rtl8169.c revision 1.5 1 1.5 kanaoka /* $NetBSD: rtl8169.c,v 1.5 2005/01/09 12:25:25 kanaoka Exp $ */
2 1.1 jonathan
3 1.1 jonathan /*
4 1.1 jonathan * Copyright (c) 1997, 1998-2003
5 1.1 jonathan * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 1.1 jonathan *
7 1.1 jonathan * Redistribution and use in source and binary forms, with or without
8 1.1 jonathan * modification, are permitted provided that the following conditions
9 1.1 jonathan * are met:
10 1.1 jonathan * 1. Redistributions of source code must retain the above copyright
11 1.1 jonathan * notice, this list of conditions and the following disclaimer.
12 1.1 jonathan * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jonathan * notice, this list of conditions and the following disclaimer in the
14 1.1 jonathan * documentation and/or other materials provided with the distribution.
15 1.1 jonathan * 3. All advertising materials mentioning features or use of this software
16 1.1 jonathan * must display the following acknowledgement:
17 1.1 jonathan * This product includes software developed by Bill Paul.
18 1.1 jonathan * 4. Neither the name of the author nor the names of any co-contributors
19 1.1 jonathan * may be used to endorse or promote products derived from this software
20 1.1 jonathan * without specific prior written permission.
21 1.1 jonathan *
22 1.1 jonathan * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 1.1 jonathan * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 jonathan * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 jonathan * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 1.1 jonathan * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.1 jonathan * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.1 jonathan * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.1 jonathan * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.1 jonathan * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.1 jonathan * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 1.1 jonathan * THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 jonathan */
34 1.1 jonathan
35 1.1 jonathan #include <sys/cdefs.h>
36 1.1 jonathan /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37 1.1 jonathan
38 1.1 jonathan /*
39 1.1 jonathan * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 1.1 jonathan *
41 1.1 jonathan * Written by Bill Paul <wpaul (at) windriver.com>
42 1.1 jonathan * Senior Networking Software Engineer
43 1.1 jonathan * Wind River Systems
44 1.1 jonathan */
45 1.1 jonathan
46 1.1 jonathan /*
47 1.1 jonathan * This driver is designed to support RealTek's next generation of
48 1.1 jonathan * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 1.1 jonathan * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 1.1 jonathan * and the RTL8110S.
51 1.1 jonathan *
52 1.1 jonathan * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 1.1 jonathan * with the older 8139 family, however it also supports a special
54 1.1 jonathan * C+ mode of operation that provides several new performance enhancing
55 1.1 jonathan * features. These include:
56 1.1 jonathan *
57 1.1 jonathan * o Descriptor based DMA mechanism. Each descriptor represents
58 1.1 jonathan * a single packet fragment. Data buffers may be aligned on
59 1.1 jonathan * any byte boundary.
60 1.1 jonathan *
61 1.1 jonathan * o 64-bit DMA
62 1.1 jonathan *
63 1.1 jonathan * o TCP/IP checksum offload for both RX and TX
64 1.1 jonathan *
65 1.1 jonathan * o High and normal priority transmit DMA rings
66 1.1 jonathan *
67 1.1 jonathan * o VLAN tag insertion and extraction
68 1.1 jonathan *
69 1.1 jonathan * o TCP large send (segmentation offload)
70 1.1 jonathan *
71 1.1 jonathan * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 1.1 jonathan * programming API is fairly straightforward. The RX filtering, EEPROM
73 1.1 jonathan * access and PHY access is the same as it is on the older 8139 series
74 1.1 jonathan * chips.
75 1.1 jonathan *
76 1.1 jonathan * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 1.1 jonathan * same programming API and feature set as the 8139C+ with the following
78 1.1 jonathan * differences and additions:
79 1.1 jonathan *
80 1.1 jonathan * o 1000Mbps mode
81 1.1 jonathan *
82 1.1 jonathan * o Jumbo frames
83 1.1 jonathan *
84 1.1 jonathan * o GMII and TBI ports/registers for interfacing with copper
85 1.1 jonathan * or fiber PHYs
86 1.1 jonathan *
87 1.1 jonathan * o RX and TX DMA rings can have up to 1024 descriptors
88 1.1 jonathan * (the 8139C+ allows a maximum of 64)
89 1.1 jonathan *
90 1.1 jonathan * o Slight differences in register layout from the 8139C+
91 1.1 jonathan *
92 1.1 jonathan * The TX start and timer interrupt registers are at different locations
93 1.1 jonathan * on the 8169 than they are on the 8139C+. Also, the status word in the
94 1.1 jonathan * RX descriptor has a slightly different bit layout. The 8169 does not
95 1.1 jonathan * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 1.1 jonathan * copper gigE PHY.
97 1.1 jonathan *
98 1.1 jonathan * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 1.1 jonathan * (the 'S' stands for 'single-chip'). These devices have the same
100 1.1 jonathan * programming API as the older 8169, but also have some vendor-specific
101 1.1 jonathan * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 1.1 jonathan * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 1.1 jonathan *
104 1.1 jonathan * This driver takes advantage of the RX and TX checksum offload and
105 1.1 jonathan * VLAN tag insertion/extraction features. It also implements TX
106 1.1 jonathan * interrupt moderation using the timer interrupt registers, which
107 1.1 jonathan * significantly reduces TX interrupt load. There is also support
108 1.1 jonathan * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 1.1 jonathan * jumbo frames larger than 7.5K, so the max MTU possible with this
110 1.1 jonathan * driver is 7500 bytes.
111 1.1 jonathan */
112 1.1 jonathan
113 1.1 jonathan #include "bpfilter.h"
114 1.1 jonathan #include "vlan.h"
115 1.1 jonathan
116 1.1 jonathan #include <sys/param.h>
117 1.1 jonathan #include <sys/endian.h>
118 1.1 jonathan #include <sys/systm.h>
119 1.1 jonathan #include <sys/sockio.h>
120 1.1 jonathan #include <sys/mbuf.h>
121 1.1 jonathan #include <sys/malloc.h>
122 1.1 jonathan #include <sys/kernel.h>
123 1.1 jonathan #include <sys/socket.h>
124 1.1 jonathan #include <sys/device.h>
125 1.1 jonathan
126 1.1 jonathan #include <net/if.h>
127 1.1 jonathan #include <net/if_arp.h>
128 1.1 jonathan #include <net/if_dl.h>
129 1.1 jonathan #include <net/if_ether.h>
130 1.1 jonathan #include <net/if_media.h>
131 1.1 jonathan #include <net/if_vlanvar.h>
132 1.1 jonathan
133 1.1 jonathan #if NBPFILTER > 0
134 1.1 jonathan #include <net/bpf.h>
135 1.1 jonathan #endif
136 1.1 jonathan
137 1.1 jonathan #include <machine/bus.h>
138 1.1 jonathan
139 1.1 jonathan #include <dev/mii/mii.h>
140 1.1 jonathan #include <dev/mii/miivar.h>
141 1.1 jonathan
142 1.1 jonathan #include <dev/pci/pcireg.h>
143 1.1 jonathan #include <dev/pci/pcivar.h>
144 1.1 jonathan #include <dev/pci/pcidevs.h>
145 1.1 jonathan
146 1.1 jonathan /*
147 1.1 jonathan * Default to using PIO access for this driver.
148 1.1 jonathan */
149 1.1 jonathan #define RE_USEIOSPACE
150 1.1 jonathan
151 1.1 jonathan #include <dev/ic/rtl81x9reg.h>
152 1.1 jonathan #include <dev/ic/rtl81x9var.h>
153 1.1 jonathan
154 1.1 jonathan #include <dev/ic/rtl8169var.h>
155 1.1 jonathan
156 1.1 jonathan
157 1.4 kanaoka static int re_encap(struct rtk_softc *, struct mbuf *, int *);
158 1.1 jonathan
159 1.4 kanaoka static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
160 1.4 kanaoka static int re_rx_list_init(struct rtk_softc *);
161 1.4 kanaoka static int re_tx_list_init(struct rtk_softc *);
162 1.4 kanaoka static void re_rxeof(struct rtk_softc *);
163 1.4 kanaoka static void re_txeof(struct rtk_softc *);
164 1.4 kanaoka static void re_tick(void *);
165 1.4 kanaoka static void re_start(struct ifnet *);
166 1.4 kanaoka static int re_ioctl(struct ifnet *, u_long, caddr_t);
167 1.4 kanaoka static int re_init(struct ifnet *);
168 1.4 kanaoka static void re_stop(struct ifnet *, int);
169 1.4 kanaoka static void re_watchdog(struct ifnet *);
170 1.4 kanaoka
171 1.4 kanaoka static void re_shutdown(void *);
172 1.4 kanaoka static int re_enable(struct rtk_softc *);
173 1.4 kanaoka static void re_disable(struct rtk_softc *);
174 1.4 kanaoka static void re_power(int, void *);
175 1.4 kanaoka
176 1.4 kanaoka static int re_ifmedia_upd(struct ifnet *);
177 1.4 kanaoka static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
178 1.4 kanaoka
179 1.4 kanaoka static int re_gmii_readreg(struct device *, int, int);
180 1.4 kanaoka static void re_gmii_writereg(struct device *, int, int, int);
181 1.4 kanaoka
182 1.4 kanaoka static int re_miibus_readreg(struct device *, int, int);
183 1.4 kanaoka static void re_miibus_writereg(struct device *, int, int, int);
184 1.4 kanaoka static void re_miibus_statchg(struct device *);
185 1.1 jonathan
186 1.4 kanaoka static void re_reset(struct rtk_softc *);
187 1.1 jonathan
188 1.4 kanaoka static int re_diag(struct rtk_softc *);
189 1.1 jonathan
190 1.1 jonathan #ifdef RE_USEIOSPACE
191 1.1 jonathan #define RTK_RES SYS_RES_IOPORT
192 1.1 jonathan #define RTK_RID RTK_PCI_LOIO
193 1.1 jonathan #else
194 1.1 jonathan #define RTK_RES SYS_RES_MEMORY
195 1.1 jonathan #define RTK_RID RTK_PCI_LOMEM
196 1.1 jonathan #endif
197 1.1 jonathan
198 1.1 jonathan #define EE_SET(x) \
199 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, \
200 1.1 jonathan CSR_READ_1(sc, RTK_EECMD) | x)
201 1.1 jonathan
202 1.1 jonathan #define EE_CLR(x) \
203 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, \
204 1.1 jonathan CSR_READ_1(sc, RTK_EECMD) & ~x)
205 1.1 jonathan
206 1.1 jonathan static int
207 1.1 jonathan re_gmii_readreg(struct device *self, int phy, int reg)
208 1.1 jonathan {
209 1.1 jonathan struct rtk_softc *sc = (void *)self;
210 1.1 jonathan u_int32_t rval;
211 1.1 jonathan int i;
212 1.1 jonathan
213 1.1 jonathan if (phy != 7)
214 1.4 kanaoka return 0;
215 1.1 jonathan
216 1.1 jonathan /* Let the rgephy driver read the GMEDIASTAT register */
217 1.1 jonathan
218 1.1 jonathan if (reg == RTK_GMEDIASTAT) {
219 1.1 jonathan rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
220 1.4 kanaoka return rval;
221 1.1 jonathan }
222 1.1 jonathan
223 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
224 1.1 jonathan DELAY(1000);
225 1.1 jonathan
226 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
227 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
228 1.1 jonathan if (rval & RTK_PHYAR_BUSY)
229 1.1 jonathan break;
230 1.1 jonathan DELAY(100);
231 1.1 jonathan }
232 1.1 jonathan
233 1.1 jonathan if (i == RTK_TIMEOUT) {
234 1.4 kanaoka aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
235 1.4 kanaoka return 0;
236 1.1 jonathan }
237 1.1 jonathan
238 1.4 kanaoka return rval & RTK_PHYAR_PHYDATA;
239 1.1 jonathan }
240 1.1 jonathan
241 1.1 jonathan static void
242 1.1 jonathan re_gmii_writereg(struct device *dev, int phy, int reg, int data)
243 1.1 jonathan {
244 1.1 jonathan struct rtk_softc *sc = (void *)dev;
245 1.1 jonathan u_int32_t rval;
246 1.1 jonathan int i;
247 1.1 jonathan
248 1.1 jonathan CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
249 1.1 jonathan (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
250 1.1 jonathan DELAY(1000);
251 1.1 jonathan
252 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
253 1.1 jonathan rval = CSR_READ_4(sc, RTK_PHYAR);
254 1.1 jonathan if (!(rval & RTK_PHYAR_BUSY))
255 1.1 jonathan break;
256 1.1 jonathan DELAY(100);
257 1.1 jonathan }
258 1.1 jonathan
259 1.1 jonathan if (i == RTK_TIMEOUT) {
260 1.4 kanaoka aprint_error("%s: PHY write reg %x <- %x failed\n",
261 1.4 kanaoka sc->sc_dev.dv_xname, reg, data);
262 1.1 jonathan return;
263 1.1 jonathan }
264 1.1 jonathan
265 1.1 jonathan return;
266 1.1 jonathan }
267 1.1 jonathan
268 1.1 jonathan static int
269 1.1 jonathan re_miibus_readreg(struct device *dev, int phy, int reg)
270 1.1 jonathan {
271 1.1 jonathan struct rtk_softc *sc = (void *)dev;
272 1.1 jonathan u_int16_t rval = 0;
273 1.1 jonathan u_int16_t re8139_reg = 0;
274 1.1 jonathan int s;
275 1.1 jonathan
276 1.1 jonathan s = splnet();
277 1.1 jonathan
278 1.1 jonathan if (sc->rtk_type == RTK_8169) {
279 1.1 jonathan rval = re_gmii_readreg(dev, phy, reg);
280 1.1 jonathan splx(s);
281 1.4 kanaoka return rval;
282 1.1 jonathan }
283 1.1 jonathan
284 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
285 1.1 jonathan if (phy) {
286 1.1 jonathan splx(s);
287 1.4 kanaoka return 0;
288 1.1 jonathan }
289 1.4 kanaoka switch (reg) {
290 1.1 jonathan case MII_BMCR:
291 1.1 jonathan re8139_reg = RTK_BMCR;
292 1.1 jonathan break;
293 1.1 jonathan case MII_BMSR:
294 1.1 jonathan re8139_reg = RTK_BMSR;
295 1.1 jonathan break;
296 1.1 jonathan case MII_ANAR:
297 1.1 jonathan re8139_reg = RTK_ANAR;
298 1.1 jonathan break;
299 1.1 jonathan case MII_ANER:
300 1.1 jonathan re8139_reg = RTK_ANER;
301 1.1 jonathan break;
302 1.1 jonathan case MII_ANLPAR:
303 1.1 jonathan re8139_reg = RTK_LPAR;
304 1.1 jonathan break;
305 1.1 jonathan case MII_PHYIDR1:
306 1.1 jonathan case MII_PHYIDR2:
307 1.1 jonathan splx(s);
308 1.4 kanaoka return 0;
309 1.1 jonathan /*
310 1.1 jonathan * Allow the rlphy driver to read the media status
311 1.1 jonathan * register. If we have a link partner which does not
312 1.1 jonathan * support NWAY, this is the register which will tell
313 1.1 jonathan * us the results of parallel detection.
314 1.1 jonathan */
315 1.1 jonathan case RTK_MEDIASTAT:
316 1.1 jonathan rval = CSR_READ_1(sc, RTK_MEDIASTAT);
317 1.1 jonathan splx(s);
318 1.4 kanaoka return rval;
319 1.1 jonathan default:
320 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
321 1.1 jonathan splx(s);
322 1.4 kanaoka return 0;
323 1.1 jonathan }
324 1.1 jonathan rval = CSR_READ_2(sc, re8139_reg);
325 1.1 jonathan splx(s);
326 1.4 kanaoka return rval;
327 1.1 jonathan }
328 1.1 jonathan
329 1.1 jonathan static void
330 1.1 jonathan re_miibus_writereg(struct device *dev, int phy, int reg, int data)
331 1.1 jonathan {
332 1.1 jonathan struct rtk_softc *sc = (void *)dev;
333 1.1 jonathan u_int16_t re8139_reg = 0;
334 1.1 jonathan int s;
335 1.1 jonathan
336 1.1 jonathan s = splnet();
337 1.1 jonathan
338 1.1 jonathan if (sc->rtk_type == RTK_8169) {
339 1.1 jonathan re_gmii_writereg(dev, phy, reg, data);
340 1.1 jonathan splx(s);
341 1.1 jonathan return;
342 1.1 jonathan }
343 1.1 jonathan
344 1.1 jonathan /* Pretend the internal PHY is only at address 0 */
345 1.1 jonathan if (phy) {
346 1.1 jonathan splx(s);
347 1.1 jonathan return;
348 1.1 jonathan }
349 1.4 kanaoka switch (reg) {
350 1.1 jonathan case MII_BMCR:
351 1.1 jonathan re8139_reg = RTK_BMCR;
352 1.1 jonathan break;
353 1.1 jonathan case MII_BMSR:
354 1.1 jonathan re8139_reg = RTK_BMSR;
355 1.1 jonathan break;
356 1.1 jonathan case MII_ANAR:
357 1.1 jonathan re8139_reg = RTK_ANAR;
358 1.1 jonathan break;
359 1.1 jonathan case MII_ANER:
360 1.1 jonathan re8139_reg = RTK_ANER;
361 1.1 jonathan break;
362 1.1 jonathan case MII_ANLPAR:
363 1.1 jonathan re8139_reg = RTK_LPAR;
364 1.1 jonathan break;
365 1.1 jonathan case MII_PHYIDR1:
366 1.1 jonathan case MII_PHYIDR2:
367 1.1 jonathan splx(s);
368 1.1 jonathan return;
369 1.1 jonathan break;
370 1.1 jonathan default:
371 1.4 kanaoka aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
372 1.1 jonathan splx(s);
373 1.1 jonathan return;
374 1.1 jonathan }
375 1.1 jonathan CSR_WRITE_2(sc, re8139_reg, data);
376 1.1 jonathan splx(s);
377 1.1 jonathan return;
378 1.1 jonathan }
379 1.1 jonathan
380 1.1 jonathan static void
381 1.1 jonathan re_miibus_statchg(struct device *dev)
382 1.1 jonathan {
383 1.1 jonathan
384 1.1 jonathan return;
385 1.1 jonathan }
386 1.1 jonathan
387 1.1 jonathan static void
388 1.1 jonathan re_reset(struct rtk_softc *sc)
389 1.1 jonathan {
390 1.1 jonathan register int i;
391 1.1 jonathan
392 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
393 1.1 jonathan
394 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
395 1.1 jonathan DELAY(10);
396 1.1 jonathan if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
397 1.1 jonathan break;
398 1.1 jonathan }
399 1.1 jonathan if (i == RTK_TIMEOUT)
400 1.4 kanaoka aprint_error("%s: reset never completed!\n",
401 1.4 kanaoka sc->sc_dev.dv_xname);
402 1.1 jonathan
403 1.1 jonathan /*
404 1.1 jonathan * NB: Realtek-supplied Linux driver does this only for
405 1.1 jonathan * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
406 1.1 jonathan */
407 1.4 kanaoka if (1) /* XXX check softc flag for 8169s version */
408 1.4 kanaoka CSR_WRITE_1(sc, 0x82, 1);
409 1.1 jonathan
410 1.1 jonathan return;
411 1.1 jonathan }
412 1.1 jonathan
413 1.1 jonathan /*
414 1.1 jonathan * The following routine is designed to test for a defect on some
415 1.1 jonathan * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
416 1.1 jonathan * lines connected to the bus, however for a 32-bit only card, they
417 1.1 jonathan * should be pulled high. The result of this defect is that the
418 1.1 jonathan * NIC will not work right if you plug it into a 64-bit slot: DMA
419 1.1 jonathan * operations will be done with 64-bit transfers, which will fail
420 1.1 jonathan * because the 64-bit data lines aren't connected.
421 1.1 jonathan *
422 1.1 jonathan * There's no way to work around this (short of talking a soldering
423 1.1 jonathan * iron to the board), however we can detect it. The method we use
424 1.1 jonathan * here is to put the NIC into digital loopback mode, set the receiver
425 1.1 jonathan * to promiscuous mode, and then try to send a frame. We then compare
426 1.1 jonathan * the frame data we sent to what was received. If the data matches,
427 1.1 jonathan * then the NIC is working correctly, otherwise we know the user has
428 1.1 jonathan * a defective NIC which has been mistakenly plugged into a 64-bit PCI
429 1.1 jonathan * slot. In the latter case, there's no way the NIC can work correctly,
430 1.1 jonathan * so we print out a message on the console and abort the device attach.
431 1.1 jonathan */
432 1.1 jonathan
433 1.1 jonathan static int
434 1.1 jonathan re_diag(struct rtk_softc *sc)
435 1.1 jonathan {
436 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
437 1.1 jonathan struct mbuf *m0;
438 1.1 jonathan struct ether_header *eh;
439 1.1 jonathan struct rtk_desc *cur_rx;
440 1.1 jonathan bus_dmamap_t dmamap;
441 1.1 jonathan u_int16_t status;
442 1.1 jonathan u_int32_t rxstat;
443 1.1 jonathan int total_len, i, s, error = 0;
444 1.1 jonathan u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
445 1.1 jonathan u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
446 1.1 jonathan
447 1.1 jonathan /* Allocate a single mbuf */
448 1.1 jonathan
449 1.1 jonathan MGETHDR(m0, M_DONTWAIT, MT_DATA);
450 1.1 jonathan if (m0 == NULL)
451 1.4 kanaoka return ENOBUFS;
452 1.1 jonathan
453 1.1 jonathan /*
454 1.1 jonathan * Initialize the NIC in test mode. This sets the chip up
455 1.1 jonathan * so that it can send and receive frames, but performs the
456 1.1 jonathan * following special functions:
457 1.1 jonathan * - Puts receiver in promiscuous mode
458 1.1 jonathan * - Enables digital loopback mode
459 1.1 jonathan * - Leaves interrupts turned off
460 1.1 jonathan */
461 1.1 jonathan
462 1.1 jonathan ifp->if_flags |= IFF_PROMISC;
463 1.1 jonathan sc->rtk_testmode = 1;
464 1.1 jonathan re_init(ifp);
465 1.4 kanaoka re_stop(ifp, 1);
466 1.1 jonathan DELAY(100000);
467 1.1 jonathan re_init(ifp);
468 1.1 jonathan
469 1.1 jonathan /* Put some data in the mbuf */
470 1.1 jonathan
471 1.1 jonathan eh = mtod(m0, struct ether_header *);
472 1.4 kanaoka bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
473 1.4 kanaoka bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
474 1.1 jonathan eh->ether_type = htons(ETHERTYPE_IP);
475 1.1 jonathan m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
476 1.1 jonathan
477 1.1 jonathan /*
478 1.1 jonathan * Queue the packet, start transmission.
479 1.1 jonathan */
480 1.1 jonathan
481 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
482 1.1 jonathan s = splnet();
483 1.1 jonathan IF_ENQUEUE(&ifp->if_snd, m0);
484 1.1 jonathan re_start(ifp);
485 1.1 jonathan splx(s);
486 1.1 jonathan m0 = NULL;
487 1.1 jonathan
488 1.1 jonathan /* Wait for it to propagate through the chip */
489 1.1 jonathan
490 1.1 jonathan DELAY(100000);
491 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
492 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
493 1.4 kanaoka if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
494 1.4 kanaoka (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
495 1.1 jonathan break;
496 1.1 jonathan DELAY(10);
497 1.1 jonathan }
498 1.1 jonathan if (i == RTK_TIMEOUT) {
499 1.4 kanaoka aprint_error("%s: diagnostic failed, failed to receive packet "
500 1.1 jonathan "in loopback mode\n", sc->sc_dev.dv_xname);
501 1.1 jonathan error = EIO;
502 1.1 jonathan goto done;
503 1.1 jonathan }
504 1.1 jonathan
505 1.1 jonathan /*
506 1.1 jonathan * The packet should have been dumped into the first
507 1.1 jonathan * entry in the RX DMA ring. Grab it from there.
508 1.1 jonathan */
509 1.1 jonathan
510 1.1 jonathan dmamap = sc->rtk_ldata.rtk_rx_list_map;
511 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
512 1.1 jonathan dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
513 1.1 jonathan dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
514 1.1 jonathan bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
515 1.1 jonathan BUS_DMASYNC_POSTWRITE);
516 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
517 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[0]);
518 1.1 jonathan
519 1.1 jonathan m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
520 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
521 1.1 jonathan eh = mtod(m0, struct ether_header *);
522 1.1 jonathan
523 1.1 jonathan cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
524 1.1 jonathan total_len = RTK_RXBYTES(cur_rx);
525 1.1 jonathan rxstat = le32toh(cur_rx->rtk_cmdstat);
526 1.1 jonathan
527 1.1 jonathan if (total_len != ETHER_MIN_LEN) {
528 1.4 kanaoka aprint_error("%s: diagnostic failed, received short packet\n",
529 1.1 jonathan sc->sc_dev.dv_xname);
530 1.1 jonathan error = EIO;
531 1.1 jonathan goto done;
532 1.1 jonathan }
533 1.1 jonathan
534 1.1 jonathan /* Test that the received packet data matches what we sent. */
535 1.1 jonathan
536 1.1 jonathan if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
537 1.1 jonathan bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
538 1.1 jonathan ntohs(eh->ether_type) != ETHERTYPE_IP) {
539 1.4 kanaoka aprint_error("%s: WARNING, DMA FAILURE!\n",
540 1.4 kanaoka sc->sc_dev.dv_xname);
541 1.4 kanaoka aprint_error("%s: expected TX data: %s",
542 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(dst));
543 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
544 1.4 kanaoka aprint_error("%s: received RX data: %s",
545 1.1 jonathan sc->sc_dev.dv_xname,
546 1.1 jonathan ether_sprintf(eh->ether_dhost));
547 1.4 kanaoka aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
548 1.1 jonathan ntohs(eh->ether_type));
549 1.4 kanaoka aprint_error("%s: You may have a defective 32-bit NIC plugged "
550 1.1 jonathan "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
551 1.4 kanaoka aprint_error("%s: Please re-install the NIC in a 32-bit slot "
552 1.1 jonathan "for proper operation.\n", sc->sc_dev.dv_xname);
553 1.4 kanaoka aprint_error("%s: Read the re(4) man page for more details.\n",
554 1.1 jonathan sc->sc_dev.dv_xname);
555 1.1 jonathan error = EIO;
556 1.1 jonathan }
557 1.1 jonathan
558 1.1 jonathan done:
559 1.1 jonathan /* Turn interface off, release resources */
560 1.1 jonathan
561 1.1 jonathan sc->rtk_testmode = 0;
562 1.1 jonathan ifp->if_flags &= ~IFF_PROMISC;
563 1.4 kanaoka re_stop(ifp, 1);
564 1.1 jonathan if (m0 != NULL)
565 1.1 jonathan m_freem(m0);
566 1.1 jonathan
567 1.4 kanaoka return error;
568 1.1 jonathan }
569 1.1 jonathan
570 1.1 jonathan
571 1.1 jonathan /*
572 1.1 jonathan * Attach the interface. Allocate softc structures, do ifmedia
573 1.1 jonathan * setup and ethernet/BPF attach.
574 1.1 jonathan */
575 1.1 jonathan void
576 1.1 jonathan re_attach(struct rtk_softc *sc)
577 1.1 jonathan {
578 1.1 jonathan u_char eaddr[ETHER_ADDR_LEN];
579 1.1 jonathan u_int16_t val;
580 1.1 jonathan struct ifnet *ifp;
581 1.1 jonathan int error = 0, i, addr_len;
582 1.1 jonathan
583 1.5 kanaoka
584 1.1 jonathan /* XXX JRS: bus-attach-independent code begins approximately here */
585 1.1 jonathan
586 1.1 jonathan /* Reset the adapter. */
587 1.1 jonathan re_reset(sc);
588 1.1 jonathan
589 1.1 jonathan if (sc->rtk_type == RTK_8169) {
590 1.1 jonathan uint32_t hwrev;
591 1.1 jonathan
592 1.1 jonathan /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
593 1.1 jonathan hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
594 1.1 jonathan if (hwrev == (0x1 << 28)) {
595 1.1 jonathan sc->sc_rev = 4;
596 1.1 jonathan } else if (hwrev == (0x1 << 26)) {
597 1.1 jonathan sc->sc_rev = 3;
598 1.1 jonathan } else if (hwrev == (0x1 << 23)) {
599 1.1 jonathan sc->sc_rev = 2;
600 1.1 jonathan } else
601 1.1 jonathan sc->sc_rev = 1;
602 1.1 jonathan #if defined(DEBUG) || 1
603 1.4 kanaoka aprint_normal("re_attach: MAC chip hwrev 0x%x softc %d\n",
604 1.4 kanaoka hwrev, sc->sc_rev);
605 1.1 jonathan #endif
606 1.1 jonathan
607 1.1 jonathan /* Set RX length mask */
608 1.1 jonathan
609 1.1 jonathan sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
610 1.1 jonathan
611 1.1 jonathan /* Force station address autoload from the EEPROM */
612 1.1 jonathan
613 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
614 1.1 jonathan for (i = 0; i < RTK_TIMEOUT; i++) {
615 1.1 jonathan if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
616 1.1 jonathan break;
617 1.1 jonathan DELAY(100);
618 1.1 jonathan }
619 1.1 jonathan if (i == RTK_TIMEOUT)
620 1.4 kanaoka aprint_error("%s: eeprom autoload timed out\n",
621 1.4 kanaoka sc->sc_dev.dv_xname);
622 1.1 jonathan
623 1.4 kanaoka for (i = 0; i < ETHER_ADDR_LEN; i++)
624 1.4 kanaoka eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
625 1.1 jonathan } else {
626 1.1 jonathan
627 1.1 jonathan /* Set RX length mask */
628 1.1 jonathan
629 1.1 jonathan sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
630 1.1 jonathan
631 1.1 jonathan if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
632 1.1 jonathan addr_len = RTK_EEADDR_LEN1;
633 1.1 jonathan else
634 1.1 jonathan addr_len = RTK_EEADDR_LEN0;
635 1.1 jonathan
636 1.1 jonathan /*
637 1.1 jonathan * Get station address from the EEPROM.
638 1.1 jonathan */
639 1.1 jonathan for (i = 0; i < 3; i++) {
640 1.1 jonathan val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
641 1.1 jonathan eaddr[(i * 2) + 0] = val & 0xff;
642 1.1 jonathan eaddr[(i * 2) + 1] = val >> 8;
643 1.1 jonathan }
644 1.1 jonathan }
645 1.1 jonathan
646 1.1 jonathan aprint_normal("%s: Ethernet address %s\n",
647 1.1 jonathan sc->sc_dev.dv_xname, ether_sprintf(eaddr));
648 1.1 jonathan
649 1.1 jonathan
650 1.5 kanaoka /* Allocate DMA'able memory for the TX ring */
651 1.5 kanaoka if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
652 1.5 kanaoka RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
653 1.5 kanaoka 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
654 1.5 kanaoka aprint_error("%s: can't allocate tx listseg, error = %d\n",
655 1.5 kanaoka sc->sc_dev.dv_xname, error);
656 1.5 kanaoka goto fail_0;
657 1.5 kanaoka }
658 1.5 kanaoka
659 1.5 kanaoka /* Load the map for the TX ring. */
660 1.5 kanaoka if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
661 1.5 kanaoka sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ,
662 1.5 kanaoka (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
663 1.5 kanaoka BUS_DMA_NOWAIT)) != 0) {
664 1.5 kanaoka aprint_error("%s: can't map tx list, error = %d\n",
665 1.5 kanaoka sc->sc_dev.dv_xname, error);
666 1.5 kanaoka goto fail_1;
667 1.5 kanaoka }
668 1.5 kanaoka memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
669 1.5 kanaoka
670 1.5 kanaoka if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
671 1.5 kanaoka RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
672 1.5 kanaoka &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
673 1.5 kanaoka aprint_error("%s: can't create tx list map, error = %d\n",
674 1.5 kanaoka sc->sc_dev.dv_xname, error);
675 1.5 kanaoka goto fail_2;
676 1.5 kanaoka }
677 1.5 kanaoka
678 1.5 kanaoka
679 1.5 kanaoka if ((error = bus_dmamap_load(sc->sc_dmat,
680 1.5 kanaoka sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
681 1.5 kanaoka RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
682 1.5 kanaoka aprint_error("%s: can't load tx list, error = %d\n",
683 1.5 kanaoka sc->sc_dev.dv_xname, error);
684 1.5 kanaoka goto fail_3;
685 1.5 kanaoka }
686 1.5 kanaoka
687 1.5 kanaoka /* Create DMA maps for TX buffers */
688 1.5 kanaoka for (i = 0; i < RTK_TX_DESC_CNT; i++) {
689 1.5 kanaoka error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * RTK_NTXSEGS,
690 1.5 kanaoka RTK_NTXSEGS, MCLBYTES, 0, BUS_DMA_ALLOCNOW,
691 1.5 kanaoka &sc->rtk_ldata.rtk_tx_dmamap[i]);
692 1.5 kanaoka if (error) {
693 1.5 kanaoka aprint_error("%s: can't create DMA map for TX\n",
694 1.5 kanaoka sc->sc_dev.dv_xname);
695 1.5 kanaoka goto fail_4;
696 1.5 kanaoka }
697 1.5 kanaoka }
698 1.5 kanaoka
699 1.5 kanaoka /* Allocate DMA'able memory for the RX ring */
700 1.5 kanaoka if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
701 1.5 kanaoka RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
702 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
703 1.5 kanaoka aprint_error("%s: can't allocate rx listseg, error = %d\n",
704 1.5 kanaoka sc->sc_dev.dv_xname, error);
705 1.5 kanaoka goto fail_4;
706 1.5 kanaoka }
707 1.5 kanaoka
708 1.5 kanaoka /* Load the map for the RX ring. */
709 1.5 kanaoka if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
710 1.5 kanaoka sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
711 1.5 kanaoka (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
712 1.5 kanaoka BUS_DMA_NOWAIT)) != 0) {
713 1.5 kanaoka aprint_error("%s: can't map rx list, error = %d\n",
714 1.5 kanaoka sc->sc_dev.dv_xname, error);
715 1.5 kanaoka goto fail_5;
716 1.5 kanaoka }
717 1.5 kanaoka memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
718 1.5 kanaoka
719 1.5 kanaoka if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
720 1.5 kanaoka RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
721 1.5 kanaoka &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
722 1.5 kanaoka aprint_error("%s: can't create rx list map, error = %d\n",
723 1.5 kanaoka sc->sc_dev.dv_xname, error);
724 1.5 kanaoka goto fail_6;
725 1.5 kanaoka }
726 1.5 kanaoka
727 1.5 kanaoka if ((error = bus_dmamap_load(sc->sc_dmat,
728 1.5 kanaoka sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
729 1.5 kanaoka RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
730 1.5 kanaoka aprint_error("%s: can't load rx list, error = %d\n",
731 1.5 kanaoka sc->sc_dev.dv_xname, error);
732 1.5 kanaoka goto fail_7;
733 1.5 kanaoka }
734 1.5 kanaoka
735 1.5 kanaoka /* Create DMA maps for RX buffers */
736 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++) {
737 1.5 kanaoka error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
738 1.5 kanaoka 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
739 1.5 kanaoka if (error) {
740 1.5 kanaoka aprint_error("%s: can't create DMA map for RX\n",
741 1.5 kanaoka sc->sc_dev.dv_xname);
742 1.5 kanaoka goto fail_8;
743 1.5 kanaoka }
744 1.1 jonathan }
745 1.1 jonathan
746 1.1 jonathan ifp = &sc->ethercom.ec_if;
747 1.1 jonathan ifp->if_softc = sc;
748 1.1 jonathan strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
749 1.1 jonathan ifp->if_mtu = ETHERMTU;
750 1.1 jonathan ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
751 1.1 jonathan ifp->if_ioctl = re_ioctl;
752 1.1 jonathan sc->ethercom.ec_capabilities |=
753 1.1 jonathan ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
754 1.1 jonathan ifp->if_start = re_start;
755 1.3 kanaoka ifp->if_stop = re_stop;
756 1.1 jonathan ifp->if_capabilities |=
757 1.1 jonathan IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
758 1.1 jonathan ifp->if_watchdog = re_watchdog;
759 1.1 jonathan ifp->if_init = re_init;
760 1.1 jonathan if (sc->rtk_type == RTK_8169)
761 1.1 jonathan ifp->if_baudrate = 1000000000;
762 1.1 jonathan else
763 1.1 jonathan ifp->if_baudrate = 100000000;
764 1.1 jonathan ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
765 1.1 jonathan ifp->if_capenable = ifp->if_capabilities;
766 1.1 jonathan IFQ_SET_READY(&ifp->if_snd);
767 1.1 jonathan
768 1.1 jonathan callout_init(&sc->rtk_tick_ch);
769 1.1 jonathan
770 1.1 jonathan /* Do MII setup */
771 1.1 jonathan sc->mii.mii_ifp = ifp;
772 1.1 jonathan sc->mii.mii_readreg = re_miibus_readreg;
773 1.1 jonathan sc->mii.mii_writereg = re_miibus_writereg;
774 1.1 jonathan sc->mii.mii_statchg = re_miibus_statchg;
775 1.1 jonathan ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
776 1.1 jonathan re_ifmedia_sts);
777 1.1 jonathan mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
778 1.1 jonathan MII_OFFSET_ANY, 0);
779 1.4 kanaoka ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
780 1.1 jonathan
781 1.1 jonathan /*
782 1.1 jonathan * Call MI attach routine.
783 1.1 jonathan */
784 1.1 jonathan if_attach(ifp);
785 1.1 jonathan ether_ifattach(ifp, eaddr);
786 1.1 jonathan
787 1.1 jonathan /*
788 1.1 jonathan * Perform hardware diagnostic.
789 1.1 jonathan * XXX: this diagnostic only makes sense for attachemnts with 64-bit
790 1.1 jonathan * busses: PCI, but not CardBus.
791 1.1 jonathan */
792 1.1 jonathan error = re_diag(sc);
793 1.1 jonathan
794 1.1 jonathan if (error) {
795 1.4 kanaoka aprint_error(
796 1.4 kanaoka "%s: attach aborted due to hardware diag failure\n",
797 1.1 jonathan sc->sc_dev.dv_xname);
798 1.1 jonathan ether_ifdetach(ifp);
799 1.1 jonathan if_detach(ifp);
800 1.5 kanaoka goto fail_8;
801 1.1 jonathan }
802 1.1 jonathan
803 1.1 jonathan /*
804 1.1 jonathan * Record interface as attached. From here, we should not fail.
805 1.1 jonathan */
806 1.1 jonathan
807 1.1 jonathan /*
808 1.1 jonathan * Make sure the interface is shutdown during reboot.
809 1.1 jonathan */
810 1.1 jonathan sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
811 1.1 jonathan if (sc->sc_sdhook == NULL)
812 1.4 kanaoka aprint_error("%s: WARNING: unable to establish shutdown hook\n",
813 1.1 jonathan sc->sc_dev.dv_xname);
814 1.1 jonathan /*
815 1.1 jonathan * Add a suspend hook to make sure we come back up after a
816 1.1 jonathan * resume.
817 1.1 jonathan */
818 1.1 jonathan sc->sc_powerhook = powerhook_establish(re_power, sc);
819 1.1 jonathan if (sc->sc_powerhook == NULL)
820 1.4 kanaoka aprint_error("%s: WARNING: unable to establish power hook\n",
821 1.1 jonathan sc->sc_dev.dv_xname);
822 1.1 jonathan
823 1.1 jonathan sc->sc_flags |= RTK_ATTACHED;
824 1.1 jonathan
825 1.5 kanaoka return;
826 1.5 kanaoka
827 1.5 kanaoka fail_8:
828 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
829 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++)
830 1.5 kanaoka if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
831 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
832 1.5 kanaoka sc->rtk_ldata.rtk_rx_dmamap[i]);
833 1.5 kanaoka
834 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
835 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
836 1.5 kanaoka fail_7:
837 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
838 1.5 kanaoka fail_6:
839 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
840 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
841 1.5 kanaoka fail_5:
842 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
843 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
844 1.5 kanaoka
845 1.5 kanaoka fail_4:
846 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
847 1.5 kanaoka for (i = 0; i < RTK_TX_DESC_CNT; i++)
848 1.5 kanaoka if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
849 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
850 1.5 kanaoka sc->rtk_ldata.rtk_tx_dmamap[i]);
851 1.5 kanaoka
852 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
853 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
854 1.5 kanaoka fail_3:
855 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
856 1.5 kanaoka fail_2:
857 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
858 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
859 1.5 kanaoka fail_1:
860 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
861 1.5 kanaoka &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
862 1.5 kanaoka fail_0:
863 1.1 jonathan return;
864 1.1 jonathan }
865 1.1 jonathan
866 1.1 jonathan
867 1.1 jonathan /*
868 1.1 jonathan * re_activate:
869 1.1 jonathan * Handle device activation/deactivation requests.
870 1.1 jonathan */
871 1.1 jonathan int
872 1.1 jonathan re_activate(struct device *self, enum devact act)
873 1.1 jonathan {
874 1.1 jonathan struct rtk_softc *sc = (void *) self;
875 1.1 jonathan int s, error = 0;
876 1.1 jonathan
877 1.1 jonathan s = splnet();
878 1.1 jonathan switch (act) {
879 1.1 jonathan case DVACT_ACTIVATE:
880 1.1 jonathan error = EOPNOTSUPP;
881 1.1 jonathan break;
882 1.1 jonathan case DVACT_DEACTIVATE:
883 1.1 jonathan mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
884 1.1 jonathan if_deactivate(&sc->ethercom.ec_if);
885 1.1 jonathan break;
886 1.1 jonathan }
887 1.1 jonathan splx(s);
888 1.1 jonathan
889 1.4 kanaoka return error;
890 1.1 jonathan }
891 1.1 jonathan
892 1.1 jonathan /*
893 1.1 jonathan * re_detach:
894 1.1 jonathan * Detach a rtk interface.
895 1.1 jonathan */
896 1.1 jonathan int
897 1.1 jonathan re_detach(struct rtk_softc *sc)
898 1.1 jonathan {
899 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
900 1.5 kanaoka int i;
901 1.1 jonathan
902 1.1 jonathan /*
903 1.1 jonathan * Succeed now if there isn't any work to do.
904 1.1 jonathan */
905 1.1 jonathan if ((sc->sc_flags & RTK_ATTACHED) == 0)
906 1.4 kanaoka return 0;
907 1.1 jonathan
908 1.1 jonathan /* Unhook our tick handler. */
909 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
910 1.1 jonathan
911 1.1 jonathan /* Detach all PHYs. */
912 1.1 jonathan mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
913 1.1 jonathan
914 1.1 jonathan /* Delete all remaining media. */
915 1.1 jonathan ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
916 1.1 jonathan
917 1.1 jonathan ether_ifdetach(ifp);
918 1.1 jonathan if_detach(ifp);
919 1.1 jonathan
920 1.1 jonathan /* XXX undo re_allocmem() */
921 1.1 jonathan
922 1.5 kanaoka /* Destroy DMA maps for RX buffers. */
923 1.5 kanaoka for (i = 0; i < RTK_RX_DESC_CNT; i++)
924 1.5 kanaoka if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
925 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
926 1.5 kanaoka sc->rtk_ldata.rtk_rx_dmamap[i]);
927 1.5 kanaoka
928 1.5 kanaoka /* Free DMA'able memory for the RX ring. */
929 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
930 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
931 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
932 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
933 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
934 1.5 kanaoka &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
935 1.5 kanaoka
936 1.5 kanaoka /* Destroy DMA maps for TX buffers. */
937 1.5 kanaoka for (i = 0; i < RTK_TX_DESC_CNT; i++)
938 1.5 kanaoka if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
939 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat,
940 1.5 kanaoka sc->rtk_ldata.rtk_tx_dmamap[i]);
941 1.5 kanaoka
942 1.5 kanaoka /* Free DMA'able memory for the TX ring. */
943 1.5 kanaoka bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
944 1.5 kanaoka bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
945 1.5 kanaoka bus_dmamem_unmap(sc->sc_dmat,
946 1.5 kanaoka (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
947 1.5 kanaoka bus_dmamem_free(sc->sc_dmat,
948 1.5 kanaoka &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
949 1.5 kanaoka
950 1.5 kanaoka
951 1.1 jonathan shutdownhook_disestablish(sc->sc_sdhook);
952 1.1 jonathan powerhook_disestablish(sc->sc_powerhook);
953 1.1 jonathan
954 1.4 kanaoka return 0;
955 1.1 jonathan }
956 1.1 jonathan
957 1.1 jonathan /*
958 1.1 jonathan * re_enable:
959 1.1 jonathan * Enable the RTL81X9 chip.
960 1.1 jonathan */
961 1.1 jonathan static int
962 1.1 jonathan re_enable(struct rtk_softc *sc)
963 1.1 jonathan {
964 1.1 jonathan if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
965 1.1 jonathan if ((*sc->sc_enable)(sc) != 0) {
966 1.4 kanaoka aprint_error("%s: device enable failed\n",
967 1.1 jonathan sc->sc_dev.dv_xname);
968 1.4 kanaoka return EIO;
969 1.1 jonathan }
970 1.1 jonathan sc->sc_flags |= RTK_ENABLED;
971 1.1 jonathan }
972 1.4 kanaoka return 0;
973 1.1 jonathan }
974 1.1 jonathan
975 1.1 jonathan /*
976 1.1 jonathan * re_disable:
977 1.1 jonathan * Disable the RTL81X9 chip.
978 1.1 jonathan */
979 1.1 jonathan static void
980 1.1 jonathan re_disable(struct rtk_softc *sc)
981 1.1 jonathan {
982 1.1 jonathan
983 1.1 jonathan if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
984 1.1 jonathan (*sc->sc_disable)(sc);
985 1.1 jonathan sc->sc_flags &= ~RTK_ENABLED;
986 1.1 jonathan }
987 1.1 jonathan }
988 1.1 jonathan
989 1.1 jonathan /*
990 1.1 jonathan * re_power:
991 1.1 jonathan * Power management (suspend/resume) hook.
992 1.1 jonathan */
993 1.1 jonathan void
994 1.1 jonathan re_power(int why, void *arg)
995 1.1 jonathan {
996 1.1 jonathan struct rtk_softc *sc = (void *) arg;
997 1.1 jonathan struct ifnet *ifp = &sc->ethercom.ec_if;
998 1.1 jonathan int s;
999 1.1 jonathan
1000 1.1 jonathan s = splnet();
1001 1.1 jonathan switch (why) {
1002 1.1 jonathan case PWR_SUSPEND:
1003 1.1 jonathan case PWR_STANDBY:
1004 1.3 kanaoka re_stop(ifp, 0);
1005 1.1 jonathan if (sc->sc_power != NULL)
1006 1.1 jonathan (*sc->sc_power)(sc, why);
1007 1.1 jonathan break;
1008 1.1 jonathan case PWR_RESUME:
1009 1.1 jonathan if (ifp->if_flags & IFF_UP) {
1010 1.1 jonathan if (sc->sc_power != NULL)
1011 1.1 jonathan (*sc->sc_power)(sc, why);
1012 1.1 jonathan re_init(ifp);
1013 1.1 jonathan }
1014 1.1 jonathan break;
1015 1.1 jonathan case PWR_SOFTSUSPEND:
1016 1.1 jonathan case PWR_SOFTSTANDBY:
1017 1.1 jonathan case PWR_SOFTRESUME:
1018 1.1 jonathan break;
1019 1.1 jonathan }
1020 1.1 jonathan splx(s);
1021 1.1 jonathan }
1022 1.1 jonathan
1023 1.1 jonathan
1024 1.1 jonathan static int
1025 1.1 jonathan re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1026 1.1 jonathan {
1027 1.1 jonathan struct mbuf *n = NULL;
1028 1.1 jonathan bus_dmamap_t map;
1029 1.1 jonathan struct rtk_desc *d;
1030 1.1 jonathan u_int32_t cmdstat;
1031 1.1 jonathan int error;
1032 1.1 jonathan
1033 1.1 jonathan if (m == NULL) {
1034 1.1 jonathan MGETHDR(n, M_DONTWAIT, MT_DATA);
1035 1.1 jonathan if (n == NULL)
1036 1.4 kanaoka return ENOBUFS;
1037 1.1 jonathan m = n;
1038 1.1 jonathan
1039 1.1 jonathan MCLGET(m, M_DONTWAIT);
1040 1.4 kanaoka if (!(m->m_flags & M_EXT)) {
1041 1.1 jonathan m_freem(m);
1042 1.4 kanaoka return ENOBUFS;
1043 1.1 jonathan }
1044 1.1 jonathan } else
1045 1.1 jonathan m->m_data = m->m_ext.ext_buf;
1046 1.1 jonathan
1047 1.1 jonathan /*
1048 1.1 jonathan * Initialize mbuf length fields and fixup
1049 1.1 jonathan * alignment so that the frame payload is
1050 1.1 jonathan * longword aligned.
1051 1.1 jonathan */
1052 1.1 jonathan m->m_len = m->m_pkthdr.len = MCLBYTES;
1053 1.1 jonathan m_adj(m, RTK_ETHER_ALIGN);
1054 1.1 jonathan
1055 1.1 jonathan map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1056 1.4 kanaoka error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1057 1.1 jonathan
1058 1.1 jonathan if (error)
1059 1.1 jonathan goto out;
1060 1.1 jonathan
1061 1.1 jonathan d = &sc->rtk_ldata.rtk_rx_list[idx];
1062 1.1 jonathan if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1063 1.1 jonathan goto out;
1064 1.1 jonathan
1065 1.1 jonathan cmdstat = map->dm_segs[0].ds_len;
1066 1.1 jonathan d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1067 1.1 jonathan d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1068 1.1 jonathan cmdstat |= RTK_TDESC_CMD_SOF;
1069 1.1 jonathan if (idx == (RTK_RX_DESC_CNT - 1))
1070 1.1 jonathan cmdstat |= RTK_TDESC_CMD_EOR;
1071 1.1 jonathan d->rtk_cmdstat = htole32(cmdstat);
1072 1.1 jonathan
1073 1.1 jonathan d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1074 1.1 jonathan
1075 1.1 jonathan
1076 1.4 kanaoka sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1077 1.4 kanaoka htole32(RTK_RDESC_CMD_OWN);
1078 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1079 1.1 jonathan
1080 1.4 kanaoka bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1081 1.4 kanaoka sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1082 1.1 jonathan BUS_DMASYNC_PREREAD);
1083 1.1 jonathan
1084 1.1 jonathan return 0;
1085 1.1 jonathan out:
1086 1.1 jonathan if (n != NULL)
1087 1.1 jonathan m_freem(n);
1088 1.1 jonathan return ENOMEM;
1089 1.1 jonathan }
1090 1.1 jonathan
1091 1.1 jonathan static int
1092 1.1 jonathan re_tx_list_init(struct rtk_softc *sc)
1093 1.1 jonathan {
1094 1.1 jonathan memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
1095 1.1 jonathan memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
1096 1.1 jonathan (RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
1097 1.1 jonathan
1098 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1099 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map, 0,
1100 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1101 1.1 jonathan sc->rtk_ldata.rtk_tx_prodidx = 0;
1102 1.1 jonathan sc->rtk_ldata.rtk_tx_considx = 0;
1103 1.1 jonathan sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
1104 1.1 jonathan
1105 1.4 kanaoka return 0;
1106 1.1 jonathan }
1107 1.1 jonathan
1108 1.1 jonathan static int
1109 1.1 jonathan re_rx_list_init(struct rtk_softc *sc)
1110 1.1 jonathan {
1111 1.1 jonathan int i;
1112 1.1 jonathan
1113 1.1 jonathan memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1114 1.1 jonathan memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1115 1.1 jonathan (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1116 1.1 jonathan
1117 1.1 jonathan for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1118 1.1 jonathan if (re_newbuf(sc, i, NULL) == ENOBUFS)
1119 1.4 kanaoka return ENOBUFS;
1120 1.1 jonathan }
1121 1.1 jonathan
1122 1.1 jonathan /* Flush the RX descriptors */
1123 1.1 jonathan
1124 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1125 1.1 jonathan sc->rtk_ldata.rtk_rx_list_map,
1126 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1127 1.4 kanaoka BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1128 1.1 jonathan
1129 1.1 jonathan sc->rtk_ldata.rtk_rx_prodidx = 0;
1130 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1131 1.1 jonathan
1132 1.4 kanaoka return 0;
1133 1.1 jonathan }
1134 1.1 jonathan
1135 1.1 jonathan /*
1136 1.1 jonathan * RX handler for C+ and 8169. For the gigE chips, we support
1137 1.1 jonathan * the reception of jumbo frames that have been fragmented
1138 1.1 jonathan * across multiple 2K mbuf cluster buffers.
1139 1.1 jonathan */
1140 1.1 jonathan static void
1141 1.1 jonathan re_rxeof(struct rtk_softc *sc)
1142 1.1 jonathan {
1143 1.1 jonathan struct mbuf *m;
1144 1.1 jonathan struct ifnet *ifp;
1145 1.1 jonathan int i, total_len;
1146 1.1 jonathan struct rtk_desc *cur_rx;
1147 1.1 jonathan struct m_tag *mtag;
1148 1.1 jonathan u_int32_t rxstat, rxvlan;
1149 1.1 jonathan
1150 1.1 jonathan ifp = &sc->ethercom.ec_if;
1151 1.1 jonathan i = sc->rtk_ldata.rtk_rx_prodidx;
1152 1.1 jonathan
1153 1.1 jonathan /* Invalidate the descriptor memory */
1154 1.1 jonathan
1155 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1156 1.1 jonathan sc->rtk_ldata.rtk_rx_list_map,
1157 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1158 1.1 jonathan BUS_DMASYNC_POSTREAD);
1159 1.1 jonathan
1160 1.1 jonathan while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1161 1.1 jonathan
1162 1.1 jonathan cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1163 1.1 jonathan m = sc->rtk_ldata.rtk_rx_mbuf[i];
1164 1.1 jonathan total_len = RTK_RXBYTES(cur_rx);
1165 1.1 jonathan rxstat = le32toh(cur_rx->rtk_cmdstat);
1166 1.1 jonathan rxvlan = le32toh(cur_rx->rtk_vlanctl);
1167 1.1 jonathan
1168 1.1 jonathan /* Invalidate the RX mbuf and unload its map */
1169 1.1 jonathan
1170 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1171 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i],
1172 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1173 1.1 jonathan BUS_DMASYNC_POSTWRITE);
1174 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
1175 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i]);
1176 1.1 jonathan
1177 1.1 jonathan if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1178 1.1 jonathan m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1179 1.1 jonathan if (sc->rtk_head == NULL)
1180 1.1 jonathan sc->rtk_head = sc->rtk_tail = m;
1181 1.1 jonathan else {
1182 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1183 1.1 jonathan sc->rtk_tail->m_next = m;
1184 1.1 jonathan sc->rtk_tail = m;
1185 1.1 jonathan }
1186 1.1 jonathan re_newbuf(sc, i, NULL);
1187 1.1 jonathan RTK_DESC_INC(i);
1188 1.1 jonathan continue;
1189 1.1 jonathan }
1190 1.1 jonathan
1191 1.1 jonathan /*
1192 1.1 jonathan * NOTE: for the 8139C+, the frame length field
1193 1.1 jonathan * is always 12 bits in size, but for the gigE chips,
1194 1.1 jonathan * it is 13 bits (since the max RX frame length is 16K).
1195 1.1 jonathan * Unfortunately, all 32 bits in the status word
1196 1.1 jonathan * were already used, so to make room for the extra
1197 1.1 jonathan * length bit, RealTek took out the 'frame alignment
1198 1.1 jonathan * error' bit and shifted the other status bits
1199 1.1 jonathan * over one slot. The OWN, EOR, FS and LS bits are
1200 1.1 jonathan * still in the same places. We have already extracted
1201 1.1 jonathan * the frame length and checked the OWN bit, so rather
1202 1.1 jonathan * than using an alternate bit mapping, we shift the
1203 1.1 jonathan * status bits one space to the right so we can evaluate
1204 1.1 jonathan * them using the 8169 status as though it was in the
1205 1.1 jonathan * same format as that of the 8139C+.
1206 1.1 jonathan */
1207 1.1 jonathan if (sc->rtk_type == RTK_8169)
1208 1.1 jonathan rxstat >>= 1;
1209 1.1 jonathan
1210 1.1 jonathan if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1211 1.1 jonathan ifp->if_ierrors++;
1212 1.1 jonathan /*
1213 1.1 jonathan * If this is part of a multi-fragment packet,
1214 1.1 jonathan * discard all the pieces.
1215 1.1 jonathan */
1216 1.1 jonathan if (sc->rtk_head != NULL) {
1217 1.1 jonathan m_freem(sc->rtk_head);
1218 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1219 1.1 jonathan }
1220 1.1 jonathan re_newbuf(sc, i, m);
1221 1.1 jonathan RTK_DESC_INC(i);
1222 1.1 jonathan continue;
1223 1.1 jonathan }
1224 1.1 jonathan
1225 1.1 jonathan /*
1226 1.1 jonathan * If allocating a replacement mbuf fails,
1227 1.1 jonathan * reload the current one.
1228 1.1 jonathan */
1229 1.1 jonathan
1230 1.1 jonathan if (re_newbuf(sc, i, NULL)) {
1231 1.1 jonathan ifp->if_ierrors++;
1232 1.1 jonathan if (sc->rtk_head != NULL) {
1233 1.1 jonathan m_freem(sc->rtk_head);
1234 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1235 1.1 jonathan }
1236 1.1 jonathan re_newbuf(sc, i, m);
1237 1.1 jonathan RTK_DESC_INC(i);
1238 1.1 jonathan continue;
1239 1.1 jonathan }
1240 1.1 jonathan
1241 1.1 jonathan RTK_DESC_INC(i);
1242 1.1 jonathan
1243 1.1 jonathan if (sc->rtk_head != NULL) {
1244 1.1 jonathan m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1245 1.1 jonathan /*
1246 1.1 jonathan * Special case: if there's 4 bytes or less
1247 1.1 jonathan * in this buffer, the mbuf can be discarded:
1248 1.1 jonathan * the last 4 bytes is the CRC, which we don't
1249 1.1 jonathan * care about anyway.
1250 1.1 jonathan */
1251 1.1 jonathan if (m->m_len <= ETHER_CRC_LEN) {
1252 1.1 jonathan sc->rtk_tail->m_len -=
1253 1.1 jonathan (ETHER_CRC_LEN - m->m_len);
1254 1.1 jonathan m_freem(m);
1255 1.1 jonathan } else {
1256 1.1 jonathan m->m_len -= ETHER_CRC_LEN;
1257 1.1 jonathan m->m_flags &= ~M_PKTHDR;
1258 1.1 jonathan sc->rtk_tail->m_next = m;
1259 1.1 jonathan }
1260 1.1 jonathan m = sc->rtk_head;
1261 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
1262 1.1 jonathan m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1263 1.1 jonathan } else
1264 1.1 jonathan m->m_pkthdr.len = m->m_len =
1265 1.1 jonathan (total_len - ETHER_CRC_LEN);
1266 1.1 jonathan
1267 1.1 jonathan ifp->if_ipackets++;
1268 1.1 jonathan m->m_pkthdr.rcvif = ifp;
1269 1.1 jonathan
1270 1.1 jonathan /* Do RX checksumming if enabled */
1271 1.1 jonathan
1272 1.1 jonathan if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
1273 1.1 jonathan
1274 1.1 jonathan /* Check IP header checksum */
1275 1.1 jonathan if (rxstat & RTK_RDESC_STAT_PROTOID)
1276 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1277 1.1 jonathan if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1278 1.4 kanaoka m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1279 1.1 jonathan }
1280 1.1 jonathan
1281 1.1 jonathan /* Check TCP/UDP checksum */
1282 1.1 jonathan if (RTK_TCPPKT(rxstat) &&
1283 1.1 jonathan (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
1284 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1285 1.1 jonathan if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1286 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1287 1.1 jonathan }
1288 1.1 jonathan if (RTK_UDPPKT(rxstat) &&
1289 1.1 jonathan (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
1290 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1291 1.1 jonathan if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1292 1.1 jonathan m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1293 1.1 jonathan }
1294 1.1 jonathan
1295 1.1 jonathan if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1296 1.1 jonathan mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
1297 1.1 jonathan M_NOWAIT);
1298 1.1 jonathan if (mtag == NULL) {
1299 1.1 jonathan ifp->if_ierrors++;
1300 1.1 jonathan m_freem(m);
1301 1.1 jonathan continue;
1302 1.1 jonathan }
1303 1.1 jonathan *(u_int *)(mtag + 1) =
1304 1.1 jonathan be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA);
1305 1.1 jonathan m_tag_prepend(m, mtag);
1306 1.1 jonathan }
1307 1.1 jonathan #if NBPFILTER > 0
1308 1.1 jonathan if (ifp->if_bpf)
1309 1.1 jonathan bpf_mtap(ifp->if_bpf, m);
1310 1.1 jonathan #endif
1311 1.1 jonathan (*ifp->if_input)(ifp, m);
1312 1.1 jonathan }
1313 1.1 jonathan
1314 1.1 jonathan /* Flush the RX DMA ring */
1315 1.1 jonathan
1316 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1317 1.1 jonathan sc->rtk_ldata.rtk_rx_list_map,
1318 1.1 jonathan 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1319 1.4 kanaoka BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1320 1.1 jonathan
1321 1.1 jonathan sc->rtk_ldata.rtk_rx_prodidx = i;
1322 1.1 jonathan
1323 1.1 jonathan return;
1324 1.1 jonathan }
1325 1.1 jonathan
1326 1.1 jonathan static void
1327 1.1 jonathan re_txeof(struct rtk_softc *sc)
1328 1.1 jonathan {
1329 1.1 jonathan struct ifnet *ifp;
1330 1.1 jonathan u_int32_t txstat;
1331 1.1 jonathan int idx;
1332 1.1 jonathan
1333 1.1 jonathan ifp = &sc->ethercom.ec_if;
1334 1.1 jonathan idx = sc->rtk_ldata.rtk_tx_considx;
1335 1.1 jonathan
1336 1.1 jonathan /* Invalidate the TX descriptor list */
1337 1.1 jonathan
1338 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1339 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map,
1340 1.1 jonathan 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1341 1.1 jonathan BUS_DMASYNC_POSTREAD);
1342 1.1 jonathan
1343 1.1 jonathan while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
1344 1.1 jonathan
1345 1.1 jonathan txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
1346 1.1 jonathan if (txstat & RTK_TDESC_CMD_OWN)
1347 1.1 jonathan break;
1348 1.1 jonathan
1349 1.1 jonathan /*
1350 1.1 jonathan * We only stash mbufs in the last descriptor
1351 1.1 jonathan * in a fragment chain, which also happens to
1352 1.1 jonathan * be the only place where the TX status bits
1353 1.1 jonathan * are valid.
1354 1.1 jonathan */
1355 1.1 jonathan
1356 1.1 jonathan if (txstat & RTK_TDESC_CMD_EOF) {
1357 1.1 jonathan m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
1358 1.1 jonathan sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
1359 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
1360 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[idx]);
1361 1.4 kanaoka if (txstat & (RTK_TDESC_STAT_EXCESSCOL |
1362 1.1 jonathan RTK_TDESC_STAT_COLCNT))
1363 1.1 jonathan ifp->if_collisions++;
1364 1.1 jonathan if (txstat & RTK_TDESC_STAT_TXERRSUM)
1365 1.1 jonathan ifp->if_oerrors++;
1366 1.1 jonathan else
1367 1.1 jonathan ifp->if_opackets++;
1368 1.1 jonathan }
1369 1.1 jonathan sc->rtk_ldata.rtk_tx_free++;
1370 1.1 jonathan RTK_DESC_INC(idx);
1371 1.1 jonathan }
1372 1.1 jonathan
1373 1.1 jonathan /* No changes made to the TX ring, so no flush needed */
1374 1.1 jonathan
1375 1.1 jonathan if (idx != sc->rtk_ldata.rtk_tx_considx) {
1376 1.1 jonathan sc->rtk_ldata.rtk_tx_considx = idx;
1377 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1378 1.1 jonathan ifp->if_timer = 0;
1379 1.1 jonathan }
1380 1.1 jonathan
1381 1.1 jonathan /*
1382 1.1 jonathan * If not all descriptors have been released reaped yet,
1383 1.1 jonathan * reload the timer so that we will eventually get another
1384 1.1 jonathan * interrupt that will cause us to re-enter this routine.
1385 1.1 jonathan * This is done in case the transmitter has gone idle.
1386 1.1 jonathan */
1387 1.1 jonathan if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
1388 1.4 kanaoka CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1389 1.1 jonathan
1390 1.1 jonathan return;
1391 1.1 jonathan }
1392 1.1 jonathan
1393 1.1 jonathan /*
1394 1.1 jonathan * Stop all chip I/O so that the kernel's probe routines don't
1395 1.1 jonathan * get confused by errant DMAs when rebooting.
1396 1.1 jonathan */
1397 1.1 jonathan static void
1398 1.1 jonathan re_shutdown(void *vsc)
1399 1.1 jonathan
1400 1.1 jonathan {
1401 1.1 jonathan struct rtk_softc *sc = (struct rtk_softc *)vsc;
1402 1.1 jonathan
1403 1.3 kanaoka re_stop(&sc->ethercom.ec_if, 0);
1404 1.1 jonathan }
1405 1.1 jonathan
1406 1.1 jonathan
1407 1.1 jonathan static void
1408 1.1 jonathan re_tick(void *xsc)
1409 1.1 jonathan {
1410 1.1 jonathan struct rtk_softc *sc = xsc;
1411 1.1 jonathan int s;
1412 1.1 jonathan
1413 1.1 jonathan /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1414 1.1 jonathan s = splnet();
1415 1.1 jonathan
1416 1.1 jonathan mii_tick(&sc->mii);
1417 1.1 jonathan splx(s);
1418 1.1 jonathan
1419 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1420 1.1 jonathan }
1421 1.1 jonathan
1422 1.1 jonathan #ifdef DEVICE_POLLING
1423 1.1 jonathan static void
1424 1.1 jonathan re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1425 1.1 jonathan {
1426 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1427 1.1 jonathan
1428 1.1 jonathan RTK_LOCK(sc);
1429 1.1 jonathan if (!(ifp->if_capenable & IFCAP_POLLING)) {
1430 1.1 jonathan ether_poll_deregister(ifp);
1431 1.1 jonathan cmd = POLL_DEREGISTER;
1432 1.1 jonathan }
1433 1.1 jonathan if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1434 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1435 1.1 jonathan goto done;
1436 1.1 jonathan }
1437 1.1 jonathan
1438 1.1 jonathan sc->rxcycles = count;
1439 1.1 jonathan re_rxeof(sc);
1440 1.1 jonathan re_txeof(sc);
1441 1.1 jonathan
1442 1.1 jonathan if (ifp->if_snd.ifq_head != NULL)
1443 1.1 jonathan (*ifp->if_start)(ifp);
1444 1.1 jonathan
1445 1.1 jonathan if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1446 1.1 jonathan u_int16_t status;
1447 1.1 jonathan
1448 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1449 1.1 jonathan if (status == 0xffff)
1450 1.1 jonathan goto done;
1451 1.1 jonathan if (status)
1452 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1453 1.1 jonathan
1454 1.1 jonathan /*
1455 1.1 jonathan * XXX check behaviour on receiver stalls.
1456 1.1 jonathan */
1457 1.1 jonathan
1458 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1459 1.1 jonathan re_reset(sc);
1460 1.1 jonathan re_init(sc);
1461 1.1 jonathan }
1462 1.1 jonathan }
1463 1.1 jonathan done:
1464 1.1 jonathan RTK_UNLOCK(sc);
1465 1.1 jonathan }
1466 1.1 jonathan #endif /* DEVICE_POLLING */
1467 1.1 jonathan
1468 1.1 jonathan int
1469 1.1 jonathan re_intr(void *arg)
1470 1.1 jonathan {
1471 1.1 jonathan struct rtk_softc *sc = arg;
1472 1.1 jonathan struct ifnet *ifp;
1473 1.1 jonathan u_int16_t status;
1474 1.1 jonathan int handled = 0;
1475 1.1 jonathan
1476 1.1 jonathan ifp = &sc->ethercom.ec_if;
1477 1.1 jonathan
1478 1.1 jonathan if (!(ifp->if_flags & IFF_UP))
1479 1.1 jonathan return 0;
1480 1.1 jonathan
1481 1.1 jonathan #ifdef DEVICE_POLLING
1482 1.4 kanaoka if (ifp->if_flags & IFF_POLLING)
1483 1.1 jonathan goto done;
1484 1.1 jonathan if ((ifp->if_capenable & IFCAP_POLLING) &&
1485 1.1 jonathan ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1486 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1487 1.1 jonathan re_poll(ifp, 0, 1);
1488 1.1 jonathan goto done;
1489 1.1 jonathan }
1490 1.1 jonathan #endif /* DEVICE_POLLING */
1491 1.1 jonathan
1492 1.1 jonathan for (;;) {
1493 1.1 jonathan
1494 1.1 jonathan status = CSR_READ_2(sc, RTK_ISR);
1495 1.1 jonathan /* If the card has gone away the read returns 0xffff. */
1496 1.1 jonathan if (status == 0xffff)
1497 1.1 jonathan break;
1498 1.1 jonathan if (status) {
1499 1.1 jonathan handled = 1;
1500 1.1 jonathan CSR_WRITE_2(sc, RTK_ISR, status);
1501 1.1 jonathan }
1502 1.1 jonathan
1503 1.1 jonathan if ((status & RTK_INTRS_CPLUS) == 0)
1504 1.1 jonathan break;
1505 1.1 jonathan
1506 1.1 jonathan if (status & RTK_ISR_RX_OK)
1507 1.1 jonathan re_rxeof(sc);
1508 1.1 jonathan
1509 1.1 jonathan if (status & RTK_ISR_RX_ERR)
1510 1.1 jonathan re_rxeof(sc);
1511 1.1 jonathan
1512 1.1 jonathan if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1513 1.1 jonathan (status & RTK_ISR_TX_ERR) ||
1514 1.1 jonathan (status & RTK_ISR_TX_DESC_UNAVAIL))
1515 1.1 jonathan re_txeof(sc);
1516 1.1 jonathan
1517 1.1 jonathan if (status & RTK_ISR_SYSTEM_ERR) {
1518 1.1 jonathan re_reset(sc);
1519 1.1 jonathan re_init(ifp);
1520 1.1 jonathan }
1521 1.1 jonathan
1522 1.1 jonathan if (status & RTK_ISR_LINKCHG) {
1523 1.1 jonathan callout_stop(&sc->rtk_tick_ch);
1524 1.1 jonathan re_tick(sc);
1525 1.1 jonathan }
1526 1.1 jonathan }
1527 1.1 jonathan
1528 1.4 kanaoka if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1529 1.4 kanaoka if (ifp->if_snd.ifq_head != NULL)
1530 1.4 kanaoka (*ifp->if_start)(ifp);
1531 1.1 jonathan
1532 1.1 jonathan #ifdef DEVICE_POLLING
1533 1.1 jonathan done:
1534 1.1 jonathan #endif
1535 1.1 jonathan
1536 1.1 jonathan return handled;
1537 1.1 jonathan }
1538 1.1 jonathan
1539 1.1 jonathan static int
1540 1.1 jonathan re_encap(struct rtk_softc *sc, struct mbuf *m_head, int *idx)
1541 1.1 jonathan {
1542 1.1 jonathan bus_dmamap_t map;
1543 1.1 jonathan int error, i, curidx;
1544 1.1 jonathan struct m_tag *mtag;
1545 1.1 jonathan struct rtk_desc *d;
1546 1.1 jonathan u_int32_t cmdstat, rtk_flags;
1547 1.1 jonathan
1548 1.1 jonathan if (sc->rtk_ldata.rtk_tx_free <= 4)
1549 1.4 kanaoka return EFBIG;
1550 1.1 jonathan
1551 1.1 jonathan /*
1552 1.1 jonathan * Set up checksum offload. Note: checksum offload bits must
1553 1.1 jonathan * appear in all descriptors of a multi-descriptor transmit
1554 1.1 jonathan * attempt. (This is according to testing done with an 8169
1555 1.1 jonathan * chip. I'm not sure if this is a requirement or a bug.)
1556 1.1 jonathan */
1557 1.1 jonathan
1558 1.1 jonathan rtk_flags = 0;
1559 1.1 jonathan
1560 1.1 jonathan if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1561 1.1 jonathan rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1562 1.1 jonathan if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1563 1.1 jonathan rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1564 1.1 jonathan if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1565 1.1 jonathan rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1566 1.1 jonathan
1567 1.1 jonathan map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
1568 1.1 jonathan error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1569 1.1 jonathan m_head, BUS_DMA_NOWAIT);
1570 1.1 jonathan
1571 1.1 jonathan if (error) {
1572 1.4 kanaoka aprint_error("%s: can't map mbuf (error %d)\n",
1573 1.1 jonathan sc->sc_dev.dv_xname, error);
1574 1.1 jonathan return ENOBUFS;
1575 1.1 jonathan }
1576 1.1 jonathan
1577 1.1 jonathan if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4)
1578 1.1 jonathan return ENOBUFS;
1579 1.1 jonathan /*
1580 1.1 jonathan * Map the segment array into descriptors. Note that we set the
1581 1.1 jonathan * start-of-frame and end-of-frame markers for either TX or RX, but
1582 1.1 jonathan * they really only have meaning in the TX case. (In the RX case,
1583 1.1 jonathan * it's the chip that tells us where packets begin and end.)
1584 1.1 jonathan * We also keep track of the end of the ring and set the
1585 1.1 jonathan * end-of-ring bits as needed, and we set the ownership bits
1586 1.1 jonathan * in all except the very first descriptor. (The caller will
1587 1.1 jonathan * set this descriptor later when it start transmission or
1588 1.1 jonathan * reception.)
1589 1.1 jonathan */
1590 1.1 jonathan i = 0;
1591 1.1 jonathan curidx = *idx;
1592 1.1 jonathan while (1) {
1593 1.1 jonathan d = &sc->rtk_ldata.rtk_tx_list[curidx];
1594 1.1 jonathan if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1595 1.1 jonathan return ENOBUFS;
1596 1.1 jonathan
1597 1.1 jonathan cmdstat = map->dm_segs[i].ds_len;
1598 1.1 jonathan d->rtk_bufaddr_lo =
1599 1.1 jonathan htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1600 1.1 jonathan d->rtk_bufaddr_hi =
1601 1.1 jonathan htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1602 1.1 jonathan if (i == 0)
1603 1.1 jonathan cmdstat |= RTK_TDESC_CMD_SOF;
1604 1.1 jonathan else
1605 1.1 jonathan cmdstat |= RTK_TDESC_CMD_OWN;
1606 1.1 jonathan if (curidx == (RTK_RX_DESC_CNT - 1))
1607 1.1 jonathan cmdstat |= RTK_TDESC_CMD_EOR;
1608 1.1 jonathan d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1609 1.1 jonathan i++;
1610 1.1 jonathan if (i == map->dm_nsegs)
1611 1.1 jonathan break;
1612 1.1 jonathan RTK_DESC_INC(curidx);
1613 1.1 jonathan }
1614 1.1 jonathan
1615 1.1 jonathan d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1616 1.1 jonathan
1617 1.1 jonathan /*
1618 1.1 jonathan * Insure that the map for this transmission
1619 1.1 jonathan * is placed at the array index of the last descriptor
1620 1.1 jonathan * in this chain.
1621 1.1 jonathan */
1622 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[*idx] =
1623 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[curidx];
1624 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
1625 1.1 jonathan sc->rtk_ldata.rtk_tx_mbuf[curidx] = m_head;
1626 1.1 jonathan sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1627 1.1 jonathan
1628 1.1 jonathan /*
1629 1.1 jonathan * Set up hardware VLAN tagging. Note: vlan tag info must
1630 1.1 jonathan * appear in the first descriptor of a multi-descriptor
1631 1.1 jonathan * transmission attempt.
1632 1.1 jonathan */
1633 1.1 jonathan
1634 1.1 jonathan if (sc->ethercom.ec_nvlans &&
1635 1.1 jonathan (mtag = m_tag_find(m_head, PACKET_TAG_VLAN, NULL)) != NULL)
1636 1.1 jonathan sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
1637 1.1 jonathan htole32(htons(*(u_int *)(mtag + 1)) |
1638 1.1 jonathan RTK_TDESC_VLANCTL_TAG);
1639 1.1 jonathan
1640 1.1 jonathan /* Transfer ownership of packet to the chip. */
1641 1.1 jonathan
1642 1.1 jonathan sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1643 1.1 jonathan htole32(RTK_TDESC_CMD_OWN);
1644 1.1 jonathan if (*idx != curidx)
1645 1.1 jonathan sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
1646 1.1 jonathan htole32(RTK_TDESC_CMD_OWN);
1647 1.1 jonathan
1648 1.1 jonathan RTK_DESC_INC(curidx);
1649 1.1 jonathan *idx = curidx;
1650 1.1 jonathan
1651 1.1 jonathan return 0;
1652 1.1 jonathan }
1653 1.1 jonathan
1654 1.1 jonathan /*
1655 1.1 jonathan * Main transmit routine for C+ and gigE NICs.
1656 1.1 jonathan */
1657 1.1 jonathan
1658 1.1 jonathan static void
1659 1.1 jonathan re_start(struct ifnet *ifp)
1660 1.1 jonathan {
1661 1.1 jonathan struct rtk_softc *sc;
1662 1.1 jonathan struct mbuf *m_head = NULL;
1663 1.1 jonathan int idx;
1664 1.1 jonathan
1665 1.1 jonathan sc = ifp->if_softc;
1666 1.1 jonathan
1667 1.1 jonathan idx = sc->rtk_ldata.rtk_tx_prodidx;
1668 1.1 jonathan while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
1669 1.1 jonathan IF_DEQUEUE(&ifp->if_snd, m_head);
1670 1.1 jonathan if (m_head == NULL)
1671 1.1 jonathan break;
1672 1.1 jonathan
1673 1.1 jonathan if (re_encap(sc, m_head, &idx)) {
1674 1.1 jonathan IF_PREPEND(&ifp->if_snd, m_head);
1675 1.1 jonathan ifp->if_flags |= IFF_OACTIVE;
1676 1.1 jonathan break;
1677 1.1 jonathan }
1678 1.1 jonathan #if NBPFILTER > 0
1679 1.1 jonathan /*
1680 1.1 jonathan * If there's a BPF listener, bounce a copy of this frame
1681 1.1 jonathan * to him.
1682 1.1 jonathan */
1683 1.1 jonathan if (ifp->if_bpf)
1684 1.1 jonathan bpf_mtap(ifp->if_bpf, m_head);
1685 1.1 jonathan #endif
1686 1.1 jonathan }
1687 1.1 jonathan
1688 1.1 jonathan /* Flush the TX descriptors */
1689 1.1 jonathan
1690 1.1 jonathan bus_dmamap_sync(sc->sc_dmat,
1691 1.1 jonathan sc->rtk_ldata.rtk_tx_list_map,
1692 1.1 jonathan 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1693 1.4 kanaoka BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1694 1.1 jonathan
1695 1.1 jonathan sc->rtk_ldata.rtk_tx_prodidx = idx;
1696 1.1 jonathan
1697 1.1 jonathan /*
1698 1.1 jonathan * RealTek put the TX poll request register in a different
1699 1.1 jonathan * location on the 8169 gigE chip. I don't know why.
1700 1.1 jonathan */
1701 1.1 jonathan
1702 1.1 jonathan if (sc->rtk_type == RTK_8169)
1703 1.1 jonathan CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1704 1.1 jonathan else
1705 1.1 jonathan CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1706 1.1 jonathan
1707 1.1 jonathan /*
1708 1.1 jonathan * Use the countdown timer for interrupt moderation.
1709 1.1 jonathan * 'TX done' interrupts are disabled. Instead, we reset the
1710 1.1 jonathan * countdown timer, which will begin counting until it hits
1711 1.1 jonathan * the value in the TIMERINT register, and then trigger an
1712 1.1 jonathan * interrupt. Each time we write to the TIMERCNT register,
1713 1.1 jonathan * the timer count is reset to 0.
1714 1.1 jonathan */
1715 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1716 1.1 jonathan
1717 1.1 jonathan /*
1718 1.1 jonathan * Set a timeout in case the chip goes out to lunch.
1719 1.1 jonathan */
1720 1.1 jonathan ifp->if_timer = 5;
1721 1.1 jonathan
1722 1.1 jonathan return;
1723 1.1 jonathan }
1724 1.1 jonathan
1725 1.1 jonathan static int
1726 1.1 jonathan re_init(struct ifnet *ifp)
1727 1.1 jonathan {
1728 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1729 1.1 jonathan u_int32_t rxcfg = 0;
1730 1.1 jonathan u_int32_t reg;
1731 1.1 jonathan int error;
1732 1.1 jonathan
1733 1.1 jonathan if ((error = re_enable(sc)) != 0)
1734 1.1 jonathan goto out;
1735 1.1 jonathan
1736 1.1 jonathan /*
1737 1.1 jonathan * Cancel pending I/O and free all RX/TX buffers.
1738 1.1 jonathan */
1739 1.3 kanaoka re_stop(ifp, 0);
1740 1.1 jonathan
1741 1.1 jonathan /*
1742 1.1 jonathan * Enable C+ RX and TX mode, as well as VLAN stripping and
1743 1.1 jonathan * RX checksum offload. We must configure the C+ register
1744 1.1 jonathan * before all others.
1745 1.1 jonathan */
1746 1.1 jonathan reg = 0;
1747 1.1 jonathan
1748 1.1 jonathan /*
1749 1.1 jonathan * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1750 1.1 jonathan * FreeBSD drivers set these bits anyway (for 8139C+?).
1751 1.1 jonathan * So far, it works.
1752 1.1 jonathan */
1753 1.1 jonathan
1754 1.1 jonathan /*
1755 1.1 jonathan * XXX: For 8169 and 8196S revs below 2, set bit 14.
1756 1.1 jonathan * For 8169S/8110S rev 2 and above, do not set bit 14.
1757 1.1 jonathan */
1758 1.1 jonathan if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1759 1.4 kanaoka reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1760 1.1 jonathan
1761 1.4 kanaoka if (1) {/* not for 8169S ? */
1762 1.4 kanaoka reg |= RTK_CPLUSCMD_VLANSTRIP |
1763 1.4 kanaoka (ifp->if_capenable &
1764 1.4 kanaoka (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
1765 1.4 kanaoka RTK_CPLUSCMD_RXCSUM_ENB : 0);
1766 1.4 kanaoka }
1767 1.1 jonathan
1768 1.1 jonathan CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1769 1.4 kanaoka reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1770 1.1 jonathan
1771 1.1 jonathan /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1772 1.1 jonathan if (sc->rtk_type == RTK_8169)
1773 1.1 jonathan CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1774 1.1 jonathan
1775 1.1 jonathan DELAY(10000);
1776 1.1 jonathan
1777 1.1 jonathan /*
1778 1.1 jonathan * Init our MAC address. Even though the chipset
1779 1.1 jonathan * documentation doesn't mention it, we need to enter "Config
1780 1.1 jonathan * register write enable" mode to modify the ID registers.
1781 1.1 jonathan */
1782 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1783 1.1 jonathan memcpy(®, LLADDR(ifp->if_sadl), 4);
1784 1.1 jonathan CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1785 1.1 jonathan reg = 0;
1786 1.1 jonathan memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1787 1.1 jonathan CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1788 1.1 jonathan CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1789 1.1 jonathan
1790 1.1 jonathan /*
1791 1.1 jonathan * For C+ mode, initialize the RX descriptors and mbufs.
1792 1.1 jonathan */
1793 1.1 jonathan re_rx_list_init(sc);
1794 1.1 jonathan re_tx_list_init(sc);
1795 1.1 jonathan
1796 1.1 jonathan /*
1797 1.1 jonathan * Enable transmit and receive.
1798 1.1 jonathan */
1799 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1800 1.1 jonathan
1801 1.1 jonathan /*
1802 1.1 jonathan * Set the initial TX and RX configuration.
1803 1.1 jonathan */
1804 1.1 jonathan if (sc->rtk_testmode) {
1805 1.1 jonathan if (sc->rtk_type == RTK_8169)
1806 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG,
1807 1.4 kanaoka RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1808 1.1 jonathan else
1809 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG,
1810 1.4 kanaoka RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1811 1.1 jonathan } else
1812 1.1 jonathan CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1813 1.1 jonathan CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1814 1.1 jonathan
1815 1.1 jonathan /* Set the individual bit to receive frames for this host only. */
1816 1.1 jonathan rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1817 1.1 jonathan rxcfg |= RTK_RXCFG_RX_INDIV;
1818 1.1 jonathan
1819 1.1 jonathan /* If we want promiscuous mode, set the allframes bit. */
1820 1.1 jonathan if (ifp->if_flags & IFF_PROMISC) {
1821 1.1 jonathan rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1822 1.1 jonathan CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1823 1.1 jonathan } else {
1824 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1825 1.1 jonathan CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1826 1.1 jonathan }
1827 1.1 jonathan
1828 1.1 jonathan /*
1829 1.1 jonathan * Set capture broadcast bit to capture broadcast frames.
1830 1.1 jonathan */
1831 1.1 jonathan if (ifp->if_flags & IFF_BROADCAST) {
1832 1.1 jonathan rxcfg |= RTK_RXCFG_RX_BROAD;
1833 1.1 jonathan CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1834 1.1 jonathan } else {
1835 1.1 jonathan rxcfg &= ~RTK_RXCFG_RX_BROAD;
1836 1.1 jonathan CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1837 1.1 jonathan }
1838 1.1 jonathan
1839 1.1 jonathan /*
1840 1.1 jonathan * Program the multicast filter, if necessary.
1841 1.1 jonathan */
1842 1.1 jonathan rtk_setmulti(sc);
1843 1.1 jonathan
1844 1.1 jonathan #ifdef DEVICE_POLLING
1845 1.1 jonathan /*
1846 1.1 jonathan * Disable interrupts if we are polling.
1847 1.1 jonathan */
1848 1.1 jonathan if (ifp->if_flags & IFF_POLLING)
1849 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1850 1.1 jonathan else /* otherwise ... */
1851 1.1 jonathan #endif /* DEVICE_POLLING */
1852 1.1 jonathan /*
1853 1.1 jonathan * Enable interrupts.
1854 1.1 jonathan */
1855 1.1 jonathan if (sc->rtk_testmode)
1856 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0);
1857 1.1 jonathan else
1858 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1859 1.1 jonathan
1860 1.1 jonathan /* Start RX/TX process. */
1861 1.1 jonathan CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1862 1.1 jonathan #ifdef notdef
1863 1.1 jonathan /* Enable receiver and transmitter. */
1864 1.4 kanaoka CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1865 1.1 jonathan #endif
1866 1.1 jonathan /*
1867 1.1 jonathan * Load the addresses of the RX and TX lists into the chip.
1868 1.1 jonathan */
1869 1.1 jonathan
1870 1.1 jonathan CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1871 1.1 jonathan RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
1872 1.1 jonathan CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1873 1.1 jonathan RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_listseg.ds_addr));
1874 1.1 jonathan
1875 1.1 jonathan CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1876 1.1 jonathan RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
1877 1.1 jonathan CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1878 1.1 jonathan RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_listseg.ds_addr));
1879 1.1 jonathan
1880 1.1 jonathan CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1881 1.1 jonathan
1882 1.1 jonathan /*
1883 1.1 jonathan * Initialize the timer interrupt register so that
1884 1.1 jonathan * a timer interrupt will be generated once the timer
1885 1.1 jonathan * reaches a certain number of ticks. The timer is
1886 1.1 jonathan * reloaded on each transmit. This gives us TX interrupt
1887 1.1 jonathan * moderation, which dramatically improves TX frame rate.
1888 1.1 jonathan */
1889 1.1 jonathan
1890 1.1 jonathan if (sc->rtk_type == RTK_8169)
1891 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1892 1.1 jonathan else
1893 1.1 jonathan CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1894 1.1 jonathan
1895 1.1 jonathan /*
1896 1.1 jonathan * For 8169 gigE NICs, set the max allowed RX packet
1897 1.1 jonathan * size so we can receive jumbo frames.
1898 1.1 jonathan */
1899 1.1 jonathan if (sc->rtk_type == RTK_8169)
1900 1.1 jonathan CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1901 1.1 jonathan
1902 1.1 jonathan if (sc->rtk_testmode)
1903 1.1 jonathan return 0;
1904 1.1 jonathan
1905 1.1 jonathan mii_mediachg(&sc->mii);
1906 1.1 jonathan
1907 1.4 kanaoka CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1908 1.1 jonathan
1909 1.1 jonathan ifp->if_flags |= IFF_RUNNING;
1910 1.1 jonathan ifp->if_flags &= ~IFF_OACTIVE;
1911 1.1 jonathan
1912 1.1 jonathan callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1913 1.1 jonathan
1914 1.1 jonathan out:
1915 1.1 jonathan if (error) {
1916 1.4 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1917 1.1 jonathan ifp->if_timer = 0;
1918 1.4 kanaoka aprint_error("%s: interface not running\n",
1919 1.4 kanaoka sc->sc_dev.dv_xname);
1920 1.1 jonathan }
1921 1.1 jonathan
1922 1.1 jonathan return error;
1923 1.1 jonathan
1924 1.1 jonathan }
1925 1.1 jonathan
1926 1.1 jonathan /*
1927 1.1 jonathan * Set media options.
1928 1.1 jonathan */
1929 1.1 jonathan static int
1930 1.1 jonathan re_ifmedia_upd(struct ifnet *ifp)
1931 1.1 jonathan {
1932 1.1 jonathan struct rtk_softc *sc;
1933 1.1 jonathan
1934 1.1 jonathan sc = ifp->if_softc;
1935 1.1 jonathan
1936 1.4 kanaoka return mii_mediachg(&sc->mii);
1937 1.1 jonathan }
1938 1.1 jonathan
1939 1.1 jonathan /*
1940 1.1 jonathan * Report current media status.
1941 1.1 jonathan */
1942 1.1 jonathan static void
1943 1.1 jonathan re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1944 1.1 jonathan {
1945 1.1 jonathan struct rtk_softc *sc;
1946 1.1 jonathan
1947 1.1 jonathan sc = ifp->if_softc;
1948 1.1 jonathan
1949 1.1 jonathan mii_pollstat(&sc->mii);
1950 1.1 jonathan ifmr->ifm_active = sc->mii.mii_media_active;
1951 1.1 jonathan ifmr->ifm_status = sc->mii.mii_media_status;
1952 1.1 jonathan
1953 1.1 jonathan return;
1954 1.1 jonathan }
1955 1.1 jonathan
1956 1.1 jonathan static int
1957 1.1 jonathan re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1958 1.1 jonathan {
1959 1.1 jonathan struct rtk_softc *sc = ifp->if_softc;
1960 1.1 jonathan struct ifreq *ifr = (struct ifreq *) data;
1961 1.1 jonathan int s, error = 0;
1962 1.1 jonathan
1963 1.1 jonathan s = splnet();
1964 1.1 jonathan
1965 1.4 kanaoka switch (command) {
1966 1.1 jonathan case SIOCSIFMTU:
1967 1.1 jonathan if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1968 1.1 jonathan error = EINVAL;
1969 1.1 jonathan ifp->if_mtu = ifr->ifr_mtu;
1970 1.1 jonathan break;
1971 1.1 jonathan case SIOCGIFMEDIA:
1972 1.1 jonathan case SIOCSIFMEDIA:
1973 1.1 jonathan error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1974 1.1 jonathan break;
1975 1.1 jonathan default:
1976 1.1 jonathan error = ether_ioctl(ifp, command, data);
1977 1.1 jonathan if (error == ENETRESET) {
1978 1.2 kanaoka if (ifp->if_flags & IFF_RUNNING)
1979 1.1 jonathan rtk_setmulti(sc);
1980 1.1 jonathan error = 0;
1981 1.1 jonathan }
1982 1.1 jonathan break;
1983 1.1 jonathan }
1984 1.1 jonathan
1985 1.1 jonathan splx(s);
1986 1.1 jonathan
1987 1.4 kanaoka return error;
1988 1.1 jonathan }
1989 1.1 jonathan
1990 1.1 jonathan static void
1991 1.1 jonathan re_watchdog(struct ifnet *ifp)
1992 1.1 jonathan {
1993 1.1 jonathan struct rtk_softc *sc;
1994 1.1 jonathan int s;
1995 1.1 jonathan
1996 1.1 jonathan sc = ifp->if_softc;
1997 1.1 jonathan s = splnet();
1998 1.4 kanaoka aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1999 1.1 jonathan ifp->if_oerrors++;
2000 1.1 jonathan
2001 1.1 jonathan re_txeof(sc);
2002 1.1 jonathan re_rxeof(sc);
2003 1.1 jonathan
2004 1.1 jonathan re_init(ifp);
2005 1.1 jonathan
2006 1.1 jonathan splx(s);
2007 1.1 jonathan }
2008 1.1 jonathan
2009 1.1 jonathan /*
2010 1.1 jonathan * Stop the adapter and free any mbufs allocated to the
2011 1.1 jonathan * RX and TX lists.
2012 1.1 jonathan */
2013 1.1 jonathan static void
2014 1.3 kanaoka re_stop(struct ifnet *ifp, int disable)
2015 1.1 jonathan {
2016 1.1 jonathan register int i;
2017 1.3 kanaoka struct rtk_softc *sc = ifp->if_softc;
2018 1.1 jonathan
2019 1.3 kanaoka callout_stop(&sc->rtk_tick_ch);
2020 1.1 jonathan
2021 1.1 jonathan #ifdef DEVICE_POLLING
2022 1.1 jonathan ether_poll_deregister(ifp);
2023 1.1 jonathan #endif /* DEVICE_POLLING */
2024 1.1 jonathan
2025 1.3 kanaoka mii_down(&sc->mii);
2026 1.3 kanaoka
2027 1.1 jonathan CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2028 1.1 jonathan CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2029 1.1 jonathan
2030 1.1 jonathan if (sc->rtk_head != NULL) {
2031 1.1 jonathan m_freem(sc->rtk_head);
2032 1.1 jonathan sc->rtk_head = sc->rtk_tail = NULL;
2033 1.1 jonathan }
2034 1.1 jonathan
2035 1.1 jonathan /* Free the TX list buffers. */
2036 1.1 jonathan for (i = 0; i < RTK_TX_DESC_CNT; i++) {
2037 1.1 jonathan if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
2038 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
2039 1.1 jonathan sc->rtk_ldata.rtk_tx_dmamap[i]);
2040 1.1 jonathan m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
2041 1.1 jonathan sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
2042 1.1 jonathan }
2043 1.1 jonathan }
2044 1.1 jonathan
2045 1.1 jonathan /* Free the RX list buffers. */
2046 1.1 jonathan for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2047 1.1 jonathan if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2048 1.1 jonathan bus_dmamap_unload(sc->sc_dmat,
2049 1.1 jonathan sc->rtk_ldata.rtk_rx_dmamap[i]);
2050 1.1 jonathan m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2051 1.1 jonathan sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2052 1.1 jonathan }
2053 1.1 jonathan }
2054 1.1 jonathan
2055 1.3 kanaoka if (disable)
2056 1.3 kanaoka re_disable(sc);
2057 1.3 kanaoka
2058 1.3 kanaoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2059 1.4 kanaoka ifp->if_timer = 0;
2060 1.1 jonathan
2061 1.1 jonathan return;
2062 1.1 jonathan }
2063