rtl8169.c revision 1.100 1 /* $NetBSD: rtl8169.c,v 1.100 2008/04/18 16:05:30 joerg Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.100 2008/04/18 16:05:30 joerg Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115 #include "vlan.h"
116
117 #include <sys/param.h>
118 #include <sys/endian.h>
119 #include <sys/systm.h>
120 #include <sys/sockio.h>
121 #include <sys/mbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/device.h>
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_ether.h>
131 #include <net/if_media.h>
132 #include <net/if_vlanvar.h>
133
134 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
136 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
137
138 #if NBPFILTER > 0
139 #include <net/bpf.h>
140 #endif
141
142 #include <sys/bus.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/ic/rtl81x9reg.h>
148 #include <dev/ic/rtl81x9var.h>
149
150 #include <dev/ic/rtl8169var.h>
151
152 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, void *);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168
169 static int re_gmii_readreg(struct device *, int, int);
170 static void re_gmii_writereg(struct device *, int, int, int);
171
172 static int re_miibus_readreg(struct device *, int, int);
173 static void re_miibus_writereg(struct device *, int, int, int);
174 static void re_miibus_statchg(struct device *);
175
176 static void re_reset(struct rtk_softc *);
177
178 static inline void
179 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
180 {
181
182 d->re_bufaddr_lo = htole32((uint32_t)addr);
183 if (sizeof(bus_addr_t) == sizeof(uint64_t))
184 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
185 else
186 d->re_bufaddr_hi = 0;
187 }
188
189 static int
190 re_gmii_readreg(struct device *self, int phy, int reg)
191 {
192 struct rtk_softc *sc = (void *)self;
193 uint32_t rval;
194 int i;
195
196 if (phy != 7)
197 return 0;
198
199 /* Let the rgephy driver read the GMEDIASTAT register */
200
201 if (reg == RTK_GMEDIASTAT) {
202 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
203 return rval;
204 }
205
206 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
207 DELAY(1000);
208
209 for (i = 0; i < RTK_TIMEOUT; i++) {
210 rval = CSR_READ_4(sc, RTK_PHYAR);
211 if (rval & RTK_PHYAR_BUSY)
212 break;
213 DELAY(100);
214 }
215
216 if (i == RTK_TIMEOUT) {
217 aprint_error_dev(&sc->sc_dev, "PHY read failed\n");
218 return 0;
219 }
220
221 return rval & RTK_PHYAR_PHYDATA;
222 }
223
224 static void
225 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
226 {
227 struct rtk_softc *sc = (void *)dev;
228 uint32_t rval;
229 int i;
230
231 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
232 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
233 DELAY(1000);
234
235 for (i = 0; i < RTK_TIMEOUT; i++) {
236 rval = CSR_READ_4(sc, RTK_PHYAR);
237 if (!(rval & RTK_PHYAR_BUSY))
238 break;
239 DELAY(100);
240 }
241
242 if (i == RTK_TIMEOUT) {
243 aprint_error_dev(&sc->sc_dev, "PHY write reg %x <- %x failed\n",
244 reg, data);
245 }
246 }
247
248 static int
249 re_miibus_readreg(struct device *dev, int phy, int reg)
250 {
251 struct rtk_softc *sc = (void *)dev;
252 uint16_t rval = 0;
253 uint16_t re8139_reg = 0;
254 int s;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rval = re_gmii_readreg(dev, phy, reg);
260 splx(s);
261 return rval;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return 0;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 splx(s);
288 return 0;
289 /*
290 * Allow the rlphy driver to read the media status
291 * register. If we have a link partner which does not
292 * support NWAY, this is the register which will tell
293 * us the results of parallel detection.
294 */
295 case RTK_MEDIASTAT:
296 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
297 splx(s);
298 return rval;
299 default:
300 aprint_error_dev(&sc->sc_dev, "bad phy register\n");
301 splx(s);
302 return 0;
303 }
304 rval = CSR_READ_2(sc, re8139_reg);
305 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
306 /* 8139C+ has different bit layout. */
307 rval &= ~(BMCR_LOOP | BMCR_ISO);
308 }
309 splx(s);
310 return rval;
311 }
312
313 static void
314 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
315 {
316 struct rtk_softc *sc = (void *)dev;
317 uint16_t re8139_reg = 0;
318 int s;
319
320 s = splnet();
321
322 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
323 re_gmii_writereg(dev, phy, reg, data);
324 splx(s);
325 return;
326 }
327
328 /* Pretend the internal PHY is only at address 0 */
329 if (phy) {
330 splx(s);
331 return;
332 }
333 switch (reg) {
334 case MII_BMCR:
335 re8139_reg = RTK_BMCR;
336 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
337 /* 8139C+ has different bit layout. */
338 data &= ~(BMCR_LOOP | BMCR_ISO);
339 }
340 break;
341 case MII_BMSR:
342 re8139_reg = RTK_BMSR;
343 break;
344 case MII_ANAR:
345 re8139_reg = RTK_ANAR;
346 break;
347 case MII_ANER:
348 re8139_reg = RTK_ANER;
349 break;
350 case MII_ANLPAR:
351 re8139_reg = RTK_LPAR;
352 break;
353 case MII_PHYIDR1:
354 case MII_PHYIDR2:
355 splx(s);
356 return;
357 break;
358 default:
359 aprint_error_dev(&sc->sc_dev, "bad phy register\n");
360 splx(s);
361 return;
362 }
363 CSR_WRITE_2(sc, re8139_reg, data);
364 splx(s);
365 return;
366 }
367
368 static void
369 re_miibus_statchg(struct device *dev)
370 {
371
372 return;
373 }
374
375 static void
376 re_reset(struct rtk_softc *sc)
377 {
378 int i;
379
380 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
381
382 for (i = 0; i < RTK_TIMEOUT; i++) {
383 DELAY(10);
384 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
385 break;
386 }
387 if (i == RTK_TIMEOUT)
388 aprint_error_dev(&sc->sc_dev, "reset never completed!\n");
389
390 /*
391 * NB: Realtek-supplied Linux driver does this only for
392 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
393 */
394 if (1) /* XXX check softc flag for 8169s version */
395 CSR_WRITE_1(sc, RTK_LDPS, 1);
396
397 return;
398 }
399
400 /*
401 * The following routine is designed to test for a defect on some
402 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
403 * lines connected to the bus, however for a 32-bit only card, they
404 * should be pulled high. The result of this defect is that the
405 * NIC will not work right if you plug it into a 64-bit slot: DMA
406 * operations will be done with 64-bit transfers, which will fail
407 * because the 64-bit data lines aren't connected.
408 *
409 * There's no way to work around this (short of talking a soldering
410 * iron to the board), however we can detect it. The method we use
411 * here is to put the NIC into digital loopback mode, set the receiver
412 * to promiscuous mode, and then try to send a frame. We then compare
413 * the frame data we sent to what was received. If the data matches,
414 * then the NIC is working correctly, otherwise we know the user has
415 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
416 * slot. In the latter case, there's no way the NIC can work correctly,
417 * so we print out a message on the console and abort the device attach.
418 */
419
420 int
421 re_diag(struct rtk_softc *sc)
422 {
423 struct ifnet *ifp = &sc->ethercom.ec_if;
424 struct mbuf *m0;
425 struct ether_header *eh;
426 struct re_rxsoft *rxs;
427 struct re_desc *cur_rx;
428 bus_dmamap_t dmamap;
429 uint16_t status;
430 uint32_t rxstat;
431 int total_len, i, s, error = 0;
432 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
433 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
434
435 /* Allocate a single mbuf */
436
437 MGETHDR(m0, M_DONTWAIT, MT_DATA);
438 if (m0 == NULL)
439 return ENOBUFS;
440
441 /*
442 * Initialize the NIC in test mode. This sets the chip up
443 * so that it can send and receive frames, but performs the
444 * following special functions:
445 * - Puts receiver in promiscuous mode
446 * - Enables digital loopback mode
447 * - Leaves interrupts turned off
448 */
449
450 ifp->if_flags |= IFF_PROMISC;
451 sc->re_testmode = 1;
452 re_init(ifp);
453 re_stop(ifp, 0);
454 DELAY(100000);
455 re_init(ifp);
456
457 /* Put some data in the mbuf */
458
459 eh = mtod(m0, struct ether_header *);
460 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
461 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
462 eh->ether_type = htons(ETHERTYPE_IP);
463 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
464
465 /*
466 * Queue the packet, start transmission.
467 */
468
469 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
470 s = splnet();
471 IF_ENQUEUE(&ifp->if_snd, m0);
472 re_start(ifp);
473 splx(s);
474 m0 = NULL;
475
476 /* Wait for it to propagate through the chip */
477
478 DELAY(100000);
479 for (i = 0; i < RTK_TIMEOUT; i++) {
480 status = CSR_READ_2(sc, RTK_ISR);
481 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
482 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
483 break;
484 DELAY(10);
485 }
486 if (i == RTK_TIMEOUT) {
487 aprint_error_dev(&sc->sc_dev, "diagnostic failed, failed to receive packet "
488 "in loopback mode\n");
489 error = EIO;
490 goto done;
491 }
492
493 /*
494 * The packet should have been dumped into the first
495 * entry in the RX DMA ring. Grab it from there.
496 */
497
498 rxs = &sc->re_ldata.re_rxsoft[0];
499 dmamap = rxs->rxs_dmamap;
500 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
501 BUS_DMASYNC_POSTREAD);
502 bus_dmamap_unload(sc->sc_dmat, dmamap);
503
504 m0 = rxs->rxs_mbuf;
505 rxs->rxs_mbuf = NULL;
506 eh = mtod(m0, struct ether_header *);
507
508 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
509 cur_rx = &sc->re_ldata.re_rx_list[0];
510 rxstat = le32toh(cur_rx->re_cmdstat);
511 total_len = rxstat & sc->re_rxlenmask;
512
513 if (total_len != ETHER_MIN_LEN) {
514 aprint_error_dev(&sc->sc_dev, "diagnostic failed, received short packet\n");
515 error = EIO;
516 goto done;
517 }
518
519 /* Test that the received packet data matches what we sent. */
520
521 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
522 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
523 ntohs(eh->ether_type) != ETHERTYPE_IP) {
524 aprint_error_dev(&sc->sc_dev, "WARNING, DMA FAILURE!\n");
525 aprint_error_dev(&sc->sc_dev, "expected TX data: %s",
526 ether_sprintf(dst));
527 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
528 aprint_error_dev(&sc->sc_dev, "received RX data: %s",
529 ether_sprintf(eh->ether_dhost));
530 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
531 ntohs(eh->ether_type));
532 aprint_error_dev(&sc->sc_dev, "You may have a defective 32-bit NIC plugged "
533 "into a 64-bit PCI slot.\n");
534 aprint_error_dev(&sc->sc_dev, "Please re-install the NIC in a 32-bit slot "
535 "for proper operation.\n");
536 aprint_error_dev(&sc->sc_dev, "Read the re(4) man page for more details.\n");
537 error = EIO;
538 }
539
540 done:
541 /* Turn interface off, release resources */
542
543 sc->re_testmode = 0;
544 ifp->if_flags &= ~IFF_PROMISC;
545 re_stop(ifp, 0);
546 if (m0 != NULL)
547 m_freem(m0);
548
549 return error;
550 }
551
552
553 /*
554 * Attach the interface. Allocate softc structures, do ifmedia
555 * setup and ethernet/BPF attach.
556 */
557 void
558 re_attach(struct rtk_softc *sc)
559 {
560 u_char eaddr[ETHER_ADDR_LEN];
561 uint16_t val;
562 struct ifnet *ifp;
563 int error = 0, i, addr_len;
564
565 /* Reset the adapter. */
566 re_reset(sc);
567
568 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
569 addr_len = RTK_EEADDR_LEN1;
570 else
571 addr_len = RTK_EEADDR_LEN0;
572
573 /*
574 * Get station address from the EEPROM.
575 */
576 for (i = 0; i < 3; i++) {
577 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
578 eaddr[(i * 2) + 0] = val & 0xff;
579 eaddr[(i * 2) + 1] = val >> 8;
580 }
581
582 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
583 uint32_t hwrev;
584
585 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
586 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
587 /* These rev numbers are taken from Realtek's driver */
588 if ( hwrev == RTK_HWREV_8100E_SPIN2) {
589 sc->sc_rev = 15;
590 } else if (hwrev == RTK_HWREV_8100E) {
591 sc->sc_rev = 14;
592 } else if (hwrev == RTK_HWREV_8101E) {
593 sc->sc_rev = 13;
594 } else if (hwrev == RTK_HWREV_8168_SPIN2 ||
595 hwrev == RTK_HWREV_8168_SPIN3) {
596 sc->sc_rev = 12;
597 } else if (hwrev == RTK_HWREV_8168_SPIN1) {
598 sc->sc_rev = 11;
599 } else if (hwrev == RTK_HWREV_8169_8110SC) {
600 sc->sc_rev = 5;
601 } else if (hwrev == RTK_HWREV_8169_8110SB) {
602 sc->sc_rev = 4;
603 } else if (hwrev == RTK_HWREV_8169S) {
604 sc->sc_rev = 3;
605 } else if (hwrev == RTK_HWREV_8110S) {
606 sc->sc_rev = 2;
607 } else if (hwrev == RTK_HWREV_8169) {
608 sc->sc_rev = 1;
609 sc->sc_quirk |= RTKQ_8169NONS;
610 } else {
611 aprint_normal_dev(&sc->sc_dev, "Unknown revision (0x%08x)\n", hwrev);
612 /* assume the latest one */
613 sc->sc_rev = 15;
614 }
615
616 /* Set RX length mask */
617 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
618 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
619 } else {
620 /* Set RX length mask */
621 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
622 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
623 }
624
625 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
626 ether_sprintf(eaddr));
627
628 if (sc->re_ldata.re_tx_desc_cnt >
629 PAGE_SIZE / sizeof(struct re_desc)) {
630 sc->re_ldata.re_tx_desc_cnt =
631 PAGE_SIZE / sizeof(struct re_desc);
632 }
633
634 aprint_verbose_dev(&sc->sc_dev, "using %d tx descriptors\n",
635 sc->re_ldata.re_tx_desc_cnt);
636 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
637
638 /* Allocate DMA'able memory for the TX ring */
639 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
640 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
641 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
642 aprint_error_dev(&sc->sc_dev, "can't allocate tx listseg, error = %d\n", error);
643 goto fail_0;
644 }
645
646 /* Load the map for the TX ring. */
647 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
648 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
649 (void **)&sc->re_ldata.re_tx_list,
650 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
651 aprint_error_dev(&sc->sc_dev, "can't map tx list, error = %d\n",
652 error);
653 goto fail_1;
654 }
655 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
656
657 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
658 RE_TX_LIST_SZ(sc), 0, 0,
659 &sc->re_ldata.re_tx_list_map)) != 0) {
660 aprint_error_dev(&sc->sc_dev, "can't create tx list map, error = %d\n", error);
661 goto fail_2;
662 }
663
664
665 if ((error = bus_dmamap_load(sc->sc_dmat,
666 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
667 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
668 aprint_error_dev(&sc->sc_dev, "can't load tx list, error = %d\n", error);
669 goto fail_3;
670 }
671
672 /* Create DMA maps for TX buffers */
673 for (i = 0; i < RE_TX_QLEN; i++) {
674 error = bus_dmamap_create(sc->sc_dmat,
675 round_page(IP_MAXPACKET),
676 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
677 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
678 if (error) {
679 aprint_error_dev(&sc->sc_dev, "can't create DMA map for TX\n");
680 goto fail_4;
681 }
682 }
683
684 /* Allocate DMA'able memory for the RX ring */
685 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
686 if ((error = bus_dmamem_alloc(sc->sc_dmat,
687 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
688 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
689 aprint_error_dev(&sc->sc_dev, "can't allocate rx listseg, error = %d\n", error);
690 goto fail_4;
691 }
692
693 /* Load the map for the RX ring. */
694 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
695 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
696 (void **)&sc->re_ldata.re_rx_list,
697 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
698 aprint_error_dev(&sc->sc_dev, "can't map rx list, error = %d\n",
699 error);
700 goto fail_5;
701 }
702 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
703
704 if ((error = bus_dmamap_create(sc->sc_dmat,
705 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
706 &sc->re_ldata.re_rx_list_map)) != 0) {
707 aprint_error_dev(&sc->sc_dev, "can't create rx list map, error = %d\n", error);
708 goto fail_6;
709 }
710
711 if ((error = bus_dmamap_load(sc->sc_dmat,
712 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
713 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
714 aprint_error_dev(&sc->sc_dev, "can't load rx list, error = %d\n", error);
715 goto fail_7;
716 }
717
718 /* Create DMA maps for RX buffers */
719 for (i = 0; i < RE_RX_DESC_CNT; i++) {
720 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
721 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
722 if (error) {
723 aprint_error_dev(&sc->sc_dev, "can't create DMA map for RX\n");
724 goto fail_8;
725 }
726 }
727
728 /*
729 * Record interface as attached. From here, we should not fail.
730 */
731 sc->sc_flags |= RTK_ATTACHED;
732
733 ifp = &sc->ethercom.ec_if;
734 ifp->if_softc = sc;
735 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
736 ifp->if_mtu = ETHERMTU;
737 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
738 ifp->if_ioctl = re_ioctl;
739 sc->ethercom.ec_capabilities |=
740 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
741 ifp->if_start = re_start;
742 ifp->if_stop = re_stop;
743
744 /*
745 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
746 * so we have a workaround to handle the bug by padding
747 * such packets manually.
748 */
749 ifp->if_capabilities |=
750 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
751 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
752 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
753 IFCAP_TSOv4;
754 ifp->if_watchdog = re_watchdog;
755 ifp->if_init = re_init;
756 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
757 ifp->if_capenable = ifp->if_capabilities;
758 IFQ_SET_READY(&ifp->if_snd);
759
760 callout_init(&sc->rtk_tick_ch, 0);
761
762 /* Do MII setup */
763 sc->mii.mii_ifp = ifp;
764 sc->mii.mii_readreg = re_miibus_readreg;
765 sc->mii.mii_writereg = re_miibus_writereg;
766 sc->mii.mii_statchg = re_miibus_statchg;
767 sc->ethercom.ec_mii = &sc->mii;
768 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
769 ether_mediastatus);
770 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
771 MII_OFFSET_ANY, 0);
772 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
773
774 /*
775 * Call MI attach routine.
776 */
777 if_attach(ifp);
778 ether_ifattach(ifp, eaddr);
779
780 return;
781
782 fail_8:
783 /* Destroy DMA maps for RX buffers. */
784 for (i = 0; i < RE_RX_DESC_CNT; i++)
785 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
786 bus_dmamap_destroy(sc->sc_dmat,
787 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
788
789 /* Free DMA'able memory for the RX ring. */
790 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
791 fail_7:
792 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
793 fail_6:
794 bus_dmamem_unmap(sc->sc_dmat,
795 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
796 fail_5:
797 bus_dmamem_free(sc->sc_dmat,
798 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
799
800 fail_4:
801 /* Destroy DMA maps for TX buffers. */
802 for (i = 0; i < RE_TX_QLEN; i++)
803 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
804 bus_dmamap_destroy(sc->sc_dmat,
805 sc->re_ldata.re_txq[i].txq_dmamap);
806
807 /* Free DMA'able memory for the TX ring. */
808 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
809 fail_3:
810 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
811 fail_2:
812 bus_dmamem_unmap(sc->sc_dmat,
813 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
814 fail_1:
815 bus_dmamem_free(sc->sc_dmat,
816 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
817 fail_0:
818 return;
819 }
820
821
822 /*
823 * re_activate:
824 * Handle device activation/deactivation requests.
825 */
826 int
827 re_activate(struct device *self, enum devact act)
828 {
829 struct rtk_softc *sc = (void *)self;
830 int s, error = 0;
831
832 s = splnet();
833 switch (act) {
834 case DVACT_ACTIVATE:
835 error = EOPNOTSUPP;
836 break;
837 case DVACT_DEACTIVATE:
838 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
839 if_deactivate(&sc->ethercom.ec_if);
840 break;
841 }
842 splx(s);
843
844 return error;
845 }
846
847 /*
848 * re_detach:
849 * Detach a rtk interface.
850 */
851 int
852 re_detach(struct rtk_softc *sc)
853 {
854 struct ifnet *ifp = &sc->ethercom.ec_if;
855 int i;
856
857 /*
858 * Succeed now if there isn't any work to do.
859 */
860 if ((sc->sc_flags & RTK_ATTACHED) == 0)
861 return 0;
862
863 /* Unhook our tick handler. */
864 callout_stop(&sc->rtk_tick_ch);
865
866 /* Detach all PHYs. */
867 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
868
869 /* Delete all remaining media. */
870 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
871
872 ether_ifdetach(ifp);
873 if_detach(ifp);
874
875 /* Destroy DMA maps for RX buffers. */
876 for (i = 0; i < RE_RX_DESC_CNT; i++)
877 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
878 bus_dmamap_destroy(sc->sc_dmat,
879 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
880
881 /* Free DMA'able memory for the RX ring. */
882 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
883 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
884 bus_dmamem_unmap(sc->sc_dmat,
885 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
886 bus_dmamem_free(sc->sc_dmat,
887 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
888
889 /* Destroy DMA maps for TX buffers. */
890 for (i = 0; i < RE_TX_QLEN; i++)
891 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
892 bus_dmamap_destroy(sc->sc_dmat,
893 sc->re_ldata.re_txq[i].txq_dmamap);
894
895 /* Free DMA'able memory for the TX ring. */
896 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
897 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
898 bus_dmamem_unmap(sc->sc_dmat,
899 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
900 bus_dmamem_free(sc->sc_dmat,
901 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
902
903 return 0;
904 }
905
906 /*
907 * re_enable:
908 * Enable the RTL81X9 chip.
909 */
910 static int
911 re_enable(struct rtk_softc *sc)
912 {
913
914 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
915 if ((*sc->sc_enable)(sc) != 0) {
916 aprint_error_dev(&sc->sc_dev, "device enable failed\n");
917 return EIO;
918 }
919 sc->sc_flags |= RTK_ENABLED;
920 }
921 return 0;
922 }
923
924 /*
925 * re_disable:
926 * Disable the RTL81X9 chip.
927 */
928 static void
929 re_disable(struct rtk_softc *sc)
930 {
931
932 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
933 (*sc->sc_disable)(sc);
934 sc->sc_flags &= ~RTK_ENABLED;
935 }
936 }
937
938 static int
939 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
940 {
941 struct mbuf *n = NULL;
942 bus_dmamap_t map;
943 struct re_desc *d;
944 struct re_rxsoft *rxs;
945 uint32_t cmdstat;
946 int error;
947
948 if (m == NULL) {
949 MGETHDR(n, M_DONTWAIT, MT_DATA);
950 if (n == NULL)
951 return ENOBUFS;
952
953 MCLGET(n, M_DONTWAIT);
954 if ((n->m_flags & M_EXT) == 0) {
955 m_freem(n);
956 return ENOBUFS;
957 }
958 m = n;
959 } else
960 m->m_data = m->m_ext.ext_buf;
961
962 /*
963 * Initialize mbuf length fields and fixup
964 * alignment so that the frame payload is
965 * longword aligned.
966 */
967 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
968 m->m_data += RE_ETHER_ALIGN;
969
970 rxs = &sc->re_ldata.re_rxsoft[idx];
971 map = rxs->rxs_dmamap;
972 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
973 BUS_DMA_READ|BUS_DMA_NOWAIT);
974
975 if (error)
976 goto out;
977
978 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
979 BUS_DMASYNC_PREREAD);
980
981 d = &sc->re_ldata.re_rx_list[idx];
982 #ifdef DIAGNOSTIC
983 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
984 cmdstat = le32toh(d->re_cmdstat);
985 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
986 if (cmdstat & RE_RDESC_STAT_OWN) {
987 panic("%s: tried to map busy RX descriptor",
988 device_xname(&sc->sc_dev));
989 }
990 #endif
991
992 rxs->rxs_mbuf = m;
993
994 d->re_vlanctl = 0;
995 cmdstat = map->dm_segs[0].ds_len;
996 if (idx == (RE_RX_DESC_CNT - 1))
997 cmdstat |= RE_RDESC_CMD_EOR;
998 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
999 d->re_cmdstat = htole32(cmdstat);
1000 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1001 cmdstat |= RE_RDESC_CMD_OWN;
1002 d->re_cmdstat = htole32(cmdstat);
1003 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1004
1005 return 0;
1006 out:
1007 if (n != NULL)
1008 m_freem(n);
1009 return ENOMEM;
1010 }
1011
1012 static int
1013 re_tx_list_init(struct rtk_softc *sc)
1014 {
1015 int i;
1016
1017 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1018 for (i = 0; i < RE_TX_QLEN; i++) {
1019 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1020 }
1021
1022 bus_dmamap_sync(sc->sc_dmat,
1023 sc->re_ldata.re_tx_list_map, 0,
1024 sc->re_ldata.re_tx_list_map->dm_mapsize,
1025 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1026 sc->re_ldata.re_txq_prodidx = 0;
1027 sc->re_ldata.re_txq_considx = 0;
1028 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1029 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1030 sc->re_ldata.re_tx_nextfree = 0;
1031
1032 return 0;
1033 }
1034
1035 static int
1036 re_rx_list_init(struct rtk_softc *sc)
1037 {
1038 int i;
1039
1040 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1041
1042 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1043 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1044 return ENOBUFS;
1045 }
1046
1047 sc->re_ldata.re_rx_prodidx = 0;
1048 sc->re_head = sc->re_tail = NULL;
1049
1050 return 0;
1051 }
1052
1053 /*
1054 * RX handler for C+ and 8169. For the gigE chips, we support
1055 * the reception of jumbo frames that have been fragmented
1056 * across multiple 2K mbuf cluster buffers.
1057 */
1058 static void
1059 re_rxeof(struct rtk_softc *sc)
1060 {
1061 struct mbuf *m;
1062 struct ifnet *ifp;
1063 int i, total_len;
1064 struct re_desc *cur_rx;
1065 struct re_rxsoft *rxs;
1066 uint32_t rxstat, rxvlan;
1067
1068 ifp = &sc->ethercom.ec_if;
1069
1070 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1071 cur_rx = &sc->re_ldata.re_rx_list[i];
1072 RE_RXDESCSYNC(sc, i,
1073 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1074 rxstat = le32toh(cur_rx->re_cmdstat);
1075 rxvlan = le32toh(cur_rx->re_vlanctl);
1076 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1077 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1078 break;
1079 }
1080 total_len = rxstat & sc->re_rxlenmask;
1081 rxs = &sc->re_ldata.re_rxsoft[i];
1082 m = rxs->rxs_mbuf;
1083
1084 /* Invalidate the RX mbuf and unload its map */
1085
1086 bus_dmamap_sync(sc->sc_dmat,
1087 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1088 BUS_DMASYNC_POSTREAD);
1089 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1090
1091 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1092 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1093 if (sc->re_head == NULL)
1094 sc->re_head = sc->re_tail = m;
1095 else {
1096 m->m_flags &= ~M_PKTHDR;
1097 sc->re_tail->m_next = m;
1098 sc->re_tail = m;
1099 }
1100 re_newbuf(sc, i, NULL);
1101 continue;
1102 }
1103
1104 /*
1105 * NOTE: for the 8139C+, the frame length field
1106 * is always 12 bits in size, but for the gigE chips,
1107 * it is 13 bits (since the max RX frame length is 16K).
1108 * Unfortunately, all 32 bits in the status word
1109 * were already used, so to make room for the extra
1110 * length bit, RealTek took out the 'frame alignment
1111 * error' bit and shifted the other status bits
1112 * over one slot. The OWN, EOR, FS and LS bits are
1113 * still in the same places. We have already extracted
1114 * the frame length and checked the OWN bit, so rather
1115 * than using an alternate bit mapping, we shift the
1116 * status bits one space to the right so we can evaluate
1117 * them using the 8169 status as though it was in the
1118 * same format as that of the 8139C+.
1119 */
1120 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1121 rxstat >>= 1;
1122
1123 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1124 #ifdef RE_DEBUG
1125 aprint_error_dev(&sc->sc_dev, "RX error (rxstat = 0x%08x)",
1126 rxstat);
1127 if (rxstat & RE_RDESC_STAT_FRALIGN)
1128 aprint_error(", frame alignment error");
1129 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1130 aprint_error(", out of buffer space");
1131 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1132 aprint_error(", FIFO overrun");
1133 if (rxstat & RE_RDESC_STAT_GIANT)
1134 aprint_error(", giant packet");
1135 if (rxstat & RE_RDESC_STAT_RUNT)
1136 aprint_error(", runt packet");
1137 if (rxstat & RE_RDESC_STAT_CRCERR)
1138 aprint_error(", CRC error");
1139 aprint_error("\n");
1140 #endif
1141 ifp->if_ierrors++;
1142 /*
1143 * If this is part of a multi-fragment packet,
1144 * discard all the pieces.
1145 */
1146 if (sc->re_head != NULL) {
1147 m_freem(sc->re_head);
1148 sc->re_head = sc->re_tail = NULL;
1149 }
1150 re_newbuf(sc, i, m);
1151 continue;
1152 }
1153
1154 /*
1155 * If allocating a replacement mbuf fails,
1156 * reload the current one.
1157 */
1158
1159 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1160 ifp->if_ierrors++;
1161 if (sc->re_head != NULL) {
1162 m_freem(sc->re_head);
1163 sc->re_head = sc->re_tail = NULL;
1164 }
1165 re_newbuf(sc, i, m);
1166 continue;
1167 }
1168
1169 if (sc->re_head != NULL) {
1170 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1171 /*
1172 * Special case: if there's 4 bytes or less
1173 * in this buffer, the mbuf can be discarded:
1174 * the last 4 bytes is the CRC, which we don't
1175 * care about anyway.
1176 */
1177 if (m->m_len <= ETHER_CRC_LEN) {
1178 sc->re_tail->m_len -=
1179 (ETHER_CRC_LEN - m->m_len);
1180 m_freem(m);
1181 } else {
1182 m->m_len -= ETHER_CRC_LEN;
1183 m->m_flags &= ~M_PKTHDR;
1184 sc->re_tail->m_next = m;
1185 }
1186 m = sc->re_head;
1187 sc->re_head = sc->re_tail = NULL;
1188 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1189 } else
1190 m->m_pkthdr.len = m->m_len =
1191 (total_len - ETHER_CRC_LEN);
1192
1193 ifp->if_ipackets++;
1194 m->m_pkthdr.rcvif = ifp;
1195
1196 /* Do RX checksumming */
1197
1198 /* Check IP header checksum */
1199 if (rxstat & RE_RDESC_STAT_PROTOID) {
1200 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1201 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1202 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1203 }
1204
1205 /* Check TCP/UDP checksum */
1206 if (RE_TCPPKT(rxstat)) {
1207 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1208 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1209 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1210 } else if (RE_UDPPKT(rxstat)) {
1211 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1212 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1213 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1214 }
1215
1216 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1217 VLAN_INPUT_TAG(ifp, m,
1218 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1219 continue);
1220 }
1221 #if NBPFILTER > 0
1222 if (ifp->if_bpf)
1223 bpf_mtap(ifp->if_bpf, m);
1224 #endif
1225 (*ifp->if_input)(ifp, m);
1226 }
1227
1228 sc->re_ldata.re_rx_prodidx = i;
1229 }
1230
1231 static void
1232 re_txeof(struct rtk_softc *sc)
1233 {
1234 struct ifnet *ifp;
1235 struct re_txq *txq;
1236 uint32_t txstat;
1237 int idx, descidx;
1238
1239 ifp = &sc->ethercom.ec_if;
1240
1241 for (idx = sc->re_ldata.re_txq_considx;
1242 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1243 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1244 txq = &sc->re_ldata.re_txq[idx];
1245 KASSERT(txq->txq_mbuf != NULL);
1246
1247 descidx = txq->txq_descidx;
1248 RE_TXDESCSYNC(sc, descidx,
1249 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1250 txstat =
1251 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1252 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1253 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1254 if (txstat & RE_TDESC_CMD_OWN) {
1255 break;
1256 }
1257
1258 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1259 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1260 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1261 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1262 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1263 m_freem(txq->txq_mbuf);
1264 txq->txq_mbuf = NULL;
1265
1266 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1267 ifp->if_collisions++;
1268 if (txstat & RE_TDESC_STAT_TXERRSUM)
1269 ifp->if_oerrors++;
1270 else
1271 ifp->if_opackets++;
1272 }
1273
1274 sc->re_ldata.re_txq_considx = idx;
1275
1276 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1277 ifp->if_flags &= ~IFF_OACTIVE;
1278
1279 /*
1280 * If not all descriptors have been released reaped yet,
1281 * reload the timer so that we will eventually get another
1282 * interrupt that will cause us to re-enter this routine.
1283 * This is done in case the transmitter has gone idle.
1284 */
1285 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1286 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1287 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1288 /*
1289 * Some chips will ignore a second TX request
1290 * issued while an existing transmission is in
1291 * progress. If the transmitter goes idle but
1292 * there are still packets waiting to be sent,
1293 * we need to restart the channel here to flush
1294 * them out. This only seems to be required with
1295 * the PCIe devices.
1296 */
1297 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1298 }
1299 } else
1300 ifp->if_timer = 0;
1301 }
1302
1303 static void
1304 re_tick(void *xsc)
1305 {
1306 struct rtk_softc *sc = xsc;
1307 int s;
1308
1309 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1310 s = splnet();
1311
1312 mii_tick(&sc->mii);
1313 splx(s);
1314
1315 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1316 }
1317
1318 int
1319 re_intr(void *arg)
1320 {
1321 struct rtk_softc *sc = arg;
1322 struct ifnet *ifp;
1323 uint16_t status;
1324 int handled = 0;
1325
1326 if (!device_has_power(&sc->sc_dev))
1327 return 0;
1328
1329 ifp = &sc->ethercom.ec_if;
1330
1331 if ((ifp->if_flags & IFF_UP) == 0)
1332 return 0;
1333
1334 for (;;) {
1335
1336 status = CSR_READ_2(sc, RTK_ISR);
1337 /* If the card has gone away the read returns 0xffff. */
1338 if (status == 0xffff)
1339 break;
1340 if (status) {
1341 handled = 1;
1342 CSR_WRITE_2(sc, RTK_ISR, status);
1343 }
1344
1345 if ((status & RTK_INTRS_CPLUS) == 0)
1346 break;
1347
1348 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1349 re_rxeof(sc);
1350
1351 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1352 RTK_ISR_TX_DESC_UNAVAIL))
1353 re_txeof(sc);
1354
1355 if (status & RTK_ISR_SYSTEM_ERR) {
1356 re_init(ifp);
1357 }
1358
1359 if (status & RTK_ISR_LINKCHG) {
1360 callout_stop(&sc->rtk_tick_ch);
1361 re_tick(sc);
1362 }
1363 }
1364
1365 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1366 re_start(ifp);
1367
1368 return handled;
1369 }
1370
1371
1372
1373 /*
1374 * Main transmit routine for C+ and gigE NICs.
1375 */
1376
1377 static void
1378 re_start(struct ifnet *ifp)
1379 {
1380 struct rtk_softc *sc;
1381 struct mbuf *m;
1382 bus_dmamap_t map;
1383 struct re_txq *txq;
1384 struct re_desc *d;
1385 struct m_tag *mtag;
1386 uint32_t cmdstat, re_flags, vlanctl;
1387 int ofree, idx, error, nsegs, seg;
1388 int startdesc, curdesc, lastdesc;
1389 bool pad;
1390
1391 sc = ifp->if_softc;
1392 ofree = sc->re_ldata.re_txq_free;
1393
1394 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1395
1396 IFQ_POLL(&ifp->if_snd, m);
1397 if (m == NULL)
1398 break;
1399
1400 if (sc->re_ldata.re_txq_free == 0 ||
1401 sc->re_ldata.re_tx_free == 0) {
1402 /* no more free slots left */
1403 ifp->if_flags |= IFF_OACTIVE;
1404 break;
1405 }
1406
1407 /*
1408 * Set up checksum offload. Note: checksum offload bits must
1409 * appear in all descriptors of a multi-descriptor transmit
1410 * attempt. (This is according to testing done with an 8169
1411 * chip. I'm not sure if this is a requirement or a bug.)
1412 */
1413
1414 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1415 uint32_t segsz = m->m_pkthdr.segsz;
1416
1417 re_flags = RE_TDESC_CMD_LGSEND |
1418 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1419 } else {
1420 /*
1421 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1422 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1423 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1424 */
1425 re_flags = 0;
1426 if ((m->m_pkthdr.csum_flags &
1427 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1428 != 0) {
1429 re_flags |= RE_TDESC_CMD_IPCSUM;
1430 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1431 re_flags |= RE_TDESC_CMD_TCPCSUM;
1432 } else if (m->m_pkthdr.csum_flags &
1433 M_CSUM_UDPv4) {
1434 re_flags |= RE_TDESC_CMD_UDPCSUM;
1435 }
1436 }
1437 }
1438
1439 txq = &sc->re_ldata.re_txq[idx];
1440 map = txq->txq_dmamap;
1441 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1442 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1443
1444 if (__predict_false(error)) {
1445 /* XXX try to defrag if EFBIG? */
1446 aprint_error_dev(&sc->sc_dev, "can't map mbuf (error %d)\n", error);
1447
1448 IFQ_DEQUEUE(&ifp->if_snd, m);
1449 m_freem(m);
1450 ifp->if_oerrors++;
1451 continue;
1452 }
1453
1454 nsegs = map->dm_nsegs;
1455 pad = false;
1456 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1457 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1458 pad = true;
1459 nsegs++;
1460 }
1461
1462 if (nsegs > sc->re_ldata.re_tx_free) {
1463 /*
1464 * Not enough free descriptors to transmit this packet.
1465 */
1466 ifp->if_flags |= IFF_OACTIVE;
1467 bus_dmamap_unload(sc->sc_dmat, map);
1468 break;
1469 }
1470
1471 IFQ_DEQUEUE(&ifp->if_snd, m);
1472
1473 /*
1474 * Make sure that the caches are synchronized before we
1475 * ask the chip to start DMA for the packet data.
1476 */
1477 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1478 BUS_DMASYNC_PREWRITE);
1479
1480 /*
1481 * Set up hardware VLAN tagging. Note: vlan tag info must
1482 * appear in all descriptors of a multi-descriptor
1483 * transmission attempt.
1484 */
1485 vlanctl = 0;
1486 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1487 vlanctl = bswap16(VLAN_TAG_VALUE(mtag)) |
1488 RE_TDESC_VLANCTL_TAG;
1489
1490 /*
1491 * Map the segment array into descriptors.
1492 * Note that we set the start-of-frame and
1493 * end-of-frame markers for either TX or RX,
1494 * but they really only have meaning in the TX case.
1495 * (In the RX case, it's the chip that tells us
1496 * where packets begin and end.)
1497 * We also keep track of the end of the ring
1498 * and set the end-of-ring bits as needed,
1499 * and we set the ownership bits in all except
1500 * the very first descriptor. (The caller will
1501 * set this descriptor later when it start
1502 * transmission or reception.)
1503 */
1504 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1505 lastdesc = -1;
1506 for (seg = 0; seg < map->dm_nsegs;
1507 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1508 d = &sc->re_ldata.re_tx_list[curdesc];
1509 #ifdef DIAGNOSTIC
1510 RE_TXDESCSYNC(sc, curdesc,
1511 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1512 cmdstat = le32toh(d->re_cmdstat);
1513 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1514 if (cmdstat & RE_TDESC_STAT_OWN) {
1515 panic("%s: tried to map busy TX descriptor",
1516 device_xname(&sc->sc_dev));
1517 }
1518 #endif
1519
1520 d->re_vlanctl = htole32(vlanctl);
1521 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1522 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1523 if (seg == 0)
1524 cmdstat |= RE_TDESC_CMD_SOF;
1525 else
1526 cmdstat |= RE_TDESC_CMD_OWN;
1527 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1528 cmdstat |= RE_TDESC_CMD_EOR;
1529 if (seg == nsegs - 1) {
1530 cmdstat |= RE_TDESC_CMD_EOF;
1531 lastdesc = curdesc;
1532 }
1533 d->re_cmdstat = htole32(cmdstat);
1534 RE_TXDESCSYNC(sc, curdesc,
1535 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1536 }
1537 if (__predict_false(pad)) {
1538 bus_addr_t paddaddr;
1539
1540 d = &sc->re_ldata.re_tx_list[curdesc];
1541 d->re_vlanctl = htole32(vlanctl);
1542 paddaddr = RE_TXPADDADDR(sc);
1543 re_set_bufaddr(d, paddaddr);
1544 cmdstat = re_flags |
1545 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1546 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1547 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1548 cmdstat |= RE_TDESC_CMD_EOR;
1549 d->re_cmdstat = htole32(cmdstat);
1550 RE_TXDESCSYNC(sc, curdesc,
1551 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1552 lastdesc = curdesc;
1553 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1554 }
1555 KASSERT(lastdesc != -1);
1556
1557 /* Transfer ownership of packet to the chip. */
1558
1559 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1560 htole32(RE_TDESC_CMD_OWN);
1561 RE_TXDESCSYNC(sc, startdesc,
1562 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1563
1564 /* update info of TX queue and descriptors */
1565 txq->txq_mbuf = m;
1566 txq->txq_descidx = lastdesc;
1567 txq->txq_nsegs = nsegs;
1568
1569 sc->re_ldata.re_txq_free--;
1570 sc->re_ldata.re_tx_free -= nsegs;
1571 sc->re_ldata.re_tx_nextfree = curdesc;
1572
1573 #if NBPFILTER > 0
1574 /*
1575 * If there's a BPF listener, bounce a copy of this frame
1576 * to him.
1577 */
1578 if (ifp->if_bpf)
1579 bpf_mtap(ifp->if_bpf, m);
1580 #endif
1581 }
1582
1583 if (sc->re_ldata.re_txq_free < ofree) {
1584 /*
1585 * TX packets are enqueued.
1586 */
1587 sc->re_ldata.re_txq_prodidx = idx;
1588
1589 /*
1590 * Start the transmitter to poll.
1591 *
1592 * RealTek put the TX poll request register in a different
1593 * location on the 8169 gigE chip. I don't know why.
1594 */
1595 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1596 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1597 else
1598 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1599
1600 /*
1601 * Use the countdown timer for interrupt moderation.
1602 * 'TX done' interrupts are disabled. Instead, we reset the
1603 * countdown timer, which will begin counting until it hits
1604 * the value in the TIMERINT register, and then trigger an
1605 * interrupt. Each time we write to the TIMERCNT register,
1606 * the timer count is reset to 0.
1607 */
1608 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1609
1610 /*
1611 * Set a timeout in case the chip goes out to lunch.
1612 */
1613 ifp->if_timer = 5;
1614 }
1615 }
1616
1617 static int
1618 re_init(struct ifnet *ifp)
1619 {
1620 struct rtk_softc *sc = ifp->if_softc;
1621 const uint8_t *enaddr;
1622 uint32_t rxcfg = 0;
1623 uint32_t reg;
1624 int error;
1625
1626 if ((error = re_enable(sc)) != 0)
1627 goto out;
1628
1629 /*
1630 * Cancel pending I/O and free all RX/TX buffers.
1631 */
1632 re_stop(ifp, 0);
1633
1634 re_reset(sc);
1635
1636 /*
1637 * Enable C+ RX and TX mode, as well as VLAN stripping and
1638 * RX checksum offload. We must configure the C+ register
1639 * before all others.
1640 */
1641 reg = 0;
1642
1643 /*
1644 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1645 * FreeBSD drivers set these bits anyway (for 8139C+?).
1646 * So far, it works.
1647 */
1648
1649 /*
1650 * XXX: For old 8169 set bit 14.
1651 * For 8169S/8110S and above, do not set bit 14.
1652 */
1653 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1654 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1655
1656 if (1) {/* not for 8169S ? */
1657 reg |=
1658 RTK_CPLUSCMD_VLANSTRIP |
1659 (ifp->if_capenable &
1660 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1661 IFCAP_CSUM_UDPv4_Rx) ?
1662 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1663 }
1664
1665 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1666 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1667
1668 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1669 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1670 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1671
1672 DELAY(10000);
1673
1674 /*
1675 * Init our MAC address. Even though the chipset
1676 * documentation doesn't mention it, we need to enter "Config
1677 * register write enable" mode to modify the ID registers.
1678 */
1679 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1680 enaddr = CLLADDR(ifp->if_sadl);
1681 reg = enaddr[0] | (enaddr[1] << 8) |
1682 (enaddr[2] << 16) | (enaddr[3] << 24);
1683 CSR_WRITE_4(sc, RTK_IDR0, reg);
1684 reg = enaddr[4] | (enaddr[5] << 8);
1685 CSR_WRITE_4(sc, RTK_IDR4, reg);
1686 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1687
1688 /*
1689 * For C+ mode, initialize the RX descriptors and mbufs.
1690 */
1691 re_rx_list_init(sc);
1692 re_tx_list_init(sc);
1693
1694 /*
1695 * Load the addresses of the RX and TX lists into the chip.
1696 */
1697 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1698 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1699 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1700 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1701
1702 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1703 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1704 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1705 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1706
1707 /*
1708 * Enable transmit and receive.
1709 */
1710 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1711
1712 /*
1713 * Set the initial TX and RX configuration.
1714 */
1715 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1716 /* test mode is needed only for old 8169 */
1717 CSR_WRITE_4(sc, RTK_TXCFG,
1718 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1719 } else
1720 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1721
1722 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1723
1724 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1725
1726 /* Set the individual bit to receive frames for this host only. */
1727 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1728 rxcfg |= RTK_RXCFG_RX_INDIV;
1729
1730 /* If we want promiscuous mode, set the allframes bit. */
1731 if (ifp->if_flags & IFF_PROMISC)
1732 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1733 else
1734 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1735 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1736
1737 /*
1738 * Set capture broadcast bit to capture broadcast frames.
1739 */
1740 if (ifp->if_flags & IFF_BROADCAST)
1741 rxcfg |= RTK_RXCFG_RX_BROAD;
1742 else
1743 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1744 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1745
1746 /*
1747 * Program the multicast filter, if necessary.
1748 */
1749 rtk_setmulti(sc);
1750
1751 /*
1752 * Enable interrupts.
1753 */
1754 if (sc->re_testmode)
1755 CSR_WRITE_2(sc, RTK_IMR, 0);
1756 else
1757 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1758
1759 /* Start RX/TX process. */
1760 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1761 #ifdef notdef
1762 /* Enable receiver and transmitter. */
1763 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1764 #endif
1765
1766 /*
1767 * Initialize the timer interrupt register so that
1768 * a timer interrupt will be generated once the timer
1769 * reaches a certain number of ticks. The timer is
1770 * reloaded on each transmit. This gives us TX interrupt
1771 * moderation, which dramatically improves TX frame rate.
1772 */
1773
1774 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1775 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1776 else {
1777 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1778
1779 /*
1780 * For 8169 gigE NICs, set the max allowed RX packet
1781 * size so we can receive jumbo frames.
1782 */
1783 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1784 }
1785
1786 if (sc->re_testmode)
1787 return 0;
1788
1789 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1790
1791 ifp->if_flags |= IFF_RUNNING;
1792 ifp->if_flags &= ~IFF_OACTIVE;
1793
1794 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1795
1796 out:
1797 if (error) {
1798 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1799 ifp->if_timer = 0;
1800 aprint_error_dev(&sc->sc_dev, "interface not running\n");
1801 }
1802
1803 return error;
1804 }
1805
1806 static int
1807 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1808 {
1809 struct rtk_softc *sc = ifp->if_softc;
1810 struct ifreq *ifr = (struct ifreq *) data;
1811 int s, error = 0;
1812
1813 s = splnet();
1814
1815 switch (command) {
1816 case SIOCSIFMTU:
1817 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1818 error = EINVAL;
1819 else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET)
1820 error = 0;
1821 break;
1822 default:
1823 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1824 break;
1825
1826 error = 0;
1827
1828 if (command == SIOCSIFCAP)
1829 error = (*ifp->if_init)(ifp);
1830 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1831 ;
1832 else if (ifp->if_flags & IFF_RUNNING)
1833 rtk_setmulti(sc);
1834 break;
1835 }
1836
1837 splx(s);
1838
1839 return error;
1840 }
1841
1842 static void
1843 re_watchdog(struct ifnet *ifp)
1844 {
1845 struct rtk_softc *sc;
1846 int s;
1847
1848 sc = ifp->if_softc;
1849 s = splnet();
1850 aprint_error_dev(&sc->sc_dev, "watchdog timeout\n");
1851 ifp->if_oerrors++;
1852
1853 re_txeof(sc);
1854 re_rxeof(sc);
1855
1856 re_init(ifp);
1857
1858 splx(s);
1859 }
1860
1861 /*
1862 * Stop the adapter and free any mbufs allocated to the
1863 * RX and TX lists.
1864 */
1865 static void
1866 re_stop(struct ifnet *ifp, int disable)
1867 {
1868 int i;
1869 struct rtk_softc *sc = ifp->if_softc;
1870
1871 callout_stop(&sc->rtk_tick_ch);
1872
1873 mii_down(&sc->mii);
1874
1875 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1876 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1877
1878 if (sc->re_head != NULL) {
1879 m_freem(sc->re_head);
1880 sc->re_head = sc->re_tail = NULL;
1881 }
1882
1883 /* Free the TX list buffers. */
1884 for (i = 0; i < RE_TX_QLEN; i++) {
1885 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1886 bus_dmamap_unload(sc->sc_dmat,
1887 sc->re_ldata.re_txq[i].txq_dmamap);
1888 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1889 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1890 }
1891 }
1892
1893 /* Free the RX list buffers. */
1894 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1895 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
1896 bus_dmamap_unload(sc->sc_dmat,
1897 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
1898 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
1899 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
1900 }
1901 }
1902
1903 if (disable)
1904 re_disable(sc);
1905
1906 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1907 ifp->if_timer = 0;
1908 }
1909