rtl8169.c revision 1.105 1 /* $NetBSD: rtl8169.c,v 1.105 2008/08/23 14:27:45 tnn Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.105 2008/08/23 14:27:45 tnn Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115 #include "vlan.h"
116
117 #include <sys/param.h>
118 #include <sys/endian.h>
119 #include <sys/systm.h>
120 #include <sys/sockio.h>
121 #include <sys/mbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/device.h>
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_ether.h>
131 #include <net/if_media.h>
132 #include <net/if_vlanvar.h>
133
134 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
136 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
137
138 #if NBPFILTER > 0
139 #include <net/bpf.h>
140 #endif
141
142 #include <sys/bus.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/ic/rtl81x9reg.h>
148 #include <dev/ic/rtl81x9var.h>
149
150 #include <dev/ic/rtl8169var.h>
151
152 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, void *);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168
169 static int re_gmii_readreg(struct device *, int, int);
170 static void re_gmii_writereg(struct device *, int, int, int);
171
172 static int re_miibus_readreg(struct device *, int, int);
173 static void re_miibus_writereg(struct device *, int, int, int);
174 static void re_miibus_statchg(struct device *);
175
176 static void re_reset(struct rtk_softc *);
177
178 static inline void
179 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
180 {
181
182 d->re_bufaddr_lo = htole32((uint32_t)addr);
183 if (sizeof(bus_addr_t) == sizeof(uint64_t))
184 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
185 else
186 d->re_bufaddr_hi = 0;
187 }
188
189 static int
190 re_gmii_readreg(device_t dev, int phy, int reg)
191 {
192 struct rtk_softc *sc = device_private(dev);
193 uint32_t rval;
194 int i;
195
196 if (phy != 7)
197 return 0;
198
199 /* Let the rgephy driver read the GMEDIASTAT register */
200
201 if (reg == RTK_GMEDIASTAT) {
202 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
203 return rval;
204 }
205
206 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
207 DELAY(1000);
208
209 for (i = 0; i < RTK_TIMEOUT; i++) {
210 rval = CSR_READ_4(sc, RTK_PHYAR);
211 if (rval & RTK_PHYAR_BUSY)
212 break;
213 DELAY(100);
214 }
215
216 if (i == RTK_TIMEOUT) {
217 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
218 return 0;
219 }
220
221 return rval & RTK_PHYAR_PHYDATA;
222 }
223
224 static void
225 re_gmii_writereg(device_t dev, int phy, int reg, int data)
226 {
227 struct rtk_softc *sc = device_private(dev);
228 uint32_t rval;
229 int i;
230
231 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
232 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
233 DELAY(1000);
234
235 for (i = 0; i < RTK_TIMEOUT; i++) {
236 rval = CSR_READ_4(sc, RTK_PHYAR);
237 if (!(rval & RTK_PHYAR_BUSY))
238 break;
239 DELAY(100);
240 }
241
242 if (i == RTK_TIMEOUT) {
243 printf("%s: PHY write reg %x <- %x failed\n",
244 device_xname(sc->sc_dev), reg, data);
245 }
246 }
247
248 static int
249 re_miibus_readreg(device_t dev, int phy, int reg)
250 {
251 struct rtk_softc *sc = device_private(dev);
252 uint16_t rval = 0;
253 uint16_t re8139_reg = 0;
254 int s;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rval = re_gmii_readreg(dev, phy, reg);
260 splx(s);
261 return rval;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return 0;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 splx(s);
288 return 0;
289 /*
290 * Allow the rlphy driver to read the media status
291 * register. If we have a link partner which does not
292 * support NWAY, this is the register which will tell
293 * us the results of parallel detection.
294 */
295 case RTK_MEDIASTAT:
296 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
297 splx(s);
298 return rval;
299 default:
300 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
301 splx(s);
302 return 0;
303 }
304 rval = CSR_READ_2(sc, re8139_reg);
305 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
306 /* 8139C+ has different bit layout. */
307 rval &= ~(BMCR_LOOP | BMCR_ISO);
308 }
309 splx(s);
310 return rval;
311 }
312
313 static void
314 re_miibus_writereg(device_t dev, int phy, int reg, int data)
315 {
316 struct rtk_softc *sc = device_private(dev);
317 uint16_t re8139_reg = 0;
318 int s;
319
320 s = splnet();
321
322 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
323 re_gmii_writereg(dev, phy, reg, data);
324 splx(s);
325 return;
326 }
327
328 /* Pretend the internal PHY is only at address 0 */
329 if (phy) {
330 splx(s);
331 return;
332 }
333 switch (reg) {
334 case MII_BMCR:
335 re8139_reg = RTK_BMCR;
336 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
337 /* 8139C+ has different bit layout. */
338 data &= ~(BMCR_LOOP | BMCR_ISO);
339 }
340 break;
341 case MII_BMSR:
342 re8139_reg = RTK_BMSR;
343 break;
344 case MII_ANAR:
345 re8139_reg = RTK_ANAR;
346 break;
347 case MII_ANER:
348 re8139_reg = RTK_ANER;
349 break;
350 case MII_ANLPAR:
351 re8139_reg = RTK_LPAR;
352 break;
353 case MII_PHYIDR1:
354 case MII_PHYIDR2:
355 splx(s);
356 return;
357 break;
358 default:
359 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
360 splx(s);
361 return;
362 }
363 CSR_WRITE_2(sc, re8139_reg, data);
364 splx(s);
365 return;
366 }
367
368 static void
369 re_miibus_statchg(device_t dev)
370 {
371
372 return;
373 }
374
375 static void
376 re_reset(struct rtk_softc *sc)
377 {
378 int i;
379
380 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
381
382 for (i = 0; i < RTK_TIMEOUT; i++) {
383 DELAY(10);
384 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
385 break;
386 }
387 if (i == RTK_TIMEOUT)
388 printf("%s: reset never completed!\n",
389 device_xname(sc->sc_dev));
390
391 /*
392 * NB: Realtek-supplied Linux driver does this only for
393 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 3.
394 */
395 if (1) /* XXX check softc flag for 8169s version */
396 CSR_WRITE_1(sc, RTK_LDPS, 1);
397
398 }
399
400 /*
401 * The following routine is designed to test for a defect on some
402 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
403 * lines connected to the bus, however for a 32-bit only card, they
404 * should be pulled high. The result of this defect is that the
405 * NIC will not work right if you plug it into a 64-bit slot: DMA
406 * operations will be done with 64-bit transfers, which will fail
407 * because the 64-bit data lines aren't connected.
408 *
409 * There's no way to work around this (short of talking a soldering
410 * iron to the board), however we can detect it. The method we use
411 * here is to put the NIC into digital loopback mode, set the receiver
412 * to promiscuous mode, and then try to send a frame. We then compare
413 * the frame data we sent to what was received. If the data matches,
414 * then the NIC is working correctly, otherwise we know the user has
415 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
416 * slot. In the latter case, there's no way the NIC can work correctly,
417 * so we print out a message on the console and abort the device attach.
418 */
419
420 int
421 re_diag(struct rtk_softc *sc)
422 {
423 struct ifnet *ifp = &sc->ethercom.ec_if;
424 struct mbuf *m0;
425 struct ether_header *eh;
426 struct re_rxsoft *rxs;
427 struct re_desc *cur_rx;
428 bus_dmamap_t dmamap;
429 uint16_t status;
430 uint32_t rxstat;
431 int total_len, i, s, error = 0;
432 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
433 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
434
435 /* Allocate a single mbuf */
436
437 MGETHDR(m0, M_DONTWAIT, MT_DATA);
438 if (m0 == NULL)
439 return ENOBUFS;
440
441 /*
442 * Initialize the NIC in test mode. This sets the chip up
443 * so that it can send and receive frames, but performs the
444 * following special functions:
445 * - Puts receiver in promiscuous mode
446 * - Enables digital loopback mode
447 * - Leaves interrupts turned off
448 */
449
450 ifp->if_flags |= IFF_PROMISC;
451 sc->re_testmode = 1;
452 re_init(ifp);
453 re_stop(ifp, 0);
454 DELAY(100000);
455 re_init(ifp);
456
457 /* Put some data in the mbuf */
458
459 eh = mtod(m0, struct ether_header *);
460 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
461 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
462 eh->ether_type = htons(ETHERTYPE_IP);
463 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
464
465 /*
466 * Queue the packet, start transmission.
467 */
468
469 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
470 s = splnet();
471 IF_ENQUEUE(&ifp->if_snd, m0);
472 re_start(ifp);
473 splx(s);
474 m0 = NULL;
475
476 /* Wait for it to propagate through the chip */
477
478 DELAY(100000);
479 for (i = 0; i < RTK_TIMEOUT; i++) {
480 status = CSR_READ_2(sc, RTK_ISR);
481 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
482 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
483 break;
484 DELAY(10);
485 }
486 if (i == RTK_TIMEOUT) {
487 aprint_error_dev(sc->sc_dev,
488 "diagnostic failed, failed to receive packet "
489 "in loopback mode\n");
490 error = EIO;
491 goto done;
492 }
493
494 /*
495 * The packet should have been dumped into the first
496 * entry in the RX DMA ring. Grab it from there.
497 */
498
499 rxs = &sc->re_ldata.re_rxsoft[0];
500 dmamap = rxs->rxs_dmamap;
501 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
502 BUS_DMASYNC_POSTREAD);
503 bus_dmamap_unload(sc->sc_dmat, dmamap);
504
505 m0 = rxs->rxs_mbuf;
506 rxs->rxs_mbuf = NULL;
507 eh = mtod(m0, struct ether_header *);
508
509 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
510 cur_rx = &sc->re_ldata.re_rx_list[0];
511 rxstat = le32toh(cur_rx->re_cmdstat);
512 total_len = rxstat & sc->re_rxlenmask;
513
514 if (total_len != ETHER_MIN_LEN) {
515 aprint_error_dev(sc->sc_dev,
516 "diagnostic failed, received short packet\n");
517 error = EIO;
518 goto done;
519 }
520
521 /* Test that the received packet data matches what we sent. */
522
523 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
524 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
525 ntohs(eh->ether_type) != ETHERTYPE_IP) {
526 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n");
527 aprint_error_dev(sc->sc_dev, "expected TX data: %s",
528 ether_sprintf(dst));
529 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
530 aprint_error_dev(sc->sc_dev, "received RX data: %s",
531 ether_sprintf(eh->ether_dhost));
532 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
533 ntohs(eh->ether_type));
534 aprint_error_dev(sc->sc_dev,
535 "You may have a defective 32-bit NIC plugged "
536 "into a 64-bit PCI slot.\n");
537 aprint_error_dev(sc->sc_dev,
538 "Please re-install the NIC in a 32-bit slot "
539 "for proper operation.\n");
540 aprint_error_dev(sc->sc_dev,
541 "Read the re(4) man page for more details.\n");
542 error = EIO;
543 }
544
545 done:
546 /* Turn interface off, release resources */
547
548 sc->re_testmode = 0;
549 ifp->if_flags &= ~IFF_PROMISC;
550 re_stop(ifp, 0);
551 if (m0 != NULL)
552 m_freem(m0);
553
554 return error;
555 }
556
557
558 /*
559 * Attach the interface. Allocate softc structures, do ifmedia
560 * setup and ethernet/BPF attach.
561 */
562 void
563 re_attach(struct rtk_softc *sc)
564 {
565 uint8_t eaddr[ETHER_ADDR_LEN];
566 uint16_t val;
567 struct ifnet *ifp;
568 int error = 0, i, addr_len;
569
570 /* Reset the adapter. */
571 re_reset(sc);
572
573 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
574 uint32_t hwrev;
575
576 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
577 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
578 /* These rev numbers are taken from Realtek's driver */
579 switch (hwrev) {
580 case RTK_HWREV_8169:
581 /* XXX not in the Realtek driver */
582 sc->sc_rev = 1;
583 sc->sc_quirk |= RTKQ_8169NONS;
584 break;
585 case RTK_HWREV_8169S:
586 case RTK_HWREV_8110S:
587 sc->sc_rev = 3;
588 break;
589 case RTK_HWREV_8169_8110SB:
590 sc->sc_rev = 4;
591 break;
592 case RTK_HWREV_8169_8110SC:
593 sc->sc_rev = 5;
594 break;
595 case RTK_HWREV_8101E:
596 sc->sc_rev = 11;
597 break;
598 case RTK_HWREV_8168_SPIN1:
599 sc->sc_rev = 21;
600 break;
601 case RTK_HWREV_8168_SPIN2:
602 sc->sc_rev = 22;
603 break;
604 case RTK_HWREV_8168_SPIN3:
605 sc->sc_rev = 23;
606 break;
607 case RTK_HWREV_8168C:
608 sc->sc_rev = 24;
609 break;
610 case RTK_HWREV_8102E:
611 case RTK_HWREV_8102EL:
612 sc->sc_rev = 25;
613 break;
614 case RTK_HWREV_8100E:
615 case RTK_HWREV_8100E_SPIN2:
616 /* XXX not in the Realtek driver */
617 sc->sc_rev = 0;
618 break;
619 default:
620 aprint_normal_dev(sc->sc_dev,
621 "Unknown revision (0x%08x)\n", hwrev);
622 sc->sc_rev = 0;
623 }
624
625 /* Set RX length mask */
626 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
627 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
628 } else {
629 /* Set RX length mask */
630 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
631 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
632 }
633
634 if (sc->sc_rev == 24 || sc->sc_rev == 25) {
635 /*
636 * Get station address from ID registers.
637 */
638 for (i = 0; i < ETHER_ADDR_LEN; i++)
639 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
640 } else {
641 /*
642 * Get station address from the EEPROM.
643 */
644 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
645 addr_len = RTK_EEADDR_LEN1;
646 else
647 addr_len = RTK_EEADDR_LEN0;
648
649 /*
650 * Get station address from the EEPROM.
651 */
652 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
653 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
654 eaddr[(i * 2) + 0] = val & 0xff;
655 eaddr[(i * 2) + 1] = val >> 8;
656 }
657 }
658
659 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
660 ether_sprintf(eaddr));
661
662 if (sc->re_ldata.re_tx_desc_cnt >
663 PAGE_SIZE / sizeof(struct re_desc)) {
664 sc->re_ldata.re_tx_desc_cnt =
665 PAGE_SIZE / sizeof(struct re_desc);
666 }
667
668 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
669 sc->re_ldata.re_tx_desc_cnt);
670 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
671
672 /* Allocate DMA'able memory for the TX ring */
673 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
674 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
675 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
676 aprint_error_dev(sc->sc_dev,
677 "can't allocate tx listseg, error = %d\n", error);
678 goto fail_0;
679 }
680
681 /* Load the map for the TX ring. */
682 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
683 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
684 (void **)&sc->re_ldata.re_tx_list,
685 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
686 aprint_error_dev(sc->sc_dev,
687 "can't map tx list, error = %d\n", error);
688 goto fail_1;
689 }
690 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
691
692 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
693 RE_TX_LIST_SZ(sc), 0, 0,
694 &sc->re_ldata.re_tx_list_map)) != 0) {
695 aprint_error_dev(sc->sc_dev,
696 "can't create tx list map, error = %d\n", error);
697 goto fail_2;
698 }
699
700
701 if ((error = bus_dmamap_load(sc->sc_dmat,
702 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
703 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
704 aprint_error_dev(sc->sc_dev,
705 "can't load tx list, error = %d\n", error);
706 goto fail_3;
707 }
708
709 /* Create DMA maps for TX buffers */
710 for (i = 0; i < RE_TX_QLEN; i++) {
711 error = bus_dmamap_create(sc->sc_dmat,
712 round_page(IP_MAXPACKET),
713 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
714 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
715 if (error) {
716 aprint_error_dev(sc->sc_dev,
717 "can't create DMA map for TX\n");
718 goto fail_4;
719 }
720 }
721
722 /* Allocate DMA'able memory for the RX ring */
723 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
724 if ((error = bus_dmamem_alloc(sc->sc_dmat,
725 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
726 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
727 aprint_error_dev(sc->sc_dev,
728 "can't allocate rx listseg, error = %d\n", error);
729 goto fail_4;
730 }
731
732 /* Load the map for the RX ring. */
733 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
734 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
735 (void **)&sc->re_ldata.re_rx_list,
736 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
737 aprint_error_dev(sc->sc_dev,
738 "can't map rx list, error = %d\n", error);
739 goto fail_5;
740 }
741 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
742
743 if ((error = bus_dmamap_create(sc->sc_dmat,
744 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
745 &sc->re_ldata.re_rx_list_map)) != 0) {
746 aprint_error_dev(sc->sc_dev,
747 "can't create rx list map, error = %d\n", error);
748 goto fail_6;
749 }
750
751 if ((error = bus_dmamap_load(sc->sc_dmat,
752 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
753 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
754 aprint_error_dev(sc->sc_dev,
755 "can't load rx list, error = %d\n", error);
756 goto fail_7;
757 }
758
759 /* Create DMA maps for RX buffers */
760 for (i = 0; i < RE_RX_DESC_CNT; i++) {
761 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
762 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
763 if (error) {
764 aprint_error_dev(sc->sc_dev,
765 "can't create DMA map for RX\n");
766 goto fail_8;
767 }
768 }
769
770 /*
771 * Record interface as attached. From here, we should not fail.
772 */
773 sc->sc_flags |= RTK_ATTACHED;
774
775 ifp = &sc->ethercom.ec_if;
776 ifp->if_softc = sc;
777 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
778 ifp->if_mtu = ETHERMTU;
779 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
780 ifp->if_ioctl = re_ioctl;
781 sc->ethercom.ec_capabilities |=
782 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
783 ifp->if_start = re_start;
784 ifp->if_stop = re_stop;
785
786 /*
787 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
788 * so we have a workaround to handle the bug by padding
789 * such packets manually.
790 */
791 ifp->if_capabilities |=
792 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
793 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
794 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
795 IFCAP_TSOv4;
796 ifp->if_watchdog = re_watchdog;
797 ifp->if_init = re_init;
798 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
799 ifp->if_capenable = ifp->if_capabilities;
800 IFQ_SET_READY(&ifp->if_snd);
801
802 callout_init(&sc->rtk_tick_ch, 0);
803
804 /* Do MII setup */
805 sc->mii.mii_ifp = ifp;
806 sc->mii.mii_readreg = re_miibus_readreg;
807 sc->mii.mii_writereg = re_miibus_writereg;
808 sc->mii.mii_statchg = re_miibus_statchg;
809 sc->ethercom.ec_mii = &sc->mii;
810 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
811 ether_mediastatus);
812 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
813 MII_OFFSET_ANY, 0);
814 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
815
816 /*
817 * Call MI attach routine.
818 */
819 if_attach(ifp);
820 ether_ifattach(ifp, eaddr);
821
822 return;
823
824 fail_8:
825 /* Destroy DMA maps for RX buffers. */
826 for (i = 0; i < RE_RX_DESC_CNT; i++)
827 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
828 bus_dmamap_destroy(sc->sc_dmat,
829 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
830
831 /* Free DMA'able memory for the RX ring. */
832 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
833 fail_7:
834 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
835 fail_6:
836 bus_dmamem_unmap(sc->sc_dmat,
837 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
838 fail_5:
839 bus_dmamem_free(sc->sc_dmat,
840 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
841
842 fail_4:
843 /* Destroy DMA maps for TX buffers. */
844 for (i = 0; i < RE_TX_QLEN; i++)
845 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
846 bus_dmamap_destroy(sc->sc_dmat,
847 sc->re_ldata.re_txq[i].txq_dmamap);
848
849 /* Free DMA'able memory for the TX ring. */
850 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
851 fail_3:
852 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
853 fail_2:
854 bus_dmamem_unmap(sc->sc_dmat,
855 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
856 fail_1:
857 bus_dmamem_free(sc->sc_dmat,
858 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
859 fail_0:
860 return;
861 }
862
863
864 /*
865 * re_activate:
866 * Handle device activation/deactivation requests.
867 */
868 int
869 re_activate(device_t self, enum devact act)
870 {
871 struct rtk_softc *sc = device_private(self);
872 int s, error = 0;
873
874 s = splnet();
875 switch (act) {
876 case DVACT_ACTIVATE:
877 error = EOPNOTSUPP;
878 break;
879 case DVACT_DEACTIVATE:
880 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
881 if_deactivate(&sc->ethercom.ec_if);
882 break;
883 }
884 splx(s);
885
886 return error;
887 }
888
889 /*
890 * re_detach:
891 * Detach a rtk interface.
892 */
893 int
894 re_detach(struct rtk_softc *sc)
895 {
896 struct ifnet *ifp = &sc->ethercom.ec_if;
897 int i;
898
899 /*
900 * Succeed now if there isn't any work to do.
901 */
902 if ((sc->sc_flags & RTK_ATTACHED) == 0)
903 return 0;
904
905 /* Unhook our tick handler. */
906 callout_stop(&sc->rtk_tick_ch);
907
908 /* Detach all PHYs. */
909 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
910
911 /* Delete all remaining media. */
912 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
913
914 ether_ifdetach(ifp);
915 if_detach(ifp);
916
917 /* Destroy DMA maps for RX buffers. */
918 for (i = 0; i < RE_RX_DESC_CNT; i++)
919 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
920 bus_dmamap_destroy(sc->sc_dmat,
921 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
922
923 /* Free DMA'able memory for the RX ring. */
924 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
925 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
926 bus_dmamem_unmap(sc->sc_dmat,
927 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
928 bus_dmamem_free(sc->sc_dmat,
929 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
930
931 /* Destroy DMA maps for TX buffers. */
932 for (i = 0; i < RE_TX_QLEN; i++)
933 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
934 bus_dmamap_destroy(sc->sc_dmat,
935 sc->re_ldata.re_txq[i].txq_dmamap);
936
937 /* Free DMA'able memory for the TX ring. */
938 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
939 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
940 bus_dmamem_unmap(sc->sc_dmat,
941 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
942 bus_dmamem_free(sc->sc_dmat,
943 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
944
945 return 0;
946 }
947
948 /*
949 * re_enable:
950 * Enable the RTL81X9 chip.
951 */
952 static int
953 re_enable(struct rtk_softc *sc)
954 {
955
956 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
957 if ((*sc->sc_enable)(sc) != 0) {
958 printf("%s: device enable failed\n",
959 device_xname(sc->sc_dev));
960 return EIO;
961 }
962 sc->sc_flags |= RTK_ENABLED;
963 }
964 return 0;
965 }
966
967 /*
968 * re_disable:
969 * Disable the RTL81X9 chip.
970 */
971 static void
972 re_disable(struct rtk_softc *sc)
973 {
974
975 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
976 (*sc->sc_disable)(sc);
977 sc->sc_flags &= ~RTK_ENABLED;
978 }
979 }
980
981 static int
982 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
983 {
984 struct mbuf *n = NULL;
985 bus_dmamap_t map;
986 struct re_desc *d;
987 struct re_rxsoft *rxs;
988 uint32_t cmdstat;
989 int error;
990
991 if (m == NULL) {
992 MGETHDR(n, M_DONTWAIT, MT_DATA);
993 if (n == NULL)
994 return ENOBUFS;
995
996 MCLGET(n, M_DONTWAIT);
997 if ((n->m_flags & M_EXT) == 0) {
998 m_freem(n);
999 return ENOBUFS;
1000 }
1001 m = n;
1002 } else
1003 m->m_data = m->m_ext.ext_buf;
1004
1005 /*
1006 * Initialize mbuf length fields and fixup
1007 * alignment so that the frame payload is
1008 * longword aligned.
1009 */
1010 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1011 m->m_data += RE_ETHER_ALIGN;
1012
1013 rxs = &sc->re_ldata.re_rxsoft[idx];
1014 map = rxs->rxs_dmamap;
1015 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1016 BUS_DMA_READ|BUS_DMA_NOWAIT);
1017
1018 if (error)
1019 goto out;
1020
1021 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1022 BUS_DMASYNC_PREREAD);
1023
1024 d = &sc->re_ldata.re_rx_list[idx];
1025 #ifdef DIAGNOSTIC
1026 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1027 cmdstat = le32toh(d->re_cmdstat);
1028 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1029 if (cmdstat & RE_RDESC_STAT_OWN) {
1030 panic("%s: tried to map busy RX descriptor",
1031 device_xname(sc->sc_dev));
1032 }
1033 #endif
1034
1035 rxs->rxs_mbuf = m;
1036
1037 d->re_vlanctl = 0;
1038 cmdstat = map->dm_segs[0].ds_len;
1039 if (idx == (RE_RX_DESC_CNT - 1))
1040 cmdstat |= RE_RDESC_CMD_EOR;
1041 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1042 d->re_cmdstat = htole32(cmdstat);
1043 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1044 cmdstat |= RE_RDESC_CMD_OWN;
1045 d->re_cmdstat = htole32(cmdstat);
1046 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1047
1048 return 0;
1049 out:
1050 if (n != NULL)
1051 m_freem(n);
1052 return ENOMEM;
1053 }
1054
1055 static int
1056 re_tx_list_init(struct rtk_softc *sc)
1057 {
1058 int i;
1059
1060 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1061 for (i = 0; i < RE_TX_QLEN; i++) {
1062 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1063 }
1064
1065 bus_dmamap_sync(sc->sc_dmat,
1066 sc->re_ldata.re_tx_list_map, 0,
1067 sc->re_ldata.re_tx_list_map->dm_mapsize,
1068 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1069 sc->re_ldata.re_txq_prodidx = 0;
1070 sc->re_ldata.re_txq_considx = 0;
1071 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1072 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1073 sc->re_ldata.re_tx_nextfree = 0;
1074
1075 return 0;
1076 }
1077
1078 static int
1079 re_rx_list_init(struct rtk_softc *sc)
1080 {
1081 int i;
1082
1083 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1084
1085 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1086 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1087 return ENOBUFS;
1088 }
1089
1090 sc->re_ldata.re_rx_prodidx = 0;
1091 sc->re_head = sc->re_tail = NULL;
1092
1093 return 0;
1094 }
1095
1096 /*
1097 * RX handler for C+ and 8169. For the gigE chips, we support
1098 * the reception of jumbo frames that have been fragmented
1099 * across multiple 2K mbuf cluster buffers.
1100 */
1101 static void
1102 re_rxeof(struct rtk_softc *sc)
1103 {
1104 struct mbuf *m;
1105 struct ifnet *ifp;
1106 int i, total_len;
1107 struct re_desc *cur_rx;
1108 struct re_rxsoft *rxs;
1109 uint32_t rxstat, rxvlan;
1110
1111 ifp = &sc->ethercom.ec_if;
1112
1113 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1114 cur_rx = &sc->re_ldata.re_rx_list[i];
1115 RE_RXDESCSYNC(sc, i,
1116 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1117 rxstat = le32toh(cur_rx->re_cmdstat);
1118 rxvlan = le32toh(cur_rx->re_vlanctl);
1119 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1120 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1121 break;
1122 }
1123 total_len = rxstat & sc->re_rxlenmask;
1124 rxs = &sc->re_ldata.re_rxsoft[i];
1125 m = rxs->rxs_mbuf;
1126
1127 /* Invalidate the RX mbuf and unload its map */
1128
1129 bus_dmamap_sync(sc->sc_dmat,
1130 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1131 BUS_DMASYNC_POSTREAD);
1132 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1133
1134 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1135 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1136 if (sc->re_head == NULL)
1137 sc->re_head = sc->re_tail = m;
1138 else {
1139 m->m_flags &= ~M_PKTHDR;
1140 sc->re_tail->m_next = m;
1141 sc->re_tail = m;
1142 }
1143 re_newbuf(sc, i, NULL);
1144 continue;
1145 }
1146
1147 /*
1148 * NOTE: for the 8139C+, the frame length field
1149 * is always 12 bits in size, but for the gigE chips,
1150 * it is 13 bits (since the max RX frame length is 16K).
1151 * Unfortunately, all 32 bits in the status word
1152 * were already used, so to make room for the extra
1153 * length bit, RealTek took out the 'frame alignment
1154 * error' bit and shifted the other status bits
1155 * over one slot. The OWN, EOR, FS and LS bits are
1156 * still in the same places. We have already extracted
1157 * the frame length and checked the OWN bit, so rather
1158 * than using an alternate bit mapping, we shift the
1159 * status bits one space to the right so we can evaluate
1160 * them using the 8169 status as though it was in the
1161 * same format as that of the 8139C+.
1162 */
1163 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1164 rxstat >>= 1;
1165
1166 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1167 #ifdef RE_DEBUG
1168 printf("%s: RX error (rxstat = 0x%08x)",
1169 device_xname(sc->sc_dev), rxstat);
1170 if (rxstat & RE_RDESC_STAT_FRALIGN)
1171 printf(", frame alignment error");
1172 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1173 printf(", out of buffer space");
1174 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1175 printf(", FIFO overrun");
1176 if (rxstat & RE_RDESC_STAT_GIANT)
1177 printf(", giant packet");
1178 if (rxstat & RE_RDESC_STAT_RUNT)
1179 printf(", runt packet");
1180 if (rxstat & RE_RDESC_STAT_CRCERR)
1181 printf(", CRC error");
1182 printf("\n");
1183 #endif
1184 ifp->if_ierrors++;
1185 /*
1186 * If this is part of a multi-fragment packet,
1187 * discard all the pieces.
1188 */
1189 if (sc->re_head != NULL) {
1190 m_freem(sc->re_head);
1191 sc->re_head = sc->re_tail = NULL;
1192 }
1193 re_newbuf(sc, i, m);
1194 continue;
1195 }
1196
1197 /*
1198 * If allocating a replacement mbuf fails,
1199 * reload the current one.
1200 */
1201
1202 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1203 ifp->if_ierrors++;
1204 if (sc->re_head != NULL) {
1205 m_freem(sc->re_head);
1206 sc->re_head = sc->re_tail = NULL;
1207 }
1208 re_newbuf(sc, i, m);
1209 continue;
1210 }
1211
1212 if (sc->re_head != NULL) {
1213 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1214 /*
1215 * Special case: if there's 4 bytes or less
1216 * in this buffer, the mbuf can be discarded:
1217 * the last 4 bytes is the CRC, which we don't
1218 * care about anyway.
1219 */
1220 if (m->m_len <= ETHER_CRC_LEN) {
1221 sc->re_tail->m_len -=
1222 (ETHER_CRC_LEN - m->m_len);
1223 m_freem(m);
1224 } else {
1225 m->m_len -= ETHER_CRC_LEN;
1226 m->m_flags &= ~M_PKTHDR;
1227 sc->re_tail->m_next = m;
1228 }
1229 m = sc->re_head;
1230 sc->re_head = sc->re_tail = NULL;
1231 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1232 } else
1233 m->m_pkthdr.len = m->m_len =
1234 (total_len - ETHER_CRC_LEN);
1235
1236 ifp->if_ipackets++;
1237 m->m_pkthdr.rcvif = ifp;
1238
1239 /* Do RX checksumming */
1240
1241 /* Check IP header checksum */
1242 if (rxstat & RE_RDESC_STAT_PROTOID) {
1243 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1244 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1245 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1246 }
1247
1248 /* Check TCP/UDP checksum */
1249 if (RE_TCPPKT(rxstat)) {
1250 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1251 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1252 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1253 } else if (RE_UDPPKT(rxstat)) {
1254 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1255 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1256 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1257 }
1258
1259 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1260 VLAN_INPUT_TAG(ifp, m,
1261 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1262 continue);
1263 }
1264 #if NBPFILTER > 0
1265 if (ifp->if_bpf)
1266 bpf_mtap(ifp->if_bpf, m);
1267 #endif
1268 (*ifp->if_input)(ifp, m);
1269 }
1270
1271 sc->re_ldata.re_rx_prodidx = i;
1272 }
1273
1274 static void
1275 re_txeof(struct rtk_softc *sc)
1276 {
1277 struct ifnet *ifp;
1278 struct re_txq *txq;
1279 uint32_t txstat;
1280 int idx, descidx;
1281
1282 ifp = &sc->ethercom.ec_if;
1283
1284 for (idx = sc->re_ldata.re_txq_considx;
1285 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1286 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1287 txq = &sc->re_ldata.re_txq[idx];
1288 KASSERT(txq->txq_mbuf != NULL);
1289
1290 descidx = txq->txq_descidx;
1291 RE_TXDESCSYNC(sc, descidx,
1292 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1293 txstat =
1294 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1295 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1296 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1297 if (txstat & RE_TDESC_CMD_OWN) {
1298 break;
1299 }
1300
1301 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1302 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1303 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1304 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1305 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1306 m_freem(txq->txq_mbuf);
1307 txq->txq_mbuf = NULL;
1308
1309 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1310 ifp->if_collisions++;
1311 if (txstat & RE_TDESC_STAT_TXERRSUM)
1312 ifp->if_oerrors++;
1313 else
1314 ifp->if_opackets++;
1315 }
1316
1317 sc->re_ldata.re_txq_considx = idx;
1318
1319 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1320 ifp->if_flags &= ~IFF_OACTIVE;
1321
1322 /*
1323 * If not all descriptors have been released reaped yet,
1324 * reload the timer so that we will eventually get another
1325 * interrupt that will cause us to re-enter this routine.
1326 * This is done in case the transmitter has gone idle.
1327 */
1328 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1329 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1330 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1331 /*
1332 * Some chips will ignore a second TX request
1333 * issued while an existing transmission is in
1334 * progress. If the transmitter goes idle but
1335 * there are still packets waiting to be sent,
1336 * we need to restart the channel here to flush
1337 * them out. This only seems to be required with
1338 * the PCIe devices.
1339 */
1340 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1341 }
1342 } else
1343 ifp->if_timer = 0;
1344 }
1345
1346 static void
1347 re_tick(void *arg)
1348 {
1349 struct rtk_softc *sc = arg;
1350 int s;
1351
1352 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1353 s = splnet();
1354
1355 mii_tick(&sc->mii);
1356 splx(s);
1357
1358 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1359 }
1360
1361 int
1362 re_intr(void *arg)
1363 {
1364 struct rtk_softc *sc = arg;
1365 struct ifnet *ifp;
1366 uint16_t status;
1367 int handled = 0;
1368
1369 if (!device_has_power(sc->sc_dev))
1370 return 0;
1371
1372 ifp = &sc->ethercom.ec_if;
1373
1374 if ((ifp->if_flags & IFF_UP) == 0)
1375 return 0;
1376
1377 for (;;) {
1378
1379 status = CSR_READ_2(sc, RTK_ISR);
1380 /* If the card has gone away the read returns 0xffff. */
1381 if (status == 0xffff)
1382 break;
1383 if (status) {
1384 handled = 1;
1385 CSR_WRITE_2(sc, RTK_ISR, status);
1386 }
1387
1388 if ((status & RTK_INTRS_CPLUS) == 0)
1389 break;
1390
1391 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1392 re_rxeof(sc);
1393
1394 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1395 RTK_ISR_TX_DESC_UNAVAIL))
1396 re_txeof(sc);
1397
1398 if (status & RTK_ISR_SYSTEM_ERR) {
1399 re_init(ifp);
1400 }
1401
1402 if (status & RTK_ISR_LINKCHG) {
1403 callout_stop(&sc->rtk_tick_ch);
1404 re_tick(sc);
1405 }
1406 }
1407
1408 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1409 re_start(ifp);
1410
1411 return handled;
1412 }
1413
1414
1415
1416 /*
1417 * Main transmit routine for C+ and gigE NICs.
1418 */
1419
1420 static void
1421 re_start(struct ifnet *ifp)
1422 {
1423 struct rtk_softc *sc;
1424 struct mbuf *m;
1425 bus_dmamap_t map;
1426 struct re_txq *txq;
1427 struct re_desc *d;
1428 struct m_tag *mtag;
1429 uint32_t cmdstat, re_flags, vlanctl;
1430 int ofree, idx, error, nsegs, seg;
1431 int startdesc, curdesc, lastdesc;
1432 bool pad;
1433
1434 sc = ifp->if_softc;
1435 ofree = sc->re_ldata.re_txq_free;
1436
1437 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1438
1439 IFQ_POLL(&ifp->if_snd, m);
1440 if (m == NULL)
1441 break;
1442
1443 if (sc->re_ldata.re_txq_free == 0 ||
1444 sc->re_ldata.re_tx_free == 0) {
1445 /* no more free slots left */
1446 ifp->if_flags |= IFF_OACTIVE;
1447 break;
1448 }
1449
1450 /*
1451 * Set up checksum offload. Note: checksum offload bits must
1452 * appear in all descriptors of a multi-descriptor transmit
1453 * attempt. (This is according to testing done with an 8169
1454 * chip. I'm not sure if this is a requirement or a bug.)
1455 */
1456
1457 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1458 uint32_t segsz = m->m_pkthdr.segsz;
1459
1460 re_flags = RE_TDESC_CMD_LGSEND |
1461 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1462 } else {
1463 /*
1464 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1465 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1466 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1467 */
1468 re_flags = 0;
1469 if ((m->m_pkthdr.csum_flags &
1470 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1471 != 0) {
1472 re_flags |= RE_TDESC_CMD_IPCSUM;
1473 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1474 re_flags |= RE_TDESC_CMD_TCPCSUM;
1475 } else if (m->m_pkthdr.csum_flags &
1476 M_CSUM_UDPv4) {
1477 re_flags |= RE_TDESC_CMD_UDPCSUM;
1478 }
1479 }
1480 }
1481
1482 txq = &sc->re_ldata.re_txq[idx];
1483 map = txq->txq_dmamap;
1484 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1485 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1486
1487 if (__predict_false(error)) {
1488 /* XXX try to defrag if EFBIG? */
1489 printf("%s: can't map mbuf (error %d)\n",
1490 device_xname(sc->sc_dev), error);
1491
1492 IFQ_DEQUEUE(&ifp->if_snd, m);
1493 m_freem(m);
1494 ifp->if_oerrors++;
1495 continue;
1496 }
1497
1498 nsegs = map->dm_nsegs;
1499 pad = false;
1500 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1501 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1502 pad = true;
1503 nsegs++;
1504 }
1505
1506 if (nsegs > sc->re_ldata.re_tx_free) {
1507 /*
1508 * Not enough free descriptors to transmit this packet.
1509 */
1510 ifp->if_flags |= IFF_OACTIVE;
1511 bus_dmamap_unload(sc->sc_dmat, map);
1512 break;
1513 }
1514
1515 IFQ_DEQUEUE(&ifp->if_snd, m);
1516
1517 /*
1518 * Make sure that the caches are synchronized before we
1519 * ask the chip to start DMA for the packet data.
1520 */
1521 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1522 BUS_DMASYNC_PREWRITE);
1523
1524 /*
1525 * Set up hardware VLAN tagging. Note: vlan tag info must
1526 * appear in all descriptors of a multi-descriptor
1527 * transmission attempt.
1528 */
1529 vlanctl = 0;
1530 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1531 vlanctl = bswap16(VLAN_TAG_VALUE(mtag)) |
1532 RE_TDESC_VLANCTL_TAG;
1533
1534 /*
1535 * Map the segment array into descriptors.
1536 * Note that we set the start-of-frame and
1537 * end-of-frame markers for either TX or RX,
1538 * but they really only have meaning in the TX case.
1539 * (In the RX case, it's the chip that tells us
1540 * where packets begin and end.)
1541 * We also keep track of the end of the ring
1542 * and set the end-of-ring bits as needed,
1543 * and we set the ownership bits in all except
1544 * the very first descriptor. (The caller will
1545 * set this descriptor later when it start
1546 * transmission or reception.)
1547 */
1548 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1549 lastdesc = -1;
1550 for (seg = 0; seg < map->dm_nsegs;
1551 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1552 d = &sc->re_ldata.re_tx_list[curdesc];
1553 #ifdef DIAGNOSTIC
1554 RE_TXDESCSYNC(sc, curdesc,
1555 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1556 cmdstat = le32toh(d->re_cmdstat);
1557 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1558 if (cmdstat & RE_TDESC_STAT_OWN) {
1559 panic("%s: tried to map busy TX descriptor",
1560 device_xname(sc->sc_dev));
1561 }
1562 #endif
1563
1564 d->re_vlanctl = htole32(vlanctl);
1565 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1566 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1567 if (seg == 0)
1568 cmdstat |= RE_TDESC_CMD_SOF;
1569 else
1570 cmdstat |= RE_TDESC_CMD_OWN;
1571 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1572 cmdstat |= RE_TDESC_CMD_EOR;
1573 if (seg == nsegs - 1) {
1574 cmdstat |= RE_TDESC_CMD_EOF;
1575 lastdesc = curdesc;
1576 }
1577 d->re_cmdstat = htole32(cmdstat);
1578 RE_TXDESCSYNC(sc, curdesc,
1579 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1580 }
1581 if (__predict_false(pad)) {
1582 bus_addr_t paddaddr;
1583
1584 d = &sc->re_ldata.re_tx_list[curdesc];
1585 d->re_vlanctl = htole32(vlanctl);
1586 paddaddr = RE_TXPADDADDR(sc);
1587 re_set_bufaddr(d, paddaddr);
1588 cmdstat = re_flags |
1589 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1590 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1591 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1592 cmdstat |= RE_TDESC_CMD_EOR;
1593 d->re_cmdstat = htole32(cmdstat);
1594 RE_TXDESCSYNC(sc, curdesc,
1595 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1596 lastdesc = curdesc;
1597 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1598 }
1599 KASSERT(lastdesc != -1);
1600
1601 /* Transfer ownership of packet to the chip. */
1602
1603 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1604 htole32(RE_TDESC_CMD_OWN);
1605 RE_TXDESCSYNC(sc, startdesc,
1606 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1607
1608 /* update info of TX queue and descriptors */
1609 txq->txq_mbuf = m;
1610 txq->txq_descidx = lastdesc;
1611 txq->txq_nsegs = nsegs;
1612
1613 sc->re_ldata.re_txq_free--;
1614 sc->re_ldata.re_tx_free -= nsegs;
1615 sc->re_ldata.re_tx_nextfree = curdesc;
1616
1617 #if NBPFILTER > 0
1618 /*
1619 * If there's a BPF listener, bounce a copy of this frame
1620 * to him.
1621 */
1622 if (ifp->if_bpf)
1623 bpf_mtap(ifp->if_bpf, m);
1624 #endif
1625 }
1626
1627 if (sc->re_ldata.re_txq_free < ofree) {
1628 /*
1629 * TX packets are enqueued.
1630 */
1631 sc->re_ldata.re_txq_prodidx = idx;
1632
1633 /*
1634 * Start the transmitter to poll.
1635 *
1636 * RealTek put the TX poll request register in a different
1637 * location on the 8169 gigE chip. I don't know why.
1638 */
1639 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1640 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1641 else
1642 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1643
1644 /*
1645 * Use the countdown timer for interrupt moderation.
1646 * 'TX done' interrupts are disabled. Instead, we reset the
1647 * countdown timer, which will begin counting until it hits
1648 * the value in the TIMERINT register, and then trigger an
1649 * interrupt. Each time we write to the TIMERCNT register,
1650 * the timer count is reset to 0.
1651 */
1652 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1653
1654 /*
1655 * Set a timeout in case the chip goes out to lunch.
1656 */
1657 ifp->if_timer = 5;
1658 }
1659 }
1660
1661 static int
1662 re_init(struct ifnet *ifp)
1663 {
1664 struct rtk_softc *sc = ifp->if_softc;
1665 const uint8_t *enaddr;
1666 uint32_t rxcfg = 0;
1667 uint32_t reg;
1668 int error;
1669
1670 if ((error = re_enable(sc)) != 0)
1671 goto out;
1672
1673 /*
1674 * Cancel pending I/O and free all RX/TX buffers.
1675 */
1676 re_stop(ifp, 0);
1677
1678 re_reset(sc);
1679
1680 /*
1681 * Enable C+ RX and TX mode, as well as VLAN stripping and
1682 * RX checksum offload. We must configure the C+ register
1683 * before all others.
1684 */
1685 reg = 0;
1686
1687 /*
1688 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1689 * FreeBSD drivers set these bits anyway (for 8139C+?).
1690 * So far, it works.
1691 */
1692
1693 /*
1694 * XXX: For old 8169 set bit 14.
1695 * For 8169S/8110S and above, do not set bit 14.
1696 */
1697 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1698 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1699
1700 if (1) {/* not for 8169S ? */
1701 reg |=
1702 RTK_CPLUSCMD_VLANSTRIP |
1703 (ifp->if_capenable &
1704 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1705 IFCAP_CSUM_UDPv4_Rx) ?
1706 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1707 }
1708
1709 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1710 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1711
1712 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1713 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1714 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1715
1716 DELAY(10000);
1717
1718 /*
1719 * Init our MAC address. Even though the chipset
1720 * documentation doesn't mention it, we need to enter "Config
1721 * register write enable" mode to modify the ID registers.
1722 */
1723 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1724 enaddr = CLLADDR(ifp->if_sadl);
1725 reg = enaddr[0] | (enaddr[1] << 8) |
1726 (enaddr[2] << 16) | (enaddr[3] << 24);
1727 CSR_WRITE_4(sc, RTK_IDR0, reg);
1728 reg = enaddr[4] | (enaddr[5] << 8);
1729 CSR_WRITE_4(sc, RTK_IDR4, reg);
1730 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1731
1732 /*
1733 * For C+ mode, initialize the RX descriptors and mbufs.
1734 */
1735 re_rx_list_init(sc);
1736 re_tx_list_init(sc);
1737
1738 /*
1739 * Load the addresses of the RX and TX lists into the chip.
1740 */
1741 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1742 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1743 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1744 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1745
1746 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1747 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1748 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1749 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1750
1751 /*
1752 * Enable transmit and receive.
1753 */
1754 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1755
1756 /*
1757 * Set the initial TX and RX configuration.
1758 */
1759 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1760 /* test mode is needed only for old 8169 */
1761 CSR_WRITE_4(sc, RTK_TXCFG,
1762 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1763 } else
1764 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1765
1766 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1767
1768 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1769
1770 /* Set the individual bit to receive frames for this host only. */
1771 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1772 rxcfg |= RTK_RXCFG_RX_INDIV;
1773
1774 /* If we want promiscuous mode, set the allframes bit. */
1775 if (ifp->if_flags & IFF_PROMISC)
1776 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1777 else
1778 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1779 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1780
1781 /*
1782 * Set capture broadcast bit to capture broadcast frames.
1783 */
1784 if (ifp->if_flags & IFF_BROADCAST)
1785 rxcfg |= RTK_RXCFG_RX_BROAD;
1786 else
1787 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1788 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1789
1790 /*
1791 * Program the multicast filter, if necessary.
1792 */
1793 rtk_setmulti(sc);
1794
1795 /*
1796 * Enable interrupts.
1797 */
1798 if (sc->re_testmode)
1799 CSR_WRITE_2(sc, RTK_IMR, 0);
1800 else
1801 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1802
1803 /* Start RX/TX process. */
1804 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1805 #ifdef notdef
1806 /* Enable receiver and transmitter. */
1807 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1808 #endif
1809
1810 /*
1811 * Initialize the timer interrupt register so that
1812 * a timer interrupt will be generated once the timer
1813 * reaches a certain number of ticks. The timer is
1814 * reloaded on each transmit. This gives us TX interrupt
1815 * moderation, which dramatically improves TX frame rate.
1816 */
1817
1818 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1819 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1820 else {
1821 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1822
1823 /*
1824 * For 8169 gigE NICs, set the max allowed RX packet
1825 * size so we can receive jumbo frames.
1826 */
1827 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1828 }
1829
1830 if (sc->re_testmode)
1831 return 0;
1832
1833 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1834
1835 ifp->if_flags |= IFF_RUNNING;
1836 ifp->if_flags &= ~IFF_OACTIVE;
1837
1838 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1839
1840 out:
1841 if (error) {
1842 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1843 ifp->if_timer = 0;
1844 printf("%s: interface not running\n",
1845 device_xname(sc->sc_dev));
1846 }
1847
1848 return error;
1849 }
1850
1851 static int
1852 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1853 {
1854 struct rtk_softc *sc = ifp->if_softc;
1855 struct ifreq *ifr = data;
1856 int s, error = 0;
1857
1858 s = splnet();
1859
1860 switch (command) {
1861 case SIOCSIFMTU:
1862 /*
1863 * According to FreeBSD, 8102E/8102EL use a different DMA
1864 * descriptor format. Disable jumbo frames for those parts.
1865 */
1866 if (sc->sc_rev == 25 && ifr->ifr_mtu > ETHERMTU) {
1867 error = EINVAL;
1868 break;
1869 }
1870
1871 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1872 error = EINVAL;
1873 else if ((error = ifioctl_common(ifp, command, data)) ==
1874 ENETRESET)
1875 error = 0;
1876 break;
1877 default:
1878 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1879 break;
1880
1881 error = 0;
1882
1883 if (command == SIOCSIFCAP)
1884 error = (*ifp->if_init)(ifp);
1885 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1886 ;
1887 else if (ifp->if_flags & IFF_RUNNING)
1888 rtk_setmulti(sc);
1889 break;
1890 }
1891
1892 splx(s);
1893
1894 return error;
1895 }
1896
1897 static void
1898 re_watchdog(struct ifnet *ifp)
1899 {
1900 struct rtk_softc *sc;
1901 int s;
1902
1903 sc = ifp->if_softc;
1904 s = splnet();
1905 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1906 ifp->if_oerrors++;
1907
1908 re_txeof(sc);
1909 re_rxeof(sc);
1910
1911 re_init(ifp);
1912
1913 splx(s);
1914 }
1915
1916 /*
1917 * Stop the adapter and free any mbufs allocated to the
1918 * RX and TX lists.
1919 */
1920 static void
1921 re_stop(struct ifnet *ifp, int disable)
1922 {
1923 int i;
1924 struct rtk_softc *sc = ifp->if_softc;
1925
1926 callout_stop(&sc->rtk_tick_ch);
1927
1928 mii_down(&sc->mii);
1929
1930 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1931 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1932
1933 if (sc->re_head != NULL) {
1934 m_freem(sc->re_head);
1935 sc->re_head = sc->re_tail = NULL;
1936 }
1937
1938 /* Free the TX list buffers. */
1939 for (i = 0; i < RE_TX_QLEN; i++) {
1940 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1941 bus_dmamap_unload(sc->sc_dmat,
1942 sc->re_ldata.re_txq[i].txq_dmamap);
1943 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1944 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1945 }
1946 }
1947
1948 /* Free the RX list buffers. */
1949 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1950 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
1951 bus_dmamap_unload(sc->sc_dmat,
1952 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
1953 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
1954 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
1955 }
1956 }
1957
1958 if (disable)
1959 re_disable(sc);
1960
1961 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1962 ifp->if_timer = 0;
1963 }
1964