The result of this defect is that the
    419  1.1  jonathan  * NIC will not work right if you plug it into a 64-bit slot: DMA
    420  1.1  jonathan  * operations will be done with 64-bit transfers, which will fail
    421  1.1  jonathan  * because the 64-bit data lines aren't connected.
    422  1.1  jonathan  *
    423  1.1  jonathan  * There's no way to work around this (short of talking a soldering
    424  1.1  jonathan  * iron to the board), however we can detect it. The method we use
    425  1.1  jonathan  * here is to put the NIC into digital loopback mode, set the receiver
    426  1.1  jonathan  * to promiscuous mode, and then try to send a frame. We then compare
    427  1.1  jonathan  * the frame data we sent to what was received. If the data matches,
    428  1.1  jonathan  * then the NIC is working correctly, otherwise we know the user has
    429  1.1  jonathan  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    430  1.1  jonathan  * slot. In the latter case, there's no way the NIC can work correctly,
    431  1.1  jonathan  * so we print out a message on the console and abort the device attach.
    432  1.1  jonathan  */
    433  1.1  jonathan 
    434  1.1  jonathan static int
    435  1.1  jonathan re_diag(struct rtk_softc *sc)
    436  1.1  jonathan {
    437  1.1  jonathan 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    438  1.1  jonathan 	struct mbuf		*m0;
    439  1.1  jonathan 	struct ether_header	*eh;
    440  1.1  jonathan 	struct rtk_desc		*cur_rx;
    441  1.1  jonathan 	bus_dmamap_t		dmamap;
    442  1.1  jonathan 	u_int16_t		status;
    443  1.1  jonathan 	u_int32_t		rxstat;
    444  1.1  jonathan 	int			total_len, i, s, error = 0;
    445  1.1  jonathan 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    446  1.1  jonathan 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    447  1.1  jonathan 
    448  1.1  jonathan 	/* Allocate a single mbuf */
    449  1.1  jonathan 
    450  1.1  jonathan 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    451  1.1  jonathan 	if (m0 == NULL)
    452  1.4   kanaoka 		return ENOBUFS;
    453  1.1  jonathan 
    454  1.1  jonathan 	/*
    455  1.1  jonathan 	 * Initialize the NIC in test mode. This sets the chip up
    456  1.1  jonathan 	 * so that it can send and receive frames, but performs the
    457  1.1  jonathan 	 * following special functions:
    458  1.1  jonathan 	 * - Puts receiver in promiscuous mode
    459  1.1  jonathan 	 * - Enables digital loopback mode
    460  1.1  jonathan 	 * - Leaves interrupts turned off
    461  1.1  jonathan 	 */
    462  1.1  jonathan 
    463  1.1  jonathan 	ifp->if_flags |= IFF_PROMISC;
    464  1.1  jonathan 	sc->rtk_testmode = 1;
    465  1.1  jonathan 	re_init(ifp);
    466  1.4   kanaoka 	re_stop(ifp, 1);
    467  1.1  jonathan 	DELAY(100000);
    468  1.1  jonathan 	re_init(ifp);
    469  1.1  jonathan 
    470  1.1  jonathan 	/* Put some data in the mbuf */
    471  1.1  jonathan 
    472  1.1  jonathan 	eh = mtod(m0, struct ether_header *);
    473  1.4   kanaoka 	bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
    474  1.4   kanaoka 	bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
    475  1.1  jonathan 	eh->ether_type = htons(ETHERTYPE_IP);
    476  1.1  jonathan 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    477  1.1  jonathan 
    478  1.1  jonathan 	/*
    479  1.1  jonathan 	 * Queue the packet, start transmission.
    480  1.1  jonathan 	 */
    481  1.1  jonathan 
    482  1.1  jonathan 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    483  1.1  jonathan 	s = splnet();
    484  1.1  jonathan 	IF_ENQUEUE(&ifp->if_snd, m0);
    485  1.1  jonathan 	re_start(ifp);
    486  1.1  jonathan 	splx(s);
    487  1.1  jonathan 	m0 = NULL;
    488  1.1  jonathan 
    489  1.1  jonathan 	/* Wait for it to propagate through the chip */
    490  1.1  jonathan 
    491  1.1  jonathan 	DELAY(100000);
    492  1.1  jonathan 	for (i = 0; i < RTK_TIMEOUT; i++) {
    493  1.1  jonathan 		status = CSR_READ_2(sc, RTK_ISR);
    494  1.4   kanaoka 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    495  1.4   kanaoka 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    496  1.1  jonathan 			break;
    497  1.1  jonathan 		DELAY(10);
    498  1.1  jonathan 	}
    499  1.1  jonathan 	if (i == RTK_TIMEOUT) {
    500  1.4   kanaoka 		aprint_error("%s: diagnostic failed, failed to receive packet "
    501  1.1  jonathan 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    502  1.1  jonathan 		error = EIO;
    503  1.1  jonathan 		goto done;
    504  1.1  jonathan 	}
    505  1.1  jonathan 
    506  1.1  jonathan 	/*
    507  1.1  jonathan 	 * The packet should have been dumped into the first
    508  1.1  jonathan 	 * entry in the RX DMA ring. Grab it from there.
    509  1.1  jonathan 	 */
    510  1.1  jonathan 
    511  1.1  jonathan 	dmamap = sc->rtk_ldata.rtk_rx_list_map;
    512  1.1  jonathan 	bus_dmamap_sync(sc->sc_dmat,
    513  1.1  jonathan 	    dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    514  1.1  jonathan 	dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
    515  1.1  jonathan 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    516  1.1  jonathan 	    BUS_DMASYNC_POSTWRITE);
    517  1.1  jonathan 	bus_dmamap_unload(sc->sc_dmat,
    518  1.1  jonathan 	    sc->rtk_ldata.rtk_rx_dmamap[0]);
    519  1.1  jonathan 
    520  1.1  jonathan 	m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
    521  1.1  jonathan 	sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
    522  1.1  jonathan 	eh = mtod(m0, struct ether_header *);
    523  1.1  jonathan 
    524  1.1  jonathan 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
    525  1.1  jonathan 	total_len = RTK_RXBYTES(cur_rx);
    526  1.1  jonathan 	rxstat = le32toh(cur_rx->rtk_cmdstat);
    527  1.1  jonathan 
    528  1.1  jonathan 	if (total_len != ETHER_MIN_LEN) {
    529  1.4   kanaoka 		aprint_error("%s: diagnostic failed, received short packet\n",
    530  1.1  jonathan 		    sc->sc_dev.dv_xname);
    531  1.1  jonathan 		error = EIO;
    532  1.1  jonathan 		goto done;
    533  1.1  jonathan 	}
    534  1.1  jonathan 
    535  1.1  jonathan 	/* Test that the received packet data matches what we sent. */
    536  1.1  jonathan 
    537  1.1  jonathan 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    538  1.1  jonathan 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    539  1.1  jonathan 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    540  1.4   kanaoka 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    541  1.4   kanaoka 		    sc->sc_dev.dv_xname);
    542  1.4   kanaoka 		aprint_error("%s: expected TX data: %s",
    543  1.1  jonathan 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    544  1.4   kanaoka 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    545  1.4   kanaoka 		aprint_error("%s: received RX data: %s",
    546  1.1  jonathan 		    sc->sc_dev.dv_xname,
    547  1.1  jonathan 		    ether_sprintf(eh->ether_dhost));
    548  1.4   kanaoka 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    549  1.1  jonathan 		    ntohs(eh->ether_type));
    550  1.4   kanaoka 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    551  1.1  jonathan 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    552  1.4   kanaoka 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    553  1.1  jonathan 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    554  1.4   kanaoka 		aprint_error("%s: Read the re(4) man page for more details.\n",
    555  1.1  jonathan 		    sc->sc_dev.dv_xname);
    556  1.1  jonathan 		error = EIO;
    557  1.1  jonathan 	}
    558  1.1  jonathan 
    559  1.1  jonathan done:
    560  1.1  jonathan 	/* Turn interface off, release resources */
    561  1.1  jonathan 
    562  1.1  jonathan 	sc->rtk_testmode = 0;
    563  1.1  jonathan 	ifp->if_flags &= ~IFF_PROMISC;
    564  1.4   kanaoka 	re_stop(ifp, 1);
    565  1.1  jonathan 	if (m0 != NULL)
    566  1.1  jonathan 		m_freem(m0);
    567  1.1  jonathan 
    568  1.4   kanaoka 	return error;
    569  1.1  jonathan }
    570  1.1  jonathan 
    571  1.1  jonathan static int
    572  1.1  jonathan re_allocmem(struct rtk_softc *sc)
    573  1.1  jonathan {
    574  1.1  jonathan 	int			error;
    575  1.1  jonathan 	int			nseg, rseg;
    576  1.1  jonathan 	int			i;
    577  1.1  jonathan 
    578  1.1  jonathan 	nseg = 32;
    579  1.1  jonathan 
    580  1.1  jonathan 	/* Allocate DMA'able memory for the TX ring */
    581  1.1  jonathan 
    582  1.1  jonathan 	error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
    583  1.1  jonathan 	    RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    584  1.1  jonathan 	    &sc->rtk_ldata.rtk_tx_list_map);
    585  1.4   kanaoka 	error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
    586  1.4   kanaoka 	    RTK_ETHER_ALIGN, 0,
    587  1.1  jonathan 	    &sc->rtk_ldata.rtk_tx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
    588  1.4   kanaoka 	if (error)
    589  1.4   kanaoka 		return ENOMEM;
    590  1.1  jonathan 
    591  1.1  jonathan 	/* Load the map for the TX ring. */
    592  1.1  jonathan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
    593  1.1  jonathan 	    1, RTK_TX_LIST_SZ,
    594  1.1  jonathan 	    (caddr_t *)&sc->rtk_ldata.rtk_tx_list, BUS_DMA_NOWAIT);
    595  1.1  jonathan 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
    596  1.1  jonathan 
    597  1.1  jonathan 	error = bus_dmamap_load(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map,
    598  1.1  jonathan 	    sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    599  1.1  jonathan 
    600  1.1  jonathan 	/* Create DMA maps for TX buffers */
    601  1.1  jonathan 
    602  1.1  jonathan 	for (i = 0; i < RTK_TX_DESC_CNT; i++) {
    603  1.1  jonathan 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
    604  1.1  jonathan 		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
    605  1.1  jonathan 		    &sc->rtk_ldata.rtk_tx_dmamap[i]);
    606  1.1  jonathan 		if (error) {
    607  1.4   kanaoka 			aprint_error("%s: can't create DMA map for TX\n",
    608  1.1  jonathan 			    sc->sc_dev.dv_xname);
    609  1.4   kanaoka 			return ENOMEM;
    610  1.1  jonathan 		}
    611  1.1  jonathan 	}
    612  1.1  jonathan 
    613  1.1  jonathan 	/* Allocate DMA'able memory for the RX ring */
    614  1.1  jonathan 
    615  1.1  jonathan 	error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
    616  1.1  jonathan 	    RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    617  1.1  jonathan 	    &sc->rtk_ldata.rtk_rx_list_map);
    618  1.4   kanaoka 	error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ, RTK_RING_ALIGN,
    619  1.1  jonathan 	    0, &sc->rtk_ldata.rtk_rx_listseg, 1, &rseg, BUS_DMA_NOWAIT);
    620  1.4   kanaoka 	if (error)
    621  1.4   kanaoka 		return ENOMEM;
    622  1.1  jonathan 
    623  1.1  jonathan 	/* Load the map for the RX ring. */
    624  1.1  jonathan 	error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
    625  1.1  jonathan 	    1, RTK_RX_LIST_SZ,
    626  1.1  jonathan 	    (caddr_t *)&sc->rtk_ldata.rtk_rx_list, BUS_DMA_NOWAIT);
    627  1.1  jonathan 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
    628  1.1  jonathan 
    629  1.1  jonathan 	error = bus_dmamap_load(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map,
    630  1.4   kanaoka 	    sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT);
    631  1.1  jonathan 
    632  1.1  jonathan 	/* Create DMA maps for RX buffers */
    633  1.1  jonathan 
    634  1.1  jonathan 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
    635  1.1  jonathan 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * nseg, nseg,
    636  1.1  jonathan 		    MCLBYTES, 0, BUS_DMA_ALLOCNOW,
    637  1.1  jonathan 		    &sc->rtk_ldata.rtk_rx_dmamap[i]);
    638  1.1  jonathan 		if (error) {
    639  1.4   kanaoka 			aprint_error("%s: can't create DMA map for RX\n",
    640  1.1  jonathan 			    sc->sc_dev.dv_xname);
    641  1.4   kanaoka 			return ENOMEM;
    642  1.1  jonathan 		}
    643  1.1  jonathan 	}
    644  1.1  jonathan 
    645  1.4   kanaoka 	return 0;
    646  1.1  jonathan }
    647  1.1  jonathan 
    648  1.1  jonathan /*
    649  1.1  jonathan  * Attach the interface. Allocate softc structures, do ifmedia
    650  1.1  jonathan  * setup and ethernet/BPF attach.
    651  1.1  jonathan  */
    652  1.1  jonathan void
    653  1.1  jonathan re_attach(struct rtk_softc *sc)
    654  1.1  jonathan {
    655  1.1  jonathan 	u_char			eaddr[ETHER_ADDR_LEN];
    656  1.1  jonathan 	u_int16_t		val;
    657  1.1  jonathan 	struct ifnet		*ifp;
    658  1.1  jonathan 	int			error = 0, i, addr_len;
    659  1.1  jonathan 
    660  1.1  jonathan 	/* XXX JRS: bus-attach-independent code begins approximately here */
    661  1.1  jonathan 
    662  1.1  jonathan 	/* Reset the adapter. */
    663  1.1  jonathan 	re_reset(sc);
    664  1.1  jonathan 
    665  1.1  jonathan 	if (sc->rtk_type == RTK_8169) {
    666  1.1  jonathan 		uint32_t hwrev;
    667  1.1  jonathan 
    668  1.1  jonathan 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    669  1.1  jonathan 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
    670  1.1  jonathan 		if (hwrev == (0x1 << 28)) {
    671  1.1  jonathan 			sc->sc_rev = 4;
    672  1.1  jonathan 		} else if (hwrev == (0x1 << 26)) {
    673  1.1  jonathan 			sc->sc_rev = 3;
    674  1.1  jonathan 		} else if (hwrev == (0x1 << 23)) {
    675  1.1  jonathan 			sc->sc_rev = 2;
    676  1.1  jonathan 		} else
    677  1.1  jonathan 			sc->sc_rev = 1;
    678  1.1  jonathan #if defined(DEBUG) || 1
    679  1.4   kanaoka 		aprint_normal("re_attach: MAC chip hwrev 0x%x softc %d\n",
    680  1.4   kanaoka 		    hwrev, sc->sc_rev);
    681  1.1  jonathan #endif
    682  1.1  jonathan 
    683  1.1  jonathan 		/* Set RX length mask */
    684  1.1  jonathan 
    685  1.1  jonathan 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
    686  1.1  jonathan 
    687  1.1  jonathan 		/* Force station address autoload from the EEPROM */
    688  1.1  jonathan 
    689  1.1  jonathan 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
    690  1.1  jonathan 		for (i = 0; i < RTK_TIMEOUT; i++) {
    691  1.1  jonathan 			if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
    692  1.1  jonathan 				break;
    693  1.1  jonathan 			DELAY(100);
    694  1.1  jonathan 		}
    695  1.1  jonathan 		if (i == RTK_TIMEOUT)
    696  1.4   kanaoka 			aprint_error("%s: eeprom autoload timed out\n",
    697  1.4   kanaoka 			    sc->sc_dev.dv_xname);
    698  1.1  jonathan 
    699  1.4   kanaoka 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    700  1.4   kanaoka 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    701  1.1  jonathan 	} else {
    702  1.1  jonathan 
    703  1.1  jonathan 		/* Set RX length mask */
    704  1.1  jonathan 
    705  1.1  jonathan 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
    706  1.1  jonathan 
    707  1.1  jonathan 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    708  1.1  jonathan 			addr_len = RTK_EEADDR_LEN1;
    709  1.1  jonathan 		else
    710  1.1  jonathan 			addr_len = RTK_EEADDR_LEN0;
    711  1.1  jonathan 
    712  1.1  jonathan 		/*
    713  1.1  jonathan 		 * Get station address from the EEPROM.
    714  1.1  jonathan 		 */
    715  1.1  jonathan 		for (i = 0; i < 3; i++) {
    716  1.1  jonathan 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    717  1.1  jonathan 			eaddr[(i * 2) + 0] = val & 0xff;
    718  1.1  jonathan 			eaddr[(i * 2) + 1] = val >> 8;
    719  1.1  jonathan 		}
    720  1.1  jonathan 	}
    721  1.1  jonathan 
    722  1.1  jonathan 	aprint_normal("%s: Ethernet address %s\n",
    723  1.1  jonathan 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    724  1.1  jonathan 
    725  1.1  jonathan 	error = re_allocmem(sc);
    726  1.1  jonathan 
    727  1.1  jonathan 	if (error) {
    728  1.4   kanaoka 		aprint_error("%s: attach aborted, re_allocmem() failure\n",
    729  1.1  jonathan 		    sc->sc_dev.dv_xname);
    730  1.1  jonathan 		goto fail;
    731  1.1  jonathan 	}
    732  1.1  jonathan 
    733  1.1  jonathan 	ifp = &sc->ethercom.ec_if;
    734  1.1  jonathan 	ifp->if_softc = sc;
    735  1.1  jonathan 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    736  1.1  jonathan 	ifp->if_mtu = ETHERMTU;
    737  1.1  jonathan 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    738  1.1  jonathan 	ifp->if_ioctl = re_ioctl;
    739  1.1  jonathan 	sc->ethercom.ec_capabilities |=
    740  1.1  jonathan 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    741  1.1  jonathan 	ifp->if_start = re_start;
    742  1.3   kanaoka 	ifp->if_stop = re_stop;
    743  1.1  jonathan 	ifp->if_capabilities |=
    744  1.1  jonathan 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    745  1.1  jonathan 	ifp->if_watchdog = re_watchdog;
    746  1.1  jonathan 	ifp->if_init = re_init;
    747  1.1  jonathan 	if (sc->rtk_type == RTK_8169)
    748  1.1  jonathan 		ifp->if_baudrate = 1000000000;
    749  1.1  jonathan 	else
    750  1.1  jonathan 		ifp->if_baudrate = 100000000;
    751  1.1  jonathan 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
    752  1.1  jonathan 	ifp->if_capenable = ifp->if_capabilities;
    753  1.1  jonathan 	IFQ_SET_READY(&ifp->if_snd);
    754  1.1  jonathan 
    755  1.1  jonathan 	callout_init(&sc->rtk_tick_ch);
    756  1.1  jonathan 
    757  1.1  jonathan 	/* Do MII setup */
    758  1.1  jonathan 	sc->mii.mii_ifp = ifp;
    759  1.1  jonathan 	sc->mii.mii_readreg = re_miibus_readreg;
    760  1.1  jonathan 	sc->mii.mii_writereg = re_miibus_writereg;
    761  1.1  jonathan 	sc->mii.mii_statchg = re_miibus_statchg;
    762  1.1  jonathan 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    763  1.1  jonathan 	    re_ifmedia_sts);
    764  1.1  jonathan 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    765  1.1  jonathan 	    MII_OFFSET_ANY, 0);
    766  1.4   kanaoka 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    767  1.1  jonathan 
    768  1.1  jonathan 	/*
    769  1.1  jonathan 	 * Call MI attach routine.
    770  1.1  jonathan 	 */
    771  1.1  jonathan 	if_attach(ifp);
    772  1.1  jonathan 	ether_ifattach(ifp, eaddr);
    773  1.1  jonathan 
    774  1.1  jonathan 	/*
    775  1.1  jonathan 	 * Perform hardware diagnostic.
    776  1.1  jonathan 	 * XXX: this diagnostic only makes sense for attachemnts with 64-bit
    777  1.1  jonathan 	 * busses: PCI, but not CardBus.
    778  1.1  jonathan 	 */
    779  1.1  jonathan 	error = re_diag(sc);
    780  1.1  jonathan 
    781  1.1  jonathan 	if (error) {
    782  1.4   kanaoka 		aprint_error(
    783  1.4   kanaoka 		    "%s: attach aborted due to hardware diag failure\n",
    784  1.1  jonathan 		    sc->sc_dev.dv_xname);
    785  1.1  jonathan 		ether_ifdetach(ifp);
    786  1.1  jonathan 		if_detach(ifp);
    787  1.1  jonathan 		goto fail;
    788  1.1  jonathan 	}
    789  1.1  jonathan 
    790  1.1  jonathan 	/*
    791  1.1  jonathan 	 * Record interface as attached. From here, we should not fail.
    792  1.1  jonathan 	 */
    793  1.1  jonathan 
    794  1.1  jonathan 	/*
    795  1.1  jonathan 	 * Make sure the interface is shutdown during reboot.
    796  1.1  jonathan 	 */
    797  1.1  jonathan 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
    798  1.1  jonathan 	if (sc->sc_sdhook == NULL)
    799  1.4   kanaoka 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    800  1.1  jonathan 		    sc->sc_dev.dv_xname);
    801  1.1  jonathan 	/*
    802  1.1  jonathan 	 * Add a suspend hook to make sure we come back up after a
    803  1.1  jonathan 	 * resume.
    804  1.1  jonathan 	 */
    805  1.1  jonathan 	sc->sc_powerhook = powerhook_establish(re_power, sc);
    806  1.1  jonathan 	if (sc->sc_powerhook == NULL)
    807  1.4   kanaoka 		aprint_error("%s: WARNING: unable to establish power hook\n",
    808  1.1  jonathan 		    sc->sc_dev.dv_xname);
    809  1.1  jonathan 
    810  1.1  jonathan 	sc->sc_flags |= RTK_ATTACHED;
    811  1.1  jonathan 
    812  1.1  jonathan fail:
    813  1.1  jonathan 	return;
    814  1.1  jonathan }
    815  1.1  jonathan 
    816  1.1  jonathan 
    817  1.1  jonathan /*
    818  1.1  jonathan  * re_activate:
    819  1.1  jonathan  *     Handle device activation/deactivation requests.
    820  1.1  jonathan  */
    821  1.1  jonathan int
    822  1.1  jonathan re_activate(struct device *self, enum devact act)
    823  1.1  jonathan {
    824  1.1  jonathan 	struct rtk_softc *sc = (void *) self;
    825  1.1  jonathan 	int s, error = 0;
    826  1.1  jonathan 
    827  1.1  jonathan 	s = splnet();
    828  1.1  jonathan 	switch (act) {
    829  1.1  jonathan 	case DVACT_ACTIVATE:
    830  1.1  jonathan 		error = EOPNOTSUPP;
    831  1.1  jonathan 		break;
    832  1.1  jonathan 	case DVACT_DEACTIVATE:
    833  1.1  jonathan 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    834  1.1  jonathan 		if_deactivate(&sc->ethercom.ec_if);
    835  1.1  jonathan 		break;
    836  1.1  jonathan 	}
    837  1.1  jonathan 	splx(s);
    838  1.1  jonathan 
    839  1.4   kanaoka 	return error;
    840  1.1  jonathan }
    841  1.1  jonathan 
    842  1.1  jonathan /*
    843  1.1  jonathan  * re_detach:
    844  1.1  jonathan  *     Detach a rtk interface.
    845  1.1  jonathan  */
    846  1.1  jonathan int
    847  1.1  jonathan re_detach(struct rtk_softc *sc)
    848  1.1  jonathan {
    849  1.1  jonathan 	struct ifnet *ifp = &sc->ethercom.ec_if;
    850  1.1  jonathan 
    851  1.1  jonathan 	/*
    852  1.1  jonathan 	 * Succeed now if there isn't any work to do.
    853  1.1  jonathan 	 */
    854  1.1  jonathan 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    855  1.4   kanaoka 		return 0;
    856  1.1  jonathan 
    857  1.1  jonathan 	/* Unhook our tick handler. */
    858  1.1  jonathan 	callout_stop(&sc->rtk_tick_ch);
    859  1.1  jonathan 
    860  1.1  jonathan 	/* Detach all PHYs. */
    861  1.1  jonathan 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    862  1.1  jonathan 
    863  1.1  jonathan 	/* Delete all remaining media. */
    864  1.1  jonathan 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    865  1.1  jonathan 
    866  1.1  jonathan 	ether_ifdetach(ifp);
    867  1.1  jonathan 	if_detach(ifp);
    868  1.1  jonathan 
    869  1.1  jonathan 	/* XXX undo re_allocmem() */
    870  1.1  jonathan #if 0 /* bogus cut-and-paste from rtl81x9.c */
    871  1.1  jonathan 	for (i = 0; i < RTK_TX_LIST_CNT; i++) {
    872  1.1  jonathan 		txd = &sc->rtk_tx_descs[i];
    873  1.1  jonathan 		if (txd->txd_dmamap != NULL)
    874  1.1  jonathan 			bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
    875  1.1  jonathan 	}
    876  1.1  jonathan 	bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
    877  1.1  jonathan 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rtk_rx_buf,
    878  1.1  jonathan 	    RTK_RXBUFLEN + 16);
    879  1.1  jonathan 	/* XXX TX ring, Tx buffer, Rx ring, Rx buffer */
    880  1.1  jonathan 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
    881  1.1  jonathan #endif
    882  1.1  jonathan 
    883  1.1  jonathan 	shutdownhook_disestablish(sc->sc_sdhook);
    884  1.1  jonathan 	powerhook_disestablish(sc->sc_powerhook);
    885  1.1  jonathan 
    886  1.4   kanaoka 	return 0;
    887  1.1  jonathan }
    888  1.1  jonathan 
    889  1.1  jonathan /*
    890  1.1  jonathan  * re_enable:
    891  1.1  jonathan  *     Enable the RTL81X9 chip.
    892  1.1  jonathan  */
    893  1.1  jonathan static int
    894  1.1  jonathan re_enable(struct rtk_softc *sc)
    895  1.1  jonathan {
    896  1.1  jonathan 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    897  1.1  jonathan 		if ((*sc->sc_enable)(sc) != 0) {
    898  1.4   kanaoka 			aprint_error("%s: device enable failed\n",
    899  1.1  jonathan 			    sc->sc_dev.dv_xname);
    900  1.4   kanaoka 			return EIO;
    901  1.1  jonathan 		}
    902  1.1  jonathan 		sc->sc_flags |= RTK_ENABLED;
    903  1.1  jonathan 	}
    904  1.4   kanaoka 	return 0;
    905  1.1  jonathan }
    906  1.1  jonathan 
    907  1.1  jonathan /*
    908  1.1  jonathan  * re_disable:
    909  1.1  jonathan  *     Disable the RTL81X9 chip.
    910  1.1  jonathan  */
    911  1.1  jonathan static void
    912  1.1  jonathan re_disable(struct rtk_softc *sc)
    913  1.1  jonathan {
    914  1.1  jonathan 
    915  1.1  jonathan 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    916  1.1  jonathan 		(*sc->sc_disable)(sc);
    917  1.1  jonathan 		sc->sc_flags &= ~RTK_ENABLED;
    918  1.1  jonathan 	}
    919  1.1  jonathan }
    920  1.1  jonathan 
    921  1.1  jonathan /*
    922  1.1  jonathan  * re_power:
    923  1.1  jonathan  *     Power management (suspend/resume) hook.
    924  1.1  jonathan  */
    925  1.1  jonathan void
    926  1.1  jonathan re_power(int why, void *arg)
    927  1.1  jonathan {
    928  1.1  jonathan 	struct rtk_softc *sc = (void *) arg;
    929  1.1  jonathan 	struct ifnet *ifp = &sc->ethercom.ec_if;
    930  1.1  jonathan 	int s;
    931  1.1  jonathan 
    932  1.1  jonathan 	s = splnet();
    933  1.1  jonathan 	switch (why) {
    934  1.1  jonathan 	case PWR_SUSPEND:
    935  1.1  jonathan 	case PWR_STANDBY:
    936  1.3   kanaoka 		re_stop(ifp, 0);
    937  1.1  jonathan 		if (sc->sc_power != NULL)
    938  1.1  jonathan 			(*sc->sc_power)(sc, why);
    939  1.1  jonathan 		break;
    940  1.1  jonathan 	case PWR_RESUME:
    941  1.1  jonathan 		if (ifp->if_flags & IFF_UP) {
    942  1.1  jonathan 			if (sc->sc_power != NULL)
    943  1.1  jonathan 				(*sc->sc_power)(sc, why);
    944  1.1  jonathan 			re_init(ifp);
    945  1.1  jonathan 		}
    946  1.1  jonathan 		break;
    947  1.1  jonathan 	case PWR_SOFTSUSPEND:
    948  1.1  jonathan 	case PWR_SOFTSTANDBY:
    949  1.1  jonathan 	case PWR_SOFTRESUME:
    950  1.1  jonathan 		break;
    951  1.1  jonathan 	}
    952  1.1  jonathan 	splx(s);
    953  1.1  jonathan }
    954  1.1  jonathan 
    955  1.1  jonathan 
    956  1.1  jonathan static int
    957  1.1  jonathan re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
    958  1.1  jonathan {
    959  1.1  jonathan 	struct mbuf		*n = NULL;
    960  1.1  jonathan 	bus_dmamap_t		map;
    961  1.1  jonathan 	struct rtk_desc		*d;
    962  1.1  jonathan 	u_int32_t		cmdstat;
    963  1.1  jonathan 	int			error;
    964  1.1  jonathan 
    965  1.1  jonathan 	if (m == NULL) {
    966  1.1  jonathan 		MGETHDR(n, M_DONTWAIT, MT_DATA);
    967  1.1  jonathan 		if (n == NULL)
    968  1.4   kanaoka 			return ENOBUFS;
    969  1.1  jonathan 		m = n;
    970  1.1  jonathan 
    971  1.1  jonathan 		MCLGET(m, M_DONTWAIT);
    972  1.4   kanaoka 		if (!(m->m_flags & M_EXT)) {
    973  1.1  jonathan 			m_freem(m);
    974  1.4   kanaoka 			return ENOBUFS;
    975  1.1  jonathan 		}
    976  1.1  jonathan 	} else
    977  1.1  jonathan 		m->m_data = m->m_ext.ext_buf;
    978  1.1  jonathan 
    979  1.1  jonathan 	/*
    980  1.1  jonathan 	 * Initialize mbuf length fields and fixup
    981  1.1  jonathan 	 * alignment so that the frame payload is
    982  1.1  jonathan 	 * longword aligned.
    983  1.1  jonathan 	 */
    984  1.1  jonathan 	m->m_len = m->m_pkthdr.len = MCLBYTES;
    985  1.1  jonathan 	m_adj(m, RTK_ETHER_ALIGN);
    986  1.1  jonathan 
    987  1.1  jonathan 	map = sc->rtk_ldata.rtk_rx_dmamap[idx];
    988  1.4   kanaoka 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
    989  1.1  jonathan 
    990  1.1  jonathan 	if (map->dm_nsegs > 1)
    991  1.1  jonathan 		goto out;
    992  1.1  jonathan 	if (error)
    993  1.1  jonathan 		goto out;
    994  1.1  jonathan 
    995  1.1  jonathan 	d = &sc->rtk_ldata.rtk_rx_list[idx];
    996  1.1  jonathan 	if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
    997  1.1  jonathan 		goto out;
    998  1.1  jonathan 
    999  1.1  jonathan 	cmdstat = map->dm_segs[0].ds_len;
   1000  1.1  jonathan 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
   1001  1.1  jonathan 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
   1002  1.1  jonathan 	cmdstat |= RTK_TDESC_CMD_SOF;
   1003  1.1  jonathan 	if (idx == (RTK_RX_DESC_CNT - 1))
   1004  1.1  jonathan 		cmdstat |= RTK_TDESC_CMD_EOR;
   1005  1.1  jonathan 	d->rtk_cmdstat = htole32(cmdstat);
   1006  1.1  jonathan 
   1007  1.1  jonathan 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1008  1.1  jonathan 
   1009  1.1  jonathan 
   1010  1.4   kanaoka 	sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
   1011  1.4   kanaoka 	    htole32(RTK_RDESC_CMD_OWN);
   1012  1.1  jonathan 	sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
   1013  1.1  jonathan 
   1014  1.4   kanaoka 	bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
   1015  1.4   kanaoka 	    sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
   1016  1.1  jonathan 	    BUS_DMASYNC_PREREAD);
   1017  1.1  jonathan 
   1018  1.1  jonathan 	return 0;
   1019  1.1  jonathan out:
   1020  1.1  jonathan 	if (n != NULL)
   1021  1.1  jonathan 		m_freem(n);
   1022  1.1  jonathan 	return ENOMEM;
   1023  1.1  jonathan }
   1024  1.1  jonathan 
   1025  1.1  jonathan static int
   1026  1.1  jonathan re_tx_list_init(struct rtk_softc *sc)
   1027  1.1  jonathan {
   1028  1.1  jonathan 	memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
   1029  1.1  jonathan 	memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
   1030  1.1  jonathan 	    (RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
   1031  1.1  jonathan 
   1032  1.1  jonathan 	bus_dmamap_sync(sc->sc_dmat,
   1033  1.1  jonathan 	    sc->rtk_ldata.rtk_tx_list_map, 0,
   1034  1.1  jonathan 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1035  1.1  jonathan 	sc->rtk_ldata.rtk_tx_prodidx = 0;
   1036  1.1  jonathan 	sc->rtk_ldata.rtk_tx_considx = 0;
   1037  1.1  jonathan 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
   1038  1.1  jonathan 
   1039  1.4   kanaoka 	return 0;
   1040  1.1  jonathan }
   1041  1.1  jonathan 
   1042  1.1  jonathan static int
   1043  1.1  jonathan re_rx_list_init(struct rtk_softc *sc)
   1044  1.1  jonathan {
   1045  1.1  jonathan 	int			i;
   1046  1.1  jonathan 
   1047  1.1  jonathan 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
   1048  1.1  jonathan 	memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
   1049  1.1  jonathan 	    (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
   1050  1.1  jonathan 
   1051  1.1  jonathan 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   1052  1.1  jonathan 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1053  1.4   kanaoka 			return ENOBUFS;
   1054  1.1  jonathan 	}
   1055  1.1  jonathan 
   1056  1.1  jonathan 	/* Flush the RX descriptors */
   1057  1.1  jonathan 
   1058  1.1  jonathan 	bus_dmamap_sync(sc->sc_dmat,
   1059  1.1  jonathan 	    sc->rtk_ldata.rtk_rx_list_map,
   1060  1.1  jonathan 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1061  1.4   kanaoka 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1062  1.1  jonathan 
   1063  1.1  jonathan 	sc->rtk_ldata.rtk_rx_prodidx = 0;
   1064  1.1  jonathan 	sc->rtk_head = sc->rtk_tail = NULL;
   1065  1.1  jonathan 
   1066  1.4   kanaoka 	return 0;
   1067  1.1  jonathan }
   1068  1.1  jonathan 
   1069  1.1  jonathan /*
   1070  1.1  jonathan  * RX handler for C+ and 8169. For the gigE chips, we support
   1071  1.1  jonathan  * the reception of jumbo frames that have been fragmented
   1072  1.1  jonathan  * across multiple 2K mbuf cluster buffers.
   1073  1.1  jonathan  */
   1074  1.1  jonathan static void
   1075  1.1  jonathan re_rxeof(struct rtk_softc *sc)
   1076  1.1  jonathan {
   1077  1.1  jonathan 	struct mbuf		*m;
   1078  1.1  jonathan 	struct ifnet		*ifp;
   1079  1.1  jonathan 	int			i, total_len;
   1080  1.1  jonathan 	struct rtk_desc		*cur_rx;
   1081  1.1  jonathan 	struct m_tag		*mtag;
   1082  1.1  jonathan 	u_int32_t		rxstat, rxvlan;
   1083  1.1  jonathan 
   1084  1.1  jonathan 	ifp = &sc->ethercom.ec_if;
   1085  1.1  jonathan 	i = sc->rtk_ldata.rtk_rx_prodidx;
   1086  1.1  jonathan 
   1087  1.1  jonathan 	/* Invalidate the descriptor memory */
   1088  1.1  jonathan 
   1089  1.1  jonathan 	bus_dmamap_sync(sc->sc_dmat,
   1090  1.1  jonathan 	    sc->rtk_ldata.rtk_rx_list_map,
   1091  1.1  jonathan 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1092  1.1  jonathan 	    BUS_DMASYNC_POSTREAD);
   1093  1.1  jonathan 
   1094  1.1  jonathan 	while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
   1095  1.1  jonathan 
   1096  1.1  jonathan 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
   1097  1.1  jonathan 		m = sc->rtk_ldata.rtk_rx_mbuf[i];
   1098  1.1  jonathan 		total_len = RTK_RXBYTES(cur_rx);
   1099  1.1  jonathan 		rxstat = le32toh(cur_rx->rtk_cmdstat);
   1100  1.1  jonathan 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
   1101  1.1  jonathan 
   1102  1.1  jonathan 		/* Invalidate the RX mbuf and unload its map */
   1103  1.1  jonathan 
   1104  1.1  jonathan 		bus_dmamap_sync(sc->sc_dmat,
   1105  1.1  jonathan 		    sc->rtk_ldata.rtk_rx_dmamap[i],
   1106  1.1  jonathan 		    0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
   1107  1.1  jonathan 		    BUS_DMASYNC_POSTWRITE);
   1108  1.1  jonathan 		bus_dmamap_unload(sc->sc_dmat,
   1109  1.1  jonathan 		    sc->rtk_ldata.rtk_rx_dmamap[i]);
   1110  1.1  jonathan 
   1111  1.1  jonathan 		if (!(rxstat & RTK_RDESC_STAT_EOF)) {
   1112  1.1  jonathan 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
   1113  1.1  jonathan 			if (sc->rtk_head == NULL)
   1114  1.1  jonathan 				sc->rtk_head = sc->rtk_tail = m;
   1115  1.1  jonathan 			else {
   1116  1.1  jonathan 				m->m_flags &= ~M_PKTHDR;
   1117  1.1  jonathan 				sc->rtk_tail->m_next = m;
   1118  1.1  jonathan 				sc->rtk_tail = m;
   1119  1.1  jonathan 			}
   1120  1.1  jonathan 			re_newbuf(sc, i, NULL);
   1121  1.1  jonathan 			RTK_DESC_INC(i);
   1122  1.1  jonathan 			continue;
   1123  1.1  jonathan 		}
   1124  1.1  jonathan 
   1125  1.1  jonathan 		/*
   1126  1.1  jonathan 		 * NOTE: for the 8139C+, the frame length field
   1127  1.1  jonathan 		 * is always 12 bits in size, but for the gigE chips,
   1128  1.1  jonathan 		 * it is 13 bits (since the max RX frame length is 16K).
   1129  1.1  jonathan 		 * Unfortunately, all 32 bits in the status word
   1130  1.1  jonathan 		 * were already used, so to make room for the extra
   1131  1.1  jonathan 		 * length bit, RealTek took out the 'frame alignment
   1132  1.1  jonathan 		 * error' bit and shifted the other status bits
   1133  1.1  jonathan 		 * over one slot. The OWN, EOR, FS and LS bits are
   1134  1.1  jonathan 		 * still in the same places. We have already extracted
   1135  1.1  jonathan 		 * the frame length and checked the OWN bit, so rather
   1136  1.1  jonathan 		 * than using an alternate bit mapping, we shift the
   1137  1.1  jonathan 		 * status bits one space to the right so we can evaluate
   1138  1.1  jonathan 		 * them using the 8169 status as though it was in the
   1139  1.1  jonathan 		 * same format as that of the 8139C+.
   1140  1.1  jonathan 		 */
   1141  1.1  jonathan 		if (sc->rtk_type == RTK_8169)
   1142  1.1  jonathan 			rxstat >>= 1;
   1143  1.1  jonathan 
   1144  1.1  jonathan 		if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
   1145  1.1  jonathan 			ifp->if_ierrors++;
   1146  1.1  jonathan 			/*
   1147  1.1  jonathan 			 * If this is part of a multi-fragment packet,
   1148  1.1  jonathan 			 * discard all the pieces.
   1149  1.1  jonathan 			 */
   1150  1.1  jonathan 			if (sc->rtk_head != NULL) {
   1151  1.1  jonathan 				m_freem(sc->rtk_head);
   1152  1.1  jonathan 				sc->rtk_head = sc->rtk_tail = NULL;
   1153  1.1  jonathan 			}
   1154  1.1  jonathan 			re_newbuf(sc, i, m);
   1155  1.1  jonathan 			RTK_DESC_INC(i);
   1156  1.1  jonathan 			continue;
   1157  1.1  jonathan 		}
   1158  1.1  jonathan 
   1159  1.1  jonathan 		/*
   1160  1.1  jonathan 		 * If allocating a replacement mbuf fails,
   1161  1.1  jonathan 		 * reload the current one.
   1162  1.1  jonathan 		 */
   1163  1.1  jonathan 
   1164  1.1  jonathan 		if (re_newbuf(sc, i, NULL)) {
   1165  1.1  jonathan 			ifp->if_ierrors++;
   1166  1.1  jonathan 			if (sc->rtk_head != NULL) {
   1167  1.1  jonathan 				m_freem(sc->rtk_head);
   1168  1.1  jonathan 				sc->rtk_head = sc->rtk_tail = NULL;
   1169  1.1  jonathan 			}
   1170  1.1  jonathan 			re_newbuf(sc, i, m);
   1171  1.1  jonathan 			RTK_DESC_INC(i);
   1172  1.1  jonathan 			continue;
   1173  1.1  jonathan 		}
   1174  1.1  jonathan 
   1175  1.1  jonathan 		RTK_DESC_INC(i);
   1176  1.1  jonathan 
   1177  1.1  jonathan 		if (sc->rtk_head != NULL) {
   1178  1.1  jonathan 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
   1179  1.1  jonathan 			/*
   1180  1.1  jonathan 			 * Special case: if there's 4 bytes or less
   1181  1.1  jonathan 			 * in this buffer, the mbuf can be discarded:
   1182  1.1  jonathan 			 * the last 4 bytes is the CRC, which we don't
   1183  1.1  jonathan 			 * care about anyway.
   1184  1.1  jonathan 			 */
   1185  1.1  jonathan 			if (m->m_len <= ETHER_CRC_LEN) {
   1186  1.1  jonathan 				sc->rtk_tail->m_len -=
   1187  1.1  jonathan 				    (ETHER_CRC_LEN - m->m_len);
   1188  1.1  jonathan 				m_freem(m);
   1189  1.1  jonathan 			} else {
   1190  1.1  jonathan 				m->m_len -= ETHER_CRC_LEN;
   1191  1.1  jonathan 				m->m_flags &= ~M_PKTHDR;
   1192  1.1  jonathan 				sc->rtk_tail->m_next = m;
   1193  1.1  jonathan 			}
   1194  1.1  jonathan 			m = sc->rtk_head;
   1195  1.1  jonathan 			sc->rtk_head = sc->rtk_tail = NULL;
   1196  1.1  jonathan 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1197  1.1  jonathan 		} else
   1198  1.1  jonathan 			m->m_pkthdr.len = m->m_len =
   1199  1.1  jonathan 			    (total_len - ETHER_CRC_LEN);
   1200  1.1  jonathan 
   1201  1.1  jonathan 		ifp->if_ipackets++;
   1202  1.1  jonathan 		m->m_pkthdr.rcvif = ifp;
   1203  1.1  jonathan 
   1204  1.1  jonathan 		/* Do RX checksumming if enabled */
   1205  1.1  jonathan 
   1206  1.1  jonathan 		if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
   1207  1.1  jonathan 
   1208  1.1  jonathan 			/* Check IP header checksum */
   1209  1.1  jonathan 			if (rxstat & RTK_RDESC_STAT_PROTOID)
   1210  1.1  jonathan 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
   1211  1.1  jonathan 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
   1212  1.4   kanaoka 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1213  1.1  jonathan 		}
   1214  1.1  jonathan 
   1215  1.1  jonathan 		/* Check TCP/UDP checksum */
   1216  1.1  jonathan 		if (RTK_TCPPKT(rxstat) &&
   1217  1.1  jonathan 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
   1218  1.1  jonathan 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1219  1.1  jonathan 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
   1220  1.1  jonathan 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1221  1.1  jonathan 		}
   1222  1.1  jonathan 		if (RTK_UDPPKT(rxstat) &&
   1223  1.1  jonathan 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
   1224  1.1  jonathan 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1225  1.1  jonathan 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
   1226  1.1  jonathan 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1227  1.1  jonathan 		}
   1228  1.1  jonathan 
   1229  1.1  jonathan 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
   1230  1.1  jonathan 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
   1231  1.1  jonathan 			    M_NOWAIT);
   1232  1.1  jonathan 			if (mtag == NULL) {
   1233  1.1  jonathan 				ifp->if_ierrors++;
   1234  1.1  jonathan 				m_freem(m);
   1235  1.1  jonathan 				continue;
   1236  1.1  jonathan 			}
   1237  1.1  jonathan 			*(u_int *)(mtag + 1) =
   1238  1.1  jonathan 			    be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA);
   1239  1.1  jonathan 			m_tag_prepend(m, mtag);
   1240  1.1  jonathan 		}
   1241  1.1  jonathan #if NBPFILTER > 0
   1242  1.1  jonathan 		if (ifp->if_bpf)
   1243  1.1  jonathan 			bpf_mtap(ifp->if_bpf, m);
   1244  1.1  jonathan #endif
   1245  1.1  jonathan 		(*ifp->if_input)(ifp, m);
   1246  1.1  jonathan 	}
   1247  1.1  jonathan 
   1248  1.1  jonathan 	/* Flush the RX DMA ring */
   1249  1.1  jonathan 
   1250  1.1  jonathan 	bus_dmamap_sync(sc->sc_dmat,
   1251  1.1  jonathan 	    sc->rtk_ldata.rtk_rx_list_map,
   1252  1.1  jonathan 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1253  1.4   kanaoka 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1254  1.1  jonathan 
   1255  1.1  jonathan 	sc->rtk_ldata.rtk_rx_prodidx = i;
   1256  1.1  jonathan 
   1257  1.1  jonathan 	return;
   1258  1.1  jonathan }
   1259  1.1  jonathan 
   1260  1.1  jonathan static void
   1261  1.1  jonathan re_txeof(struct rtk_softc *sc)
   1262  1.1  jonathan {
   1263  1.1  jonathan 	struct ifnet		*ifp;
   1264  1.1  jonathan 	u_int32_t		txstat;
   1265  1.1  jonathan 	int			idx;
   1266  1.1  jonathan 
   1267  1.1  jonathan 	ifp = &sc->ethercom.ec_if;
   1268  1.1  jonathan 	idx = sc->rtk_ldata.rtk_tx_considx;
   1269  1.1  jonathan 
   1270  1.1  jonathan 	/* Invalidate the TX descriptor list */
   1271  1.1  jonathan 
   1272  1.1  jonathan 	bus_dmamap_sync(sc->sc_dmat,
   1273  1.1  jonathan 	    sc->rtk_ldata.rtk_tx_list_map,
   1274  1.1  jonathan 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1275  1.1  jonathan 	    BUS_DMASYNC_POSTREAD);
   1276  1.1  jonathan 
   1277  1.1  jonathan 	while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
   1278  1.1  jonathan 
   1279  1.1  jonathan 		txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
   1280  1.1  jonathan 		if (txstat & RTK_TDESC_CMD_OWN)
   1281  1.1  jonathan 			break;
   1282  1.1  jonathan 
   1283  1.1  jonathan 		/*
   1284  1.1  jonathan 		 * We only stash mbufs in the last descriptor
   1285  1.1  jonathan 		 * in a fragment chain, which also happens to
   1286  1.1  jonathan 		 * be the only place where the TX status bits
   1287  1.1  jonathan 		 * are valid.
   1288  1.1  jonathan 		 */
   1289  1.1  jonathan 
   1290  1.1  jonathan 		if (txstat & RTK_TDESC_CMD_EOF) {
   1291  1.1  jonathan 			m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
   1292  1.1  jonathan 			sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
   1293  1.1  jonathan 			bus_dmamap_unload(sc->sc_dmat,
   1294  1.1  jonathan 			    sc->rtk_ldata.rtk_tx_dmamap[idx]);
   1295  1.4   kanaoka 			if (txstat & (RTK_TDESC_STAT_EXCESSCOL |
   1296  1.1  jonathan 			    RTK_TDESC_STAT_COLCNT))
   1297  1.1  jonathan 				ifp->if_collisions++;
   1298  1.1  jonathan 			if (txstat & RTK_TDESC_STAT_TXERRSUM)
   1299  1.1  jonathan 				ifp->if_oerrors++;
   1300  1.1  jonathan 			else
   1301  1.1  jonathan 				ifp->if_opackets++;
   1302  1.1  jonathan 		}
   1303  1.1  jonathan 		sc->rtk_ldata.rtk_tx_free++;
   1304  1.1  jonathan 		RTK_DESC_INC(idx);
   1305  1.1  jonathan 	}
   1306  1.1  jonathan 
   1307  1.1  jonathan 	/* No changes made to the TX ring, so no flush needed */
   1308  1.1  jonathan 
   1309  1.1  jonathan 	if (idx != sc->rtk_ldata.rtk_tx_considx) {
   1310  1.1  jonathan 		sc->rtk_ldata.rtk_tx_considx = idx;
   1311  1.1  jonathan 		ifp->if_flags &= ~IFF_OACTIVE;
   1312  1.1  jonathan 		ifp->if_timer = 0;
   1313  1.1  jonathan 	}
   1314  1.1  jonathan 
   1315  1.1  jonathan 	/*
   1316  1.1  jonathan 	 * If not all descriptors have been released reaped yet,
   1317  1.1  jonathan 	 * reload the timer so that we will eventually get another
   1318  1.1  jonathan 	 * interrupt that will cause us to re-enter this routine.
   1319  1.1  jonathan 	 * This is done in case the transmitter has gone idle.
   1320  1.1  jonathan 	 */
   1321  1.1  jonathan 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
   1322  1.4   kanaoka 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1323  1.1  jonathan 
   1324  1.1  jonathan 	return;
   1325  1.1  jonathan }
   1326  1.1  jonathan 
   1327  1.1  jonathan /*
   1328  1.1  jonathan  * Stop all chip I/O so that the kernel's probe routines don't
   1329  1.1  jonathan  * get confused by errant DMAs when rebooting.
   1330  1.1  jonathan  */
   1331  1.1  jonathan static void
   1332  1.1  jonathan re_shutdown(void *vsc)
   1333  1.1  jonathan 
   1334  1.1  jonathan {
   1335  1.1  jonathan 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
   1336  1.1  jonathan 
   1337  1.3   kanaoka 	re_stop(&sc->ethercom.ec_if, 0);
   1338  1.1  jonathan }
   1339  1.1  jonathan 
   1340  1.1  jonathan 
   1341  1.1  jonathan static void
   1342  1.1  jonathan re_tick(void *xsc)
   1343  1.1  jonathan {
   1344  1.1  jonathan 	struct rtk_softc	*sc = xsc;
   1345  1.1  jonathan 	int s;
   1346  1.1  jonathan 
   1347  1.1  jonathan 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1348  1.1  jonathan 	s = splnet();
   1349  1.1  jonathan 
   1350  1.1  jonathan 	mii_tick(&sc->mii);
   1351  1.1  jonathan 	splx(s);
   1352  1.1  jonathan 
   1353  1.1  jonathan 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1354  1.1  jonathan }
   1355  1.1  jonathan 
   1356  1.1  jonathan #ifdef DEVICE_POLLING
   1357  1.1  jonathan static void
   1358  1.1  jonathan re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1359  1.1  jonathan {
   1360  1.1  jonathan 	struct rtk_softc *sc = ifp->if_softc;
   1361  1.1  jonathan 
   1362  1.1  jonathan 	RTK_LOCK(sc);
   1363  1.1  jonathan 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1364  1.1  jonathan 		ether_poll_deregister(ifp);
   1365  1.1  jonathan 		cmd = POLL_DEREGISTER;
   1366  1.1  jonathan 	}
   1367  1.1  jonathan 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1368  1.1  jonathan 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1369  1.1  jonathan 		goto done;
   1370  1.1  jonathan 	}
   1371  1.1  jonathan 
   1372  1.1  jonathan 	sc->rxcycles = count;
   1373  1.1  jonathan 	re_rxeof(sc);
   1374  1.1  jonathan 	re_txeof(sc);
   1375  1.1  jonathan 
   1376  1.1  jonathan 	if (ifp->if_snd.ifq_head != NULL)
   1377  1.1  jonathan 		(*ifp->if_start)(ifp);
   1378  1.1  jonathan 
   1379  1.1  jonathan 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1380  1.1  jonathan 		u_int16_t       status;
   1381  1.1  jonathan 
   1382  1.1  jonathan 		status = CSR_READ_2(sc, RTK_ISR);
   1383  1.1  jonathan 		if (status == 0xffff)
   1384  1.1  jonathan 			goto done;
   1385  1.1  jonathan 		if (status)
   1386  1.1  jonathan 			CSR_WRITE_2(sc, RTK_ISR, status);
   1387  1.1  jonathan 
   1388  1.1  jonathan 		/*
   1389  1.1  jonathan 		 * XXX check behaviour on receiver stalls.
   1390  1.1  jonathan 		 */
   1391  1.1  jonathan 
   1392  1.1  jonathan 		if (status & RTK_ISR_SYSTEM_ERR) {
   1393  1.1  jonathan 			re_reset(sc);
   1394  1.1  jonathan 			re_init(sc);
   1395  1.1  jonathan 		}
   1396  1.1  jonathan 	}
   1397  1.1  jonathan done:
   1398  1.1  jonathan 	RTK_UNLOCK(sc);
   1399  1.1  jonathan }
   1400  1.1  jonathan #endif /* DEVICE_POLLING */
   1401  1.1  jonathan 
   1402  1.1  jonathan int
   1403  1.1  jonathan re_intr(void *arg)
   1404  1.1  jonathan {
   1405  1.1  jonathan 	struct rtk_softc	*sc = arg;
   1406  1.1  jonathan 	struct ifnet		*ifp;
   1407  1.1  jonathan 	u_int16_t		status;
   1408  1.1  jonathan 	int			handled = 0;
   1409  1.1  jonathan 
   1410  1.1  jonathan 	ifp = &sc->ethercom.ec_if;
   1411  1.1  jonathan 
   1412  1.1  jonathan 	if (!(ifp->if_flags & IFF_UP))
   1413  1.1  jonathan 		return 0;
   1414  1.1  jonathan 
   1415  1.1  jonathan #ifdef DEVICE_POLLING
   1416  1.4   kanaoka 	if (ifp->if_flags & IFF_POLLING)
   1417  1.1  jonathan 		goto done;
   1418  1.1  jonathan 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1419  1.1  jonathan 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1420  1.1  jonathan 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1421  1.1  jonathan 		re_poll(ifp, 0, 1);
   1422  1.1  jonathan 		goto done;
   1423  1.1  jonathan 	}
   1424  1.1  jonathan #endif /* DEVICE_POLLING */
   1425  1.1  jonathan 
   1426  1.1  jonathan 	for (;;) {
   1427  1.1  jonathan 
   1428  1.1  jonathan 		status = CSR_READ_2(sc, RTK_ISR);
   1429  1.1  jonathan 		/* If the card has gone away the read returns 0xffff. */
   1430  1.1  jonathan 		if (status == 0xffff)
   1431  1.1  jonathan 			break;
   1432  1.1  jonathan 		if (status) {
   1433  1.1  jonathan 			handled = 1;
   1434  1.1  jonathan 			CSR_WRITE_2(sc, RTK_ISR, status);
   1435  1.1  jonathan 		}
   1436  1.1  jonathan 
   1437  1.1  jonathan 		if ((status & RTK_INTRS_CPLUS) == 0)
   1438  1.1  jonathan 			break;
   1439  1.1  jonathan 
   1440  1.1  jonathan 		if (status & RTK_ISR_RX_OK)
   1441  1.1  jonathan 			re_rxeof(sc);
   1442  1.1  jonathan 
   1443  1.1  jonathan 		if (status & RTK_ISR_RX_ERR)
   1444  1.1  jonathan 			re_rxeof(sc);
   1445  1.1  jonathan 
   1446  1.1  jonathan 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
   1447  1.1  jonathan 		    (status & RTK_ISR_TX_ERR) ||
   1448  1.1  jonathan 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
   1449  1.1  jonathan 			re_txeof(sc);
   1450  1.1  jonathan 
   1451  1.1  jonathan 		if (status & RTK_ISR_SYSTEM_ERR) {
   1452  1.1  jonathan 			re_reset(sc);
   1453  1.1  jonathan 			re_init(ifp);
   1454  1.1  jonathan 		}
   1455  1.1  jonathan 
   1456  1.1  jonathan 		if (status & RTK_ISR_LINKCHG) {
   1457  1.1  jonathan 			callout_stop(&sc->rtk_tick_ch);
   1458  1.1  jonathan 			re_tick(sc);
   1459  1.1  jonathan 		}
   1460  1.1  jonathan 	}
   1461  1.1  jonathan 
   1462  1.4   kanaoka 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
   1463  1.4   kanaoka 		if (ifp->if_snd.ifq_head != NULL)
   1464  1.4   kanaoka 			(*ifp->if_start)(ifp);
   1465  1.1  jonathan 
   1466  1.1  jonathan #ifdef DEVICE_POLLING
   1467  1.1  jonathan done:
   1468  1.1  jonathan #endif
   1469  1.1  jonathan 
   1470  1.1  jonathan 	return handled;
   1471  1.1  jonathan }
   1472  1.1  jonathan 
   1473  1.1  jonathan static int
   1474  1.1  jonathan re_encap(struct rtk_softc *sc, struct mbuf *m_head, int *idx)
   1475  1.1  jonathan {
   1476  1.1  jonathan 	bus_dmamap_t		map;
   1477  1.1  jonathan 	int			error, i, curidx;
   1478  1.1  jonathan 	struct m_tag		*mtag;
   1479  1.1  jonathan 	struct rtk_desc		*d;
   1480  1.1  jonathan 	u_int32_t		cmdstat, rtk_flags;
   1481  1.1  jonathan 
   1482  1.1  jonathan 	if (sc->rtk_ldata.rtk_tx_free <= 4)
   1483  1.4   kanaoka 		return EFBIG;
   1484  1.1  jonathan 
   1485  1.1  jonathan 	/*
   1486  1.1  jonathan 	 * Set up checksum offload. Note: checksum offload bits must
   1487  1.1  jonathan 	 * appear in all descriptors of a multi-descriptor transmit
   1488  1.1  jonathan 	 * attempt. (This is according to testing done with an 8169
   1489  1.1  jonathan 	 * chip. I'm not sure if this is a requirement or a bug.)
   1490  1.1  jonathan 	 */
   1491  1.1  jonathan 
   1492  1.1  jonathan 	rtk_flags = 0;
   1493  1.1  jonathan 
   1494  1.1  jonathan 	if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1495  1.1  jonathan 		rtk_flags |= RTK_TDESC_CMD_IPCSUM;
   1496  1.1  jonathan 	if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1497  1.1  jonathan 		rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
   1498  1.1  jonathan 	if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1499  1.1  jonathan 		rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
   1500  1.1  jonathan 
   1501  1.1  jonathan 	map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
   1502  1.1  jonathan 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
   1503  1.1  jonathan 	    m_head, BUS_DMA_NOWAIT);
   1504  1.1  jonathan 
   1505  1.1  jonathan 	if (error) {
   1506  1.4   kanaoka 		aprint_error("%s: can't map mbuf (error %d)\n",
   1507  1.1  jonathan 		    sc->sc_dev.dv_xname, error);
   1508  1.1  jonathan 		return ENOBUFS;
   1509  1.1  jonathan 	}
   1510  1.1  jonathan 
   1511  1.1  jonathan 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4)
   1512  1.1  jonathan 		return ENOBUFS;
   1513  1.1  jonathan 	/*
   1514  1.1  jonathan 	 * Map the segment array into descriptors. Note that we set the
   1515  1.1  jonathan 	 * start-of-frame and end-of-frame markers for either TX or RX, but
   1516  1.1  jonathan 	 * they really only have meaning in the TX case. (In the RX case,
   1517  1.1  jonathan 	 * it's the chip that tells us where packets begin and end.)
   1518  1.1  jonathan 	 * We also keep track of the end of the ring and set the
   1519  1.1  jonathan 	 * end-of-ring bits as needed, and we set the ownership bits
   1520  1.1  jonathan 	 * in all except the very first descriptor. (The caller will
   1521  1.1  jonathan 	 * set this descriptor later when it start transmission or
   1522  1.1  jonathan 	 * reception.)
   1523  1.1  jonathan 	 */
   1524  1.1  jonathan 	i = 0;
   1525  1.1  jonathan 	curidx = *idx;
   1526  1.1  jonathan 	while (1) {
   1527  1.1  jonathan 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
   1528  1.1  jonathan 		if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
   1529  1.1  jonathan 			return ENOBUFS;
   1530  1.1  jonathan 
   1531  1.1  jonathan 		cmdstat = map->dm_segs[i].ds_len;
   1532  1.1  jonathan 		d->rtk_bufaddr_lo =
   1533  1.1  jonathan 		    htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
   1534  1.1  jonathan 		d->rtk_bufaddr_hi =
   1535  1.1  jonathan 		    htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
   1536  1.1  jonathan 		if (i == 0)
   1537  1.1  jonathan 			cmdstat |= RTK_TDESC_CMD_SOF;
   1538  1.1  jonathan 		else
   1539  1.1  jonathan 			cmdstat |= RTK_TDESC_CMD_OWN;
   1540  1.1  jonathan 		if (curidx == (RTK_RX_DESC_CNT - 1))
   1541  1.1  jonathan 			cmdstat |= RTK_TDESC_CMD_EOR;
   1542  1.1  jonathan 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
   1543  1.1  jonathan 		i++;
   1544  1.1  jonathan 		if (i == map->dm_nsegs)
   1545  1.1  jonathan 			break;
   1546  1.1  jonathan 		RTK_DESC_INC(curidx);
   1547  1.1  jonathan 	}
   1548  1.1  jonathan 
   1549  1.1  jonathan 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1550  1.1  jonathan 
   1551  1.1  jonathan 	/*
   1552  1.1  jonathan 	 * Insure that the map for this transmission
   1553  1.1  jonathan 	 * is placed at the array index of the last descriptor
   1554  1.1  jonathan 	 * in this chain.
   1555  1.1  jonathan 	 */
   1556  1.1  jonathan 	sc->rtk_ldata.rtk_tx_dmamap[*idx] =
   1557  1.1  jonathan 	    sc->rtk_ldata.rtk_tx_dmamap[curidx];
   1558  1.1  jonathan 	sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
   1559  1.1  jonathan 	sc->rtk_ldata.rtk_tx_mbuf[curidx] = m_head;
   1560  1.1  jonathan 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
   1561  1.1  jonathan 
   1562  1.1  jonathan 	/*
   1563  1.1  jonathan 	 * Set up hardware VLAN tagging. Note: vlan tag info must
   1564  1.1  jonathan 	 * appear in the first descriptor of a multi-descriptor
   1565  1.1  jonathan 	 * transmission attempt.
   1566  1.1  jonathan 	 */
   1567  1.1  jonathan 
   1568  1.1  jonathan 	if (sc->ethercom.ec_nvlans &&
   1569  1.1  jonathan 	    (mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL)) != NULL)
   1570  1.1  jonathan 		sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
   1571  1.1  jonathan 		    htole32(htons(*(u_int *)(mtag + 1)) |
   1572  1.1  jonathan 		    RTK_TDESC_VLANCTL_TAG);
   1573  1.1  jonathan 
   1574  1.1  jonathan 	/* Transfer ownership of packet to the chip. */
   1575  1.1  jonathan 
   1576  1.1  jonathan 	sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
   1577  1.1  jonathan 	    htole32(RTK_TDESC_CMD_OWN);
   1578  1.1  jonathan 	if (*idx != curidx)
   1579  1.1  jonathan 		sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
   1580  1.1  jonathan 		    htole32(RTK_TDESC_CMD_OWN);
   1581  1.1  jonathan 
   1582  1.1  jonathan 	RTK_DESC_INC(curidx);
   1583  1.1  jonathan 	*idx = curidx;
   1584  1.1  jonathan 
   1585  1.1  jonathan 	return 0;
   1586  1.1  jonathan }
   1587  1.1  jonathan 
   1588  1.1  jonathan /*
   1589  1.1  jonathan  * Main transmit routine for C+ and gigE NICs.
   1590  1.1  jonathan  */
   1591  1.1  jonathan 
   1592  1.1  jonathan static void
   1593  1.1  jonathan re_start(struct ifnet *ifp)
   1594  1.1  jonathan {
   1595  1.1  jonathan 	struct rtk_softc	*sc;
   1596  1.1  jonathan 	struct mbuf		*m_head = NULL;
   1597  1.1  jonathan 	int			idx;
   1598  1.1  jonathan 
   1599  1.1  jonathan 	sc = ifp->if_softc;
   1600  1.1  jonathan 
   1601  1.1  jonathan 	idx = sc->rtk_ldata.rtk_tx_prodidx;
   1602  1.1  jonathan 	while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
   1603  1.1  jonathan 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1604  1.1  jonathan 		if (m_head == NULL)
   1605  1.1  jonathan 			break;
   1606  1.1  jonathan 
   1607  1.1  jonathan 		if (re_encap(sc, m_head, &idx)) {
   1608  1.1  jonathan 			IF_PREPEND(&ifp->if_snd, m_head);
   1609  1.1  jonathan 			ifp->if_flags |= IFF_OACTIVE;
   1610  1.1  jonathan 			break;
   1611  1.1  jonathan 		}
   1612  1.1  jonathan #if NBPFILTER > 0
   1613  1.1  jonathan 		/*
   1614  1.1  jonathan 		 * If there's a BPF listener, bounce a copy of this frame
   1615  1.1  jonathan 		 * to him.
   1616  1.1  jonathan 		 */
   1617  1.1  jonathan 		if (ifp->if_bpf)
   1618  1.1  jonathan 			bpf_mtap(ifp->if_bpf, m_head);
   1619  1.1  jonathan #endif
   1620  1.1  jonathan 	}
   1621  1.1  jonathan 
   1622  1.1  jonathan 	/* Flush the TX descriptors */
   1623  1.1  jonathan 
   1624  1.1  jonathan 	bus_dmamap_sync(sc->sc_dmat,
   1625  1.1  jonathan 	    sc->rtk_ldata.rtk_tx_list_map,
   1626  1.1  jonathan 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1627  1.4   kanaoka 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1628  1.1  jonathan 
   1629  1.1  jonathan 	sc->rtk_ldata.rtk_tx_prodidx = idx;
   1630  1.1  jonathan 
   1631  1.1  jonathan 	/*
   1632  1.1  jonathan 	 * RealTek put the TX poll request register in a different
   1633  1.1  jonathan 	 * location on the 8169 gigE chip. I don't know why.
   1634  1.1  jonathan 	 */
   1635  1.1  jonathan 
   1636  1.1  jonathan 	if (sc->rtk_type == RTK_8169)
   1637  1.1  jonathan 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1638  1.1  jonathan 	else
   1639  1.1  jonathan 		CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
   1640  1.1  jonathan 
   1641  1.1  jonathan 	/*
   1642  1.1  jonathan 	 * Use the countdown timer for interrupt moderation.
   1643  1.1  jonathan 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1644  1.1  jonathan 	 * countdown timer, which will begin counting until it hits
   1645  1.1  jonathan 	 * the value in the TIMERINT register, and then trigger an
   1646  1.1  jonathan 	 * interrupt. Each time we write to the TIMERCNT register,
   1647  1.1  jonathan 	 * the timer count is reset to 0.
   1648  1.1  jonathan 	 */
   1649  1.1  jonathan 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1650  1.1  jonathan 
   1651  1.1  jonathan 	/*
   1652  1.1  jonathan 	 * Set a timeout in case the chip goes out to lunch.
   1653  1.1  jonathan 	 */
   1654  1.1  jonathan 	ifp->if_timer = 5;
   1655  1.1  jonathan 
   1656  1.1  jonathan 	return;
   1657  1.1  jonathan }
   1658  1.1  jonathan 
   1659  1.1  jonathan static int
   1660  1.1  jonathan re_init(struct ifnet *ifp)
   1661  1.1  jonathan {
   1662  1.1  jonathan 	struct rtk_softc	*sc = ifp->if_softc;
   1663  1.1  jonathan 	u_int32_t		rxcfg = 0;
   1664  1.1  jonathan 	u_int32_t		reg;
   1665  1.1  jonathan 	int error;
   1666  1.1  jonathan 
   1667  1.1  jonathan 	if ((error = re_enable(sc)) != 0)
   1668  1.1  jonathan 		goto out;
   1669  1.1  jonathan 
   1670  1.1  jonathan 	/*
   1671  1.1  jonathan 	 * Cancel pending I/O and free all RX/TX buffers.
   1672  1.1  jonathan 	 */
   1673  1.3   kanaoka 	re_stop(ifp, 0);
   1674  1.1  jonathan 
   1675  1.1  jonathan 	/*
   1676  1.1  jonathan 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1677  1.1  jonathan 	 * RX checksum offload. We must configure the C+ register
   1678  1.1  jonathan 	 * before all others.
   1679  1.1  jonathan 	 */
   1680  1.1  jonathan 	reg = 0;
   1681  1.1  jonathan 
   1682  1.1  jonathan 	/*
   1683  1.1  jonathan 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1684  1.1  jonathan 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1685  1.1  jonathan 	 * So far, it works.
   1686  1.1  jonathan 	 */
   1687  1.1  jonathan 
   1688  1.1  jonathan 	/*
   1689  1.1  jonathan 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
   1690  1.1  jonathan 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
   1691  1.1  jonathan 	 */
   1692  1.1  jonathan 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
   1693  1.4   kanaoka 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1694  1.1  jonathan 
   1695  1.4   kanaoka 	if (1)  {/* not for 8169S ? */
   1696  1.4   kanaoka 		reg |= RTK_CPLUSCMD_VLANSTRIP |
   1697  1.4   kanaoka 		    (ifp->if_capenable &
   1698  1.4   kanaoka 		    (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
   1699  1.4   kanaoka 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1700  1.4   kanaoka 	}
   1701  1.1  jonathan 
   1702  1.1  jonathan 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1703  1.4   kanaoka 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1704  1.1  jonathan 
   1705  1.1  jonathan 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1706  1.1  jonathan 	if (sc->rtk_type == RTK_8169)
   1707  1.1  jonathan 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
   1708  1.1  jonathan 
   1709  1.1  jonathan 	DELAY(10000);
   1710  1.1  jonathan 
   1711  1.1  jonathan 	/*
   1712  1.1  jonathan 	 * Init our MAC address.  Even though the chipset
   1713  1.1  jonathan 	 * documentation doesn't mention it, we need to enter "Config
   1714  1.1  jonathan 	 * register write enable" mode to modify the ID registers.
   1715  1.1  jonathan 	 */
   1716  1.1  jonathan 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1717  1.1  jonathan 	memcpy(&reg, LLADDR(ifp->if_sadl), 4);
   1718  1.1  jonathan 	CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
   1719  1.1  jonathan 	reg = 0;
   1720  1.1  jonathan 	memcpy(&reg, LLADDR(ifp->if_sadl) + 4, 4);
   1721  1.1  jonathan 	CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
   1722  1.1  jonathan 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1723  1.1  jonathan 
   1724  1.1  jonathan 	/*
   1725  1.1  jonathan 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1726  1.1  jonathan 	 */
   1727  1.1  jonathan 	re_rx_list_init(sc);
   1728  1.1  jonathan 	re_tx_list_init(sc);
   1729  1.1  jonathan 
   1730  1.1  jonathan 	/*
   1731  1.1  jonathan 	 * Enable transmit and receive.
   1732  1.1  jonathan 	 */
   1733  1.4   kanaoka 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1734  1.1  jonathan 
   1735  1.1  jonathan 	/*
   1736  1.1  jonathan 	 * Set the initial TX and RX configuration.
   1737  1.1  jonathan 	 */
   1738  1.1  jonathan 	if (sc->rtk_testmode) {
   1739  1.1  jonathan 		if (sc->rtk_type == RTK_8169)
   1740  1.1  jonathan 			CSR_WRITE_4(sc, RTK_TXCFG,
   1741  1.4   kanaoka 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1742  1.1  jonathan 		else
   1743  1.1  jonathan 			CSR_WRITE_4(sc, RTK_TXCFG,
   1744  1.4   kanaoka 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
   1745  1.1  jonathan 	} else
   1746  1.1  jonathan 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1747  1.1  jonathan 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1748  1.1  jonathan 
   1749  1.1  jonathan 	/* Set the individual bit to receive frames for this host only. */
   1750  1.1  jonathan 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1751  1.1  jonathan 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1752  1.1  jonathan 
   1753  1.1  jonathan 	/* If we want promiscuous mode, set the allframes bit. */
   1754  1.1  jonathan 	if (ifp->if_flags & IFF_PROMISC) {
   1755  1.1  jonathan 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1756  1.1  jonathan 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1757  1.1  jonathan 	} else {
   1758  1.1  jonathan 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1759  1.1  jonathan 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1760  1.1  jonathan 	}
   1761  1.1  jonathan 
   1762  1.1  jonathan 	/*
   1763  1.1  jonathan 	 * Set capture broadcast bit to capture broadcast frames.
   1764  1.1  jonathan 	 */
   1765  1.1  jonathan 	if (ifp->if_flags & IFF_BROADCAST) {
   1766  1.1  jonathan 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1767  1.1  jonathan 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1768  1.1  jonathan 	} else {
   1769  1.1  jonathan 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1770  1.1  jonathan 		CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1771  1.1  jonathan 	}
   1772  1.1  jonathan 
   1773  1.1  jonathan 	/*
   1774  1.1  jonathan 	 * Program the multicast filter, if necessary.
   1775  1.1  jonathan 	 */
   1776  1.1  jonathan 	rtk_setmulti(sc);
   1777  1.1  jonathan 
   1778  1.1  jonathan #ifdef DEVICE_POLLING
   1779  1.1  jonathan 	/*
   1780  1.1  jonathan 	 * Disable interrupts if we are polling.
   1781  1.1  jonathan 	 */
   1782  1.1  jonathan 	if (ifp->if_flags & IFF_POLLING)
   1783  1.1  jonathan 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1784  1.1  jonathan 	else	/* otherwise ... */
   1785  1.1  jonathan #endif /* DEVICE_POLLING */
   1786  1.1  jonathan 	/*
   1787  1.1  jonathan 	 * Enable interrupts.
   1788  1.1  jonathan 	 */
   1789  1.1  jonathan 	if (sc->rtk_testmode)
   1790  1.1  jonathan 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1791  1.1  jonathan 	else
   1792  1.1  jonathan 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1793  1.1  jonathan 
   1794  1.1  jonathan 	/* Start RX/TX process. */
   1795  1.1  jonathan 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1796  1.1  jonathan #ifdef notdef
   1797  1.1  jonathan 	/* Enable receiver and transmitter. */
   1798  1.4   kanaoka 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1799  1.1  jonathan #endif
   1800  1.1  jonathan 	/*
   1801  1.1  jonathan 	 * Load the addresses of the RX and TX lists into the chip.
   1802  1.1  jonathan 	 */
   1803  1.1  jonathan 
   1804  1.1  jonathan 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1805  1.1  jonathan 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
   1806  1.1  jonathan 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1807  1.1  jonathan 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
   1808  1.1  jonathan 
   1809  1.1  jonathan 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1810  1.1  jonathan 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
   1811  1.1  jonathan 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1812  1.1  jonathan 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
   1813  1.1  jonathan 
   1814  1.1  jonathan 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1815  1.1  jonathan 
   1816  1.1  jonathan 	/*
   1817  1.1  jonathan 	 * Initialize the timer interrupt register so that
   1818  1.1  jonathan 	 * a timer interrupt will be generated once the timer
   1819  1.1  jonathan 	 * reaches a certain number of ticks. The timer is
   1820  1.1  jonathan 	 * reloaded on each transmit. This gives us TX interrupt
   1821  1.1  jonathan 	 * moderation, which dramatically improves TX frame rate.
   1822  1.1  jonathan 	 */
   1823  1.1  jonathan 
   1824  1.1  jonathan 	if (sc->rtk_type == RTK_8169)
   1825  1.1  jonathan 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1826  1.1  jonathan 	else
   1827  1.1  jonathan 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1828  1.1  jonathan 
   1829  1.1  jonathan 	/*
   1830  1.1  jonathan 	 * For 8169 gigE NICs, set the max allowed RX packet
   1831  1.1  jonathan 	 * size so we can receive jumbo frames.
   1832  1.1  jonathan 	 */
   1833  1.1  jonathan 	if (sc->rtk_type == RTK_8169)
   1834  1.1  jonathan 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1835  1.1  jonathan 
   1836  1.1  jonathan 	if (sc->rtk_testmode)
   1837  1.1  jonathan 		return 0;
   1838  1.1  jonathan 
   1839  1.1  jonathan 	mii_mediachg(&sc->mii);
   1840  1.1  jonathan 
   1841  1.4   kanaoka 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
   1842  1.1  jonathan 
   1843  1.1  jonathan 	ifp->if_flags |= IFF_RUNNING;
   1844  1.1  jonathan 	ifp->if_flags &= ~IFF_OACTIVE;
   1845  1.1  jonathan 
   1846  1.1  jonathan 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1847  1.1  jonathan 
   1848  1.1  jonathan out:
   1849  1.1  jonathan 	if (error) {
   1850  1.4   kanaoka 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1851  1.1  jonathan 		ifp->if_timer = 0;
   1852  1.4   kanaoka 		aprint_error("%s: interface not running\n",
   1853  1.4   kanaoka 		    sc->sc_dev.dv_xname);
   1854  1.1  jonathan 	}
   1855  1.1  jonathan 
   1856  1.1  jonathan 	return error;
   1857  1.1  jonathan 
   1858  1.1  jonathan }
   1859  1.1  jonathan 
   1860  1.1  jonathan /*
   1861  1.1  jonathan  * Set media options.
   1862  1.1  jonathan  */
   1863  1.1  jonathan static int
   1864  1.1  jonathan re_ifmedia_upd(struct ifnet *ifp)
   1865  1.1  jonathan {
   1866  1.1  jonathan 	struct rtk_softc	*sc;
   1867  1.1  jonathan 
   1868  1.1  jonathan 	sc = ifp->if_softc;
   1869  1.1  jonathan 
   1870  1.4   kanaoka 	return mii_mediachg(&sc->mii);
   1871  1.1  jonathan }
   1872  1.1  jonathan 
   1873  1.1  jonathan /*
   1874  1.1  jonathan  * Report current media status.
   1875  1.1  jonathan  */
   1876  1.1  jonathan static void
   1877  1.1  jonathan re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1878  1.1  jonathan {
   1879  1.1  jonathan 	struct rtk_softc	*sc;
   1880  1.1  jonathan 
   1881  1.1  jonathan 	sc = ifp->if_softc;
   1882  1.1  jonathan 
   1883  1.1  jonathan 	mii_pollstat(&sc->mii);
   1884  1.1  jonathan 	ifmr->ifm_active = sc->mii.mii_media_active;
   1885  1.1  jonathan 	ifmr->ifm_status = sc->mii.mii_media_status;
   1886  1.1  jonathan 
   1887  1.1  jonathan 	return;
   1888  1.1  jonathan }
   1889  1.1  jonathan 
   1890  1.1  jonathan static int
   1891  1.1  jonathan re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1892  1.1  jonathan {
   1893  1.1  jonathan 	struct rtk_softc	*sc = ifp->if_softc;
   1894  1.1  jonathan 	struct ifreq		*ifr = (struct ifreq *) data;
   1895  1.1  jonathan 	int			s, error = 0;
   1896  1.1  jonathan 
   1897  1.1  jonathan 	s = splnet();
   1898  1.1  jonathan 
   1899  1.4   kanaoka 	switch (command) {
   1900  1.1  jonathan 	case SIOCSIFMTU:
   1901  1.1  jonathan 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
   1902  1.1  jonathan 			error = EINVAL;
   1903  1.1  jonathan 		ifp->if_mtu = ifr->ifr_mtu;
   1904  1.1  jonathan 		break;
   1905  1.1  jonathan 	case SIOCGIFMEDIA:
   1906  1.1  jonathan 	case SIOCSIFMEDIA:
   1907  1.1  jonathan 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   1908  1.1  jonathan 		break;
   1909  1.1  jonathan 	default:
   1910  1.1  jonathan 		error = ether_ioctl(ifp, command, data);
   1911  1.1  jonathan 		if (error == ENETRESET) {
   1912  1.2   kanaoka 			if (ifp->if_flags & IFF_RUNNING)
   1913  1.1  jonathan 				rtk_setmulti(sc);
   1914  1.1  jonathan 			error = 0;
   1915  1.1  jonathan 		}
   1916  1.1  jonathan 		break;
   1917  1.1  jonathan 	}
   1918  1.1  jonathan 
   1919  1.1  jonathan 	splx(s);
   1920  1.1  jonathan 
   1921  1.4   kanaoka 	return error;
   1922  1.1  jonathan }
   1923  1.1  jonathan 
   1924  1.1  jonathan static void
   1925  1.1  jonathan re_watchdog(struct ifnet *ifp)
   1926  1.1  jonathan {
   1927  1.1  jonathan 	struct rtk_softc	*sc;
   1928  1.1  jonathan 	int			s;
   1929  1.1  jonathan 
   1930  1.1  jonathan 	sc = ifp->if_softc;
   1931  1.1  jonathan 	s = splnet();
   1932  1.4   kanaoka 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   1933  1.1  jonathan 	ifp->if_oerrors++;
   1934  1.1  jonathan 
   1935  1.1  jonathan 	re_txeof(sc);
   1936  1.1  jonathan 	re_rxeof(sc);
   1937  1.1  jonathan 
   1938  1.1  jonathan 	re_init(ifp);
   1939  1.1  jonathan 
   1940  1.1  jonathan 	splx(s);
   1941  1.1  jonathan }
   1942  1.1  jonathan 
   1943  1.1  jonathan /*
   1944  1.1  jonathan  * Stop the adapter and free any mbufs allocated to the
   1945  1.1  jonathan  * RX and TX lists.
   1946  1.1  jonathan  */
   1947  1.1  jonathan static void
   1948  1.3   kanaoka re_stop(struct ifnet *ifp, int disable)
   1949  1.1  jonathan {
   1950  1.1  jonathan 	register int		i;
   1951  1.3   kanaoka 	struct rtk_softc *sc = ifp->if_softc;
   1952  1.1  jonathan 
   1953  1.3   kanaoka 	callout_stop(&sc->rtk_tick_ch);
   1954  1.1  jonathan 
   1955  1.1  jonathan #ifdef DEVICE_POLLING
   1956  1.1  jonathan 	ether_poll_deregister(ifp);
   1957  1.1  jonathan #endif /* DEVICE_POLLING */
   1958  1.1  jonathan 
   1959  1.3   kanaoka 	mii_down(&sc->mii);
   1960  1.3   kanaoka 
   1961  1.1  jonathan 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   1962  1.1  jonathan 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1963  1.1  jonathan 
   1964  1.1  jonathan 	if (sc->rtk_head != NULL) {
   1965  1.1  jonathan 		m_freem(sc->rtk_head);
   1966  1.1  jonathan 		sc->rtk_head = sc->rtk_tail = NULL;
   1967  1.1  jonathan 	}
   1968  1.1  jonathan 
   1969  1.1  jonathan 	/* Free the TX list buffers. */
   1970  1.1  jonathan 	for (i = 0; i < RTK_TX_DESC_CNT; i++) {
   1971  1.1  jonathan 		if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
   1972  1.1  jonathan 			bus_dmamap_unload(sc->sc_dmat,
   1973  1.1  jonathan 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
   1974  1.1  jonathan 			m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
   1975  1.1  jonathan 			sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
   1976  1.1  jonathan 		}
   1977  1.1  jonathan 	}
   1978  1.1  jonathan 
   1979  1.1  jonathan 	/* Free the RX list buffers. */
   1980  1.1  jonathan 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   1981  1.1  jonathan 		if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
   1982  1.1  jonathan 			bus_dmamap_unload(sc->sc_dmat,
   1983  1.1  jonathan 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
   1984  1.1  jonathan 			m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
   1985  1.1  jonathan 			sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
   1986  1.1  jonathan 		}
   1987  1.1  jonathan 	}
   1988  1.1  jonathan 
   1989  1.3   kanaoka 	if (disable)
   1990  1.3   kanaoka 		re_disable(sc);
   1991  1.3   kanaoka 
   1992  1.3   kanaoka 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1993  1.4   kanaoka 	ifp->if_timer = 0;
   1994  1.1  jonathan 
   1995  1.1  jonathan 	return;
   1996  1.1  jonathan }
   1997