rtl8169.c revision 1.49 1 1.49 tsutsui /* $NetBSD: rtl8169.c,v 1.49 2006/10/27 13:26:34 tsutsui Exp $ */
2 1.1 jonathan
3 1.1 jonathan /*
4 1.1 jonathan * Copyright (c) 1997, 1998-2003
5 1.1 jonathan * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 1.1 jonathan *
7 1.1 jonathan * Redistribution and use in source and binary forms, with or without
8 1.1 jonathan * modification, are permitted provided that the following conditions
9 1.1 jonathan * are met:
10 1.1 jonathan * 1. Redistributions of source code must retain the above copyright
11 1.1 jonathan * notice, this list of conditions and the following disclaimer.
12 1.1 jonathan * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jonathan * notice, this list of conditions and the following disclaimer in the
14 1.1 jonathan * documentation and/or other materials provided with the distribution.
15 1.1 jonathan * 3. All advertising materials mentioning features or use of this software
16 1.1 jonathan * must display the following acknowledgement:
17 1.1 jonathan * This product includes software developed by Bill Paul.
18 1.1 jonathan * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 jonathan * may be used to endorse or promote products derived from this software
20 1.1 jonathan * without specific prior written permission.
21 1.1 jonathan *
22 1.1 jonathan * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 jonathan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 jonathan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 jonathan * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 jonathan * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 jonathan * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 jonathan * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 jonathan * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 jonathan * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 jonathan * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 jonathan * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 jonathan */
34 1.1 jonathan
35 1.1 jonathan #include <sys/cdefs.h>
36 1.1 jonathan /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37 1.1 jonathan
38 1.1 jonathan /*
39 1.1 jonathan * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 1.1 jonathan *
41 1.1 jonathan * Written by Bill Paul <wpaul (at) windriver.com>
42 1.1 jonathan * Senior Networking Software Engineer
43 1.1 jonathan * Wind River Systems
44 1.1 jonathan */
45 1.1 jonathan
46 1.1 jonathan /*
47 1.1 jonathan * This driver is designed to support RealTek's next generation of
48 1.1 jonathan * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 1.1 jonathan * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 1.1 jonathan * and the RTL8110S.
51 1.1 jonathan *
52 1.1 jonathan * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 1.1 jonathan * with the older 8139 family, however it also supports a special
54 1.1 jonathan * C+ mode of operation that provides several new performance enhancing
55 1.1 jonathan * features. These include:
56 1.1 jonathan *
57 1.1 jonathan * o Descriptor based DMA mechanism. Each descriptor represents
58 1.1 jonathan * a single packet fragment. Data buffers may be aligned on
59 1.1 jonathan * any byte boundary.
60 1.1 jonathan *
61 1.1 jonathan * o 64-bit DMA
62 1.1 jonathan *
63 1.1 jonathan * o TCP/IP checksum offload for both RX and TX
64 1.1 jonathan *
65 1.1 jonathan * o High and normal priority transmit DMA rings
66 1.1 jonathan *
67 1.1 jonathan * o VLAN tag insertion and extraction
68 1.1 jonathan *
69 1.1 jonathan * o TCP large send (segmentation offload)
70 1.1 jonathan *
71 1.1 jonathan * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 1.1 jonathan * programming API is fairly straightforward. The RX filtering, EEPROM
73 1.1 jonathan * access and PHY access is the same as it is on the older 8139 series
74 1.1 jonathan * chips.
75 1.1 jonathan *
76 1.1 jonathan * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 1.1 jonathan * same programming API and feature set as the 8139C+ with the following
78 1.1 jonathan * differences and additions:
79 1.1 jonathan *
80 1.1 jonathan * o 1000Mbps mode
81 1.1 jonathan *
82 1.1 jonathan * o Jumbo frames
83 1.1 jonathan *
84 1.1 jonathan * o GMII and TBI ports/registers for interfacing with copper
85 1.1 jonathan * or fiber PHYs
86 1.1 jonathan *
87 1.1 jonathan * o RX and TX DMA rings can have up to 1024 descriptors
88 1.1 jonathan * (the 8139C+ allows a maximum of 64)
89 1.1 jonathan *
90 1.1 jonathan * o Slight differences in register layout from the 8139C+
91 1.1 jonathan *
92 1.1 jonathan * The TX start and timer interrupt registers are at different locations
93 1.1 jonathan * on the 8169 than they are on the 8139C+. Also, the status word in the
94 1.1 jonathan * RX descriptor has a slightly different bit layout. The 8169 does not
95 1.1 jonathan * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 1.1 jonathan * copper gigE PHY.
97 1.1 jonathan *
98 1.1 jonathan * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 1.1 jonathan * (the 'S' stands for 'single-chip'). These devices have the same
100 1.1 jonathan * programming API as the older 8169, but also have some vendor-specific
101 1.1 jonathan * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 1.1 jonathan * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 1.12 perry *
104 1.1 jonathan * This driver takes advantage of the RX and TX checksum offload and
105 1.1 jonathan * VLAN tag insertion/extraction features. It also implements TX
106 1.1 jonathan * interrupt moderation using the timer interrupt registers, which
107 1.1 jonathan * significantly reduces TX interrupt load. There is also support
108 1.1 jonathan * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 1.1 jonathan * jumbo frames larger than 7.5K, so the max MTU possible with this
110 1.1 jonathan * driver is 7500 bytes.
111 1.1 jonathan */
112 1.1 jonathan
113 1.1 jonathan #include "bpfilter.h"
114 1.1 jonathan #include "vlan.h"
115 1.1 jonathan
116 1.1 jonathan #include <sys/param.h>
117 1.1 jonathan #include <sys/endian.h>
118 1.1 jonathan #include <sys/systm.h>
119 1.1 jonathan #include <sys/sockio.h>
120 1.1 jonathan #include <sys/mbuf.h>
121 1.1 jonathan #include <sys/malloc.h>
122 1.1 jonathan #include <sys/kernel.h>
123 1.1 jonathan #include <sys/socket.h>
124 1.1 jonathan #include <sys/device.h>
125 1.1 jonathan
126 1.1 jonathan #include <net/if.h>
127 1.1 jonathan #include <net/if_arp.h>
128 1.1 jonathan #include <net/if_dl.h>
129 1.1 jonathan #include <net/if_ether.h>
130 1.1 jonathan #include <net/if_media.h>
131 1.1 jonathan #include <net/if_vlanvar.h>
132 1.1 jonathan
133 1.13 yamt #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 1.13 yamt #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 1.13 yamt #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136 1.13 yamt
137 1.1 jonathan #if NBPFILTER > 0
138 1.1 jonathan #include <net/bpf.h>
139 1.1 jonathan #endif
140 1.1 jonathan
141 1.1 jonathan #include <machine/bus.h>
142 1.1 jonathan
143 1.1 jonathan #include <dev/mii/mii.h>
144 1.1 jonathan #include <dev/mii/miivar.h>
145 1.1 jonathan
146 1.1 jonathan #include <dev/pci/pcireg.h>
147 1.1 jonathan #include <dev/pci/pcivar.h>
148 1.1 jonathan #include <dev/pci/pcidevs.h>
149 1.1 jonathan
150 1.1 jonathan #include <dev/ic/rtl81x9reg.h>
151 1.1 jonathan #include <dev/ic/rtl81x9var.h>
152 1.1 jonathan
153 1.1 jonathan #include <dev/ic/rtl8169var.h>
154 1.1 jonathan
155 1.1 jonathan
156 1.4 kanaoka static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157 1.1 jonathan
158 1.4 kanaoka static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 1.4 kanaoka static int re_rx_list_init(struct rtk_softc *);
160 1.4 kanaoka static int re_tx_list_init(struct rtk_softc *);
161 1.4 kanaoka static void re_rxeof(struct rtk_softc *);
162 1.4 kanaoka static void re_txeof(struct rtk_softc *);
163 1.4 kanaoka static void re_tick(void *);
164 1.4 kanaoka static void re_start(struct ifnet *);
165 1.4 kanaoka static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 1.4 kanaoka static int re_init(struct ifnet *);
167 1.4 kanaoka static void re_stop(struct ifnet *, int);
168 1.4 kanaoka static void re_watchdog(struct ifnet *);
169 1.4 kanaoka
170 1.4 kanaoka static void re_shutdown(void *);
171 1.4 kanaoka static int re_enable(struct rtk_softc *);
172 1.4 kanaoka static void re_disable(struct rtk_softc *);
173 1.4 kanaoka static void re_power(int, void *);
174 1.4 kanaoka
175 1.4 kanaoka static int re_ifmedia_upd(struct ifnet *);
176 1.4 kanaoka static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177 1.4 kanaoka
178 1.4 kanaoka static int re_gmii_readreg(struct device *, int, int);
179 1.4 kanaoka static void re_gmii_writereg(struct device *, int, int, int);
180 1.4 kanaoka
181 1.4 kanaoka static int re_miibus_readreg(struct device *, int, int);
182 1.4 kanaoka static void re_miibus_writereg(struct device *, int, int, int);
183 1.4 kanaoka static void re_miibus_statchg(struct device *);
184 1.1 jonathan
185 1.4 kanaoka static void re_reset(struct rtk_softc *);
186 1.1 jonathan
187 1.1 jonathan static int
188 1.1 jonathan re_gmii_readreg(struct device *self, int phy, int reg)
189 1.1 jonathan {
190 1.1 jonathan struct rtk_softc *sc = (void *)self;
191 1.40 tsutsui uint32_t rval;
192 1.1 jonathan int i;
193 1.1 jonathan
194 1.1 jonathan if (phy != 7)
195 1.4 kanaoka return 0;
196 1.1 jonathan
197 1.1 jonathan /* Let the rgephy driver read the GMEDIASTAT register */
198 1.1 jonathan
199 1.1 jonathan if (reg == RTK_GMEDIASTAT) {
200 1.1 jonathan rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 1.4 kanaoka return rval;
202 1.1 jonathan }
203 1.1 jonathan
204 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 1.1 jonathan DELAY(1000);
206 1.1 jonathan
207 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
208 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
209 1.1 jonathan if (rval & RTK_PHYAR_BUSY)
210 1.1 jonathan break;
211 1.1 jonathan DELAY(100);
212 1.1 jonathan }
213 1.1 jonathan
214 1.1 jonathan if (i == RTK_TIMEOUT) {
215 1.4 kanaoka aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 1.4 kanaoka return 0;
217 1.1 jonathan }
218 1.1 jonathan
219 1.4 kanaoka return rval & RTK_PHYAR_PHYDATA;
220 1.1 jonathan }
221 1.1 jonathan
222 1.1 jonathan static void
223 1.27 christos re_gmii_writereg(struct device *dev, int phy __unused, int reg, int data)
224 1.1 jonathan {
225 1.1 jonathan struct rtk_softc *sc = (void *)dev;
226 1.40 tsutsui uint32_t rval;
227 1.1 jonathan int i;
228 1.1 jonathan
229 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 1.1 jonathan (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 1.1 jonathan DELAY(1000);
232 1.1 jonathan
233 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
234 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
235 1.1 jonathan if (!(rval & RTK_PHYAR_BUSY))
236 1.1 jonathan break;
237 1.1 jonathan DELAY(100);
238 1.1 jonathan }
239 1.1 jonathan
240 1.1 jonathan if (i == RTK_TIMEOUT) {
241 1.4 kanaoka aprint_error("%s: PHY write reg %x <- %x failed\n",
242 1.4 kanaoka sc->sc_dev.dv_xname, reg, data);
243 1.1 jonathan }
244 1.1 jonathan }
245 1.1 jonathan
246 1.1 jonathan static int
247 1.1 jonathan re_miibus_readreg(struct device *dev, int phy, int reg)
248 1.1 jonathan {
249 1.1 jonathan struct rtk_softc *sc = (void *)dev;
250 1.40 tsutsui uint16_t rval = 0;
251 1.40 tsutsui uint16_t re8139_reg = 0;
252 1.1 jonathan int s;
253 1.1 jonathan
254 1.1 jonathan s = splnet();
255 1.1 jonathan
256 1.1 jonathan if (sc->rtk_type == RTK_8169) {
257 1.1 jonathan rval = re_gmii_readreg(dev, phy, reg);
258 1.1 jonathan splx(s);
259 1.4 kanaoka return rval;
260 1.1 jonathan }
261 1.1 jonathan
262 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
263 1.1 jonathan if (phy) {
264 1.1 jonathan splx(s);
265 1.4 kanaoka return 0;
266 1.1 jonathan }
267 1.4 kanaoka switch (reg) {
268 1.1 jonathan case MII_BMCR:
269 1.1 jonathan re8139_reg = RTK_BMCR;
270 1.1 jonathan break;
271 1.1 jonathan case MII_BMSR:
272 1.1 jonathan re8139_reg = RTK_BMSR;
273 1.1 jonathan break;
274 1.1 jonathan case MII_ANAR:
275 1.1 jonathan re8139_reg = RTK_ANAR;
276 1.1 jonathan break;
277 1.1 jonathan case MII_ANER:
278 1.1 jonathan re8139_reg = RTK_ANER;
279 1.1 jonathan break;
280 1.1 jonathan case MII_ANLPAR:
281 1.1 jonathan re8139_reg = RTK_LPAR;
282 1.1 jonathan break;
283 1.1 jonathan case MII_PHYIDR1:
284 1.1 jonathan case MII_PHYIDR2:
285 1.1 jonathan splx(s);
286 1.4 kanaoka return 0;
287 1.1 jonathan /*
288 1.1 jonathan * Allow the rlphy driver to read the media status
289 1.1 jonathan * register. If we have a link partner which does not
290 1.1 jonathan * support NWAY, this is the register which will tell
291 1.1 jonathan * us the results of parallel detection.
292 1.1 jonathan */
293 1.1 jonathan case RTK_MEDIASTAT:
294 1.1 jonathan rval = CSR_READ_1(sc, RTK_MEDIASTAT);
295 1.1 jonathan splx(s);
296 1.4 kanaoka return rval;
297 1.1 jonathan default:
298 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
299 1.1 jonathan splx(s);
300 1.4 kanaoka return 0;
301 1.1 jonathan }
302 1.1 jonathan rval = CSR_READ_2(sc, re8139_reg);
303 1.1 jonathan splx(s);
304 1.4 kanaoka return rval;
305 1.1 jonathan }
306 1.1 jonathan
307 1.1 jonathan static void
308 1.1 jonathan re_miibus_writereg(struct device *dev, int phy, int reg, int data)
309 1.1 jonathan {
310 1.1 jonathan struct rtk_softc *sc = (void *)dev;
311 1.40 tsutsui uint16_t re8139_reg = 0;
312 1.1 jonathan int s;
313 1.1 jonathan
314 1.1 jonathan s = splnet();
315 1.1 jonathan
316 1.1 jonathan if (sc->rtk_type == RTK_8169) {
317 1.1 jonathan re_gmii_writereg(dev, phy, reg, data);
318 1.1 jonathan splx(s);
319 1.1 jonathan return;
320 1.1 jonathan }
321 1.1 jonathan
322 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
323 1.1 jonathan if (phy) {
324 1.1 jonathan splx(s);
325 1.1 jonathan return;
326 1.1 jonathan }
327 1.4 kanaoka switch (reg) {
328 1.1 jonathan case MII_BMCR:
329 1.1 jonathan re8139_reg = RTK_BMCR;
330 1.1 jonathan break;
331 1.1 jonathan case MII_BMSR:
332 1.1 jonathan re8139_reg = RTK_BMSR;
333 1.1 jonathan break;
334 1.1 jonathan case MII_ANAR:
335 1.1 jonathan re8139_reg = RTK_ANAR;
336 1.1 jonathan break;
337 1.1 jonathan case MII_ANER:
338 1.1 jonathan re8139_reg = RTK_ANER;
339 1.1 jonathan break;
340 1.1 jonathan case MII_ANLPAR:
341 1.1 jonathan re8139_reg = RTK_LPAR;
342 1.1 jonathan break;
343 1.1 jonathan case MII_PHYIDR1:
344 1.1 jonathan case MII_PHYIDR2:
345 1.1 jonathan splx(s);
346 1.1 jonathan return;
347 1.1 jonathan break;
348 1.1 jonathan default:
349 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
350 1.1 jonathan splx(s);
351 1.1 jonathan return;
352 1.1 jonathan }
353 1.1 jonathan CSR_WRITE_2(sc, re8139_reg, data);
354 1.1 jonathan splx(s);
355 1.1 jonathan return;
356 1.1 jonathan }
357 1.1 jonathan
358 1.1 jonathan static void
359 1.27 christos re_miibus_statchg(struct device *dev __unused)
360 1.1 jonathan {
361 1.1 jonathan
362 1.1 jonathan return;
363 1.1 jonathan }
364 1.1 jonathan
365 1.1 jonathan static void
366 1.1 jonathan re_reset(struct rtk_softc *sc)
367 1.1 jonathan {
368 1.41 tsutsui int i;
369 1.1 jonathan
370 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
371 1.1 jonathan
372 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
373 1.1 jonathan DELAY(10);
374 1.41 tsutsui if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
375 1.1 jonathan break;
376 1.1 jonathan }
377 1.1 jonathan if (i == RTK_TIMEOUT)
378 1.4 kanaoka aprint_error("%s: reset never completed!\n",
379 1.4 kanaoka sc->sc_dev.dv_xname);
380 1.1 jonathan
381 1.1 jonathan /*
382 1.1 jonathan * NB: Realtek-supplied Linux driver does this only for
383 1.1 jonathan * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
384 1.1 jonathan */
385 1.4 kanaoka if (1) /* XXX check softc flag for 8169s version */
386 1.4 kanaoka CSR_WRITE_1(sc, 0x82, 1);
387 1.1 jonathan
388 1.1 jonathan return;
389 1.1 jonathan }
390 1.1 jonathan
391 1.1 jonathan /*
392 1.1 jonathan * The following routine is designed to test for a defect on some
393 1.1 jonathan * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
394 1.1 jonathan * lines connected to the bus, however for a 32-bit only card, they
395 1.1 jonathan * should be pulled high. The result of this defect is that the
396 1.1 jonathan * NIC will not work right if you plug it into a 64-bit slot: DMA
397 1.1 jonathan * operations will be done with 64-bit transfers, which will fail
398 1.1 jonathan * because the 64-bit data lines aren't connected.
399 1.1 jonathan *
400 1.1 jonathan * There's no way to work around this (short of talking a soldering
401 1.1 jonathan * iron to the board), however we can detect it. The method we use
402 1.1 jonathan * here is to put the NIC into digital loopback mode, set the receiver
403 1.1 jonathan * to promiscuous mode, and then try to send a frame. We then compare
404 1.1 jonathan * the frame data we sent to what was received. If the data matches,
405 1.1 jonathan * then the NIC is working correctly, otherwise we know the user has
406 1.1 jonathan * a defective NIC which has been mistakenly plugged into a 64-bit PCI
407 1.1 jonathan * slot. In the latter case, there's no way the NIC can work correctly,
408 1.1 jonathan * so we print out a message on the console and abort the device attach.
409 1.1 jonathan */
410 1.1 jonathan
411 1.6 kanaoka int
412 1.1 jonathan re_diag(struct rtk_softc *sc)
413 1.1 jonathan {
414 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
415 1.1 jonathan struct mbuf *m0;
416 1.1 jonathan struct ether_header *eh;
417 1.1 jonathan struct rtk_desc *cur_rx;
418 1.1 jonathan bus_dmamap_t dmamap;
419 1.40 tsutsui uint16_t status;
420 1.40 tsutsui uint32_t rxstat;
421 1.1 jonathan int total_len, i, s, error = 0;
422 1.40 tsutsui static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
423 1.40 tsutsui static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
424 1.1 jonathan
425 1.1 jonathan /* Allocate a single mbuf */
426 1.1 jonathan
427 1.1 jonathan MGETHDR(m0, M_DONTWAIT, MT_DATA);
428 1.1 jonathan if (m0 == NULL)
429 1.4 kanaoka return ENOBUFS;
430 1.1 jonathan
431 1.1 jonathan /*
432 1.1 jonathan * Initialize the NIC in test mode. This sets the chip up
433 1.1 jonathan * so that it can send and receive frames, but performs the
434 1.1 jonathan * following special functions:
435 1.1 jonathan * - Puts receiver in promiscuous mode
436 1.1 jonathan * - Enables digital loopback mode
437 1.1 jonathan * - Leaves interrupts turned off
438 1.1 jonathan */
439 1.1 jonathan
440 1.1 jonathan ifp->if_flags |= IFF_PROMISC;
441 1.1 jonathan sc->rtk_testmode = 1;
442 1.1 jonathan re_init(ifp);
443 1.6 kanaoka re_stop(ifp, 0);
444 1.1 jonathan DELAY(100000);
445 1.1 jonathan re_init(ifp);
446 1.1 jonathan
447 1.1 jonathan /* Put some data in the mbuf */
448 1.1 jonathan
449 1.1 jonathan eh = mtod(m0, struct ether_header *);
450 1.36 tsutsui memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
451 1.36 tsutsui memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
452 1.1 jonathan eh->ether_type = htons(ETHERTYPE_IP);
453 1.1 jonathan m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
454 1.1 jonathan
455 1.1 jonathan /*
456 1.1 jonathan * Queue the packet, start transmission.
457 1.1 jonathan */
458 1.1 jonathan
459 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
460 1.1 jonathan s = splnet();
461 1.1 jonathan IF_ENQUEUE(&ifp->if_snd, m0);
462 1.1 jonathan re_start(ifp);
463 1.1 jonathan splx(s);
464 1.1 jonathan m0 = NULL;
465 1.1 jonathan
466 1.1 jonathan /* Wait for it to propagate through the chip */
467 1.1 jonathan
468 1.1 jonathan DELAY(100000);
469 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
470 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
471 1.4 kanaoka if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
472 1.4 kanaoka (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
473 1.1 jonathan break;
474 1.1 jonathan DELAY(10);
475 1.1 jonathan }
476 1.1 jonathan if (i == RTK_TIMEOUT) {
477 1.4 kanaoka aprint_error("%s: diagnostic failed, failed to receive packet "
478 1.1 jonathan "in loopback mode\n", sc->sc_dev.dv_xname);
479 1.1 jonathan error = EIO;
480 1.1 jonathan goto done;
481 1.1 jonathan }
482 1.1 jonathan
483 1.1 jonathan /*
484 1.1 jonathan * The packet should have been dumped into the first
485 1.1 jonathan * entry in the RX DMA ring. Grab it from there.
486 1.1 jonathan */
487 1.1 jonathan
488 1.1 jonathan dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
489 1.1 jonathan bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
490 1.20 briggs BUS_DMASYNC_POSTREAD);
491 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
492 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[0]);
493 1.1 jonathan
494 1.1 jonathan m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
495 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
496 1.1 jonathan eh = mtod(m0, struct ether_header *);
497 1.1 jonathan
498 1.32 tsutsui RTK_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
499 1.1 jonathan cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
500 1.1 jonathan rxstat = le32toh(cur_rx->rtk_cmdstat);
501 1.32 tsutsui total_len = rxstat & sc->rtk_rxlenmask;
502 1.1 jonathan
503 1.1 jonathan if (total_len != ETHER_MIN_LEN) {
504 1.4 kanaoka aprint_error("%s: diagnostic failed, received short packet\n",
505 1.1 jonathan sc->sc_dev.dv_xname);
506 1.1 jonathan error = EIO;
507 1.1 jonathan goto done;
508 1.1 jonathan }
509 1.1 jonathan
510 1.1 jonathan /* Test that the received packet data matches what we sent. */
511 1.1 jonathan
512 1.36 tsutsui if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
513 1.36 tsutsui memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
514 1.1 jonathan ntohs(eh->ether_type) != ETHERTYPE_IP) {
515 1.4 kanaoka aprint_error("%s: WARNING, DMA FAILURE!\n",
516 1.4 kanaoka sc->sc_dev.dv_xname);
517 1.4 kanaoka aprint_error("%s: expected TX data: %s",
518 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(dst));
519 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
520 1.4 kanaoka aprint_error("%s: received RX data: %s",
521 1.1 jonathan sc->sc_dev.dv_xname,
522 1.1 jonathan ether_sprintf(eh->ether_dhost));
523 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
524 1.1 jonathan ntohs(eh->ether_type));
525 1.4 kanaoka aprint_error("%s: You may have a defective 32-bit NIC plugged "
526 1.1 jonathan "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
527 1.4 kanaoka aprint_error("%s: Please re-install the NIC in a 32-bit slot "
528 1.1 jonathan "for proper operation.\n", sc->sc_dev.dv_xname);
529 1.4 kanaoka aprint_error("%s: Read the re(4) man page for more details.\n",
530 1.1 jonathan sc->sc_dev.dv_xname);
531 1.1 jonathan error = EIO;
532 1.1 jonathan }
533 1.1 jonathan
534 1.41 tsutsui done:
535 1.1 jonathan /* Turn interface off, release resources */
536 1.1 jonathan
537 1.1 jonathan sc->rtk_testmode = 0;
538 1.1 jonathan ifp->if_flags &= ~IFF_PROMISC;
539 1.6 kanaoka re_stop(ifp, 0);
540 1.1 jonathan if (m0 != NULL)
541 1.1 jonathan m_freem(m0);
542 1.1 jonathan
543 1.4 kanaoka return error;
544 1.1 jonathan }
545 1.1 jonathan
546 1.1 jonathan
547 1.1 jonathan /*
548 1.1 jonathan * Attach the interface. Allocate softc structures, do ifmedia
549 1.1 jonathan * setup and ethernet/BPF attach.
550 1.1 jonathan */
551 1.1 jonathan void
552 1.1 jonathan re_attach(struct rtk_softc *sc)
553 1.1 jonathan {
554 1.1 jonathan u_char eaddr[ETHER_ADDR_LEN];
555 1.40 tsutsui uint16_t val;
556 1.1 jonathan struct ifnet *ifp;
557 1.1 jonathan int error = 0, i, addr_len;
558 1.1 jonathan
559 1.5 kanaoka
560 1.1 jonathan /* XXX JRS: bus-attach-independent code begins approximately here */
561 1.1 jonathan
562 1.1 jonathan /* Reset the adapter. */
563 1.1 jonathan re_reset(sc);
564 1.1 jonathan
565 1.1 jonathan if (sc->rtk_type == RTK_8169) {
566 1.1 jonathan uint32_t hwrev;
567 1.1 jonathan
568 1.1 jonathan /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
569 1.1 jonathan hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
570 1.1 jonathan if (hwrev == (0x1 << 28)) {
571 1.1 jonathan sc->sc_rev = 4;
572 1.1 jonathan } else if (hwrev == (0x1 << 26)) {
573 1.1 jonathan sc->sc_rev = 3;
574 1.1 jonathan } else if (hwrev == (0x1 << 23)) {
575 1.1 jonathan sc->sc_rev = 2;
576 1.1 jonathan } else
577 1.1 jonathan sc->sc_rev = 1;
578 1.1 jonathan
579 1.1 jonathan /* Set RX length mask */
580 1.1 jonathan
581 1.1 jonathan sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
582 1.1 jonathan
583 1.1 jonathan /* Force station address autoload from the EEPROM */
584 1.1 jonathan
585 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
586 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
587 1.41 tsutsui if ((CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD)
588 1.41 tsutsui == 0)
589 1.1 jonathan break;
590 1.1 jonathan DELAY(100);
591 1.1 jonathan }
592 1.1 jonathan if (i == RTK_TIMEOUT)
593 1.4 kanaoka aprint_error("%s: eeprom autoload timed out\n",
594 1.4 kanaoka sc->sc_dev.dv_xname);
595 1.1 jonathan
596 1.4 kanaoka for (i = 0; i < ETHER_ADDR_LEN; i++)
597 1.4 kanaoka eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
598 1.15 yamt
599 1.15 yamt sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
600 1.1 jonathan } else {
601 1.1 jonathan
602 1.1 jonathan /* Set RX length mask */
603 1.1 jonathan
604 1.1 jonathan sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
605 1.1 jonathan
606 1.1 jonathan if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
607 1.1 jonathan addr_len = RTK_EEADDR_LEN1;
608 1.1 jonathan else
609 1.1 jonathan addr_len = RTK_EEADDR_LEN0;
610 1.1 jonathan
611 1.1 jonathan /*
612 1.1 jonathan * Get station address from the EEPROM.
613 1.1 jonathan */
614 1.1 jonathan for (i = 0; i < 3; i++) {
615 1.1 jonathan val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
616 1.1 jonathan eaddr[(i * 2) + 0] = val & 0xff;
617 1.1 jonathan eaddr[(i * 2) + 1] = val >> 8;
618 1.1 jonathan }
619 1.15 yamt
620 1.15 yamt sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
621 1.1 jonathan }
622 1.1 jonathan
623 1.1 jonathan aprint_normal("%s: Ethernet address %s\n",
624 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(eaddr));
625 1.1 jonathan
626 1.15 yamt if (sc->rtk_ldata.rtk_tx_desc_cnt >
627 1.15 yamt PAGE_SIZE / sizeof(struct rtk_desc)) {
628 1.15 yamt sc->rtk_ldata.rtk_tx_desc_cnt =
629 1.15 yamt PAGE_SIZE / sizeof(struct rtk_desc);
630 1.15 yamt }
631 1.15 yamt
632 1.15 yamt aprint_verbose("%s: using %d tx descriptors\n",
633 1.15 yamt sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
634 1.1 jonathan
635 1.5 kanaoka /* Allocate DMA'able memory for the TX ring */
636 1.15 yamt if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
637 1.41 tsutsui RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg, 1,
638 1.41 tsutsui &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
639 1.5 kanaoka aprint_error("%s: can't allocate tx listseg, error = %d\n",
640 1.5 kanaoka sc->sc_dev.dv_xname, error);
641 1.5 kanaoka goto fail_0;
642 1.5 kanaoka }
643 1.5 kanaoka
644 1.5 kanaoka /* Load the map for the TX ring. */
645 1.5 kanaoka if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
646 1.41 tsutsui sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
647 1.41 tsutsui (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
648 1.41 tsutsui BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
649 1.5 kanaoka aprint_error("%s: can't map tx list, error = %d\n",
650 1.5 kanaoka sc->sc_dev.dv_xname, error);
651 1.5 kanaoka goto fail_1;
652 1.5 kanaoka }
653 1.15 yamt memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
654 1.5 kanaoka
655 1.15 yamt if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
656 1.41 tsutsui RTK_TX_LIST_SZ(sc), 0, 0,
657 1.41 tsutsui &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
658 1.5 kanaoka aprint_error("%s: can't create tx list map, error = %d\n",
659 1.5 kanaoka sc->sc_dev.dv_xname, error);
660 1.5 kanaoka goto fail_2;
661 1.5 kanaoka }
662 1.5 kanaoka
663 1.5 kanaoka
664 1.12 perry if ((error = bus_dmamap_load(sc->sc_dmat,
665 1.41 tsutsui sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
666 1.41 tsutsui RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
667 1.5 kanaoka aprint_error("%s: can't load tx list, error = %d\n",
668 1.5 kanaoka sc->sc_dev.dv_xname, error);
669 1.5 kanaoka goto fail_3;
670 1.5 kanaoka }
671 1.5 kanaoka
672 1.5 kanaoka /* Create DMA maps for TX buffers */
673 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++) {
674 1.13 yamt error = bus_dmamap_create(sc->sc_dmat,
675 1.13 yamt round_page(IP_MAXPACKET),
676 1.35 tsutsui RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN, 0, 0,
677 1.15 yamt &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
678 1.5 kanaoka if (error) {
679 1.5 kanaoka aprint_error("%s: can't create DMA map for TX\n",
680 1.5 kanaoka sc->sc_dev.dv_xname);
681 1.5 kanaoka goto fail_4;
682 1.5 kanaoka }
683 1.5 kanaoka }
684 1.5 kanaoka
685 1.5 kanaoka /* Allocate DMA'able memory for the RX ring */
686 1.41 tsutsui if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
687 1.41 tsutsui RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
688 1.41 tsutsui &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
689 1.5 kanaoka aprint_error("%s: can't allocate rx listseg, error = %d\n",
690 1.5 kanaoka sc->sc_dev.dv_xname, error);
691 1.5 kanaoka goto fail_4;
692 1.5 kanaoka }
693 1.5 kanaoka
694 1.5 kanaoka /* Load the map for the RX ring. */
695 1.5 kanaoka if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
696 1.41 tsutsui sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
697 1.41 tsutsui (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
698 1.41 tsutsui BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
699 1.5 kanaoka aprint_error("%s: can't map rx list, error = %d\n",
700 1.5 kanaoka sc->sc_dev.dv_xname, error);
701 1.5 kanaoka goto fail_5;
702 1.5 kanaoka }
703 1.15 yamt memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
704 1.5 kanaoka
705 1.5 kanaoka if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
706 1.41 tsutsui RTK_RX_LIST_SZ, 0, 0,
707 1.41 tsutsui &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
708 1.5 kanaoka aprint_error("%s: can't create rx list map, error = %d\n",
709 1.5 kanaoka sc->sc_dev.dv_xname, error);
710 1.5 kanaoka goto fail_6;
711 1.5 kanaoka }
712 1.5 kanaoka
713 1.5 kanaoka if ((error = bus_dmamap_load(sc->sc_dmat,
714 1.41 tsutsui sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
715 1.41 tsutsui RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
716 1.5 kanaoka aprint_error("%s: can't load rx list, error = %d\n",
717 1.5 kanaoka sc->sc_dev.dv_xname, error);
718 1.5 kanaoka goto fail_7;
719 1.5 kanaoka }
720 1.5 kanaoka
721 1.5 kanaoka /* Create DMA maps for RX buffers */
722 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++) {
723 1.5 kanaoka error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
724 1.35 tsutsui 0, 0, &sc->rtk_ldata.rtk_rx_dmamap[i]);
725 1.5 kanaoka if (error) {
726 1.5 kanaoka aprint_error("%s: can't create DMA map for RX\n",
727 1.5 kanaoka sc->sc_dev.dv_xname);
728 1.5 kanaoka goto fail_8;
729 1.5 kanaoka }
730 1.1 jonathan }
731 1.1 jonathan
732 1.6 kanaoka /*
733 1.6 kanaoka * Record interface as attached. From here, we should not fail.
734 1.6 kanaoka */
735 1.6 kanaoka sc->sc_flags |= RTK_ATTACHED;
736 1.6 kanaoka
737 1.1 jonathan ifp = &sc->ethercom.ec_if;
738 1.1 jonathan ifp->if_softc = sc;
739 1.1 jonathan strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
740 1.1 jonathan ifp->if_mtu = ETHERMTU;
741 1.1 jonathan ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
742 1.1 jonathan ifp->if_ioctl = re_ioctl;
743 1.23 pavel sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
744 1.23 pavel
745 1.24 blymn /*
746 1.23 pavel * This is a way to disable hw VLAN tagging by default
747 1.23 pavel * (RE_VLAN is undefined), as it is problematic. PR 32643
748 1.23 pavel */
749 1.23 pavel
750 1.23 pavel #ifdef RE_VLAN
751 1.23 pavel sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
752 1.23 pavel #endif
753 1.1 jonathan ifp->if_start = re_start;
754 1.3 kanaoka ifp->if_stop = re_stop;
755 1.19 yamt
756 1.19 yamt /*
757 1.19 yamt * IFCAP_CSUM_IPv4_Tx seems broken for small packets.
758 1.19 yamt */
759 1.19 yamt
760 1.1 jonathan ifp->if_capabilities |=
761 1.19 yamt /* IFCAP_CSUM_IPv4_Tx | */ IFCAP_CSUM_IPv4_Rx |
762 1.18 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
763 1.18 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
764 1.13 yamt IFCAP_TSOv4;
765 1.1 jonathan ifp->if_watchdog = re_watchdog;
766 1.1 jonathan ifp->if_init = re_init;
767 1.1 jonathan if (sc->rtk_type == RTK_8169)
768 1.1 jonathan ifp->if_baudrate = 1000000000;
769 1.1 jonathan else
770 1.1 jonathan ifp->if_baudrate = 100000000;
771 1.1 jonathan ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
772 1.1 jonathan ifp->if_capenable = ifp->if_capabilities;
773 1.1 jonathan IFQ_SET_READY(&ifp->if_snd);
774 1.1 jonathan
775 1.1 jonathan callout_init(&sc->rtk_tick_ch);
776 1.1 jonathan
777 1.1 jonathan /* Do MII setup */
778 1.1 jonathan sc->mii.mii_ifp = ifp;
779 1.1 jonathan sc->mii.mii_readreg = re_miibus_readreg;
780 1.1 jonathan sc->mii.mii_writereg = re_miibus_writereg;
781 1.1 jonathan sc->mii.mii_statchg = re_miibus_statchg;
782 1.1 jonathan ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
783 1.1 jonathan re_ifmedia_sts);
784 1.1 jonathan mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
785 1.1 jonathan MII_OFFSET_ANY, 0);
786 1.4 kanaoka ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
787 1.1 jonathan
788 1.1 jonathan /*
789 1.1 jonathan * Call MI attach routine.
790 1.1 jonathan */
791 1.1 jonathan if_attach(ifp);
792 1.1 jonathan ether_ifattach(ifp, eaddr);
793 1.1 jonathan
794 1.1 jonathan
795 1.1 jonathan /*
796 1.1 jonathan * Make sure the interface is shutdown during reboot.
797 1.1 jonathan */
798 1.1 jonathan sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
799 1.1 jonathan if (sc->sc_sdhook == NULL)
800 1.4 kanaoka aprint_error("%s: WARNING: unable to establish shutdown hook\n",
801 1.1 jonathan sc->sc_dev.dv_xname);
802 1.1 jonathan /*
803 1.1 jonathan * Add a suspend hook to make sure we come back up after a
804 1.1 jonathan * resume.
805 1.1 jonathan */
806 1.26 jmcneill sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
807 1.26 jmcneill re_power, sc);
808 1.1 jonathan if (sc->sc_powerhook == NULL)
809 1.4 kanaoka aprint_error("%s: WARNING: unable to establish power hook\n",
810 1.1 jonathan sc->sc_dev.dv_xname);
811 1.1 jonathan
812 1.1 jonathan
813 1.5 kanaoka return;
814 1.5 kanaoka
815 1.41 tsutsui fail_8:
816 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
817 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++)
818 1.5 kanaoka if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
819 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
820 1.5 kanaoka sc->rtk_ldata.rtk_rx_dmamap[i]);
821 1.5 kanaoka
822 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
823 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
824 1.41 tsutsui fail_7:
825 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
826 1.41 tsutsui fail_6:
827 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
828 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
829 1.41 tsutsui fail_5:
830 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
831 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
832 1.5 kanaoka
833 1.41 tsutsui fail_4:
834 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
835 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++)
836 1.15 yamt if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
837 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
838 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_dmamap);
839 1.5 kanaoka
840 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
841 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
842 1.41 tsutsui fail_3:
843 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
844 1.41 tsutsui fail_2:
845 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
846 1.15 yamt (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
847 1.41 tsutsui fail_1:
848 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
849 1.5 kanaoka &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
850 1.41 tsutsui fail_0:
851 1.1 jonathan return;
852 1.1 jonathan }
853 1.1 jonathan
854 1.1 jonathan
855 1.1 jonathan /*
856 1.1 jonathan * re_activate:
857 1.1 jonathan * Handle device activation/deactivation requests.
858 1.1 jonathan */
859 1.1 jonathan int
860 1.1 jonathan re_activate(struct device *self, enum devact act)
861 1.1 jonathan {
862 1.41 tsutsui struct rtk_softc *sc = (void *)self;
863 1.1 jonathan int s, error = 0;
864 1.1 jonathan
865 1.1 jonathan s = splnet();
866 1.1 jonathan switch (act) {
867 1.1 jonathan case DVACT_ACTIVATE:
868 1.1 jonathan error = EOPNOTSUPP;
869 1.1 jonathan break;
870 1.1 jonathan case DVACT_DEACTIVATE:
871 1.1 jonathan mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
872 1.1 jonathan if_deactivate(&sc->ethercom.ec_if);
873 1.1 jonathan break;
874 1.1 jonathan }
875 1.1 jonathan splx(s);
876 1.1 jonathan
877 1.4 kanaoka return error;
878 1.1 jonathan }
879 1.1 jonathan
880 1.1 jonathan /*
881 1.1 jonathan * re_detach:
882 1.1 jonathan * Detach a rtk interface.
883 1.1 jonathan */
884 1.1 jonathan int
885 1.1 jonathan re_detach(struct rtk_softc *sc)
886 1.1 jonathan {
887 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
888 1.5 kanaoka int i;
889 1.1 jonathan
890 1.1 jonathan /*
891 1.1 jonathan * Succeed now if there isn't any work to do.
892 1.1 jonathan */
893 1.1 jonathan if ((sc->sc_flags & RTK_ATTACHED) == 0)
894 1.4 kanaoka return 0;
895 1.1 jonathan
896 1.1 jonathan /* Unhook our tick handler. */
897 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
898 1.1 jonathan
899 1.1 jonathan /* Detach all PHYs. */
900 1.1 jonathan mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
901 1.1 jonathan
902 1.1 jonathan /* Delete all remaining media. */
903 1.1 jonathan ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
904 1.1 jonathan
905 1.1 jonathan ether_ifdetach(ifp);
906 1.1 jonathan if_detach(ifp);
907 1.1 jonathan
908 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
909 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++)
910 1.5 kanaoka if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
911 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
912 1.5 kanaoka sc->rtk_ldata.rtk_rx_dmamap[i]);
913 1.5 kanaoka
914 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
915 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
916 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
917 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
918 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
919 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
920 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
921 1.5 kanaoka
922 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
923 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++)
924 1.15 yamt if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
925 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
926 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_dmamap);
927 1.5 kanaoka
928 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
929 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
930 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
931 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
932 1.15 yamt (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
933 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
934 1.5 kanaoka &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
935 1.5 kanaoka
936 1.12 perry
937 1.1 jonathan shutdownhook_disestablish(sc->sc_sdhook);
938 1.1 jonathan powerhook_disestablish(sc->sc_powerhook);
939 1.1 jonathan
940 1.4 kanaoka return 0;
941 1.1 jonathan }
942 1.1 jonathan
943 1.1 jonathan /*
944 1.1 jonathan * re_enable:
945 1.1 jonathan * Enable the RTL81X9 chip.
946 1.1 jonathan */
947 1.12 perry static int
948 1.1 jonathan re_enable(struct rtk_softc *sc)
949 1.1 jonathan {
950 1.41 tsutsui
951 1.1 jonathan if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
952 1.1 jonathan if ((*sc->sc_enable)(sc) != 0) {
953 1.4 kanaoka aprint_error("%s: device enable failed\n",
954 1.1 jonathan sc->sc_dev.dv_xname);
955 1.4 kanaoka return EIO;
956 1.1 jonathan }
957 1.1 jonathan sc->sc_flags |= RTK_ENABLED;
958 1.1 jonathan }
959 1.4 kanaoka return 0;
960 1.1 jonathan }
961 1.1 jonathan
962 1.1 jonathan /*
963 1.1 jonathan * re_disable:
964 1.1 jonathan * Disable the RTL81X9 chip.
965 1.1 jonathan */
966 1.12 perry static void
967 1.1 jonathan re_disable(struct rtk_softc *sc)
968 1.1 jonathan {
969 1.1 jonathan
970 1.1 jonathan if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
971 1.1 jonathan (*sc->sc_disable)(sc);
972 1.1 jonathan sc->sc_flags &= ~RTK_ENABLED;
973 1.1 jonathan }
974 1.1 jonathan }
975 1.1 jonathan
976 1.1 jonathan /*
977 1.1 jonathan * re_power:
978 1.1 jonathan * Power management (suspend/resume) hook.
979 1.1 jonathan */
980 1.12 perry void
981 1.1 jonathan re_power(int why, void *arg)
982 1.1 jonathan {
983 1.41 tsutsui struct rtk_softc *sc = (void *)arg;
984 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
985 1.1 jonathan int s;
986 1.1 jonathan
987 1.1 jonathan s = splnet();
988 1.1 jonathan switch (why) {
989 1.1 jonathan case PWR_SUSPEND:
990 1.1 jonathan case PWR_STANDBY:
991 1.3 kanaoka re_stop(ifp, 0);
992 1.1 jonathan if (sc->sc_power != NULL)
993 1.1 jonathan (*sc->sc_power)(sc, why);
994 1.1 jonathan break;
995 1.1 jonathan case PWR_RESUME:
996 1.1 jonathan if (ifp->if_flags & IFF_UP) {
997 1.1 jonathan if (sc->sc_power != NULL)
998 1.1 jonathan (*sc->sc_power)(sc, why);
999 1.1 jonathan re_init(ifp);
1000 1.1 jonathan }
1001 1.1 jonathan break;
1002 1.1 jonathan case PWR_SOFTSUSPEND:
1003 1.1 jonathan case PWR_SOFTSTANDBY:
1004 1.1 jonathan case PWR_SOFTRESUME:
1005 1.1 jonathan break;
1006 1.1 jonathan }
1007 1.1 jonathan splx(s);
1008 1.1 jonathan }
1009 1.1 jonathan
1010 1.1 jonathan
1011 1.1 jonathan static int
1012 1.1 jonathan re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1013 1.1 jonathan {
1014 1.1 jonathan struct mbuf *n = NULL;
1015 1.1 jonathan bus_dmamap_t map;
1016 1.1 jonathan struct rtk_desc *d;
1017 1.40 tsutsui uint32_t cmdstat;
1018 1.1 jonathan int error;
1019 1.1 jonathan
1020 1.1 jonathan if (m == NULL) {
1021 1.1 jonathan MGETHDR(n, M_DONTWAIT, MT_DATA);
1022 1.1 jonathan if (n == NULL)
1023 1.4 kanaoka return ENOBUFS;
1024 1.1 jonathan
1025 1.42 tsutsui MCLGET(n, M_DONTWAIT);
1026 1.42 tsutsui if ((n->m_flags & M_EXT) == 0) {
1027 1.42 tsutsui m_freem(n);
1028 1.4 kanaoka return ENOBUFS;
1029 1.1 jonathan }
1030 1.42 tsutsui m = n;
1031 1.1 jonathan } else
1032 1.1 jonathan m->m_data = m->m_ext.ext_buf;
1033 1.1 jonathan
1034 1.1 jonathan /*
1035 1.1 jonathan * Initialize mbuf length fields and fixup
1036 1.1 jonathan * alignment so that the frame payload is
1037 1.1 jonathan * longword aligned.
1038 1.1 jonathan */
1039 1.42 tsutsui m->m_len = m->m_pkthdr.len = MCLBYTES - RTK_ETHER_ALIGN;
1040 1.42 tsutsui m->m_data += RTK_ETHER_ALIGN;
1041 1.1 jonathan
1042 1.1 jonathan map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1043 1.21 yamt error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1044 1.21 yamt BUS_DMA_READ|BUS_DMA_NOWAIT);
1045 1.1 jonathan
1046 1.1 jonathan if (error)
1047 1.1 jonathan goto out;
1048 1.1 jonathan
1049 1.33 tsutsui bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1050 1.33 tsutsui BUS_DMASYNC_PREREAD);
1051 1.33 tsutsui
1052 1.1 jonathan d = &sc->rtk_ldata.rtk_rx_list[idx];
1053 1.32 tsutsui RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1054 1.38 tsutsui cmdstat = le32toh(d->rtk_cmdstat);
1055 1.38 tsutsui RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1056 1.38 tsutsui if (cmdstat & RTK_RDESC_STAT_OWN) {
1057 1.44 tsutsui aprint_error("%s: tried to map busy RX descriptor\n",
1058 1.32 tsutsui sc->sc_dev.dv_xname);
1059 1.1 jonathan goto out;
1060 1.32 tsutsui }
1061 1.1 jonathan
1062 1.1 jonathan cmdstat = map->dm_segs[0].ds_len;
1063 1.1 jonathan if (idx == (RTK_RX_DESC_CNT - 1))
1064 1.15 yamt cmdstat |= RTK_RDESC_CMD_EOR;
1065 1.48 tsutsui d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1066 1.48 tsutsui d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1067 1.48 tsutsui d->rtk_cmdstat = htole32(cmdstat);
1068 1.48 tsutsui RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1069 1.32 tsutsui cmdstat |= RTK_RDESC_CMD_OWN;
1070 1.1 jonathan d->rtk_cmdstat = htole32(cmdstat);
1071 1.32 tsutsui RTK_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1072 1.1 jonathan
1073 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1074 1.1 jonathan
1075 1.1 jonathan return 0;
1076 1.42 tsutsui out:
1077 1.1 jonathan if (n != NULL)
1078 1.1 jonathan m_freem(n);
1079 1.1 jonathan return ENOMEM;
1080 1.1 jonathan }
1081 1.1 jonathan
1082 1.1 jonathan static int
1083 1.1 jonathan re_tx_list_init(struct rtk_softc *sc)
1084 1.1 jonathan {
1085 1.15 yamt int i;
1086 1.15 yamt
1087 1.15 yamt memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1088 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++) {
1089 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1090 1.15 yamt }
1091 1.1 jonathan
1092 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1093 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map, 0,
1094 1.32 tsutsui sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1095 1.32 tsutsui BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1096 1.15 yamt sc->rtk_ldata.rtk_txq_prodidx = 0;
1097 1.15 yamt sc->rtk_ldata.rtk_txq_considx = 0;
1098 1.15 yamt sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1099 1.15 yamt sc->rtk_ldata.rtk_tx_nextfree = 0;
1100 1.1 jonathan
1101 1.4 kanaoka return 0;
1102 1.1 jonathan }
1103 1.1 jonathan
1104 1.1 jonathan static int
1105 1.1 jonathan re_rx_list_init(struct rtk_softc *sc)
1106 1.1 jonathan {
1107 1.1 jonathan int i;
1108 1.1 jonathan
1109 1.1 jonathan memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1110 1.1 jonathan memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1111 1.1 jonathan (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1112 1.1 jonathan
1113 1.1 jonathan for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1114 1.1 jonathan if (re_newbuf(sc, i, NULL) == ENOBUFS)
1115 1.4 kanaoka return ENOBUFS;
1116 1.1 jonathan }
1117 1.1 jonathan
1118 1.1 jonathan sc->rtk_ldata.rtk_rx_prodidx = 0;
1119 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1120 1.1 jonathan
1121 1.4 kanaoka return 0;
1122 1.1 jonathan }
1123 1.1 jonathan
1124 1.1 jonathan /*
1125 1.1 jonathan * RX handler for C+ and 8169. For the gigE chips, we support
1126 1.1 jonathan * the reception of jumbo frames that have been fragmented
1127 1.1 jonathan * across multiple 2K mbuf cluster buffers.
1128 1.1 jonathan */
1129 1.1 jonathan static void
1130 1.1 jonathan re_rxeof(struct rtk_softc *sc)
1131 1.1 jonathan {
1132 1.1 jonathan struct mbuf *m;
1133 1.1 jonathan struct ifnet *ifp;
1134 1.1 jonathan int i, total_len;
1135 1.1 jonathan struct rtk_desc *cur_rx;
1136 1.40 tsutsui uint32_t rxstat, rxvlan;
1137 1.1 jonathan
1138 1.1 jonathan ifp = &sc->ethercom.ec_if;
1139 1.1 jonathan
1140 1.47 tsutsui for (i = sc->rtk_ldata.rtk_rx_prodidx;; i = RTK_NEXT_RX_DESC(sc, i)) {
1141 1.1 jonathan cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1142 1.32 tsutsui RTK_RXDESCSYNC(sc, i,
1143 1.32 tsutsui BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1144 1.32 tsutsui rxstat = le32toh(cur_rx->rtk_cmdstat);
1145 1.38 tsutsui RTK_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1146 1.32 tsutsui if ((rxstat & RTK_RDESC_STAT_OWN) != 0) {
1147 1.32 tsutsui break;
1148 1.32 tsutsui }
1149 1.32 tsutsui total_len = rxstat & sc->rtk_rxlenmask;
1150 1.1 jonathan m = sc->rtk_ldata.rtk_rx_mbuf[i];
1151 1.1 jonathan rxvlan = le32toh(cur_rx->rtk_vlanctl);
1152 1.1 jonathan
1153 1.1 jonathan /* Invalidate the RX mbuf and unload its map */
1154 1.1 jonathan
1155 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1156 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i],
1157 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1158 1.20 briggs BUS_DMASYNC_POSTREAD);
1159 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
1160 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i]);
1161 1.1 jonathan
1162 1.41 tsutsui if ((rxstat & RTK_RDESC_STAT_EOF) == 0) {
1163 1.1 jonathan m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1164 1.1 jonathan if (sc->rtk_head == NULL)
1165 1.1 jonathan sc->rtk_head = sc->rtk_tail = m;
1166 1.1 jonathan else {
1167 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1168 1.1 jonathan sc->rtk_tail->m_next = m;
1169 1.1 jonathan sc->rtk_tail = m;
1170 1.1 jonathan }
1171 1.1 jonathan re_newbuf(sc, i, NULL);
1172 1.1 jonathan continue;
1173 1.1 jonathan }
1174 1.1 jonathan
1175 1.1 jonathan /*
1176 1.1 jonathan * NOTE: for the 8139C+, the frame length field
1177 1.1 jonathan * is always 12 bits in size, but for the gigE chips,
1178 1.1 jonathan * it is 13 bits (since the max RX frame length is 16K).
1179 1.1 jonathan * Unfortunately, all 32 bits in the status word
1180 1.1 jonathan * were already used, so to make room for the extra
1181 1.1 jonathan * length bit, RealTek took out the 'frame alignment
1182 1.1 jonathan * error' bit and shifted the other status bits
1183 1.1 jonathan * over one slot. The OWN, EOR, FS and LS bits are
1184 1.1 jonathan * still in the same places. We have already extracted
1185 1.1 jonathan * the frame length and checked the OWN bit, so rather
1186 1.1 jonathan * than using an alternate bit mapping, we shift the
1187 1.1 jonathan * status bits one space to the right so we can evaluate
1188 1.1 jonathan * them using the 8169 status as though it was in the
1189 1.1 jonathan * same format as that of the 8139C+.
1190 1.1 jonathan */
1191 1.1 jonathan if (sc->rtk_type == RTK_8169)
1192 1.1 jonathan rxstat >>= 1;
1193 1.1 jonathan
1194 1.41 tsutsui if ((rxstat & RTK_RDESC_STAT_RXERRSUM) != 0) {
1195 1.1 jonathan ifp->if_ierrors++;
1196 1.1 jonathan /*
1197 1.1 jonathan * If this is part of a multi-fragment packet,
1198 1.1 jonathan * discard all the pieces.
1199 1.1 jonathan */
1200 1.1 jonathan if (sc->rtk_head != NULL) {
1201 1.1 jonathan m_freem(sc->rtk_head);
1202 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1203 1.1 jonathan }
1204 1.1 jonathan re_newbuf(sc, i, m);
1205 1.1 jonathan continue;
1206 1.1 jonathan }
1207 1.1 jonathan
1208 1.1 jonathan /*
1209 1.1 jonathan * If allocating a replacement mbuf fails,
1210 1.1 jonathan * reload the current one.
1211 1.1 jonathan */
1212 1.1 jonathan
1213 1.41 tsutsui if (re_newbuf(sc, i, NULL) != 0) {
1214 1.1 jonathan ifp->if_ierrors++;
1215 1.1 jonathan if (sc->rtk_head != NULL) {
1216 1.1 jonathan m_freem(sc->rtk_head);
1217 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1218 1.1 jonathan }
1219 1.1 jonathan re_newbuf(sc, i, m);
1220 1.1 jonathan continue;
1221 1.1 jonathan }
1222 1.1 jonathan
1223 1.1 jonathan if (sc->rtk_head != NULL) {
1224 1.1 jonathan m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1225 1.12 perry /*
1226 1.1 jonathan * Special case: if there's 4 bytes or less
1227 1.1 jonathan * in this buffer, the mbuf can be discarded:
1228 1.1 jonathan * the last 4 bytes is the CRC, which we don't
1229 1.1 jonathan * care about anyway.
1230 1.1 jonathan */
1231 1.1 jonathan if (m->m_len <= ETHER_CRC_LEN) {
1232 1.1 jonathan sc->rtk_tail->m_len -=
1233 1.1 jonathan (ETHER_CRC_LEN - m->m_len);
1234 1.1 jonathan m_freem(m);
1235 1.1 jonathan } else {
1236 1.1 jonathan m->m_len -= ETHER_CRC_LEN;
1237 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1238 1.1 jonathan sc->rtk_tail->m_next = m;
1239 1.1 jonathan }
1240 1.1 jonathan m = sc->rtk_head;
1241 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1242 1.1 jonathan m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1243 1.1 jonathan } else
1244 1.1 jonathan m->m_pkthdr.len = m->m_len =
1245 1.1 jonathan (total_len - ETHER_CRC_LEN);
1246 1.1 jonathan
1247 1.1 jonathan ifp->if_ipackets++;
1248 1.1 jonathan m->m_pkthdr.rcvif = ifp;
1249 1.1 jonathan
1250 1.1 jonathan /* Do RX checksumming if enabled */
1251 1.1 jonathan
1252 1.18 yamt if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1253 1.1 jonathan
1254 1.1 jonathan /* Check IP header checksum */
1255 1.1 jonathan if (rxstat & RTK_RDESC_STAT_PROTOID)
1256 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1257 1.1 jonathan if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1258 1.4 kanaoka m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1259 1.1 jonathan }
1260 1.1 jonathan
1261 1.1 jonathan /* Check TCP/UDP checksum */
1262 1.1 jonathan if (RTK_TCPPKT(rxstat) &&
1263 1.18 yamt (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1264 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1265 1.1 jonathan if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1266 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1267 1.1 jonathan }
1268 1.1 jonathan if (RTK_UDPPKT(rxstat) &&
1269 1.18 yamt (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1270 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1271 1.1 jonathan if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1272 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1273 1.1 jonathan }
1274 1.1 jonathan
1275 1.23 pavel #ifdef RE_VLAN
1276 1.1 jonathan if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1277 1.9 jdolecek VLAN_INPUT_TAG(ifp, m,
1278 1.9 jdolecek be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1279 1.9 jdolecek continue);
1280 1.1 jonathan }
1281 1.23 pavel #endif
1282 1.1 jonathan #if NBPFILTER > 0
1283 1.1 jonathan if (ifp->if_bpf)
1284 1.1 jonathan bpf_mtap(ifp->if_bpf, m);
1285 1.1 jonathan #endif
1286 1.1 jonathan (*ifp->if_input)(ifp, m);
1287 1.1 jonathan }
1288 1.1 jonathan
1289 1.1 jonathan sc->rtk_ldata.rtk_rx_prodidx = i;
1290 1.1 jonathan }
1291 1.1 jonathan
1292 1.1 jonathan static void
1293 1.1 jonathan re_txeof(struct rtk_softc *sc)
1294 1.1 jonathan {
1295 1.1 jonathan struct ifnet *ifp;
1296 1.1 jonathan int idx;
1297 1.28 yamt boolean_t done = FALSE;
1298 1.1 jonathan
1299 1.1 jonathan ifp = &sc->ethercom.ec_if;
1300 1.15 yamt idx = sc->rtk_ldata.rtk_txq_considx;
1301 1.1 jonathan
1302 1.37 tsutsui for (;;) {
1303 1.15 yamt struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1304 1.17 yamt int descidx;
1305 1.40 tsutsui uint32_t txstat;
1306 1.15 yamt
1307 1.17 yamt if (txq->txq_mbuf == NULL) {
1308 1.17 yamt KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1309 1.17 yamt break;
1310 1.17 yamt }
1311 1.15 yamt
1312 1.17 yamt descidx = txq->txq_descidx;
1313 1.32 tsutsui RTK_TXDESCSYNC(sc, descidx,
1314 1.32 tsutsui BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1315 1.15 yamt txstat =
1316 1.15 yamt le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1317 1.38 tsutsui RTK_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1318 1.15 yamt KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1319 1.32 tsutsui if (txstat & RTK_TDESC_CMD_OWN) {
1320 1.1 jonathan break;
1321 1.32 tsutsui }
1322 1.1 jonathan
1323 1.15 yamt sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1324 1.15 yamt KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1325 1.32 tsutsui bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1326 1.32 tsutsui 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1327 1.15 yamt bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1328 1.15 yamt m_freem(txq->txq_mbuf);
1329 1.15 yamt txq->txq_mbuf = NULL;
1330 1.15 yamt
1331 1.15 yamt if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1332 1.15 yamt ifp->if_collisions++;
1333 1.15 yamt if (txstat & RTK_TDESC_STAT_TXERRSUM)
1334 1.15 yamt ifp->if_oerrors++;
1335 1.15 yamt else
1336 1.15 yamt ifp->if_opackets++;
1337 1.1 jonathan
1338 1.47 tsutsui idx = RTK_NEXT_TXQ(sc, idx);
1339 1.28 yamt done = TRUE;
1340 1.1 jonathan }
1341 1.1 jonathan
1342 1.1 jonathan /* No changes made to the TX ring, so no flush needed */
1343 1.1 jonathan
1344 1.28 yamt if (done) {
1345 1.15 yamt sc->rtk_ldata.rtk_txq_considx = idx;
1346 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1347 1.1 jonathan ifp->if_timer = 0;
1348 1.1 jonathan }
1349 1.1 jonathan
1350 1.1 jonathan /*
1351 1.1 jonathan * If not all descriptors have been released reaped yet,
1352 1.1 jonathan * reload the timer so that we will eventually get another
1353 1.1 jonathan * interrupt that will cause us to re-enter this routine.
1354 1.1 jonathan * This is done in case the transmitter has gone idle.
1355 1.1 jonathan */
1356 1.15 yamt if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1357 1.4 kanaoka CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1358 1.1 jonathan }
1359 1.1 jonathan
1360 1.1 jonathan /*
1361 1.1 jonathan * Stop all chip I/O so that the kernel's probe routines don't
1362 1.1 jonathan * get confused by errant DMAs when rebooting.
1363 1.1 jonathan */
1364 1.1 jonathan static void
1365 1.1 jonathan re_shutdown(void *vsc)
1366 1.1 jonathan
1367 1.1 jonathan {
1368 1.41 tsutsui struct rtk_softc *sc = vsc;
1369 1.1 jonathan
1370 1.3 kanaoka re_stop(&sc->ethercom.ec_if, 0);
1371 1.1 jonathan }
1372 1.1 jonathan
1373 1.1 jonathan
1374 1.1 jonathan static void
1375 1.1 jonathan re_tick(void *xsc)
1376 1.1 jonathan {
1377 1.1 jonathan struct rtk_softc *sc = xsc;
1378 1.1 jonathan int s;
1379 1.1 jonathan
1380 1.1 jonathan /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1381 1.1 jonathan s = splnet();
1382 1.1 jonathan
1383 1.1 jonathan mii_tick(&sc->mii);
1384 1.1 jonathan splx(s);
1385 1.1 jonathan
1386 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1387 1.1 jonathan }
1388 1.1 jonathan
1389 1.1 jonathan #ifdef DEVICE_POLLING
1390 1.1 jonathan static void
1391 1.1 jonathan re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1392 1.1 jonathan {
1393 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1394 1.1 jonathan
1395 1.1 jonathan RTK_LOCK(sc);
1396 1.41 tsutsui if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1397 1.1 jonathan ether_poll_deregister(ifp);
1398 1.1 jonathan cmd = POLL_DEREGISTER;
1399 1.1 jonathan }
1400 1.1 jonathan if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1401 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1402 1.1 jonathan goto done;
1403 1.1 jonathan }
1404 1.1 jonathan
1405 1.1 jonathan sc->rxcycles = count;
1406 1.1 jonathan re_rxeof(sc);
1407 1.1 jonathan re_txeof(sc);
1408 1.1 jonathan
1409 1.25 rpaulo if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1410 1.1 jonathan (*ifp->if_start)(ifp);
1411 1.1 jonathan
1412 1.1 jonathan if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1413 1.40 tsutsui uint16_t status;
1414 1.1 jonathan
1415 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1416 1.1 jonathan if (status == 0xffff)
1417 1.1 jonathan goto done;
1418 1.1 jonathan if (status)
1419 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1420 1.1 jonathan
1421 1.1 jonathan /*
1422 1.1 jonathan * XXX check behaviour on receiver stalls.
1423 1.1 jonathan */
1424 1.1 jonathan
1425 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1426 1.1 jonathan re_reset(sc);
1427 1.1 jonathan re_init(sc);
1428 1.1 jonathan }
1429 1.1 jonathan }
1430 1.41 tsutsui done:
1431 1.1 jonathan RTK_UNLOCK(sc);
1432 1.1 jonathan }
1433 1.1 jonathan #endif /* DEVICE_POLLING */
1434 1.1 jonathan
1435 1.1 jonathan int
1436 1.1 jonathan re_intr(void *arg)
1437 1.1 jonathan {
1438 1.1 jonathan struct rtk_softc *sc = arg;
1439 1.1 jonathan struct ifnet *ifp;
1440 1.40 tsutsui uint16_t status;
1441 1.1 jonathan int handled = 0;
1442 1.1 jonathan
1443 1.1 jonathan ifp = &sc->ethercom.ec_if;
1444 1.1 jonathan
1445 1.41 tsutsui if ((ifp->if_flags & IFF_UP) == 0)
1446 1.1 jonathan return 0;
1447 1.1 jonathan
1448 1.1 jonathan #ifdef DEVICE_POLLING
1449 1.4 kanaoka if (ifp->if_flags & IFF_POLLING)
1450 1.1 jonathan goto done;
1451 1.1 jonathan if ((ifp->if_capenable & IFCAP_POLLING) &&
1452 1.1 jonathan ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1453 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1454 1.1 jonathan re_poll(ifp, 0, 1);
1455 1.1 jonathan goto done;
1456 1.1 jonathan }
1457 1.1 jonathan #endif /* DEVICE_POLLING */
1458 1.1 jonathan
1459 1.1 jonathan for (;;) {
1460 1.1 jonathan
1461 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1462 1.1 jonathan /* If the card has gone away the read returns 0xffff. */
1463 1.1 jonathan if (status == 0xffff)
1464 1.1 jonathan break;
1465 1.1 jonathan if (status) {
1466 1.1 jonathan handled = 1;
1467 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1468 1.1 jonathan }
1469 1.1 jonathan
1470 1.1 jonathan if ((status & RTK_INTRS_CPLUS) == 0)
1471 1.1 jonathan break;
1472 1.1 jonathan
1473 1.8 jdolecek if ((status & RTK_ISR_RX_OK) ||
1474 1.8 jdolecek (status & RTK_ISR_RX_ERR))
1475 1.1 jonathan re_rxeof(sc);
1476 1.1 jonathan
1477 1.1 jonathan if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1478 1.1 jonathan (status & RTK_ISR_TX_ERR) ||
1479 1.1 jonathan (status & RTK_ISR_TX_DESC_UNAVAIL))
1480 1.1 jonathan re_txeof(sc);
1481 1.1 jonathan
1482 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1483 1.1 jonathan re_reset(sc);
1484 1.1 jonathan re_init(ifp);
1485 1.1 jonathan }
1486 1.1 jonathan
1487 1.1 jonathan if (status & RTK_ISR_LINKCHG) {
1488 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
1489 1.1 jonathan re_tick(sc);
1490 1.1 jonathan }
1491 1.1 jonathan }
1492 1.1 jonathan
1493 1.4 kanaoka if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1494 1.25 rpaulo if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1495 1.4 kanaoka (*ifp->if_start)(ifp);
1496 1.1 jonathan
1497 1.1 jonathan #ifdef DEVICE_POLLING
1498 1.41 tsutsui done:
1499 1.1 jonathan #endif
1500 1.1 jonathan
1501 1.1 jonathan return handled;
1502 1.1 jonathan }
1503 1.1 jonathan
1504 1.1 jonathan static int
1505 1.13 yamt re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1506 1.1 jonathan {
1507 1.1 jonathan bus_dmamap_t map;
1508 1.46 tsutsui int error, seg, uidx, startidx, curidx, lastidx;
1509 1.23 pavel #ifdef RE_VLAN
1510 1.1 jonathan struct m_tag *mtag;
1511 1.23 pavel #endif
1512 1.1 jonathan struct rtk_desc *d;
1513 1.40 tsutsui uint32_t cmdstat, rtk_flags;
1514 1.15 yamt struct rtk_txq *txq;
1515 1.1 jonathan
1516 1.17 yamt if (sc->rtk_ldata.rtk_tx_free <= 4) {
1517 1.4 kanaoka return EFBIG;
1518 1.17 yamt }
1519 1.1 jonathan
1520 1.1 jonathan /*
1521 1.1 jonathan * Set up checksum offload. Note: checksum offload bits must
1522 1.1 jonathan * appear in all descriptors of a multi-descriptor transmit
1523 1.1 jonathan * attempt. (This is according to testing done with an 8169
1524 1.1 jonathan * chip. I'm not sure if this is a requirement or a bug.)
1525 1.1 jonathan */
1526 1.1 jonathan
1527 1.13 yamt if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1528 1.40 tsutsui uint32_t segsz = m->m_pkthdr.segsz;
1529 1.1 jonathan
1530 1.13 yamt rtk_flags = RTK_TDESC_CMD_LGSEND |
1531 1.13 yamt (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1532 1.13 yamt } else {
1533 1.16 yamt
1534 1.16 yamt /*
1535 1.16 yamt * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1536 1.16 yamt * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1537 1.16 yamt * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1538 1.16 yamt */
1539 1.16 yamt
1540 1.13 yamt rtk_flags = 0;
1541 1.16 yamt if ((m->m_pkthdr.csum_flags &
1542 1.16 yamt (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1543 1.13 yamt rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1544 1.16 yamt if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1545 1.16 yamt rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1546 1.16 yamt } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1547 1.16 yamt rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1548 1.16 yamt }
1549 1.16 yamt }
1550 1.13 yamt }
1551 1.1 jonathan
1552 1.15 yamt txq = &sc->rtk_ldata.rtk_txq[*idx];
1553 1.15 yamt map = txq->txq_dmamap;
1554 1.21 yamt error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1555 1.21 yamt BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1556 1.1 jonathan
1557 1.1 jonathan if (error) {
1558 1.13 yamt /* XXX try to defrag if EFBIG? */
1559 1.13 yamt
1560 1.4 kanaoka aprint_error("%s: can't map mbuf (error %d)\n",
1561 1.1 jonathan sc->sc_dev.dv_xname, error);
1562 1.13 yamt
1563 1.14 yamt return error;
1564 1.1 jonathan }
1565 1.1 jonathan
1566 1.13 yamt if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1567 1.14 yamt error = EFBIG;
1568 1.13 yamt goto fail_unload;
1569 1.13 yamt }
1570 1.20 briggs
1571 1.20 briggs /*
1572 1.20 briggs * Make sure that the caches are synchronized before we
1573 1.20 briggs * ask the chip to start DMA for the packet data.
1574 1.20 briggs */
1575 1.20 briggs bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1576 1.41 tsutsui BUS_DMASYNC_PREWRITE);
1577 1.20 briggs
1578 1.1 jonathan /*
1579 1.1 jonathan * Map the segment array into descriptors. Note that we set the
1580 1.1 jonathan * start-of-frame and end-of-frame markers for either TX or RX, but
1581 1.1 jonathan * they really only have meaning in the TX case. (In the RX case,
1582 1.1 jonathan * it's the chip that tells us where packets begin and end.)
1583 1.1 jonathan * We also keep track of the end of the ring and set the
1584 1.1 jonathan * end-of-ring bits as needed, and we set the ownership bits
1585 1.1 jonathan * in all except the very first descriptor. (The caller will
1586 1.1 jonathan * set this descriptor later when it start transmission or
1587 1.1 jonathan * reception.)
1588 1.1 jonathan */
1589 1.15 yamt curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1590 1.45 tsutsui lastidx = -1;
1591 1.47 tsutsui for (seg = 0; seg < map->dm_nsegs;
1592 1.47 tsutsui seg++, curidx = RTK_NEXT_TX_DESC(sc, curidx)) {
1593 1.1 jonathan d = &sc->rtk_ldata.rtk_tx_list[curidx];
1594 1.32 tsutsui RTK_TXDESCSYNC(sc, curidx,
1595 1.32 tsutsui BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1596 1.38 tsutsui cmdstat = le32toh(d->rtk_cmdstat);
1597 1.38 tsutsui RTK_TXDESCSYNC(sc, curidx, BUS_DMASYNC_PREREAD);
1598 1.38 tsutsui if (cmdstat & RTK_TDESC_STAT_OWN) {
1599 1.44 tsutsui aprint_error("%s: tried to map busy TX descriptor\n",
1600 1.32 tsutsui sc->sc_dev.dv_xname);
1601 1.46 tsutsui for (; seg > 0; seg--) {
1602 1.46 tsutsui uidx = (curidx + RTK_TX_DESC_CNT(sc) - seg) %
1603 1.32 tsutsui RTK_TX_DESC_CNT(sc);
1604 1.32 tsutsui sc->rtk_ldata.rtk_tx_list[uidx].rtk_cmdstat = 0;
1605 1.32 tsutsui RTK_TXDESCSYNC(sc, uidx,
1606 1.32 tsutsui BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1607 1.13 yamt }
1608 1.13 yamt error = ENOBUFS;
1609 1.13 yamt goto fail_unload;
1610 1.13 yamt }
1611 1.1 jonathan
1612 1.46 tsutsui cmdstat = map->dm_segs[seg].ds_len;
1613 1.46 tsutsui if (seg == 0)
1614 1.1 jonathan cmdstat |= RTK_TDESC_CMD_SOF;
1615 1.1 jonathan else
1616 1.1 jonathan cmdstat |= RTK_TDESC_CMD_OWN;
1617 1.46 tsutsui if (seg == map->dm_nsegs - 1) {
1618 1.38 tsutsui cmdstat |= RTK_TDESC_CMD_EOF;
1619 1.45 tsutsui lastidx = curidx;
1620 1.45 tsutsui }
1621 1.15 yamt if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1622 1.1 jonathan cmdstat |= RTK_TDESC_CMD_EOR;
1623 1.1 jonathan d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1624 1.38 tsutsui d->rtk_bufaddr_lo =
1625 1.46 tsutsui htole32(RTK_ADDR_LO(map->dm_segs[seg].ds_addr));
1626 1.38 tsutsui d->rtk_bufaddr_hi =
1627 1.46 tsutsui htole32(RTK_ADDR_HI(map->dm_segs[seg].ds_addr));
1628 1.32 tsutsui RTK_TXDESCSYNC(sc, curidx,
1629 1.32 tsutsui BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1630 1.1 jonathan }
1631 1.45 tsutsui KASSERT(lastidx != -1);
1632 1.1 jonathan
1633 1.1 jonathan /*
1634 1.1 jonathan * Set up hardware VLAN tagging. Note: vlan tag info must
1635 1.1 jonathan * appear in the first descriptor of a multi-descriptor
1636 1.1 jonathan * transmission attempt.
1637 1.1 jonathan */
1638 1.1 jonathan
1639 1.23 pavel #ifdef RE_VLAN
1640 1.13 yamt if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1641 1.15 yamt sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1642 1.9 jdolecek htole32(htons(VLAN_TAG_VALUE(mtag)) |
1643 1.1 jonathan RTK_TDESC_VLANCTL_TAG);
1644 1.9 jdolecek }
1645 1.23 pavel #endif
1646 1.1 jonathan
1647 1.1 jonathan /* Transfer ownership of packet to the chip. */
1648 1.1 jonathan
1649 1.38 tsutsui sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1650 1.1 jonathan htole32(RTK_TDESC_CMD_OWN);
1651 1.38 tsutsui RTK_TXDESCSYNC(sc, startidx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1652 1.1 jonathan
1653 1.45 tsutsui /* update info of TX queue and descriptors */
1654 1.45 tsutsui txq->txq_mbuf = m;
1655 1.45 tsutsui txq->txq_descidx = lastidx;
1656 1.45 tsutsui
1657 1.45 tsutsui sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1658 1.15 yamt sc->rtk_ldata.rtk_tx_nextfree = curidx;
1659 1.45 tsutsui
1660 1.47 tsutsui *idx = RTK_NEXT_TXQ(sc, *idx);
1661 1.1 jonathan
1662 1.1 jonathan return 0;
1663 1.13 yamt
1664 1.41 tsutsui fail_unload:
1665 1.13 yamt bus_dmamap_unload(sc->sc_dmat, map);
1666 1.13 yamt
1667 1.13 yamt return error;
1668 1.1 jonathan }
1669 1.1 jonathan
1670 1.1 jonathan /*
1671 1.1 jonathan * Main transmit routine for C+ and gigE NICs.
1672 1.1 jonathan */
1673 1.1 jonathan
1674 1.1 jonathan static void
1675 1.1 jonathan re_start(struct ifnet *ifp)
1676 1.1 jonathan {
1677 1.1 jonathan struct rtk_softc *sc;
1678 1.1 jonathan int idx;
1679 1.29 yamt boolean_t done = FALSE;
1680 1.1 jonathan
1681 1.1 jonathan sc = ifp->if_softc;
1682 1.1 jonathan
1683 1.15 yamt idx = sc->rtk_ldata.rtk_txq_prodidx;
1684 1.37 tsutsui for (;;) {
1685 1.17 yamt struct mbuf *m;
1686 1.13 yamt int error;
1687 1.13 yamt
1688 1.17 yamt IFQ_POLL(&ifp->if_snd, m);
1689 1.17 yamt if (m == NULL)
1690 1.1 jonathan break;
1691 1.1 jonathan
1692 1.17 yamt if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1693 1.17 yamt KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1694 1.17 yamt ifp->if_flags |= IFF_OACTIVE;
1695 1.17 yamt break;
1696 1.17 yamt }
1697 1.17 yamt
1698 1.17 yamt error = re_encap(sc, m, &idx);
1699 1.14 yamt if (error == EFBIG &&
1700 1.15 yamt sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1701 1.17 yamt IFQ_DEQUEUE(&ifp->if_snd, m);
1702 1.17 yamt m_freem(m);
1703 1.13 yamt ifp->if_oerrors++;
1704 1.13 yamt continue;
1705 1.13 yamt }
1706 1.13 yamt if (error) {
1707 1.1 jonathan ifp->if_flags |= IFF_OACTIVE;
1708 1.1 jonathan break;
1709 1.1 jonathan }
1710 1.17 yamt
1711 1.17 yamt IFQ_DEQUEUE(&ifp->if_snd, m);
1712 1.17 yamt
1713 1.1 jonathan #if NBPFILTER > 0
1714 1.1 jonathan /*
1715 1.1 jonathan * If there's a BPF listener, bounce a copy of this frame
1716 1.1 jonathan * to him.
1717 1.1 jonathan */
1718 1.1 jonathan if (ifp->if_bpf)
1719 1.17 yamt bpf_mtap(ifp->if_bpf, m);
1720 1.1 jonathan #endif
1721 1.29 yamt
1722 1.29 yamt done = TRUE;
1723 1.1 jonathan }
1724 1.1 jonathan
1725 1.29 yamt if (!done) {
1726 1.17 yamt return;
1727 1.17 yamt }
1728 1.17 yamt sc->rtk_ldata.rtk_txq_prodidx = idx;
1729 1.17 yamt
1730 1.1 jonathan /*
1731 1.1 jonathan * RealTek put the TX poll request register in a different
1732 1.1 jonathan * location on the 8169 gigE chip. I don't know why.
1733 1.1 jonathan */
1734 1.1 jonathan
1735 1.1 jonathan if (sc->rtk_type == RTK_8169)
1736 1.1 jonathan CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1737 1.1 jonathan else
1738 1.43 tsutsui CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1739 1.1 jonathan
1740 1.1 jonathan /*
1741 1.1 jonathan * Use the countdown timer for interrupt moderation.
1742 1.1 jonathan * 'TX done' interrupts are disabled. Instead, we reset the
1743 1.1 jonathan * countdown timer, which will begin counting until it hits
1744 1.1 jonathan * the value in the TIMERINT register, and then trigger an
1745 1.1 jonathan * interrupt. Each time we write to the TIMERCNT register,
1746 1.1 jonathan * the timer count is reset to 0.
1747 1.1 jonathan */
1748 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1749 1.1 jonathan
1750 1.1 jonathan /*
1751 1.1 jonathan * Set a timeout in case the chip goes out to lunch.
1752 1.1 jonathan */
1753 1.1 jonathan ifp->if_timer = 5;
1754 1.1 jonathan }
1755 1.1 jonathan
1756 1.1 jonathan static int
1757 1.1 jonathan re_init(struct ifnet *ifp)
1758 1.1 jonathan {
1759 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1760 1.49 tsutsui uint8_t *enaddr;
1761 1.40 tsutsui uint32_t rxcfg = 0;
1762 1.40 tsutsui uint32_t reg;
1763 1.1 jonathan int error;
1764 1.12 perry
1765 1.1 jonathan if ((error = re_enable(sc)) != 0)
1766 1.1 jonathan goto out;
1767 1.1 jonathan
1768 1.1 jonathan /*
1769 1.1 jonathan * Cancel pending I/O and free all RX/TX buffers.
1770 1.1 jonathan */
1771 1.3 kanaoka re_stop(ifp, 0);
1772 1.1 jonathan
1773 1.1 jonathan /*
1774 1.1 jonathan * Enable C+ RX and TX mode, as well as VLAN stripping and
1775 1.1 jonathan * RX checksum offload. We must configure the C+ register
1776 1.1 jonathan * before all others.
1777 1.1 jonathan */
1778 1.1 jonathan reg = 0;
1779 1.1 jonathan
1780 1.1 jonathan /*
1781 1.1 jonathan * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1782 1.1 jonathan * FreeBSD drivers set these bits anyway (for 8139C+?).
1783 1.1 jonathan * So far, it works.
1784 1.1 jonathan */
1785 1.1 jonathan
1786 1.1 jonathan /*
1787 1.1 jonathan * XXX: For 8169 and 8196S revs below 2, set bit 14.
1788 1.1 jonathan * For 8169S/8110S rev 2 and above, do not set bit 14.
1789 1.1 jonathan */
1790 1.1 jonathan if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1791 1.4 kanaoka reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1792 1.1 jonathan
1793 1.4 kanaoka if (1) {/* not for 8169S ? */
1794 1.24 blymn reg |=
1795 1.23 pavel #ifdef RE_VLAN
1796 1.23 pavel RTK_CPLUSCMD_VLANSTRIP |
1797 1.23 pavel #endif
1798 1.4 kanaoka (ifp->if_capenable &
1799 1.18 yamt (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1800 1.18 yamt IFCAP_CSUM_UDPv4_Rx) ?
1801 1.4 kanaoka RTK_CPLUSCMD_RXCSUM_ENB : 0);
1802 1.4 kanaoka }
1803 1.12 perry
1804 1.1 jonathan CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1805 1.4 kanaoka reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1806 1.1 jonathan
1807 1.1 jonathan /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1808 1.1 jonathan if (sc->rtk_type == RTK_8169)
1809 1.1 jonathan CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1810 1.1 jonathan
1811 1.1 jonathan DELAY(10000);
1812 1.1 jonathan
1813 1.1 jonathan /*
1814 1.1 jonathan * Init our MAC address. Even though the chipset
1815 1.1 jonathan * documentation doesn't mention it, we need to enter "Config
1816 1.1 jonathan * register write enable" mode to modify the ID registers.
1817 1.1 jonathan */
1818 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1819 1.49 tsutsui enaddr = LLADDR(ifp->if_sadl);
1820 1.49 tsutsui reg = enaddr[0] | (enaddr[1] << 8) |
1821 1.49 tsutsui (enaddr[2] << 16) | (enaddr[3] << 24);
1822 1.49 tsutsui CSR_WRITE_4(sc, RTK_IDR0, reg);
1823 1.49 tsutsui reg = enaddr[4] | (enaddr[5] << 8);
1824 1.49 tsutsui CSR_WRITE_4(sc, RTK_IDR4, reg);
1825 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1826 1.1 jonathan
1827 1.1 jonathan /*
1828 1.1 jonathan * For C+ mode, initialize the RX descriptors and mbufs.
1829 1.1 jonathan */
1830 1.1 jonathan re_rx_list_init(sc);
1831 1.1 jonathan re_tx_list_init(sc);
1832 1.1 jonathan
1833 1.1 jonathan /*
1834 1.1 jonathan * Enable transmit and receive.
1835 1.1 jonathan */
1836 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1837 1.1 jonathan
1838 1.1 jonathan /*
1839 1.1 jonathan * Set the initial TX and RX configuration.
1840 1.1 jonathan */
1841 1.1 jonathan if (sc->rtk_testmode) {
1842 1.1 jonathan if (sc->rtk_type == RTK_8169)
1843 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG,
1844 1.4 kanaoka RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1845 1.1 jonathan else
1846 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG,
1847 1.4 kanaoka RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1848 1.1 jonathan } else
1849 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1850 1.1 jonathan CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1851 1.1 jonathan
1852 1.1 jonathan /* Set the individual bit to receive frames for this host only. */
1853 1.1 jonathan rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1854 1.1 jonathan rxcfg |= RTK_RXCFG_RX_INDIV;
1855 1.1 jonathan
1856 1.1 jonathan /* If we want promiscuous mode, set the allframes bit. */
1857 1.8 jdolecek if (ifp->if_flags & IFF_PROMISC)
1858 1.1 jonathan rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1859 1.8 jdolecek else
1860 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1861 1.8 jdolecek CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1862 1.1 jonathan
1863 1.1 jonathan /*
1864 1.1 jonathan * Set capture broadcast bit to capture broadcast frames.
1865 1.1 jonathan */
1866 1.8 jdolecek if (ifp->if_flags & IFF_BROADCAST)
1867 1.1 jonathan rxcfg |= RTK_RXCFG_RX_BROAD;
1868 1.8 jdolecek else
1869 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_BROAD;
1870 1.8 jdolecek CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1871 1.1 jonathan
1872 1.1 jonathan /*
1873 1.1 jonathan * Program the multicast filter, if necessary.
1874 1.1 jonathan */
1875 1.1 jonathan rtk_setmulti(sc);
1876 1.1 jonathan
1877 1.1 jonathan #ifdef DEVICE_POLLING
1878 1.1 jonathan /*
1879 1.1 jonathan * Disable interrupts if we are polling.
1880 1.1 jonathan */
1881 1.1 jonathan if (ifp->if_flags & IFF_POLLING)
1882 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1883 1.1 jonathan else /* otherwise ... */
1884 1.1 jonathan #endif /* DEVICE_POLLING */
1885 1.1 jonathan /*
1886 1.1 jonathan * Enable interrupts.
1887 1.1 jonathan */
1888 1.1 jonathan if (sc->rtk_testmode)
1889 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1890 1.1 jonathan else
1891 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1892 1.1 jonathan
1893 1.1 jonathan /* Start RX/TX process. */
1894 1.1 jonathan CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1895 1.1 jonathan #ifdef notdef
1896 1.1 jonathan /* Enable receiver and transmitter. */
1897 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1898 1.1 jonathan #endif
1899 1.1 jonathan /*
1900 1.1 jonathan * Load the addresses of the RX and TX lists into the chip.
1901 1.1 jonathan */
1902 1.1 jonathan
1903 1.1 jonathan CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1904 1.11 yamt RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1905 1.1 jonathan CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1906 1.11 yamt RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1907 1.1 jonathan
1908 1.1 jonathan CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1909 1.11 yamt RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1910 1.1 jonathan CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1911 1.11 yamt RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1912 1.1 jonathan
1913 1.1 jonathan CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1914 1.1 jonathan
1915 1.1 jonathan /*
1916 1.1 jonathan * Initialize the timer interrupt register so that
1917 1.1 jonathan * a timer interrupt will be generated once the timer
1918 1.1 jonathan * reaches a certain number of ticks. The timer is
1919 1.1 jonathan * reloaded on each transmit. This gives us TX interrupt
1920 1.1 jonathan * moderation, which dramatically improves TX frame rate.
1921 1.1 jonathan */
1922 1.1 jonathan
1923 1.1 jonathan if (sc->rtk_type == RTK_8169)
1924 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1925 1.1 jonathan else
1926 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1927 1.1 jonathan
1928 1.1 jonathan /*
1929 1.1 jonathan * For 8169 gigE NICs, set the max allowed RX packet
1930 1.1 jonathan * size so we can receive jumbo frames.
1931 1.1 jonathan */
1932 1.1 jonathan if (sc->rtk_type == RTK_8169)
1933 1.1 jonathan CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1934 1.1 jonathan
1935 1.1 jonathan if (sc->rtk_testmode)
1936 1.1 jonathan return 0;
1937 1.1 jonathan
1938 1.1 jonathan mii_mediachg(&sc->mii);
1939 1.1 jonathan
1940 1.4 kanaoka CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1941 1.1 jonathan
1942 1.1 jonathan ifp->if_flags |= IFF_RUNNING;
1943 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1944 1.1 jonathan
1945 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1946 1.1 jonathan
1947 1.41 tsutsui out:
1948 1.1 jonathan if (error) {
1949 1.4 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1950 1.1 jonathan ifp->if_timer = 0;
1951 1.4 kanaoka aprint_error("%s: interface not running\n",
1952 1.4 kanaoka sc->sc_dev.dv_xname);
1953 1.1 jonathan }
1954 1.12 perry
1955 1.1 jonathan return error;
1956 1.1 jonathan }
1957 1.1 jonathan
1958 1.1 jonathan /*
1959 1.1 jonathan * Set media options.
1960 1.1 jonathan */
1961 1.1 jonathan static int
1962 1.1 jonathan re_ifmedia_upd(struct ifnet *ifp)
1963 1.1 jonathan {
1964 1.1 jonathan struct rtk_softc *sc;
1965 1.1 jonathan
1966 1.1 jonathan sc = ifp->if_softc;
1967 1.1 jonathan
1968 1.4 kanaoka return mii_mediachg(&sc->mii);
1969 1.1 jonathan }
1970 1.1 jonathan
1971 1.1 jonathan /*
1972 1.1 jonathan * Report current media status.
1973 1.1 jonathan */
1974 1.1 jonathan static void
1975 1.1 jonathan re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1976 1.1 jonathan {
1977 1.1 jonathan struct rtk_softc *sc;
1978 1.1 jonathan
1979 1.1 jonathan sc = ifp->if_softc;
1980 1.1 jonathan
1981 1.1 jonathan mii_pollstat(&sc->mii);
1982 1.1 jonathan ifmr->ifm_active = sc->mii.mii_media_active;
1983 1.1 jonathan ifmr->ifm_status = sc->mii.mii_media_status;
1984 1.1 jonathan }
1985 1.1 jonathan
1986 1.1 jonathan static int
1987 1.1 jonathan re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1988 1.1 jonathan {
1989 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1990 1.1 jonathan struct ifreq *ifr = (struct ifreq *) data;
1991 1.1 jonathan int s, error = 0;
1992 1.1 jonathan
1993 1.1 jonathan s = splnet();
1994 1.1 jonathan
1995 1.4 kanaoka switch (command) {
1996 1.1 jonathan case SIOCSIFMTU:
1997 1.1 jonathan if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1998 1.1 jonathan error = EINVAL;
1999 1.1 jonathan ifp->if_mtu = ifr->ifr_mtu;
2000 1.1 jonathan break;
2001 1.1 jonathan case SIOCGIFMEDIA:
2002 1.1 jonathan case SIOCSIFMEDIA:
2003 1.1 jonathan error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2004 1.1 jonathan break;
2005 1.1 jonathan default:
2006 1.1 jonathan error = ether_ioctl(ifp, command, data);
2007 1.1 jonathan if (error == ENETRESET) {
2008 1.2 kanaoka if (ifp->if_flags & IFF_RUNNING)
2009 1.1 jonathan rtk_setmulti(sc);
2010 1.1 jonathan error = 0;
2011 1.1 jonathan }
2012 1.1 jonathan break;
2013 1.1 jonathan }
2014 1.1 jonathan
2015 1.1 jonathan splx(s);
2016 1.1 jonathan
2017 1.4 kanaoka return error;
2018 1.1 jonathan }
2019 1.1 jonathan
2020 1.1 jonathan static void
2021 1.1 jonathan re_watchdog(struct ifnet *ifp)
2022 1.1 jonathan {
2023 1.1 jonathan struct rtk_softc *sc;
2024 1.1 jonathan int s;
2025 1.1 jonathan
2026 1.1 jonathan sc = ifp->if_softc;
2027 1.1 jonathan s = splnet();
2028 1.4 kanaoka aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2029 1.1 jonathan ifp->if_oerrors++;
2030 1.1 jonathan
2031 1.1 jonathan re_txeof(sc);
2032 1.1 jonathan re_rxeof(sc);
2033 1.1 jonathan
2034 1.1 jonathan re_init(ifp);
2035 1.1 jonathan
2036 1.1 jonathan splx(s);
2037 1.1 jonathan }
2038 1.1 jonathan
2039 1.1 jonathan /*
2040 1.1 jonathan * Stop the adapter and free any mbufs allocated to the
2041 1.1 jonathan * RX and TX lists.
2042 1.1 jonathan */
2043 1.1 jonathan static void
2044 1.3 kanaoka re_stop(struct ifnet *ifp, int disable)
2045 1.1 jonathan {
2046 1.41 tsutsui int i;
2047 1.3 kanaoka struct rtk_softc *sc = ifp->if_softc;
2048 1.1 jonathan
2049 1.3 kanaoka callout_stop(&sc->rtk_tick_ch);
2050 1.1 jonathan
2051 1.1 jonathan #ifdef DEVICE_POLLING
2052 1.1 jonathan ether_poll_deregister(ifp);
2053 1.1 jonathan #endif /* DEVICE_POLLING */
2054 1.1 jonathan
2055 1.3 kanaoka mii_down(&sc->mii);
2056 1.3 kanaoka
2057 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2058 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2059 1.1 jonathan
2060 1.1 jonathan if (sc->rtk_head != NULL) {
2061 1.1 jonathan m_freem(sc->rtk_head);
2062 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
2063 1.1 jonathan }
2064 1.1 jonathan
2065 1.1 jonathan /* Free the TX list buffers. */
2066 1.15 yamt for (i = 0; i < RTK_TX_QLEN; i++) {
2067 1.15 yamt if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2068 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
2069 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2070 1.15 yamt m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2071 1.15 yamt sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2072 1.1 jonathan }
2073 1.1 jonathan }
2074 1.1 jonathan
2075 1.1 jonathan /* Free the RX list buffers. */
2076 1.1 jonathan for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2077 1.1 jonathan if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2078 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
2079 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i]);
2080 1.1 jonathan m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2081 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2082 1.1 jonathan }
2083 1.1 jonathan }
2084 1.1 jonathan
2085 1.3 kanaoka if (disable)
2086 1.3 kanaoka re_disable(sc);
2087 1.3 kanaoka
2088 1.3 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2089 1.4 kanaoka ifp->if_timer = 0;
2090 1.1 jonathan }
2091