rtl8169.c revision 1.105.4.10 1 /* $NetBSD: rtl8169.c,v 1.105.4.10 2014/12/21 20:49:43 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.105.4.10 2014/12/21 20:49:43 msaitoh Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115 #include "vlan.h"
116
117 #include <sys/param.h>
118 #include <sys/endian.h>
119 #include <sys/systm.h>
120 #include <sys/sockio.h>
121 #include <sys/mbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/device.h>
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_ether.h>
131 #include <net/if_media.h>
132 #include <net/if_vlanvar.h>
133
134 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
136 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
137
138 #if NBPFILTER > 0
139 #include <net/bpf.h>
140 #endif
141
142 #include <sys/bus.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/ic/rtl81x9reg.h>
148 #include <dev/ic/rtl81x9var.h>
149
150 #include <dev/ic/rtl8169var.h>
151
152 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, void *);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168
169 static int re_gmii_readreg(struct device *, int, int);
170 static void re_gmii_writereg(struct device *, int, int, int);
171
172 static int re_miibus_readreg(struct device *, int, int);
173 static void re_miibus_writereg(struct device *, int, int, int);
174 static void re_miibus_statchg(struct device *);
175
176 static void re_reset(struct rtk_softc *);
177
178 static inline void
179 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
180 {
181
182 d->re_bufaddr_lo = htole32((uint32_t)addr);
183 if (sizeof(bus_addr_t) == sizeof(uint64_t))
184 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
185 else
186 d->re_bufaddr_hi = 0;
187 }
188
189 static int
190 re_gmii_readreg(device_t dev, int phy, int reg)
191 {
192 struct rtk_softc *sc = device_private(dev);
193 uint32_t rval;
194 int i;
195
196 if (phy != 7)
197 return 0;
198
199 /* Let the rgephy driver read the GMEDIASTAT register */
200
201 if (reg == RTK_GMEDIASTAT) {
202 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
203 return rval;
204 }
205
206 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
207 DELAY(1000);
208
209 for (i = 0; i < RTK_TIMEOUT; i++) {
210 rval = CSR_READ_4(sc, RTK_PHYAR);
211 if (rval & RTK_PHYAR_BUSY)
212 break;
213 DELAY(100);
214 }
215
216 if (i == RTK_TIMEOUT) {
217 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
218 return 0;
219 }
220
221 return rval & RTK_PHYAR_PHYDATA;
222 }
223
224 static void
225 re_gmii_writereg(device_t dev, int phy, int reg, int data)
226 {
227 struct rtk_softc *sc = device_private(dev);
228 uint32_t rval;
229 int i;
230
231 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
232 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
233 DELAY(1000);
234
235 for (i = 0; i < RTK_TIMEOUT; i++) {
236 rval = CSR_READ_4(sc, RTK_PHYAR);
237 if (!(rval & RTK_PHYAR_BUSY))
238 break;
239 DELAY(100);
240 }
241
242 if (i == RTK_TIMEOUT) {
243 printf("%s: PHY write reg %x <- %x failed\n",
244 device_xname(sc->sc_dev), reg, data);
245 }
246 }
247
248 static int
249 re_miibus_readreg(device_t dev, int phy, int reg)
250 {
251 struct rtk_softc *sc = device_private(dev);
252 uint16_t rval = 0;
253 uint16_t re8139_reg = 0;
254 int s;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rval = re_gmii_readreg(dev, phy, reg);
260 splx(s);
261 return rval;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return 0;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 splx(s);
288 return 0;
289 /*
290 * Allow the rlphy driver to read the media status
291 * register. If we have a link partner which does not
292 * support NWAY, this is the register which will tell
293 * us the results of parallel detection.
294 */
295 case RTK_MEDIASTAT:
296 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
297 splx(s);
298 return rval;
299 default:
300 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
301 splx(s);
302 return 0;
303 }
304 rval = CSR_READ_2(sc, re8139_reg);
305 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
306 /* 8139C+ has different bit layout. */
307 rval &= ~(BMCR_LOOP | BMCR_ISO);
308 }
309 splx(s);
310 return rval;
311 }
312
313 static void
314 re_miibus_writereg(device_t dev, int phy, int reg, int data)
315 {
316 struct rtk_softc *sc = device_private(dev);
317 uint16_t re8139_reg = 0;
318 int s;
319
320 s = splnet();
321
322 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
323 re_gmii_writereg(dev, phy, reg, data);
324 splx(s);
325 return;
326 }
327
328 /* Pretend the internal PHY is only at address 0 */
329 if (phy) {
330 splx(s);
331 return;
332 }
333 switch (reg) {
334 case MII_BMCR:
335 re8139_reg = RTK_BMCR;
336 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
337 /* 8139C+ has different bit layout. */
338 data &= ~(BMCR_LOOP | BMCR_ISO);
339 }
340 break;
341 case MII_BMSR:
342 re8139_reg = RTK_BMSR;
343 break;
344 case MII_ANAR:
345 re8139_reg = RTK_ANAR;
346 break;
347 case MII_ANER:
348 re8139_reg = RTK_ANER;
349 break;
350 case MII_ANLPAR:
351 re8139_reg = RTK_LPAR;
352 break;
353 case MII_PHYIDR1:
354 case MII_PHYIDR2:
355 splx(s);
356 return;
357 break;
358 default:
359 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
360 splx(s);
361 return;
362 }
363 CSR_WRITE_2(sc, re8139_reg, data);
364 splx(s);
365 return;
366 }
367
368 static void
369 re_miibus_statchg(device_t dev)
370 {
371
372 return;
373 }
374
375 static void
376 re_reset(struct rtk_softc *sc)
377 {
378 int i;
379
380 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
381
382 for (i = 0; i < RTK_TIMEOUT; i++) {
383 DELAY(10);
384 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
385 break;
386 }
387 if (i == RTK_TIMEOUT)
388 printf("%s: reset never completed!\n",
389 device_xname(sc->sc_dev));
390
391 /*
392 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
393 * but also says "Rtl8169s sigle chip detected".
394 */
395 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
396 CSR_WRITE_1(sc, RTK_LDPS, 1);
397
398 }
399
400 /*
401 * The following routine is designed to test for a defect on some
402 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
403 * lines connected to the bus, however for a 32-bit only card, they
404 * should be pulled high. The result of this defect is that the
405 * NIC will not work right if you plug it into a 64-bit slot: DMA
406 * operations will be done with 64-bit transfers, which will fail
407 * because the 64-bit data lines aren't connected.
408 *
409 * There's no way to work around this (short of talking a soldering
410 * iron to the board), however we can detect it. The method we use
411 * here is to put the NIC into digital loopback mode, set the receiver
412 * to promiscuous mode, and then try to send a frame. We then compare
413 * the frame data we sent to what was received. If the data matches,
414 * then the NIC is working correctly, otherwise we know the user has
415 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
416 * slot. In the latter case, there's no way the NIC can work correctly,
417 * so we print out a message on the console and abort the device attach.
418 */
419
420 int
421 re_diag(struct rtk_softc *sc)
422 {
423 struct ifnet *ifp = &sc->ethercom.ec_if;
424 struct mbuf *m0;
425 struct ether_header *eh;
426 struct re_rxsoft *rxs;
427 struct re_desc *cur_rx;
428 bus_dmamap_t dmamap;
429 uint16_t status;
430 uint32_t rxstat;
431 int total_len, i, s, error = 0;
432 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
433 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
434
435 /* Allocate a single mbuf */
436
437 MGETHDR(m0, M_DONTWAIT, MT_DATA);
438 if (m0 == NULL)
439 return ENOBUFS;
440
441 /*
442 * Initialize the NIC in test mode. This sets the chip up
443 * so that it can send and receive frames, but performs the
444 * following special functions:
445 * - Puts receiver in promiscuous mode
446 * - Enables digital loopback mode
447 * - Leaves interrupts turned off
448 */
449
450 ifp->if_flags |= IFF_PROMISC;
451 sc->re_testmode = 1;
452 re_init(ifp);
453 re_stop(ifp, 0);
454 DELAY(100000);
455 re_init(ifp);
456
457 /* Put some data in the mbuf */
458
459 eh = mtod(m0, struct ether_header *);
460 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
461 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
462 eh->ether_type = htons(ETHERTYPE_IP);
463 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
464
465 /*
466 * Queue the packet, start transmission.
467 */
468
469 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
470 s = splnet();
471 IF_ENQUEUE(&ifp->if_snd, m0);
472 re_start(ifp);
473 splx(s);
474 m0 = NULL;
475
476 /* Wait for it to propagate through the chip */
477
478 DELAY(100000);
479 for (i = 0; i < RTK_TIMEOUT; i++) {
480 status = CSR_READ_2(sc, RTK_ISR);
481 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
482 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
483 break;
484 DELAY(10);
485 }
486 if (i == RTK_TIMEOUT) {
487 aprint_error_dev(sc->sc_dev,
488 "diagnostic failed, failed to receive packet "
489 "in loopback mode\n");
490 error = EIO;
491 goto done;
492 }
493
494 /*
495 * The packet should have been dumped into the first
496 * entry in the RX DMA ring. Grab it from there.
497 */
498
499 rxs = &sc->re_ldata.re_rxsoft[0];
500 dmamap = rxs->rxs_dmamap;
501 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
502 BUS_DMASYNC_POSTREAD);
503 bus_dmamap_unload(sc->sc_dmat, dmamap);
504
505 m0 = rxs->rxs_mbuf;
506 rxs->rxs_mbuf = NULL;
507 eh = mtod(m0, struct ether_header *);
508
509 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
510 cur_rx = &sc->re_ldata.re_rx_list[0];
511 rxstat = le32toh(cur_rx->re_cmdstat);
512 total_len = rxstat & sc->re_rxlenmask;
513
514 if (total_len != ETHER_MIN_LEN) {
515 aprint_error_dev(sc->sc_dev,
516 "diagnostic failed, received short packet\n");
517 error = EIO;
518 goto done;
519 }
520
521 /* Test that the received packet data matches what we sent. */
522
523 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
524 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
525 ntohs(eh->ether_type) != ETHERTYPE_IP) {
526 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
527 "expected TX data: %s/%s/0x%x\n"
528 "received RX data: %s/%s/0x%x\n"
529 "You may have a defective 32-bit NIC plugged "
530 "into a 64-bit PCI slot.\n"
531 "Please re-install the NIC in a 32-bit slot "
532 "for proper operation.\n"
533 "Read the re(4) man page for more details.\n" ,
534 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
535 ether_sprintf(eh->ether_dhost),
536 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
537 error = EIO;
538 }
539
540 done:
541 /* Turn interface off, release resources */
542
543 sc->re_testmode = 0;
544 ifp->if_flags &= ~IFF_PROMISC;
545 re_stop(ifp, 0);
546 if (m0 != NULL)
547 m_freem(m0);
548
549 return error;
550 }
551
552
553 /*
554 * Attach the interface. Allocate softc structures, do ifmedia
555 * setup and ethernet/BPF attach.
556 */
557 void
558 re_attach(struct rtk_softc *sc)
559 {
560 uint8_t eaddr[ETHER_ADDR_LEN];
561 uint16_t val;
562 struct ifnet *ifp;
563 int error = 0, i, addr_len;
564
565 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
566 uint32_t hwrev;
567
568 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
569 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
570 switch (hwrev) {
571 case RTK_HWREV_8169:
572 sc->sc_quirk |= RTKQ_8169NONS;
573 break;
574 case RTK_HWREV_8169S:
575 case RTK_HWREV_8110S:
576 case RTK_HWREV_8169_8110SB:
577 case RTK_HWREV_8169_8110SC:
578 sc->sc_quirk |= RTKQ_MACLDPS;
579 break;
580 case RTK_HWREV_8168_SPIN1:
581 case RTK_HWREV_8168_SPIN2:
582 case RTK_HWREV_8168_SPIN3:
583 sc->sc_quirk |= RTKQ_MACSTAT;
584 break;
585 case RTK_HWREV_8168C:
586 case RTK_HWREV_8168C_SPIN2:
587 case RTK_HWREV_8168CP:
588 case RTK_HWREV_8168D:
589 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
590 RTKQ_MACSTAT | RTKQ_CMDSTOP;
591 /*
592 * From FreeBSD driver:
593 *
594 * These (8168/8111) controllers support jumbo frame
595 * but it seems that enabling it requires touching
596 * additional magic registers. Depending on MAC
597 * revisions some controllers need to disable
598 * checksum offload. So disable jumbo frame until
599 * I have better idea what it really requires to
600 * make it support.
601 * RTL8168C/CP : supports up to 6KB jumbo frame.
602 * RTL8111C/CP : supports up to 9KB jumbo frame.
603 */
604 sc->sc_quirk |= RTKQ_NOJUMBO;
605 break;
606 case RTK_HWREV_8168E:
607 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
608 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
609 RTKQ_NOJUMBO;
610 break;
611 case RTK_HWREV_8100E:
612 case RTK_HWREV_8100E_SPIN2:
613 case RTK_HWREV_8101E:
614 sc->sc_quirk |= RTKQ_NOJUMBO;
615 break;
616 case RTK_HWREV_8102E:
617 case RTK_HWREV_8102EL:
618 case RTK_HWREV_8103E:
619 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
620 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
621 break;
622 default:
623 aprint_normal_dev(sc->sc_dev,
624 "Unknown revision (0x%08x)\n", hwrev);
625 /* assume the latest features */
626 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
627 sc->sc_quirk |= RTKQ_NOJUMBO;
628 }
629
630 /* Set RX length mask */
631 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
632 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
633 } else {
634 sc->sc_quirk |= RTKQ_NOJUMBO;
635
636 /* Set RX length mask */
637 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
638 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
639 }
640
641 /* Reset the adapter. */
642 re_reset(sc);
643
644 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
645 /*
646 * Get station address from ID registers.
647 */
648 for (i = 0; i < ETHER_ADDR_LEN; i++)
649 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
650 } else {
651 /*
652 * Get station address from the EEPROM.
653 */
654 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
655 addr_len = RTK_EEADDR_LEN1;
656 else
657 addr_len = RTK_EEADDR_LEN0;
658
659 /*
660 * Get station address from the EEPROM.
661 */
662 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
663 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
664 eaddr[(i * 2) + 0] = val & 0xff;
665 eaddr[(i * 2) + 1] = val >> 8;
666 }
667 }
668
669 /* Take PHY out of power down mode. */
670 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
671 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
672
673 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
674 ether_sprintf(eaddr));
675
676 if (sc->re_ldata.re_tx_desc_cnt >
677 PAGE_SIZE / sizeof(struct re_desc)) {
678 sc->re_ldata.re_tx_desc_cnt =
679 PAGE_SIZE / sizeof(struct re_desc);
680 }
681
682 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
683 sc->re_ldata.re_tx_desc_cnt);
684 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
685
686 /* Allocate DMA'able memory for the TX ring */
687 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
688 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
689 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
690 aprint_error_dev(sc->sc_dev,
691 "can't allocate tx listseg, error = %d\n", error);
692 goto fail_0;
693 }
694
695 /* Load the map for the TX ring. */
696 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
697 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
698 (void **)&sc->re_ldata.re_tx_list,
699 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
700 aprint_error_dev(sc->sc_dev,
701 "can't map tx list, error = %d\n", error);
702 goto fail_1;
703 }
704 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
705
706 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
707 RE_TX_LIST_SZ(sc), 0, 0,
708 &sc->re_ldata.re_tx_list_map)) != 0) {
709 aprint_error_dev(sc->sc_dev,
710 "can't create tx list map, error = %d\n", error);
711 goto fail_2;
712 }
713
714
715 if ((error = bus_dmamap_load(sc->sc_dmat,
716 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
717 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
718 aprint_error_dev(sc->sc_dev,
719 "can't load tx list, error = %d\n", error);
720 goto fail_3;
721 }
722
723 /* Create DMA maps for TX buffers */
724 for (i = 0; i < RE_TX_QLEN; i++) {
725 error = bus_dmamap_create(sc->sc_dmat,
726 round_page(IP_MAXPACKET),
727 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
728 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
729 if (error) {
730 aprint_error_dev(sc->sc_dev,
731 "can't create DMA map for TX\n");
732 goto fail_4;
733 }
734 }
735
736 /* Allocate DMA'able memory for the RX ring */
737 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
738 if ((error = bus_dmamem_alloc(sc->sc_dmat,
739 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
740 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
741 aprint_error_dev(sc->sc_dev,
742 "can't allocate rx listseg, error = %d\n", error);
743 goto fail_4;
744 }
745
746 /* Load the map for the RX ring. */
747 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
748 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
749 (void **)&sc->re_ldata.re_rx_list,
750 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
751 aprint_error_dev(sc->sc_dev,
752 "can't map rx list, error = %d\n", error);
753 goto fail_5;
754 }
755 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
756
757 if ((error = bus_dmamap_create(sc->sc_dmat,
758 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
759 &sc->re_ldata.re_rx_list_map)) != 0) {
760 aprint_error_dev(sc->sc_dev,
761 "can't create rx list map, error = %d\n", error);
762 goto fail_6;
763 }
764
765 if ((error = bus_dmamap_load(sc->sc_dmat,
766 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
767 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
768 aprint_error_dev(sc->sc_dev,
769 "can't load rx list, error = %d\n", error);
770 goto fail_7;
771 }
772
773 /* Create DMA maps for RX buffers */
774 for (i = 0; i < RE_RX_DESC_CNT; i++) {
775 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
776 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
777 if (error) {
778 aprint_error_dev(sc->sc_dev,
779 "can't create DMA map for RX\n");
780 goto fail_8;
781 }
782 }
783
784 /*
785 * Record interface as attached. From here, we should not fail.
786 */
787 sc->sc_flags |= RTK_ATTACHED;
788
789 ifp = &sc->ethercom.ec_if;
790 ifp->if_softc = sc;
791 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
792 ifp->if_mtu = ETHERMTU;
793 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
794 ifp->if_ioctl = re_ioctl;
795 sc->ethercom.ec_capabilities |=
796 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
797 ifp->if_start = re_start;
798 ifp->if_stop = re_stop;
799
800 /*
801 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
802 * so we have a workaround to handle the bug by padding
803 * such packets manually.
804 */
805 ifp->if_capabilities |=
806 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
807 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
808 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
809 IFCAP_TSOv4;
810
811 /*
812 * XXX
813 * Still have no idea how to make TSO work on 8168C, 8168CP,
814 * 8102E, 8111C and 8111CP.
815 */
816 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
817 ifp->if_capabilities &= ~IFCAP_TSOv4;
818
819 ifp->if_watchdog = re_watchdog;
820 ifp->if_init = re_init;
821 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
822 ifp->if_capenable = ifp->if_capabilities;
823 IFQ_SET_READY(&ifp->if_snd);
824
825 callout_init(&sc->rtk_tick_ch, 0);
826
827 /* Do MII setup */
828 sc->mii.mii_ifp = ifp;
829 sc->mii.mii_readreg = re_miibus_readreg;
830 sc->mii.mii_writereg = re_miibus_writereg;
831 sc->mii.mii_statchg = re_miibus_statchg;
832 sc->ethercom.ec_mii = &sc->mii;
833 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
834 ether_mediastatus);
835 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
836 MII_OFFSET_ANY, 0);
837 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
838
839 /*
840 * Call MI attach routine.
841 */
842 if_attach(ifp);
843 ether_ifattach(ifp, eaddr);
844
845 return;
846
847 fail_8:
848 /* Destroy DMA maps for RX buffers. */
849 for (i = 0; i < RE_RX_DESC_CNT; i++)
850 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
851 bus_dmamap_destroy(sc->sc_dmat,
852 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
853
854 /* Free DMA'able memory for the RX ring. */
855 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
856 fail_7:
857 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
858 fail_6:
859 bus_dmamem_unmap(sc->sc_dmat,
860 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
861 fail_5:
862 bus_dmamem_free(sc->sc_dmat,
863 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
864
865 fail_4:
866 /* Destroy DMA maps for TX buffers. */
867 for (i = 0; i < RE_TX_QLEN; i++)
868 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
869 bus_dmamap_destroy(sc->sc_dmat,
870 sc->re_ldata.re_txq[i].txq_dmamap);
871
872 /* Free DMA'able memory for the TX ring. */
873 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
874 fail_3:
875 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
876 fail_2:
877 bus_dmamem_unmap(sc->sc_dmat,
878 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
879 fail_1:
880 bus_dmamem_free(sc->sc_dmat,
881 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
882 fail_0:
883 return;
884 }
885
886
887 /*
888 * re_activate:
889 * Handle device activation/deactivation requests.
890 */
891 int
892 re_activate(device_t self, enum devact act)
893 {
894 struct rtk_softc *sc = device_private(self);
895 int s, error = 0;
896
897 s = splnet();
898 switch (act) {
899 case DVACT_ACTIVATE:
900 error = EOPNOTSUPP;
901 break;
902 case DVACT_DEACTIVATE:
903 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
904 if_deactivate(&sc->ethercom.ec_if);
905 break;
906 }
907 splx(s);
908
909 return error;
910 }
911
912 /*
913 * re_detach:
914 * Detach a rtk interface.
915 */
916 int
917 re_detach(struct rtk_softc *sc)
918 {
919 struct ifnet *ifp = &sc->ethercom.ec_if;
920 int i;
921
922 /*
923 * Succeed now if there isn't any work to do.
924 */
925 if ((sc->sc_flags & RTK_ATTACHED) == 0)
926 return 0;
927
928 /* Unhook our tick handler. */
929 callout_stop(&sc->rtk_tick_ch);
930
931 /* Detach all PHYs. */
932 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
933
934 /* Delete all remaining media. */
935 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
936
937 ether_ifdetach(ifp);
938 if_detach(ifp);
939
940 /* Destroy DMA maps for RX buffers. */
941 for (i = 0; i < RE_RX_DESC_CNT; i++)
942 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
943 bus_dmamap_destroy(sc->sc_dmat,
944 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
945
946 /* Free DMA'able memory for the RX ring. */
947 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
948 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
949 bus_dmamem_unmap(sc->sc_dmat,
950 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
951 bus_dmamem_free(sc->sc_dmat,
952 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
953
954 /* Destroy DMA maps for TX buffers. */
955 for (i = 0; i < RE_TX_QLEN; i++)
956 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
957 bus_dmamap_destroy(sc->sc_dmat,
958 sc->re_ldata.re_txq[i].txq_dmamap);
959
960 /* Free DMA'able memory for the TX ring. */
961 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
962 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
963 bus_dmamem_unmap(sc->sc_dmat,
964 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
965 bus_dmamem_free(sc->sc_dmat,
966 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
967
968 return 0;
969 }
970
971 /*
972 * re_enable:
973 * Enable the RTL81X9 chip.
974 */
975 static int
976 re_enable(struct rtk_softc *sc)
977 {
978
979 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
980 if ((*sc->sc_enable)(sc) != 0) {
981 printf("%s: device enable failed\n",
982 device_xname(sc->sc_dev));
983 return EIO;
984 }
985 sc->sc_flags |= RTK_ENABLED;
986 }
987 return 0;
988 }
989
990 /*
991 * re_disable:
992 * Disable the RTL81X9 chip.
993 */
994 static void
995 re_disable(struct rtk_softc *sc)
996 {
997
998 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
999 (*sc->sc_disable)(sc);
1000 sc->sc_flags &= ~RTK_ENABLED;
1001 }
1002 }
1003
1004 static int
1005 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1006 {
1007 struct mbuf *n = NULL;
1008 bus_dmamap_t map;
1009 struct re_desc *d;
1010 struct re_rxsoft *rxs;
1011 uint32_t cmdstat;
1012 int error;
1013
1014 if (m == NULL) {
1015 MGETHDR(n, M_DONTWAIT, MT_DATA);
1016 if (n == NULL)
1017 return ENOBUFS;
1018
1019 MCLGET(n, M_DONTWAIT);
1020 if ((n->m_flags & M_EXT) == 0) {
1021 m_freem(n);
1022 return ENOBUFS;
1023 }
1024 m = n;
1025 } else
1026 m->m_data = m->m_ext.ext_buf;
1027
1028 /*
1029 * Initialize mbuf length fields and fixup
1030 * alignment so that the frame payload is
1031 * longword aligned.
1032 */
1033 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1034 m->m_data += RE_ETHER_ALIGN;
1035
1036 rxs = &sc->re_ldata.re_rxsoft[idx];
1037 map = rxs->rxs_dmamap;
1038 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1039 BUS_DMA_READ|BUS_DMA_NOWAIT);
1040
1041 if (error)
1042 goto out;
1043
1044 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1045 BUS_DMASYNC_PREREAD);
1046
1047 d = &sc->re_ldata.re_rx_list[idx];
1048 #ifdef DIAGNOSTIC
1049 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1050 cmdstat = le32toh(d->re_cmdstat);
1051 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1052 if (cmdstat & RE_RDESC_STAT_OWN) {
1053 panic("%s: tried to map busy RX descriptor",
1054 device_xname(sc->sc_dev));
1055 }
1056 #endif
1057
1058 rxs->rxs_mbuf = m;
1059
1060 d->re_vlanctl = 0;
1061 cmdstat = map->dm_segs[0].ds_len;
1062 if (idx == (RE_RX_DESC_CNT - 1))
1063 cmdstat |= RE_RDESC_CMD_EOR;
1064 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1065 d->re_cmdstat = htole32(cmdstat);
1066 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1067 cmdstat |= RE_RDESC_CMD_OWN;
1068 d->re_cmdstat = htole32(cmdstat);
1069 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1070
1071 return 0;
1072 out:
1073 if (n != NULL)
1074 m_freem(n);
1075 return ENOMEM;
1076 }
1077
1078 static int
1079 re_tx_list_init(struct rtk_softc *sc)
1080 {
1081 int i;
1082
1083 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1084 for (i = 0; i < RE_TX_QLEN; i++) {
1085 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1086 }
1087
1088 bus_dmamap_sync(sc->sc_dmat,
1089 sc->re_ldata.re_tx_list_map, 0,
1090 sc->re_ldata.re_tx_list_map->dm_mapsize,
1091 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1092 sc->re_ldata.re_txq_prodidx = 0;
1093 sc->re_ldata.re_txq_considx = 0;
1094 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1095 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1096 sc->re_ldata.re_tx_nextfree = 0;
1097
1098 return 0;
1099 }
1100
1101 static int
1102 re_rx_list_init(struct rtk_softc *sc)
1103 {
1104 int i;
1105
1106 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1107
1108 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1109 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1110 return ENOBUFS;
1111 }
1112
1113 sc->re_ldata.re_rx_prodidx = 0;
1114 sc->re_head = sc->re_tail = NULL;
1115
1116 return 0;
1117 }
1118
1119 /*
1120 * RX handler for C+ and 8169. For the gigE chips, we support
1121 * the reception of jumbo frames that have been fragmented
1122 * across multiple 2K mbuf cluster buffers.
1123 */
1124 static void
1125 re_rxeof(struct rtk_softc *sc)
1126 {
1127 struct mbuf *m;
1128 struct ifnet *ifp;
1129 int i, total_len;
1130 struct re_desc *cur_rx;
1131 struct re_rxsoft *rxs;
1132 uint32_t rxstat, rxvlan;
1133
1134 ifp = &sc->ethercom.ec_if;
1135
1136 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1137 cur_rx = &sc->re_ldata.re_rx_list[i];
1138 RE_RXDESCSYNC(sc, i,
1139 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1140 rxstat = le32toh(cur_rx->re_cmdstat);
1141 rxvlan = le32toh(cur_rx->re_vlanctl);
1142 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1143 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1144 break;
1145 }
1146 total_len = rxstat & sc->re_rxlenmask;
1147 rxs = &sc->re_ldata.re_rxsoft[i];
1148 m = rxs->rxs_mbuf;
1149
1150 /* Invalidate the RX mbuf and unload its map */
1151
1152 bus_dmamap_sync(sc->sc_dmat,
1153 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1154 BUS_DMASYNC_POSTREAD);
1155 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1156
1157 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1158 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1159 if (sc->re_head == NULL)
1160 sc->re_head = sc->re_tail = m;
1161 else {
1162 m->m_flags &= ~M_PKTHDR;
1163 sc->re_tail->m_next = m;
1164 sc->re_tail = m;
1165 }
1166 re_newbuf(sc, i, NULL);
1167 continue;
1168 }
1169
1170 /*
1171 * NOTE: for the 8139C+, the frame length field
1172 * is always 12 bits in size, but for the gigE chips,
1173 * it is 13 bits (since the max RX frame length is 16K).
1174 * Unfortunately, all 32 bits in the status word
1175 * were already used, so to make room for the extra
1176 * length bit, RealTek took out the 'frame alignment
1177 * error' bit and shifted the other status bits
1178 * over one slot. The OWN, EOR, FS and LS bits are
1179 * still in the same places. We have already extracted
1180 * the frame length and checked the OWN bit, so rather
1181 * than using an alternate bit mapping, we shift the
1182 * status bits one space to the right so we can evaluate
1183 * them using the 8169 status as though it was in the
1184 * same format as that of the 8139C+.
1185 */
1186 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1187 rxstat >>= 1;
1188
1189 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1190 #ifdef RE_DEBUG
1191 printf("%s: RX error (rxstat = 0x%08x)",
1192 device_xname(sc->sc_dev), rxstat);
1193 if (rxstat & RE_RDESC_STAT_FRALIGN)
1194 printf(", frame alignment error");
1195 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1196 printf(", out of buffer space");
1197 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1198 printf(", FIFO overrun");
1199 if (rxstat & RE_RDESC_STAT_GIANT)
1200 printf(", giant packet");
1201 if (rxstat & RE_RDESC_STAT_RUNT)
1202 printf(", runt packet");
1203 if (rxstat & RE_RDESC_STAT_CRCERR)
1204 printf(", CRC error");
1205 printf("\n");
1206 #endif
1207 ifp->if_ierrors++;
1208 /*
1209 * If this is part of a multi-fragment packet,
1210 * discard all the pieces.
1211 */
1212 if (sc->re_head != NULL) {
1213 m_freem(sc->re_head);
1214 sc->re_head = sc->re_tail = NULL;
1215 }
1216 re_newbuf(sc, i, m);
1217 continue;
1218 }
1219
1220 /*
1221 * If allocating a replacement mbuf fails,
1222 * reload the current one.
1223 */
1224
1225 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1226 ifp->if_ierrors++;
1227 if (sc->re_head != NULL) {
1228 m_freem(sc->re_head);
1229 sc->re_head = sc->re_tail = NULL;
1230 }
1231 re_newbuf(sc, i, m);
1232 continue;
1233 }
1234
1235 if (sc->re_head != NULL) {
1236 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1237 /*
1238 * Special case: if there's 4 bytes or less
1239 * in this buffer, the mbuf can be discarded:
1240 * the last 4 bytes is the CRC, which we don't
1241 * care about anyway.
1242 */
1243 if (m->m_len <= ETHER_CRC_LEN) {
1244 sc->re_tail->m_len -=
1245 (ETHER_CRC_LEN - m->m_len);
1246 m_freem(m);
1247 } else {
1248 m->m_len -= ETHER_CRC_LEN;
1249 m->m_flags &= ~M_PKTHDR;
1250 sc->re_tail->m_next = m;
1251 }
1252 m = sc->re_head;
1253 sc->re_head = sc->re_tail = NULL;
1254 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1255 } else
1256 m->m_pkthdr.len = m->m_len =
1257 (total_len - ETHER_CRC_LEN);
1258
1259 ifp->if_ipackets++;
1260 m->m_pkthdr.rcvif = ifp;
1261
1262 /* Do RX checksumming */
1263 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1264 /* Check IP header checksum */
1265 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1266 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1267 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1268 m->m_pkthdr.csum_flags |=
1269 M_CSUM_IPv4_BAD;
1270
1271 /* Check TCP/UDP checksum */
1272 if (RE_TCPPKT(rxstat)) {
1273 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1274 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1275 m->m_pkthdr.csum_flags |=
1276 M_CSUM_TCP_UDP_BAD;
1277 } else if (RE_UDPPKT(rxstat)) {
1278 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1279 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
1280 /*
1281 * XXX: 8139C+ thinks UDP csum
1282 * 0xFFFF is bad, force software
1283 * calculation.
1284 */
1285 if (sc->sc_quirk & RTKQ_8139CPLUS)
1286 m->m_pkthdr.csum_flags
1287 &= ~M_CSUM_UDPv4;
1288 else
1289 m->m_pkthdr.csum_flags
1290 |= M_CSUM_TCP_UDP_BAD;
1291 }
1292 }
1293 }
1294 } else {
1295 /* Check IPv4 header checksum */
1296 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1297 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1298 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1299 m->m_pkthdr.csum_flags |=
1300 M_CSUM_IPv4_BAD;
1301
1302 /* Check TCPv4/UDPv4 checksum */
1303 if (RE_TCPPKT(rxstat)) {
1304 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1305 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1306 m->m_pkthdr.csum_flags |=
1307 M_CSUM_TCP_UDP_BAD;
1308 } else if (RE_UDPPKT(rxstat)) {
1309 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1310 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1311 m->m_pkthdr.csum_flags |=
1312 M_CSUM_TCP_UDP_BAD;
1313 }
1314 }
1315 /* XXX Check TCPv6/UDPv6 checksum? */
1316 }
1317
1318 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1319 VLAN_INPUT_TAG(ifp, m,
1320 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1321 continue);
1322 }
1323 #if NBPFILTER > 0
1324 if (ifp->if_bpf)
1325 bpf_mtap(ifp->if_bpf, m);
1326 #endif
1327 (*ifp->if_input)(ifp, m);
1328 }
1329
1330 sc->re_ldata.re_rx_prodidx = i;
1331 }
1332
1333 static void
1334 re_txeof(struct rtk_softc *sc)
1335 {
1336 struct ifnet *ifp;
1337 struct re_txq *txq;
1338 uint32_t txstat;
1339 int idx, descidx;
1340
1341 ifp = &sc->ethercom.ec_if;
1342
1343 for (idx = sc->re_ldata.re_txq_considx;
1344 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1345 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1346 txq = &sc->re_ldata.re_txq[idx];
1347 KASSERT(txq->txq_mbuf != NULL);
1348
1349 descidx = txq->txq_descidx;
1350 RE_TXDESCSYNC(sc, descidx,
1351 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1352 txstat =
1353 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1354 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1355 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1356 if (txstat & RE_TDESC_CMD_OWN) {
1357 break;
1358 }
1359
1360 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1361 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1362 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1363 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1364 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1365 m_freem(txq->txq_mbuf);
1366 txq->txq_mbuf = NULL;
1367
1368 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1369 ifp->if_collisions++;
1370 if (txstat & RE_TDESC_STAT_TXERRSUM)
1371 ifp->if_oerrors++;
1372 else
1373 ifp->if_opackets++;
1374 }
1375
1376 sc->re_ldata.re_txq_considx = idx;
1377
1378 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1379 ifp->if_flags &= ~IFF_OACTIVE;
1380
1381 /*
1382 * If not all descriptors have been released reaped yet,
1383 * reload the timer so that we will eventually get another
1384 * interrupt that will cause us to re-enter this routine.
1385 * This is done in case the transmitter has gone idle.
1386 */
1387 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1388 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1389 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1390 /*
1391 * Some chips will ignore a second TX request
1392 * issued while an existing transmission is in
1393 * progress. If the transmitter goes idle but
1394 * there are still packets waiting to be sent,
1395 * we need to restart the channel here to flush
1396 * them out. This only seems to be required with
1397 * the PCIe devices.
1398 */
1399 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1400 }
1401 } else
1402 ifp->if_timer = 0;
1403 }
1404
1405 static void
1406 re_tick(void *arg)
1407 {
1408 struct rtk_softc *sc = arg;
1409 int s;
1410
1411 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1412 s = splnet();
1413
1414 mii_tick(&sc->mii);
1415 splx(s);
1416
1417 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1418 }
1419
1420 int
1421 re_intr(void *arg)
1422 {
1423 struct rtk_softc *sc = arg;
1424 struct ifnet *ifp;
1425 uint16_t status;
1426 int handled = 0;
1427
1428 if (!device_has_power(sc->sc_dev))
1429 return 0;
1430
1431 ifp = &sc->ethercom.ec_if;
1432
1433 if ((ifp->if_flags & IFF_UP) == 0)
1434 return 0;
1435
1436 for (;;) {
1437
1438 status = CSR_READ_2(sc, RTK_ISR);
1439 /* If the card has gone away the read returns 0xffff. */
1440 if (status == 0xffff)
1441 break;
1442 if (status) {
1443 handled = 1;
1444 CSR_WRITE_2(sc, RTK_ISR, status);
1445 }
1446
1447 if ((status & RTK_INTRS_CPLUS) == 0)
1448 break;
1449
1450 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1451 re_rxeof(sc);
1452
1453 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1454 RTK_ISR_TX_DESC_UNAVAIL))
1455 re_txeof(sc);
1456
1457 if (status & RTK_ISR_SYSTEM_ERR) {
1458 re_init(ifp);
1459 }
1460
1461 if (status & RTK_ISR_LINKCHG) {
1462 callout_stop(&sc->rtk_tick_ch);
1463 re_tick(sc);
1464 }
1465 }
1466
1467 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1468 re_start(ifp);
1469
1470 return handled;
1471 }
1472
1473
1474
1475 /*
1476 * Main transmit routine for C+ and gigE NICs.
1477 */
1478
1479 static void
1480 re_start(struct ifnet *ifp)
1481 {
1482 struct rtk_softc *sc;
1483 struct mbuf *m;
1484 bus_dmamap_t map;
1485 struct re_txq *txq;
1486 struct re_desc *d;
1487 struct m_tag *mtag;
1488 uint32_t cmdstat, re_flags, vlanctl;
1489 int ofree, idx, error, nsegs, seg;
1490 int startdesc, curdesc, lastdesc;
1491 bool pad;
1492
1493 sc = ifp->if_softc;
1494 ofree = sc->re_ldata.re_txq_free;
1495
1496 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1497
1498 IFQ_POLL(&ifp->if_snd, m);
1499 if (m == NULL)
1500 break;
1501
1502 if (sc->re_ldata.re_txq_free == 0 ||
1503 sc->re_ldata.re_tx_free == 0) {
1504 /* no more free slots left */
1505 ifp->if_flags |= IFF_OACTIVE;
1506 break;
1507 }
1508
1509 /*
1510 * Set up checksum offload. Note: checksum offload bits must
1511 * appear in all descriptors of a multi-descriptor transmit
1512 * attempt. (This is according to testing done with an 8169
1513 * chip. I'm not sure if this is a requirement or a bug.)
1514 */
1515
1516 vlanctl = 0;
1517 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1518 uint32_t segsz = m->m_pkthdr.segsz;
1519
1520 re_flags = RE_TDESC_CMD_LGSEND |
1521 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1522 } else {
1523 /*
1524 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1525 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1526 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1527 */
1528 re_flags = 0;
1529 if ((m->m_pkthdr.csum_flags &
1530 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1531 != 0) {
1532 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1533 re_flags |= RE_TDESC_CMD_IPCSUM;
1534 if (m->m_pkthdr.csum_flags &
1535 M_CSUM_TCPv4) {
1536 re_flags |=
1537 RE_TDESC_CMD_TCPCSUM;
1538 } else if (m->m_pkthdr.csum_flags &
1539 M_CSUM_UDPv4) {
1540 re_flags |=
1541 RE_TDESC_CMD_UDPCSUM;
1542 }
1543 } else {
1544 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1545 if (m->m_pkthdr.csum_flags &
1546 M_CSUM_TCPv4) {
1547 vlanctl |=
1548 RE_TDESC_VLANCTL_TCPCSUM;
1549 } else if (m->m_pkthdr.csum_flags &
1550 M_CSUM_UDPv4) {
1551 vlanctl |=
1552 RE_TDESC_VLANCTL_UDPCSUM;
1553 }
1554 }
1555 }
1556 }
1557
1558 txq = &sc->re_ldata.re_txq[idx];
1559 map = txq->txq_dmamap;
1560 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1561 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1562
1563 if (__predict_false(error)) {
1564 /* XXX try to defrag if EFBIG? */
1565 printf("%s: can't map mbuf (error %d)\n",
1566 device_xname(sc->sc_dev), error);
1567
1568 IFQ_DEQUEUE(&ifp->if_snd, m);
1569 m_freem(m);
1570 ifp->if_oerrors++;
1571 continue;
1572 }
1573
1574 nsegs = map->dm_nsegs;
1575 pad = false;
1576 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1577 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1578 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1579 pad = true;
1580 nsegs++;
1581 }
1582
1583 if (nsegs > sc->re_ldata.re_tx_free) {
1584 /*
1585 * Not enough free descriptors to transmit this packet.
1586 */
1587 ifp->if_flags |= IFF_OACTIVE;
1588 bus_dmamap_unload(sc->sc_dmat, map);
1589 break;
1590 }
1591
1592 IFQ_DEQUEUE(&ifp->if_snd, m);
1593
1594 /*
1595 * Make sure that the caches are synchronized before we
1596 * ask the chip to start DMA for the packet data.
1597 */
1598 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1599 BUS_DMASYNC_PREWRITE);
1600
1601 /*
1602 * Set up hardware VLAN tagging. Note: vlan tag info must
1603 * appear in all descriptors of a multi-descriptor
1604 * transmission attempt.
1605 */
1606 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1607 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1608 RE_TDESC_VLANCTL_TAG;
1609
1610 /*
1611 * Map the segment array into descriptors.
1612 * Note that we set the start-of-frame and
1613 * end-of-frame markers for either TX or RX,
1614 * but they really only have meaning in the TX case.
1615 * (In the RX case, it's the chip that tells us
1616 * where packets begin and end.)
1617 * We also keep track of the end of the ring
1618 * and set the end-of-ring bits as needed,
1619 * and we set the ownership bits in all except
1620 * the very first descriptor. (The caller will
1621 * set this descriptor later when it start
1622 * transmission or reception.)
1623 */
1624 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1625 lastdesc = -1;
1626 for (seg = 0; seg < map->dm_nsegs;
1627 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1628 d = &sc->re_ldata.re_tx_list[curdesc];
1629 #ifdef DIAGNOSTIC
1630 RE_TXDESCSYNC(sc, curdesc,
1631 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1632 cmdstat = le32toh(d->re_cmdstat);
1633 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1634 if (cmdstat & RE_TDESC_STAT_OWN) {
1635 panic("%s: tried to map busy TX descriptor",
1636 device_xname(sc->sc_dev));
1637 }
1638 #endif
1639
1640 d->re_vlanctl = htole32(vlanctl);
1641 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1642 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1643 if (seg == 0)
1644 cmdstat |= RE_TDESC_CMD_SOF;
1645 else
1646 cmdstat |= RE_TDESC_CMD_OWN;
1647 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1648 cmdstat |= RE_TDESC_CMD_EOR;
1649 if (seg == nsegs - 1) {
1650 cmdstat |= RE_TDESC_CMD_EOF;
1651 lastdesc = curdesc;
1652 }
1653 d->re_cmdstat = htole32(cmdstat);
1654 RE_TXDESCSYNC(sc, curdesc,
1655 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1656 }
1657 if (__predict_false(pad)) {
1658 bus_addr_t paddaddr;
1659
1660 d = &sc->re_ldata.re_tx_list[curdesc];
1661 d->re_vlanctl = htole32(vlanctl);
1662 paddaddr = RE_TXPADDADDR(sc);
1663 re_set_bufaddr(d, paddaddr);
1664 cmdstat = re_flags |
1665 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1666 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1667 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1668 cmdstat |= RE_TDESC_CMD_EOR;
1669 d->re_cmdstat = htole32(cmdstat);
1670 RE_TXDESCSYNC(sc, curdesc,
1671 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1672 lastdesc = curdesc;
1673 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1674 }
1675 KASSERT(lastdesc != -1);
1676
1677 /* Transfer ownership of packet to the chip. */
1678
1679 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1680 htole32(RE_TDESC_CMD_OWN);
1681 RE_TXDESCSYNC(sc, startdesc,
1682 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1683
1684 /* update info of TX queue and descriptors */
1685 txq->txq_mbuf = m;
1686 txq->txq_descidx = lastdesc;
1687 txq->txq_nsegs = nsegs;
1688
1689 sc->re_ldata.re_txq_free--;
1690 sc->re_ldata.re_tx_free -= nsegs;
1691 sc->re_ldata.re_tx_nextfree = curdesc;
1692
1693 #if NBPFILTER > 0
1694 /*
1695 * If there's a BPF listener, bounce a copy of this frame
1696 * to him.
1697 */
1698 if (ifp->if_bpf)
1699 bpf_mtap(ifp->if_bpf, m);
1700 #endif
1701 }
1702
1703 if (sc->re_ldata.re_txq_free < ofree) {
1704 /*
1705 * TX packets are enqueued.
1706 */
1707 sc->re_ldata.re_txq_prodidx = idx;
1708
1709 /*
1710 * Start the transmitter to poll.
1711 *
1712 * RealTek put the TX poll request register in a different
1713 * location on the 8169 gigE chip. I don't know why.
1714 */
1715 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1716 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1717 else
1718 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1719
1720 /*
1721 * Use the countdown timer for interrupt moderation.
1722 * 'TX done' interrupts are disabled. Instead, we reset the
1723 * countdown timer, which will begin counting until it hits
1724 * the value in the TIMERINT register, and then trigger an
1725 * interrupt. Each time we write to the TIMERCNT register,
1726 * the timer count is reset to 0.
1727 */
1728 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1729
1730 /*
1731 * Set a timeout in case the chip goes out to lunch.
1732 */
1733 ifp->if_timer = 5;
1734 }
1735 }
1736
1737 static int
1738 re_init(struct ifnet *ifp)
1739 {
1740 struct rtk_softc *sc = ifp->if_softc;
1741 const uint8_t *enaddr;
1742 uint32_t rxcfg = 0;
1743 uint32_t reg;
1744 uint16_t cfg;
1745 int error;
1746
1747 if ((error = re_enable(sc)) != 0)
1748 goto out;
1749
1750 /*
1751 * Cancel pending I/O and free all RX/TX buffers.
1752 */
1753 re_stop(ifp, 0);
1754
1755 re_reset(sc);
1756
1757 /*
1758 * Enable C+ RX and TX mode, as well as VLAN stripping and
1759 * RX checksum offload. We must configure the C+ register
1760 * before all others.
1761 */
1762 cfg = RE_CPLUSCMD_PCI_MRW;
1763
1764 /*
1765 * XXX: For old 8169 set bit 14.
1766 * For 8169S/8110S and above, do not set bit 14.
1767 */
1768 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1769 cfg |= (0x1 << 14);
1770
1771 if ((ifp->if_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1772 cfg |= RE_CPLUSCMD_VLANSTRIP;
1773 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1774 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1775 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1776 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1777 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1778 cfg |= RE_CPLUSCMD_TXENB;
1779 } else
1780 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1781
1782 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1783
1784 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1785 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1786 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1787
1788 DELAY(10000);
1789
1790 /*
1791 * Init our MAC address. Even though the chipset
1792 * documentation doesn't mention it, we need to enter "Config
1793 * register write enable" mode to modify the ID registers.
1794 */
1795 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1796 enaddr = CLLADDR(ifp->if_sadl);
1797 reg = enaddr[0] | (enaddr[1] << 8) |
1798 (enaddr[2] << 16) | (enaddr[3] << 24);
1799 CSR_WRITE_4(sc, RTK_IDR0, reg);
1800 reg = enaddr[4] | (enaddr[5] << 8);
1801 CSR_WRITE_4(sc, RTK_IDR4, reg);
1802 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1803
1804 /*
1805 * For C+ mode, initialize the RX descriptors and mbufs.
1806 */
1807 re_rx_list_init(sc);
1808 re_tx_list_init(sc);
1809
1810 /*
1811 * Load the addresses of the RX and TX lists into the chip.
1812 */
1813 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1814 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1815 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1816 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1817
1818 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1819 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1820 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1821 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1822
1823 /*
1824 * Enable transmit and receive.
1825 */
1826 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1827
1828 /*
1829 * Set the initial TX and RX configuration.
1830 */
1831 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1832 /* test mode is needed only for old 8169 */
1833 CSR_WRITE_4(sc, RTK_TXCFG,
1834 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1835 } else
1836 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1837
1838 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1839
1840 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1841
1842 /* Set the individual bit to receive frames for this host only. */
1843 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1844 rxcfg |= RTK_RXCFG_RX_INDIV;
1845
1846 /* If we want promiscuous mode, set the allframes bit. */
1847 if (ifp->if_flags & IFF_PROMISC)
1848 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1849 else
1850 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1851 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1852
1853 /*
1854 * Set capture broadcast bit to capture broadcast frames.
1855 */
1856 if (ifp->if_flags & IFF_BROADCAST)
1857 rxcfg |= RTK_RXCFG_RX_BROAD;
1858 else
1859 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1860 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1861
1862 /*
1863 * Program the multicast filter, if necessary.
1864 */
1865 rtk_setmulti(sc);
1866
1867 /*
1868 * Enable interrupts.
1869 */
1870 if (sc->re_testmode)
1871 CSR_WRITE_2(sc, RTK_IMR, 0);
1872 else
1873 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1874
1875 /* Start RX/TX process. */
1876 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1877 #ifdef notdef
1878 /* Enable receiver and transmitter. */
1879 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1880 #endif
1881
1882 /*
1883 * Initialize the timer interrupt register so that
1884 * a timer interrupt will be generated once the timer
1885 * reaches a certain number of ticks. The timer is
1886 * reloaded on each transmit. This gives us TX interrupt
1887 * moderation, which dramatically improves TX frame rate.
1888 */
1889
1890 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1891 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1892 else {
1893 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1894
1895 /*
1896 * For 8169 gigE NICs, set the max allowed RX packet
1897 * size so we can receive jumbo frames.
1898 */
1899 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1900 }
1901
1902 if (sc->re_testmode)
1903 return 0;
1904
1905 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1906
1907 ifp->if_flags |= IFF_RUNNING;
1908 ifp->if_flags &= ~IFF_OACTIVE;
1909
1910 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1911
1912 out:
1913 if (error) {
1914 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1915 ifp->if_timer = 0;
1916 printf("%s: interface not running\n",
1917 device_xname(sc->sc_dev));
1918 }
1919
1920 return error;
1921 }
1922
1923 static int
1924 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1925 {
1926 struct rtk_softc *sc = ifp->if_softc;
1927 struct ifreq *ifr = data;
1928 int s, error = 0;
1929
1930 s = splnet();
1931
1932 switch (command) {
1933 case SIOCSIFMTU:
1934 /*
1935 * Disable jumbo frames if it's not supported.
1936 */
1937 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1938 ifr->ifr_mtu > ETHERMTU) {
1939 error = EINVAL;
1940 break;
1941 }
1942
1943 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1944 error = EINVAL;
1945 else if ((error = ifioctl_common(ifp, command, data)) ==
1946 ENETRESET)
1947 error = 0;
1948 break;
1949 default:
1950 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1951 break;
1952
1953 error = 0;
1954
1955 if (command == SIOCSIFCAP)
1956 error = (*ifp->if_init)(ifp);
1957 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1958 ;
1959 else if (ifp->if_flags & IFF_RUNNING)
1960 rtk_setmulti(sc);
1961 break;
1962 }
1963
1964 splx(s);
1965
1966 return error;
1967 }
1968
1969 static void
1970 re_watchdog(struct ifnet *ifp)
1971 {
1972 struct rtk_softc *sc;
1973 int s;
1974
1975 sc = ifp->if_softc;
1976 s = splnet();
1977 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1978 ifp->if_oerrors++;
1979
1980 re_txeof(sc);
1981 re_rxeof(sc);
1982
1983 re_init(ifp);
1984
1985 splx(s);
1986 }
1987
1988 /*
1989 * Stop the adapter and free any mbufs allocated to the
1990 * RX and TX lists.
1991 */
1992 static void
1993 re_stop(struct ifnet *ifp, int disable)
1994 {
1995 int i;
1996 struct rtk_softc *sc = ifp->if_softc;
1997
1998 callout_stop(&sc->rtk_tick_ch);
1999
2000 mii_down(&sc->mii);
2001
2002 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
2003 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
2004 RTK_CMD_RX_ENB);
2005 else
2006 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2007 DELAY(1000);
2008 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2009 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
2010
2011 if (sc->re_head != NULL) {
2012 m_freem(sc->re_head);
2013 sc->re_head = sc->re_tail = NULL;
2014 }
2015
2016 /* Free the TX list buffers. */
2017 for (i = 0; i < RE_TX_QLEN; i++) {
2018 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2019 bus_dmamap_unload(sc->sc_dmat,
2020 sc->re_ldata.re_txq[i].txq_dmamap);
2021 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2022 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2023 }
2024 }
2025
2026 /* Free the RX list buffers. */
2027 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2028 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2029 bus_dmamap_unload(sc->sc_dmat,
2030 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2031 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2032 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2033 }
2034 }
2035
2036 if (disable)
2037 re_disable(sc);
2038
2039 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2040 ifp->if_timer = 0;
2041 }
2042