rtl8169.c revision 1.105.4.1 1 /* $NetBSD: rtl8169.c,v 1.105.4.1 2009/03/24 20:38:38 snj Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.105.4.1 2009/03/24 20:38:38 snj Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115 #include "vlan.h"
116
117 #include <sys/param.h>
118 #include <sys/endian.h>
119 #include <sys/systm.h>
120 #include <sys/sockio.h>
121 #include <sys/mbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/device.h>
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_ether.h>
131 #include <net/if_media.h>
132 #include <net/if_vlanvar.h>
133
134 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
136 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
137
138 #if NBPFILTER > 0
139 #include <net/bpf.h>
140 #endif
141
142 #include <sys/bus.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/ic/rtl81x9reg.h>
148 #include <dev/ic/rtl81x9var.h>
149
150 #include <dev/ic/rtl8169var.h>
151
152 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, void *);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168
169 static int re_gmii_readreg(struct device *, int, int);
170 static void re_gmii_writereg(struct device *, int, int, int);
171
172 static int re_miibus_readreg(struct device *, int, int);
173 static void re_miibus_writereg(struct device *, int, int, int);
174 static void re_miibus_statchg(struct device *);
175
176 static void re_reset(struct rtk_softc *);
177
178 static inline void
179 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
180 {
181
182 d->re_bufaddr_lo = htole32((uint32_t)addr);
183 if (sizeof(bus_addr_t) == sizeof(uint64_t))
184 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
185 else
186 d->re_bufaddr_hi = 0;
187 }
188
189 static int
190 re_gmii_readreg(device_t dev, int phy, int reg)
191 {
192 struct rtk_softc *sc = device_private(dev);
193 uint32_t rval;
194 int i;
195
196 if (phy != 7)
197 return 0;
198
199 /* Let the rgephy driver read the GMEDIASTAT register */
200
201 if (reg == RTK_GMEDIASTAT) {
202 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
203 return rval;
204 }
205
206 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
207 DELAY(1000);
208
209 for (i = 0; i < RTK_TIMEOUT; i++) {
210 rval = CSR_READ_4(sc, RTK_PHYAR);
211 if (rval & RTK_PHYAR_BUSY)
212 break;
213 DELAY(100);
214 }
215
216 if (i == RTK_TIMEOUT) {
217 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
218 return 0;
219 }
220
221 return rval & RTK_PHYAR_PHYDATA;
222 }
223
224 static void
225 re_gmii_writereg(device_t dev, int phy, int reg, int data)
226 {
227 struct rtk_softc *sc = device_private(dev);
228 uint32_t rval;
229 int i;
230
231 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
232 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
233 DELAY(1000);
234
235 for (i = 0; i < RTK_TIMEOUT; i++) {
236 rval = CSR_READ_4(sc, RTK_PHYAR);
237 if (!(rval & RTK_PHYAR_BUSY))
238 break;
239 DELAY(100);
240 }
241
242 if (i == RTK_TIMEOUT) {
243 printf("%s: PHY write reg %x <- %x failed\n",
244 device_xname(sc->sc_dev), reg, data);
245 }
246 }
247
248 static int
249 re_miibus_readreg(device_t dev, int phy, int reg)
250 {
251 struct rtk_softc *sc = device_private(dev);
252 uint16_t rval = 0;
253 uint16_t re8139_reg = 0;
254 int s;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rval = re_gmii_readreg(dev, phy, reg);
260 splx(s);
261 return rval;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return 0;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 splx(s);
288 return 0;
289 /*
290 * Allow the rlphy driver to read the media status
291 * register. If we have a link partner which does not
292 * support NWAY, this is the register which will tell
293 * us the results of parallel detection.
294 */
295 case RTK_MEDIASTAT:
296 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
297 splx(s);
298 return rval;
299 default:
300 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
301 splx(s);
302 return 0;
303 }
304 rval = CSR_READ_2(sc, re8139_reg);
305 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
306 /* 8139C+ has different bit layout. */
307 rval &= ~(BMCR_LOOP | BMCR_ISO);
308 }
309 splx(s);
310 return rval;
311 }
312
313 static void
314 re_miibus_writereg(device_t dev, int phy, int reg, int data)
315 {
316 struct rtk_softc *sc = device_private(dev);
317 uint16_t re8139_reg = 0;
318 int s;
319
320 s = splnet();
321
322 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
323 re_gmii_writereg(dev, phy, reg, data);
324 splx(s);
325 return;
326 }
327
328 /* Pretend the internal PHY is only at address 0 */
329 if (phy) {
330 splx(s);
331 return;
332 }
333 switch (reg) {
334 case MII_BMCR:
335 re8139_reg = RTK_BMCR;
336 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
337 /* 8139C+ has different bit layout. */
338 data &= ~(BMCR_LOOP | BMCR_ISO);
339 }
340 break;
341 case MII_BMSR:
342 re8139_reg = RTK_BMSR;
343 break;
344 case MII_ANAR:
345 re8139_reg = RTK_ANAR;
346 break;
347 case MII_ANER:
348 re8139_reg = RTK_ANER;
349 break;
350 case MII_ANLPAR:
351 re8139_reg = RTK_LPAR;
352 break;
353 case MII_PHYIDR1:
354 case MII_PHYIDR2:
355 splx(s);
356 return;
357 break;
358 default:
359 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
360 splx(s);
361 return;
362 }
363 CSR_WRITE_2(sc, re8139_reg, data);
364 splx(s);
365 return;
366 }
367
368 static void
369 re_miibus_statchg(device_t dev)
370 {
371
372 return;
373 }
374
375 static void
376 re_reset(struct rtk_softc *sc)
377 {
378 int i;
379
380 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
381
382 for (i = 0; i < RTK_TIMEOUT; i++) {
383 DELAY(10);
384 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
385 break;
386 }
387 if (i == RTK_TIMEOUT)
388 printf("%s: reset never completed!\n",
389 device_xname(sc->sc_dev));
390
391 /*
392 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
393 * but also says "Rtl8169s sigle chip detected".
394 */
395 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
396 CSR_WRITE_1(sc, RTK_LDPS, 1);
397
398 }
399
400 /*
401 * The following routine is designed to test for a defect on some
402 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
403 * lines connected to the bus, however for a 32-bit only card, they
404 * should be pulled high. The result of this defect is that the
405 * NIC will not work right if you plug it into a 64-bit slot: DMA
406 * operations will be done with 64-bit transfers, which will fail
407 * because the 64-bit data lines aren't connected.
408 *
409 * There's no way to work around this (short of talking a soldering
410 * iron to the board), however we can detect it. The method we use
411 * here is to put the NIC into digital loopback mode, set the receiver
412 * to promiscuous mode, and then try to send a frame. We then compare
413 * the frame data we sent to what was received. If the data matches,
414 * then the NIC is working correctly, otherwise we know the user has
415 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
416 * slot. In the latter case, there's no way the NIC can work correctly,
417 * so we print out a message on the console and abort the device attach.
418 */
419
420 int
421 re_diag(struct rtk_softc *sc)
422 {
423 struct ifnet *ifp = &sc->ethercom.ec_if;
424 struct mbuf *m0;
425 struct ether_header *eh;
426 struct re_rxsoft *rxs;
427 struct re_desc *cur_rx;
428 bus_dmamap_t dmamap;
429 uint16_t status;
430 uint32_t rxstat;
431 int total_len, i, s, error = 0;
432 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
433 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
434
435 /* Allocate a single mbuf */
436
437 MGETHDR(m0, M_DONTWAIT, MT_DATA);
438 if (m0 == NULL)
439 return ENOBUFS;
440
441 /*
442 * Initialize the NIC in test mode. This sets the chip up
443 * so that it can send and receive frames, but performs the
444 * following special functions:
445 * - Puts receiver in promiscuous mode
446 * - Enables digital loopback mode
447 * - Leaves interrupts turned off
448 */
449
450 ifp->if_flags |= IFF_PROMISC;
451 sc->re_testmode = 1;
452 re_init(ifp);
453 re_stop(ifp, 0);
454 DELAY(100000);
455 re_init(ifp);
456
457 /* Put some data in the mbuf */
458
459 eh = mtod(m0, struct ether_header *);
460 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
461 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
462 eh->ether_type = htons(ETHERTYPE_IP);
463 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
464
465 /*
466 * Queue the packet, start transmission.
467 */
468
469 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
470 s = splnet();
471 IF_ENQUEUE(&ifp->if_snd, m0);
472 re_start(ifp);
473 splx(s);
474 m0 = NULL;
475
476 /* Wait for it to propagate through the chip */
477
478 DELAY(100000);
479 for (i = 0; i < RTK_TIMEOUT; i++) {
480 status = CSR_READ_2(sc, RTK_ISR);
481 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
482 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
483 break;
484 DELAY(10);
485 }
486 if (i == RTK_TIMEOUT) {
487 aprint_error_dev(sc->sc_dev,
488 "diagnostic failed, failed to receive packet "
489 "in loopback mode\n");
490 error = EIO;
491 goto done;
492 }
493
494 /*
495 * The packet should have been dumped into the first
496 * entry in the RX DMA ring. Grab it from there.
497 */
498
499 rxs = &sc->re_ldata.re_rxsoft[0];
500 dmamap = rxs->rxs_dmamap;
501 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
502 BUS_DMASYNC_POSTREAD);
503 bus_dmamap_unload(sc->sc_dmat, dmamap);
504
505 m0 = rxs->rxs_mbuf;
506 rxs->rxs_mbuf = NULL;
507 eh = mtod(m0, struct ether_header *);
508
509 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
510 cur_rx = &sc->re_ldata.re_rx_list[0];
511 rxstat = le32toh(cur_rx->re_cmdstat);
512 total_len = rxstat & sc->re_rxlenmask;
513
514 if (total_len != ETHER_MIN_LEN) {
515 aprint_error_dev(sc->sc_dev,
516 "diagnostic failed, received short packet\n");
517 error = EIO;
518 goto done;
519 }
520
521 /* Test that the received packet data matches what we sent. */
522
523 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
524 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
525 ntohs(eh->ether_type) != ETHERTYPE_IP) {
526 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n");
527 aprint_error_dev(sc->sc_dev, "expected TX data: %s",
528 ether_sprintf(dst));
529 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
530 aprint_error_dev(sc->sc_dev, "received RX data: %s",
531 ether_sprintf(eh->ether_dhost));
532 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
533 ntohs(eh->ether_type));
534 aprint_error_dev(sc->sc_dev,
535 "You may have a defective 32-bit NIC plugged "
536 "into a 64-bit PCI slot.\n");
537 aprint_error_dev(sc->sc_dev,
538 "Please re-install the NIC in a 32-bit slot "
539 "for proper operation.\n");
540 aprint_error_dev(sc->sc_dev,
541 "Read the re(4) man page for more details.\n");
542 error = EIO;
543 }
544
545 done:
546 /* Turn interface off, release resources */
547
548 sc->re_testmode = 0;
549 ifp->if_flags &= ~IFF_PROMISC;
550 re_stop(ifp, 0);
551 if (m0 != NULL)
552 m_freem(m0);
553
554 return error;
555 }
556
557
558 /*
559 * Attach the interface. Allocate softc structures, do ifmedia
560 * setup and ethernet/BPF attach.
561 */
562 void
563 re_attach(struct rtk_softc *sc)
564 {
565 uint8_t eaddr[ETHER_ADDR_LEN];
566 uint16_t val;
567 struct ifnet *ifp;
568 int error = 0, i, addr_len;
569
570 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
571 uint32_t hwrev;
572
573 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
575 /* These rev numbers are taken from Realtek's driver */
576 switch (hwrev) {
577 case RTK_HWREV_8169:
578 /* XXX not in the Realtek driver */
579 sc->sc_rev = 1;
580 sc->sc_quirk |= RTKQ_8169NONS;
581 break;
582 case RTK_HWREV_8169S:
583 case RTK_HWREV_8110S:
584 sc->sc_rev = 3;
585 sc->sc_quirk |= RTKQ_MACLDPS;
586 break;
587 case RTK_HWREV_8169_8110SB:
588 sc->sc_rev = 4;
589 sc->sc_quirk |= RTKQ_MACLDPS;
590 break;
591 case RTK_HWREV_8169_8110SC:
592 sc->sc_rev = 5;
593 sc->sc_quirk |= RTKQ_MACLDPS;
594 break;
595 case RTK_HWREV_8101E:
596 sc->sc_rev = 11;
597 break;
598 case RTK_HWREV_8168_SPIN1:
599 sc->sc_rev = 21;
600 break;
601 case RTK_HWREV_8168_SPIN2:
602 sc->sc_rev = 22;
603 break;
604 case RTK_HWREV_8168_SPIN3:
605 sc->sc_rev = 23;
606 break;
607 case RTK_HWREV_8168C:
608 sc->sc_rev = 24;
609 break;
610 case RTK_HWREV_8102E:
611 case RTK_HWREV_8102EL:
612 sc->sc_rev = 25;
613 break;
614 case RTK_HWREV_8100E:
615 case RTK_HWREV_8100E_SPIN2:
616 /* XXX not in the Realtek driver */
617 sc->sc_rev = 0;
618 break;
619 default:
620 aprint_normal_dev(sc->sc_dev,
621 "Unknown revision (0x%08x)\n", hwrev);
622 sc->sc_rev = 0;
623 }
624
625 /* Set RX length mask */
626 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
627 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
628 } else {
629 /* Set RX length mask */
630 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
631 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
632 }
633
634 /* Reset the adapter. */
635 re_reset(sc);
636
637 if (sc->sc_rev == 24 || sc->sc_rev == 25) {
638 /*
639 * Get station address from ID registers.
640 */
641 for (i = 0; i < ETHER_ADDR_LEN; i++)
642 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
643 } else {
644 /*
645 * Get station address from the EEPROM.
646 */
647 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
648 addr_len = RTK_EEADDR_LEN1;
649 else
650 addr_len = RTK_EEADDR_LEN0;
651
652 /*
653 * Get station address from the EEPROM.
654 */
655 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
656 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
657 eaddr[(i * 2) + 0] = val & 0xff;
658 eaddr[(i * 2) + 1] = val >> 8;
659 }
660 }
661
662 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
663 ether_sprintf(eaddr));
664
665 if (sc->re_ldata.re_tx_desc_cnt >
666 PAGE_SIZE / sizeof(struct re_desc)) {
667 sc->re_ldata.re_tx_desc_cnt =
668 PAGE_SIZE / sizeof(struct re_desc);
669 }
670
671 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
672 sc->re_ldata.re_tx_desc_cnt);
673 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
674
675 /* Allocate DMA'able memory for the TX ring */
676 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
677 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
678 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
679 aprint_error_dev(sc->sc_dev,
680 "can't allocate tx listseg, error = %d\n", error);
681 goto fail_0;
682 }
683
684 /* Load the map for the TX ring. */
685 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
686 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
687 (void **)&sc->re_ldata.re_tx_list,
688 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
689 aprint_error_dev(sc->sc_dev,
690 "can't map tx list, error = %d\n", error);
691 goto fail_1;
692 }
693 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
694
695 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
696 RE_TX_LIST_SZ(sc), 0, 0,
697 &sc->re_ldata.re_tx_list_map)) != 0) {
698 aprint_error_dev(sc->sc_dev,
699 "can't create tx list map, error = %d\n", error);
700 goto fail_2;
701 }
702
703
704 if ((error = bus_dmamap_load(sc->sc_dmat,
705 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
706 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
707 aprint_error_dev(sc->sc_dev,
708 "can't load tx list, error = %d\n", error);
709 goto fail_3;
710 }
711
712 /* Create DMA maps for TX buffers */
713 for (i = 0; i < RE_TX_QLEN; i++) {
714 error = bus_dmamap_create(sc->sc_dmat,
715 round_page(IP_MAXPACKET),
716 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
717 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
718 if (error) {
719 aprint_error_dev(sc->sc_dev,
720 "can't create DMA map for TX\n");
721 goto fail_4;
722 }
723 }
724
725 /* Allocate DMA'able memory for the RX ring */
726 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
727 if ((error = bus_dmamem_alloc(sc->sc_dmat,
728 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
729 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
730 aprint_error_dev(sc->sc_dev,
731 "can't allocate rx listseg, error = %d\n", error);
732 goto fail_4;
733 }
734
735 /* Load the map for the RX ring. */
736 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
737 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
738 (void **)&sc->re_ldata.re_rx_list,
739 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
740 aprint_error_dev(sc->sc_dev,
741 "can't map rx list, error = %d\n", error);
742 goto fail_5;
743 }
744 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
745
746 if ((error = bus_dmamap_create(sc->sc_dmat,
747 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
748 &sc->re_ldata.re_rx_list_map)) != 0) {
749 aprint_error_dev(sc->sc_dev,
750 "can't create rx list map, error = %d\n", error);
751 goto fail_6;
752 }
753
754 if ((error = bus_dmamap_load(sc->sc_dmat,
755 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
756 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
757 aprint_error_dev(sc->sc_dev,
758 "can't load rx list, error = %d\n", error);
759 goto fail_7;
760 }
761
762 /* Create DMA maps for RX buffers */
763 for (i = 0; i < RE_RX_DESC_CNT; i++) {
764 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
765 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
766 if (error) {
767 aprint_error_dev(sc->sc_dev,
768 "can't create DMA map for RX\n");
769 goto fail_8;
770 }
771 }
772
773 /*
774 * Record interface as attached. From here, we should not fail.
775 */
776 sc->sc_flags |= RTK_ATTACHED;
777
778 ifp = &sc->ethercom.ec_if;
779 ifp->if_softc = sc;
780 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
781 ifp->if_mtu = ETHERMTU;
782 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
783 ifp->if_ioctl = re_ioctl;
784 sc->ethercom.ec_capabilities |=
785 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
786 ifp->if_start = re_start;
787 ifp->if_stop = re_stop;
788
789 /*
790 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
791 * so we have a workaround to handle the bug by padding
792 * such packets manually.
793 */
794 ifp->if_capabilities |=
795 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
796 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
797 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
798 IFCAP_TSOv4;
799 ifp->if_watchdog = re_watchdog;
800 ifp->if_init = re_init;
801 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
802 ifp->if_capenable = ifp->if_capabilities;
803 IFQ_SET_READY(&ifp->if_snd);
804
805 callout_init(&sc->rtk_tick_ch, 0);
806
807 /* Do MII setup */
808 sc->mii.mii_ifp = ifp;
809 sc->mii.mii_readreg = re_miibus_readreg;
810 sc->mii.mii_writereg = re_miibus_writereg;
811 sc->mii.mii_statchg = re_miibus_statchg;
812 sc->ethercom.ec_mii = &sc->mii;
813 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
814 ether_mediastatus);
815 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
816 MII_OFFSET_ANY, 0);
817 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
818
819 /*
820 * Call MI attach routine.
821 */
822 if_attach(ifp);
823 ether_ifattach(ifp, eaddr);
824
825 return;
826
827 fail_8:
828 /* Destroy DMA maps for RX buffers. */
829 for (i = 0; i < RE_RX_DESC_CNT; i++)
830 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
831 bus_dmamap_destroy(sc->sc_dmat,
832 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
833
834 /* Free DMA'able memory for the RX ring. */
835 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
836 fail_7:
837 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
838 fail_6:
839 bus_dmamem_unmap(sc->sc_dmat,
840 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
841 fail_5:
842 bus_dmamem_free(sc->sc_dmat,
843 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
844
845 fail_4:
846 /* Destroy DMA maps for TX buffers. */
847 for (i = 0; i < RE_TX_QLEN; i++)
848 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
849 bus_dmamap_destroy(sc->sc_dmat,
850 sc->re_ldata.re_txq[i].txq_dmamap);
851
852 /* Free DMA'able memory for the TX ring. */
853 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
854 fail_3:
855 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
856 fail_2:
857 bus_dmamem_unmap(sc->sc_dmat,
858 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
859 fail_1:
860 bus_dmamem_free(sc->sc_dmat,
861 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
862 fail_0:
863 return;
864 }
865
866
867 /*
868 * re_activate:
869 * Handle device activation/deactivation requests.
870 */
871 int
872 re_activate(device_t self, enum devact act)
873 {
874 struct rtk_softc *sc = device_private(self);
875 int s, error = 0;
876
877 s = splnet();
878 switch (act) {
879 case DVACT_ACTIVATE:
880 error = EOPNOTSUPP;
881 break;
882 case DVACT_DEACTIVATE:
883 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
884 if_deactivate(&sc->ethercom.ec_if);
885 break;
886 }
887 splx(s);
888
889 return error;
890 }
891
892 /*
893 * re_detach:
894 * Detach a rtk interface.
895 */
896 int
897 re_detach(struct rtk_softc *sc)
898 {
899 struct ifnet *ifp = &sc->ethercom.ec_if;
900 int i;
901
902 /*
903 * Succeed now if there isn't any work to do.
904 */
905 if ((sc->sc_flags & RTK_ATTACHED) == 0)
906 return 0;
907
908 /* Unhook our tick handler. */
909 callout_stop(&sc->rtk_tick_ch);
910
911 /* Detach all PHYs. */
912 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
913
914 /* Delete all remaining media. */
915 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
916
917 ether_ifdetach(ifp);
918 if_detach(ifp);
919
920 /* Destroy DMA maps for RX buffers. */
921 for (i = 0; i < RE_RX_DESC_CNT; i++)
922 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
925
926 /* Free DMA'able memory for the RX ring. */
927 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
928 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
929 bus_dmamem_unmap(sc->sc_dmat,
930 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
931 bus_dmamem_free(sc->sc_dmat,
932 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
933
934 /* Destroy DMA maps for TX buffers. */
935 for (i = 0; i < RE_TX_QLEN; i++)
936 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
937 bus_dmamap_destroy(sc->sc_dmat,
938 sc->re_ldata.re_txq[i].txq_dmamap);
939
940 /* Free DMA'able memory for the TX ring. */
941 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
942 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
943 bus_dmamem_unmap(sc->sc_dmat,
944 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
945 bus_dmamem_free(sc->sc_dmat,
946 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
947
948 return 0;
949 }
950
951 /*
952 * re_enable:
953 * Enable the RTL81X9 chip.
954 */
955 static int
956 re_enable(struct rtk_softc *sc)
957 {
958
959 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
960 if ((*sc->sc_enable)(sc) != 0) {
961 printf("%s: device enable failed\n",
962 device_xname(sc->sc_dev));
963 return EIO;
964 }
965 sc->sc_flags |= RTK_ENABLED;
966 }
967 return 0;
968 }
969
970 /*
971 * re_disable:
972 * Disable the RTL81X9 chip.
973 */
974 static void
975 re_disable(struct rtk_softc *sc)
976 {
977
978 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
979 (*sc->sc_disable)(sc);
980 sc->sc_flags &= ~RTK_ENABLED;
981 }
982 }
983
984 static int
985 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
986 {
987 struct mbuf *n = NULL;
988 bus_dmamap_t map;
989 struct re_desc *d;
990 struct re_rxsoft *rxs;
991 uint32_t cmdstat;
992 int error;
993
994 if (m == NULL) {
995 MGETHDR(n, M_DONTWAIT, MT_DATA);
996 if (n == NULL)
997 return ENOBUFS;
998
999 MCLGET(n, M_DONTWAIT);
1000 if ((n->m_flags & M_EXT) == 0) {
1001 m_freem(n);
1002 return ENOBUFS;
1003 }
1004 m = n;
1005 } else
1006 m->m_data = m->m_ext.ext_buf;
1007
1008 /*
1009 * Initialize mbuf length fields and fixup
1010 * alignment so that the frame payload is
1011 * longword aligned.
1012 */
1013 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1014 m->m_data += RE_ETHER_ALIGN;
1015
1016 rxs = &sc->re_ldata.re_rxsoft[idx];
1017 map = rxs->rxs_dmamap;
1018 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1019 BUS_DMA_READ|BUS_DMA_NOWAIT);
1020
1021 if (error)
1022 goto out;
1023
1024 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1025 BUS_DMASYNC_PREREAD);
1026
1027 d = &sc->re_ldata.re_rx_list[idx];
1028 #ifdef DIAGNOSTIC
1029 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1030 cmdstat = le32toh(d->re_cmdstat);
1031 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1032 if (cmdstat & RE_RDESC_STAT_OWN) {
1033 panic("%s: tried to map busy RX descriptor",
1034 device_xname(sc->sc_dev));
1035 }
1036 #endif
1037
1038 rxs->rxs_mbuf = m;
1039
1040 d->re_vlanctl = 0;
1041 cmdstat = map->dm_segs[0].ds_len;
1042 if (idx == (RE_RX_DESC_CNT - 1))
1043 cmdstat |= RE_RDESC_CMD_EOR;
1044 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1045 d->re_cmdstat = htole32(cmdstat);
1046 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1047 cmdstat |= RE_RDESC_CMD_OWN;
1048 d->re_cmdstat = htole32(cmdstat);
1049 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1050
1051 return 0;
1052 out:
1053 if (n != NULL)
1054 m_freem(n);
1055 return ENOMEM;
1056 }
1057
1058 static int
1059 re_tx_list_init(struct rtk_softc *sc)
1060 {
1061 int i;
1062
1063 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1064 for (i = 0; i < RE_TX_QLEN; i++) {
1065 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1066 }
1067
1068 bus_dmamap_sync(sc->sc_dmat,
1069 sc->re_ldata.re_tx_list_map, 0,
1070 sc->re_ldata.re_tx_list_map->dm_mapsize,
1071 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1072 sc->re_ldata.re_txq_prodidx = 0;
1073 sc->re_ldata.re_txq_considx = 0;
1074 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1075 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1076 sc->re_ldata.re_tx_nextfree = 0;
1077
1078 return 0;
1079 }
1080
1081 static int
1082 re_rx_list_init(struct rtk_softc *sc)
1083 {
1084 int i;
1085
1086 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1087
1088 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1089 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1090 return ENOBUFS;
1091 }
1092
1093 sc->re_ldata.re_rx_prodidx = 0;
1094 sc->re_head = sc->re_tail = NULL;
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * RX handler for C+ and 8169. For the gigE chips, we support
1101 * the reception of jumbo frames that have been fragmented
1102 * across multiple 2K mbuf cluster buffers.
1103 */
1104 static void
1105 re_rxeof(struct rtk_softc *sc)
1106 {
1107 struct mbuf *m;
1108 struct ifnet *ifp;
1109 int i, total_len;
1110 struct re_desc *cur_rx;
1111 struct re_rxsoft *rxs;
1112 uint32_t rxstat, rxvlan;
1113
1114 ifp = &sc->ethercom.ec_if;
1115
1116 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1117 cur_rx = &sc->re_ldata.re_rx_list[i];
1118 RE_RXDESCSYNC(sc, i,
1119 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1120 rxstat = le32toh(cur_rx->re_cmdstat);
1121 rxvlan = le32toh(cur_rx->re_vlanctl);
1122 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1123 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1124 break;
1125 }
1126 total_len = rxstat & sc->re_rxlenmask;
1127 rxs = &sc->re_ldata.re_rxsoft[i];
1128 m = rxs->rxs_mbuf;
1129
1130 /* Invalidate the RX mbuf and unload its map */
1131
1132 bus_dmamap_sync(sc->sc_dmat,
1133 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1134 BUS_DMASYNC_POSTREAD);
1135 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1136
1137 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1138 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1139 if (sc->re_head == NULL)
1140 sc->re_head = sc->re_tail = m;
1141 else {
1142 m->m_flags &= ~M_PKTHDR;
1143 sc->re_tail->m_next = m;
1144 sc->re_tail = m;
1145 }
1146 re_newbuf(sc, i, NULL);
1147 continue;
1148 }
1149
1150 /*
1151 * NOTE: for the 8139C+, the frame length field
1152 * is always 12 bits in size, but for the gigE chips,
1153 * it is 13 bits (since the max RX frame length is 16K).
1154 * Unfortunately, all 32 bits in the status word
1155 * were already used, so to make room for the extra
1156 * length bit, RealTek took out the 'frame alignment
1157 * error' bit and shifted the other status bits
1158 * over one slot. The OWN, EOR, FS and LS bits are
1159 * still in the same places. We have already extracted
1160 * the frame length and checked the OWN bit, so rather
1161 * than using an alternate bit mapping, we shift the
1162 * status bits one space to the right so we can evaluate
1163 * them using the 8169 status as though it was in the
1164 * same format as that of the 8139C+.
1165 */
1166 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1167 rxstat >>= 1;
1168
1169 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1170 #ifdef RE_DEBUG
1171 printf("%s: RX error (rxstat = 0x%08x)",
1172 device_xname(sc->sc_dev), rxstat);
1173 if (rxstat & RE_RDESC_STAT_FRALIGN)
1174 printf(", frame alignment error");
1175 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1176 printf(", out of buffer space");
1177 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1178 printf(", FIFO overrun");
1179 if (rxstat & RE_RDESC_STAT_GIANT)
1180 printf(", giant packet");
1181 if (rxstat & RE_RDESC_STAT_RUNT)
1182 printf(", runt packet");
1183 if (rxstat & RE_RDESC_STAT_CRCERR)
1184 printf(", CRC error");
1185 printf("\n");
1186 #endif
1187 ifp->if_ierrors++;
1188 /*
1189 * If this is part of a multi-fragment packet,
1190 * discard all the pieces.
1191 */
1192 if (sc->re_head != NULL) {
1193 m_freem(sc->re_head);
1194 sc->re_head = sc->re_tail = NULL;
1195 }
1196 re_newbuf(sc, i, m);
1197 continue;
1198 }
1199
1200 /*
1201 * If allocating a replacement mbuf fails,
1202 * reload the current one.
1203 */
1204
1205 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1206 ifp->if_ierrors++;
1207 if (sc->re_head != NULL) {
1208 m_freem(sc->re_head);
1209 sc->re_head = sc->re_tail = NULL;
1210 }
1211 re_newbuf(sc, i, m);
1212 continue;
1213 }
1214
1215 if (sc->re_head != NULL) {
1216 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1217 /*
1218 * Special case: if there's 4 bytes or less
1219 * in this buffer, the mbuf can be discarded:
1220 * the last 4 bytes is the CRC, which we don't
1221 * care about anyway.
1222 */
1223 if (m->m_len <= ETHER_CRC_LEN) {
1224 sc->re_tail->m_len -=
1225 (ETHER_CRC_LEN - m->m_len);
1226 m_freem(m);
1227 } else {
1228 m->m_len -= ETHER_CRC_LEN;
1229 m->m_flags &= ~M_PKTHDR;
1230 sc->re_tail->m_next = m;
1231 }
1232 m = sc->re_head;
1233 sc->re_head = sc->re_tail = NULL;
1234 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1235 } else
1236 m->m_pkthdr.len = m->m_len =
1237 (total_len - ETHER_CRC_LEN);
1238
1239 ifp->if_ipackets++;
1240 m->m_pkthdr.rcvif = ifp;
1241
1242 /* Do RX checksumming */
1243
1244 /* Check IP header checksum */
1245 if (rxstat & RE_RDESC_STAT_PROTOID) {
1246 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1247 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1248 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1249 }
1250
1251 /* Check TCP/UDP checksum */
1252 if (RE_TCPPKT(rxstat)) {
1253 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1254 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1255 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1256 } else if (RE_UDPPKT(rxstat)) {
1257 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1258 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1259 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1260 }
1261
1262 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1263 VLAN_INPUT_TAG(ifp, m,
1264 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1265 continue);
1266 }
1267 #if NBPFILTER > 0
1268 if (ifp->if_bpf)
1269 bpf_mtap(ifp->if_bpf, m);
1270 #endif
1271 (*ifp->if_input)(ifp, m);
1272 }
1273
1274 sc->re_ldata.re_rx_prodidx = i;
1275 }
1276
1277 static void
1278 re_txeof(struct rtk_softc *sc)
1279 {
1280 struct ifnet *ifp;
1281 struct re_txq *txq;
1282 uint32_t txstat;
1283 int idx, descidx;
1284
1285 ifp = &sc->ethercom.ec_if;
1286
1287 for (idx = sc->re_ldata.re_txq_considx;
1288 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1289 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1290 txq = &sc->re_ldata.re_txq[idx];
1291 KASSERT(txq->txq_mbuf != NULL);
1292
1293 descidx = txq->txq_descidx;
1294 RE_TXDESCSYNC(sc, descidx,
1295 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1296 txstat =
1297 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1298 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1299 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1300 if (txstat & RE_TDESC_CMD_OWN) {
1301 break;
1302 }
1303
1304 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1305 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1306 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1307 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1308 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1309 m_freem(txq->txq_mbuf);
1310 txq->txq_mbuf = NULL;
1311
1312 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1313 ifp->if_collisions++;
1314 if (txstat & RE_TDESC_STAT_TXERRSUM)
1315 ifp->if_oerrors++;
1316 else
1317 ifp->if_opackets++;
1318 }
1319
1320 sc->re_ldata.re_txq_considx = idx;
1321
1322 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1323 ifp->if_flags &= ~IFF_OACTIVE;
1324
1325 /*
1326 * If not all descriptors have been released reaped yet,
1327 * reload the timer so that we will eventually get another
1328 * interrupt that will cause us to re-enter this routine.
1329 * This is done in case the transmitter has gone idle.
1330 */
1331 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1332 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1333 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1334 /*
1335 * Some chips will ignore a second TX request
1336 * issued while an existing transmission is in
1337 * progress. If the transmitter goes idle but
1338 * there are still packets waiting to be sent,
1339 * we need to restart the channel here to flush
1340 * them out. This only seems to be required with
1341 * the PCIe devices.
1342 */
1343 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1344 }
1345 } else
1346 ifp->if_timer = 0;
1347 }
1348
1349 static void
1350 re_tick(void *arg)
1351 {
1352 struct rtk_softc *sc = arg;
1353 int s;
1354
1355 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1356 s = splnet();
1357
1358 mii_tick(&sc->mii);
1359 splx(s);
1360
1361 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1362 }
1363
1364 int
1365 re_intr(void *arg)
1366 {
1367 struct rtk_softc *sc = arg;
1368 struct ifnet *ifp;
1369 uint16_t status;
1370 int handled = 0;
1371
1372 if (!device_has_power(sc->sc_dev))
1373 return 0;
1374
1375 ifp = &sc->ethercom.ec_if;
1376
1377 if ((ifp->if_flags & IFF_UP) == 0)
1378 return 0;
1379
1380 for (;;) {
1381
1382 status = CSR_READ_2(sc, RTK_ISR);
1383 /* If the card has gone away the read returns 0xffff. */
1384 if (status == 0xffff)
1385 break;
1386 if (status) {
1387 handled = 1;
1388 CSR_WRITE_2(sc, RTK_ISR, status);
1389 }
1390
1391 if ((status & RTK_INTRS_CPLUS) == 0)
1392 break;
1393
1394 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1395 re_rxeof(sc);
1396
1397 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1398 RTK_ISR_TX_DESC_UNAVAIL))
1399 re_txeof(sc);
1400
1401 if (status & RTK_ISR_SYSTEM_ERR) {
1402 re_init(ifp);
1403 }
1404
1405 if (status & RTK_ISR_LINKCHG) {
1406 callout_stop(&sc->rtk_tick_ch);
1407 re_tick(sc);
1408 }
1409 }
1410
1411 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1412 re_start(ifp);
1413
1414 return handled;
1415 }
1416
1417
1418
1419 /*
1420 * Main transmit routine for C+ and gigE NICs.
1421 */
1422
1423 static void
1424 re_start(struct ifnet *ifp)
1425 {
1426 struct rtk_softc *sc;
1427 struct mbuf *m;
1428 bus_dmamap_t map;
1429 struct re_txq *txq;
1430 struct re_desc *d;
1431 struct m_tag *mtag;
1432 uint32_t cmdstat, re_flags, vlanctl;
1433 int ofree, idx, error, nsegs, seg;
1434 int startdesc, curdesc, lastdesc;
1435 bool pad;
1436
1437 sc = ifp->if_softc;
1438 ofree = sc->re_ldata.re_txq_free;
1439
1440 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1441
1442 IFQ_POLL(&ifp->if_snd, m);
1443 if (m == NULL)
1444 break;
1445
1446 if (sc->re_ldata.re_txq_free == 0 ||
1447 sc->re_ldata.re_tx_free == 0) {
1448 /* no more free slots left */
1449 ifp->if_flags |= IFF_OACTIVE;
1450 break;
1451 }
1452
1453 /*
1454 * Set up checksum offload. Note: checksum offload bits must
1455 * appear in all descriptors of a multi-descriptor transmit
1456 * attempt. (This is according to testing done with an 8169
1457 * chip. I'm not sure if this is a requirement or a bug.)
1458 */
1459
1460 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1461 uint32_t segsz = m->m_pkthdr.segsz;
1462
1463 re_flags = RE_TDESC_CMD_LGSEND |
1464 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1465 } else {
1466 /*
1467 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1468 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1469 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1470 */
1471 re_flags = 0;
1472 if ((m->m_pkthdr.csum_flags &
1473 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1474 != 0) {
1475 re_flags |= RE_TDESC_CMD_IPCSUM;
1476 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1477 re_flags |= RE_TDESC_CMD_TCPCSUM;
1478 } else if (m->m_pkthdr.csum_flags &
1479 M_CSUM_UDPv4) {
1480 re_flags |= RE_TDESC_CMD_UDPCSUM;
1481 }
1482 }
1483 }
1484
1485 txq = &sc->re_ldata.re_txq[idx];
1486 map = txq->txq_dmamap;
1487 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1488 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1489
1490 if (__predict_false(error)) {
1491 /* XXX try to defrag if EFBIG? */
1492 printf("%s: can't map mbuf (error %d)\n",
1493 device_xname(sc->sc_dev), error);
1494
1495 IFQ_DEQUEUE(&ifp->if_snd, m);
1496 m_freem(m);
1497 ifp->if_oerrors++;
1498 continue;
1499 }
1500
1501 nsegs = map->dm_nsegs;
1502 pad = false;
1503 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1504 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1505 pad = true;
1506 nsegs++;
1507 }
1508
1509 if (nsegs > sc->re_ldata.re_tx_free) {
1510 /*
1511 * Not enough free descriptors to transmit this packet.
1512 */
1513 ifp->if_flags |= IFF_OACTIVE;
1514 bus_dmamap_unload(sc->sc_dmat, map);
1515 break;
1516 }
1517
1518 IFQ_DEQUEUE(&ifp->if_snd, m);
1519
1520 /*
1521 * Make sure that the caches are synchronized before we
1522 * ask the chip to start DMA for the packet data.
1523 */
1524 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1525 BUS_DMASYNC_PREWRITE);
1526
1527 /*
1528 * Set up hardware VLAN tagging. Note: vlan tag info must
1529 * appear in all descriptors of a multi-descriptor
1530 * transmission attempt.
1531 */
1532 vlanctl = 0;
1533 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1534 vlanctl = bswap16(VLAN_TAG_VALUE(mtag)) |
1535 RE_TDESC_VLANCTL_TAG;
1536
1537 /*
1538 * Map the segment array into descriptors.
1539 * Note that we set the start-of-frame and
1540 * end-of-frame markers for either TX or RX,
1541 * but they really only have meaning in the TX case.
1542 * (In the RX case, it's the chip that tells us
1543 * where packets begin and end.)
1544 * We also keep track of the end of the ring
1545 * and set the end-of-ring bits as needed,
1546 * and we set the ownership bits in all except
1547 * the very first descriptor. (The caller will
1548 * set this descriptor later when it start
1549 * transmission or reception.)
1550 */
1551 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1552 lastdesc = -1;
1553 for (seg = 0; seg < map->dm_nsegs;
1554 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1555 d = &sc->re_ldata.re_tx_list[curdesc];
1556 #ifdef DIAGNOSTIC
1557 RE_TXDESCSYNC(sc, curdesc,
1558 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1559 cmdstat = le32toh(d->re_cmdstat);
1560 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1561 if (cmdstat & RE_TDESC_STAT_OWN) {
1562 panic("%s: tried to map busy TX descriptor",
1563 device_xname(sc->sc_dev));
1564 }
1565 #endif
1566
1567 d->re_vlanctl = htole32(vlanctl);
1568 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1569 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1570 if (seg == 0)
1571 cmdstat |= RE_TDESC_CMD_SOF;
1572 else
1573 cmdstat |= RE_TDESC_CMD_OWN;
1574 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1575 cmdstat |= RE_TDESC_CMD_EOR;
1576 if (seg == nsegs - 1) {
1577 cmdstat |= RE_TDESC_CMD_EOF;
1578 lastdesc = curdesc;
1579 }
1580 d->re_cmdstat = htole32(cmdstat);
1581 RE_TXDESCSYNC(sc, curdesc,
1582 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1583 }
1584 if (__predict_false(pad)) {
1585 bus_addr_t paddaddr;
1586
1587 d = &sc->re_ldata.re_tx_list[curdesc];
1588 d->re_vlanctl = htole32(vlanctl);
1589 paddaddr = RE_TXPADDADDR(sc);
1590 re_set_bufaddr(d, paddaddr);
1591 cmdstat = re_flags |
1592 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1593 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1594 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1595 cmdstat |= RE_TDESC_CMD_EOR;
1596 d->re_cmdstat = htole32(cmdstat);
1597 RE_TXDESCSYNC(sc, curdesc,
1598 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1599 lastdesc = curdesc;
1600 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1601 }
1602 KASSERT(lastdesc != -1);
1603
1604 /* Transfer ownership of packet to the chip. */
1605
1606 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1607 htole32(RE_TDESC_CMD_OWN);
1608 RE_TXDESCSYNC(sc, startdesc,
1609 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1610
1611 /* update info of TX queue and descriptors */
1612 txq->txq_mbuf = m;
1613 txq->txq_descidx = lastdesc;
1614 txq->txq_nsegs = nsegs;
1615
1616 sc->re_ldata.re_txq_free--;
1617 sc->re_ldata.re_tx_free -= nsegs;
1618 sc->re_ldata.re_tx_nextfree = curdesc;
1619
1620 #if NBPFILTER > 0
1621 /*
1622 * If there's a BPF listener, bounce a copy of this frame
1623 * to him.
1624 */
1625 if (ifp->if_bpf)
1626 bpf_mtap(ifp->if_bpf, m);
1627 #endif
1628 }
1629
1630 if (sc->re_ldata.re_txq_free < ofree) {
1631 /*
1632 * TX packets are enqueued.
1633 */
1634 sc->re_ldata.re_txq_prodidx = idx;
1635
1636 /*
1637 * Start the transmitter to poll.
1638 *
1639 * RealTek put the TX poll request register in a different
1640 * location on the 8169 gigE chip. I don't know why.
1641 */
1642 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1643 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1644 else
1645 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1646
1647 /*
1648 * Use the countdown timer for interrupt moderation.
1649 * 'TX done' interrupts are disabled. Instead, we reset the
1650 * countdown timer, which will begin counting until it hits
1651 * the value in the TIMERINT register, and then trigger an
1652 * interrupt. Each time we write to the TIMERCNT register,
1653 * the timer count is reset to 0.
1654 */
1655 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1656
1657 /*
1658 * Set a timeout in case the chip goes out to lunch.
1659 */
1660 ifp->if_timer = 5;
1661 }
1662 }
1663
1664 static int
1665 re_init(struct ifnet *ifp)
1666 {
1667 struct rtk_softc *sc = ifp->if_softc;
1668 const uint8_t *enaddr;
1669 uint32_t rxcfg = 0;
1670 uint32_t reg;
1671 int error;
1672
1673 if ((error = re_enable(sc)) != 0)
1674 goto out;
1675
1676 /*
1677 * Cancel pending I/O and free all RX/TX buffers.
1678 */
1679 re_stop(ifp, 0);
1680
1681 re_reset(sc);
1682
1683 /*
1684 * Enable C+ RX and TX mode, as well as VLAN stripping and
1685 * RX checksum offload. We must configure the C+ register
1686 * before all others.
1687 */
1688 reg = 0;
1689
1690 /*
1691 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1692 * FreeBSD drivers set these bits anyway (for 8139C+?).
1693 * So far, it works.
1694 */
1695
1696 /*
1697 * XXX: For old 8169 set bit 14.
1698 * For 8169S/8110S and above, do not set bit 14.
1699 */
1700 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1701 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1702
1703 if (1) {/* not for 8169S ? */
1704 reg |=
1705 RTK_CPLUSCMD_VLANSTRIP |
1706 (ifp->if_capenable &
1707 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1708 IFCAP_CSUM_UDPv4_Rx) ?
1709 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1710 }
1711
1712 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1713 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1714
1715 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1716 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1717 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1718
1719 DELAY(10000);
1720
1721 /*
1722 * Init our MAC address. Even though the chipset
1723 * documentation doesn't mention it, we need to enter "Config
1724 * register write enable" mode to modify the ID registers.
1725 */
1726 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1727 enaddr = CLLADDR(ifp->if_sadl);
1728 reg = enaddr[0] | (enaddr[1] << 8) |
1729 (enaddr[2] << 16) | (enaddr[3] << 24);
1730 CSR_WRITE_4(sc, RTK_IDR0, reg);
1731 reg = enaddr[4] | (enaddr[5] << 8);
1732 CSR_WRITE_4(sc, RTK_IDR4, reg);
1733 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1734
1735 /*
1736 * For C+ mode, initialize the RX descriptors and mbufs.
1737 */
1738 re_rx_list_init(sc);
1739 re_tx_list_init(sc);
1740
1741 /*
1742 * Load the addresses of the RX and TX lists into the chip.
1743 */
1744 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1745 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1746 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1747 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1748
1749 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1750 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1751 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1752 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1753
1754 /*
1755 * Enable transmit and receive.
1756 */
1757 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1758
1759 /*
1760 * Set the initial TX and RX configuration.
1761 */
1762 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1763 /* test mode is needed only for old 8169 */
1764 CSR_WRITE_4(sc, RTK_TXCFG,
1765 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1766 } else
1767 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1768
1769 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1770
1771 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1772
1773 /* Set the individual bit to receive frames for this host only. */
1774 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1775 rxcfg |= RTK_RXCFG_RX_INDIV;
1776
1777 /* If we want promiscuous mode, set the allframes bit. */
1778 if (ifp->if_flags & IFF_PROMISC)
1779 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1780 else
1781 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1782 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1783
1784 /*
1785 * Set capture broadcast bit to capture broadcast frames.
1786 */
1787 if (ifp->if_flags & IFF_BROADCAST)
1788 rxcfg |= RTK_RXCFG_RX_BROAD;
1789 else
1790 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1791 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1792
1793 /*
1794 * Program the multicast filter, if necessary.
1795 */
1796 rtk_setmulti(sc);
1797
1798 /*
1799 * Enable interrupts.
1800 */
1801 if (sc->re_testmode)
1802 CSR_WRITE_2(sc, RTK_IMR, 0);
1803 else
1804 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1805
1806 /* Start RX/TX process. */
1807 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1808 #ifdef notdef
1809 /* Enable receiver and transmitter. */
1810 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1811 #endif
1812
1813 /*
1814 * Initialize the timer interrupt register so that
1815 * a timer interrupt will be generated once the timer
1816 * reaches a certain number of ticks. The timer is
1817 * reloaded on each transmit. This gives us TX interrupt
1818 * moderation, which dramatically improves TX frame rate.
1819 */
1820
1821 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1822 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1823 else {
1824 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1825
1826 /*
1827 * For 8169 gigE NICs, set the max allowed RX packet
1828 * size so we can receive jumbo frames.
1829 */
1830 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1831 }
1832
1833 if (sc->re_testmode)
1834 return 0;
1835
1836 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1837
1838 ifp->if_flags |= IFF_RUNNING;
1839 ifp->if_flags &= ~IFF_OACTIVE;
1840
1841 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1842
1843 out:
1844 if (error) {
1845 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1846 ifp->if_timer = 0;
1847 printf("%s: interface not running\n",
1848 device_xname(sc->sc_dev));
1849 }
1850
1851 return error;
1852 }
1853
1854 static int
1855 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1856 {
1857 struct rtk_softc *sc = ifp->if_softc;
1858 struct ifreq *ifr = data;
1859 int s, error = 0;
1860
1861 s = splnet();
1862
1863 switch (command) {
1864 case SIOCSIFMTU:
1865 /*
1866 * According to FreeBSD, 8102E/8102EL use a different DMA
1867 * descriptor format. Disable jumbo frames for those parts.
1868 */
1869 if (sc->sc_rev == 25 && ifr->ifr_mtu > ETHERMTU) {
1870 error = EINVAL;
1871 break;
1872 }
1873
1874 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1875 error = EINVAL;
1876 else if ((error = ifioctl_common(ifp, command, data)) ==
1877 ENETRESET)
1878 error = 0;
1879 break;
1880 default:
1881 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1882 break;
1883
1884 error = 0;
1885
1886 if (command == SIOCSIFCAP)
1887 error = (*ifp->if_init)(ifp);
1888 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1889 ;
1890 else if (ifp->if_flags & IFF_RUNNING)
1891 rtk_setmulti(sc);
1892 break;
1893 }
1894
1895 splx(s);
1896
1897 return error;
1898 }
1899
1900 static void
1901 re_watchdog(struct ifnet *ifp)
1902 {
1903 struct rtk_softc *sc;
1904 int s;
1905
1906 sc = ifp->if_softc;
1907 s = splnet();
1908 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1909 ifp->if_oerrors++;
1910
1911 re_txeof(sc);
1912 re_rxeof(sc);
1913
1914 re_init(ifp);
1915
1916 splx(s);
1917 }
1918
1919 /*
1920 * Stop the adapter and free any mbufs allocated to the
1921 * RX and TX lists.
1922 */
1923 static void
1924 re_stop(struct ifnet *ifp, int disable)
1925 {
1926 int i;
1927 struct rtk_softc *sc = ifp->if_softc;
1928
1929 callout_stop(&sc->rtk_tick_ch);
1930
1931 mii_down(&sc->mii);
1932
1933 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1934 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1935
1936 if (sc->re_head != NULL) {
1937 m_freem(sc->re_head);
1938 sc->re_head = sc->re_tail = NULL;
1939 }
1940
1941 /* Free the TX list buffers. */
1942 for (i = 0; i < RE_TX_QLEN; i++) {
1943 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1944 bus_dmamap_unload(sc->sc_dmat,
1945 sc->re_ldata.re_txq[i].txq_dmamap);
1946 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1947 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1948 }
1949 }
1950
1951 /* Free the RX list buffers. */
1952 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1953 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
1954 bus_dmamap_unload(sc->sc_dmat,
1955 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
1956 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
1957 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
1958 }
1959 }
1960
1961 if (disable)
1962 re_disable(sc);
1963
1964 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1965 ifp->if_timer = 0;
1966 }
1967