rtl8169.c revision 1.108 1 /* $NetBSD: rtl8169.c,v 1.108 2009/03/20 06:31:31 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.108 2009/03/20 06:31:31 tsutsui Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115 #include "vlan.h"
116
117 #include <sys/param.h>
118 #include <sys/endian.h>
119 #include <sys/systm.h>
120 #include <sys/sockio.h>
121 #include <sys/mbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/device.h>
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_ether.h>
131 #include <net/if_media.h>
132 #include <net/if_vlanvar.h>
133
134 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
136 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
137
138 #if NBPFILTER > 0
139 #include <net/bpf.h>
140 #endif
141
142 #include <sys/bus.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/ic/rtl81x9reg.h>
148 #include <dev/ic/rtl81x9var.h>
149
150 #include <dev/ic/rtl8169var.h>
151
152 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, void *);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168
169 static int re_gmii_readreg(struct device *, int, int);
170 static void re_gmii_writereg(struct device *, int, int, int);
171
172 static int re_miibus_readreg(struct device *, int, int);
173 static void re_miibus_writereg(struct device *, int, int, int);
174 static void re_miibus_statchg(struct device *);
175
176 static void re_reset(struct rtk_softc *);
177
178 static inline void
179 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
180 {
181
182 d->re_bufaddr_lo = htole32((uint32_t)addr);
183 if (sizeof(bus_addr_t) == sizeof(uint64_t))
184 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
185 else
186 d->re_bufaddr_hi = 0;
187 }
188
189 static int
190 re_gmii_readreg(device_t dev, int phy, int reg)
191 {
192 struct rtk_softc *sc = device_private(dev);
193 uint32_t rval;
194 int i;
195
196 if (phy != 7)
197 return 0;
198
199 /* Let the rgephy driver read the GMEDIASTAT register */
200
201 if (reg == RTK_GMEDIASTAT) {
202 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
203 return rval;
204 }
205
206 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
207 DELAY(1000);
208
209 for (i = 0; i < RTK_TIMEOUT; i++) {
210 rval = CSR_READ_4(sc, RTK_PHYAR);
211 if (rval & RTK_PHYAR_BUSY)
212 break;
213 DELAY(100);
214 }
215
216 if (i == RTK_TIMEOUT) {
217 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
218 return 0;
219 }
220
221 return rval & RTK_PHYAR_PHYDATA;
222 }
223
224 static void
225 re_gmii_writereg(device_t dev, int phy, int reg, int data)
226 {
227 struct rtk_softc *sc = device_private(dev);
228 uint32_t rval;
229 int i;
230
231 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
232 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
233 DELAY(1000);
234
235 for (i = 0; i < RTK_TIMEOUT; i++) {
236 rval = CSR_READ_4(sc, RTK_PHYAR);
237 if (!(rval & RTK_PHYAR_BUSY))
238 break;
239 DELAY(100);
240 }
241
242 if (i == RTK_TIMEOUT) {
243 printf("%s: PHY write reg %x <- %x failed\n",
244 device_xname(sc->sc_dev), reg, data);
245 }
246 }
247
248 static int
249 re_miibus_readreg(device_t dev, int phy, int reg)
250 {
251 struct rtk_softc *sc = device_private(dev);
252 uint16_t rval = 0;
253 uint16_t re8139_reg = 0;
254 int s;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rval = re_gmii_readreg(dev, phy, reg);
260 splx(s);
261 return rval;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return 0;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 splx(s);
288 return 0;
289 /*
290 * Allow the rlphy driver to read the media status
291 * register. If we have a link partner which does not
292 * support NWAY, this is the register which will tell
293 * us the results of parallel detection.
294 */
295 case RTK_MEDIASTAT:
296 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
297 splx(s);
298 return rval;
299 default:
300 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
301 splx(s);
302 return 0;
303 }
304 rval = CSR_READ_2(sc, re8139_reg);
305 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
306 /* 8139C+ has different bit layout. */
307 rval &= ~(BMCR_LOOP | BMCR_ISO);
308 }
309 splx(s);
310 return rval;
311 }
312
313 static void
314 re_miibus_writereg(device_t dev, int phy, int reg, int data)
315 {
316 struct rtk_softc *sc = device_private(dev);
317 uint16_t re8139_reg = 0;
318 int s;
319
320 s = splnet();
321
322 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
323 re_gmii_writereg(dev, phy, reg, data);
324 splx(s);
325 return;
326 }
327
328 /* Pretend the internal PHY is only at address 0 */
329 if (phy) {
330 splx(s);
331 return;
332 }
333 switch (reg) {
334 case MII_BMCR:
335 re8139_reg = RTK_BMCR;
336 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
337 /* 8139C+ has different bit layout. */
338 data &= ~(BMCR_LOOP | BMCR_ISO);
339 }
340 break;
341 case MII_BMSR:
342 re8139_reg = RTK_BMSR;
343 break;
344 case MII_ANAR:
345 re8139_reg = RTK_ANAR;
346 break;
347 case MII_ANER:
348 re8139_reg = RTK_ANER;
349 break;
350 case MII_ANLPAR:
351 re8139_reg = RTK_LPAR;
352 break;
353 case MII_PHYIDR1:
354 case MII_PHYIDR2:
355 splx(s);
356 return;
357 break;
358 default:
359 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
360 splx(s);
361 return;
362 }
363 CSR_WRITE_2(sc, re8139_reg, data);
364 splx(s);
365 return;
366 }
367
368 static void
369 re_miibus_statchg(device_t dev)
370 {
371
372 return;
373 }
374
375 static void
376 re_reset(struct rtk_softc *sc)
377 {
378 int i;
379
380 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
381
382 for (i = 0; i < RTK_TIMEOUT; i++) {
383 DELAY(10);
384 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
385 break;
386 }
387 if (i == RTK_TIMEOUT)
388 printf("%s: reset never completed!\n",
389 device_xname(sc->sc_dev));
390
391 /*
392 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
393 * but also says "Rtl8169s sigle chip detected".
394 */
395 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
396 CSR_WRITE_1(sc, RTK_LDPS, 1);
397
398 }
399
400 /*
401 * The following routine is designed to test for a defect on some
402 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
403 * lines connected to the bus, however for a 32-bit only card, they
404 * should be pulled high. The result of this defect is that the
405 * NIC will not work right if you plug it into a 64-bit slot: DMA
406 * operations will be done with 64-bit transfers, which will fail
407 * because the 64-bit data lines aren't connected.
408 *
409 * There's no way to work around this (short of talking a soldering
410 * iron to the board), however we can detect it. The method we use
411 * here is to put the NIC into digital loopback mode, set the receiver
412 * to promiscuous mode, and then try to send a frame. We then compare
413 * the frame data we sent to what was received. If the data matches,
414 * then the NIC is working correctly, otherwise we know the user has
415 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
416 * slot. In the latter case, there's no way the NIC can work correctly,
417 * so we print out a message on the console and abort the device attach.
418 */
419
420 int
421 re_diag(struct rtk_softc *sc)
422 {
423 struct ifnet *ifp = &sc->ethercom.ec_if;
424 struct mbuf *m0;
425 struct ether_header *eh;
426 struct re_rxsoft *rxs;
427 struct re_desc *cur_rx;
428 bus_dmamap_t dmamap;
429 uint16_t status;
430 uint32_t rxstat;
431 int total_len, i, s, error = 0;
432 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
433 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
434
435 /* Allocate a single mbuf */
436
437 MGETHDR(m0, M_DONTWAIT, MT_DATA);
438 if (m0 == NULL)
439 return ENOBUFS;
440
441 /*
442 * Initialize the NIC in test mode. This sets the chip up
443 * so that it can send and receive frames, but performs the
444 * following special functions:
445 * - Puts receiver in promiscuous mode
446 * - Enables digital loopback mode
447 * - Leaves interrupts turned off
448 */
449
450 ifp->if_flags |= IFF_PROMISC;
451 sc->re_testmode = 1;
452 re_init(ifp);
453 re_stop(ifp, 0);
454 DELAY(100000);
455 re_init(ifp);
456
457 /* Put some data in the mbuf */
458
459 eh = mtod(m0, struct ether_header *);
460 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
461 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
462 eh->ether_type = htons(ETHERTYPE_IP);
463 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
464
465 /*
466 * Queue the packet, start transmission.
467 */
468
469 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
470 s = splnet();
471 IF_ENQUEUE(&ifp->if_snd, m0);
472 re_start(ifp);
473 splx(s);
474 m0 = NULL;
475
476 /* Wait for it to propagate through the chip */
477
478 DELAY(100000);
479 for (i = 0; i < RTK_TIMEOUT; i++) {
480 status = CSR_READ_2(sc, RTK_ISR);
481 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
482 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
483 break;
484 DELAY(10);
485 }
486 if (i == RTK_TIMEOUT) {
487 aprint_error_dev(sc->sc_dev,
488 "diagnostic failed, failed to receive packet "
489 "in loopback mode\n");
490 error = EIO;
491 goto done;
492 }
493
494 /*
495 * The packet should have been dumped into the first
496 * entry in the RX DMA ring. Grab it from there.
497 */
498
499 rxs = &sc->re_ldata.re_rxsoft[0];
500 dmamap = rxs->rxs_dmamap;
501 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
502 BUS_DMASYNC_POSTREAD);
503 bus_dmamap_unload(sc->sc_dmat, dmamap);
504
505 m0 = rxs->rxs_mbuf;
506 rxs->rxs_mbuf = NULL;
507 eh = mtod(m0, struct ether_header *);
508
509 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
510 cur_rx = &sc->re_ldata.re_rx_list[0];
511 rxstat = le32toh(cur_rx->re_cmdstat);
512 total_len = rxstat & sc->re_rxlenmask;
513
514 if (total_len != ETHER_MIN_LEN) {
515 aprint_error_dev(sc->sc_dev,
516 "diagnostic failed, received short packet\n");
517 error = EIO;
518 goto done;
519 }
520
521 /* Test that the received packet data matches what we sent. */
522
523 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
524 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
525 ntohs(eh->ether_type) != ETHERTYPE_IP) {
526 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
527 "expected TX data: %s/%s/0x%x\n"
528 "received RX data: %s/%s/0x%x\n"
529 "You may have a defective 32-bit NIC plugged "
530 "into a 64-bit PCI slot.\n"
531 "Please re-install the NIC in a 32-bit slot "
532 "for proper operation.\n"
533 "Read the re(4) man page for more details.\n" ,
534 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
535 ether_sprintf(eh->ether_dhost),
536 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
537 error = EIO;
538 }
539
540 done:
541 /* Turn interface off, release resources */
542
543 sc->re_testmode = 0;
544 ifp->if_flags &= ~IFF_PROMISC;
545 re_stop(ifp, 0);
546 if (m0 != NULL)
547 m_freem(m0);
548
549 return error;
550 }
551
552
553 /*
554 * Attach the interface. Allocate softc structures, do ifmedia
555 * setup and ethernet/BPF attach.
556 */
557 void
558 re_attach(struct rtk_softc *sc)
559 {
560 uint8_t eaddr[ETHER_ADDR_LEN];
561 uint16_t val;
562 struct ifnet *ifp;
563 int error = 0, i, addr_len;
564
565 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
566 uint32_t hwrev;
567
568 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
569 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
570 /* These rev numbers are taken from Realtek's driver */
571 switch (hwrev) {
572 case RTK_HWREV_8169:
573 /* XXX not in the Realtek driver */
574 sc->sc_rev = 1;
575 sc->sc_quirk |= RTKQ_8169NONS;
576 break;
577 case RTK_HWREV_8169S:
578 case RTK_HWREV_8110S:
579 sc->sc_rev = 3;
580 sc->sc_quirk |= RTKQ_MACLDPS;
581 break;
582 case RTK_HWREV_8169_8110SB:
583 sc->sc_rev = 4;
584 sc->sc_quirk |= RTKQ_MACLDPS;
585 break;
586 case RTK_HWREV_8169_8110SC:
587 sc->sc_rev = 5;
588 sc->sc_quirk |= RTKQ_MACLDPS;
589 break;
590 case RTK_HWREV_8101E:
591 sc->sc_rev = 11;
592 break;
593 case RTK_HWREV_8168_SPIN1:
594 sc->sc_rev = 21;
595 break;
596 case RTK_HWREV_8168_SPIN2:
597 sc->sc_rev = 22;
598 break;
599 case RTK_HWREV_8168_SPIN3:
600 sc->sc_rev = 23;
601 break;
602 case RTK_HWREV_8168C:
603 case RTK_HWREV_8168C_SPIN2:
604 sc->sc_rev = 24;
605 break;
606 case RTK_HWREV_8102E:
607 case RTK_HWREV_8102EL:
608 sc->sc_rev = 25;
609 break;
610 case RTK_HWREV_8100E:
611 case RTK_HWREV_8100E_SPIN2:
612 /* XXX not in the Realtek driver */
613 sc->sc_rev = 0;
614 break;
615 default:
616 aprint_normal_dev(sc->sc_dev,
617 "Unknown revision (0x%08x)\n", hwrev);
618 sc->sc_rev = 0;
619 }
620
621 /* Set RX length mask */
622 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
623 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
624 } else {
625 /* Set RX length mask */
626 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
627 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
628 }
629
630 /* Reset the adapter. */
631 re_reset(sc);
632
633 if (sc->sc_rev == 24 || sc->sc_rev == 25) {
634 /*
635 * Get station address from ID registers.
636 */
637 for (i = 0; i < ETHER_ADDR_LEN; i++)
638 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
639 } else {
640 /*
641 * Get station address from the EEPROM.
642 */
643 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
644 addr_len = RTK_EEADDR_LEN1;
645 else
646 addr_len = RTK_EEADDR_LEN0;
647
648 /*
649 * Get station address from the EEPROM.
650 */
651 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
652 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
653 eaddr[(i * 2) + 0] = val & 0xff;
654 eaddr[(i * 2) + 1] = val >> 8;
655 }
656 }
657
658 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
659 ether_sprintf(eaddr));
660
661 if (sc->re_ldata.re_tx_desc_cnt >
662 PAGE_SIZE / sizeof(struct re_desc)) {
663 sc->re_ldata.re_tx_desc_cnt =
664 PAGE_SIZE / sizeof(struct re_desc);
665 }
666
667 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
668 sc->re_ldata.re_tx_desc_cnt);
669 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
670
671 /* Allocate DMA'able memory for the TX ring */
672 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
673 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
674 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
675 aprint_error_dev(sc->sc_dev,
676 "can't allocate tx listseg, error = %d\n", error);
677 goto fail_0;
678 }
679
680 /* Load the map for the TX ring. */
681 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
682 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
683 (void **)&sc->re_ldata.re_tx_list,
684 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
685 aprint_error_dev(sc->sc_dev,
686 "can't map tx list, error = %d\n", error);
687 goto fail_1;
688 }
689 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
690
691 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
692 RE_TX_LIST_SZ(sc), 0, 0,
693 &sc->re_ldata.re_tx_list_map)) != 0) {
694 aprint_error_dev(sc->sc_dev,
695 "can't create tx list map, error = %d\n", error);
696 goto fail_2;
697 }
698
699
700 if ((error = bus_dmamap_load(sc->sc_dmat,
701 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
702 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
703 aprint_error_dev(sc->sc_dev,
704 "can't load tx list, error = %d\n", error);
705 goto fail_3;
706 }
707
708 /* Create DMA maps for TX buffers */
709 for (i = 0; i < RE_TX_QLEN; i++) {
710 error = bus_dmamap_create(sc->sc_dmat,
711 round_page(IP_MAXPACKET),
712 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
713 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
714 if (error) {
715 aprint_error_dev(sc->sc_dev,
716 "can't create DMA map for TX\n");
717 goto fail_4;
718 }
719 }
720
721 /* Allocate DMA'able memory for the RX ring */
722 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
723 if ((error = bus_dmamem_alloc(sc->sc_dmat,
724 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
725 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
726 aprint_error_dev(sc->sc_dev,
727 "can't allocate rx listseg, error = %d\n", error);
728 goto fail_4;
729 }
730
731 /* Load the map for the RX ring. */
732 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
733 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
734 (void **)&sc->re_ldata.re_rx_list,
735 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
736 aprint_error_dev(sc->sc_dev,
737 "can't map rx list, error = %d\n", error);
738 goto fail_5;
739 }
740 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
741
742 if ((error = bus_dmamap_create(sc->sc_dmat,
743 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
744 &sc->re_ldata.re_rx_list_map)) != 0) {
745 aprint_error_dev(sc->sc_dev,
746 "can't create rx list map, error = %d\n", error);
747 goto fail_6;
748 }
749
750 if ((error = bus_dmamap_load(sc->sc_dmat,
751 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
752 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
753 aprint_error_dev(sc->sc_dev,
754 "can't load rx list, error = %d\n", error);
755 goto fail_7;
756 }
757
758 /* Create DMA maps for RX buffers */
759 for (i = 0; i < RE_RX_DESC_CNT; i++) {
760 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
761 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
762 if (error) {
763 aprint_error_dev(sc->sc_dev,
764 "can't create DMA map for RX\n");
765 goto fail_8;
766 }
767 }
768
769 /*
770 * Record interface as attached. From here, we should not fail.
771 */
772 sc->sc_flags |= RTK_ATTACHED;
773
774 ifp = &sc->ethercom.ec_if;
775 ifp->if_softc = sc;
776 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
777 ifp->if_mtu = ETHERMTU;
778 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
779 ifp->if_ioctl = re_ioctl;
780 sc->ethercom.ec_capabilities |=
781 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
782 ifp->if_start = re_start;
783 ifp->if_stop = re_stop;
784
785 /*
786 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
787 * so we have a workaround to handle the bug by padding
788 * such packets manually.
789 */
790 ifp->if_capabilities |=
791 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
792 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
793 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
794 IFCAP_TSOv4;
795 ifp->if_watchdog = re_watchdog;
796 ifp->if_init = re_init;
797 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
798 ifp->if_capenable = ifp->if_capabilities;
799 IFQ_SET_READY(&ifp->if_snd);
800
801 callout_init(&sc->rtk_tick_ch, 0);
802
803 /* Do MII setup */
804 sc->mii.mii_ifp = ifp;
805 sc->mii.mii_readreg = re_miibus_readreg;
806 sc->mii.mii_writereg = re_miibus_writereg;
807 sc->mii.mii_statchg = re_miibus_statchg;
808 sc->ethercom.ec_mii = &sc->mii;
809 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
810 ether_mediastatus);
811 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
812 MII_OFFSET_ANY, 0);
813 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
814
815 /*
816 * Call MI attach routine.
817 */
818 if_attach(ifp);
819 ether_ifattach(ifp, eaddr);
820
821 return;
822
823 fail_8:
824 /* Destroy DMA maps for RX buffers. */
825 for (i = 0; i < RE_RX_DESC_CNT; i++)
826 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
827 bus_dmamap_destroy(sc->sc_dmat,
828 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
829
830 /* Free DMA'able memory for the RX ring. */
831 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
832 fail_7:
833 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
834 fail_6:
835 bus_dmamem_unmap(sc->sc_dmat,
836 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
837 fail_5:
838 bus_dmamem_free(sc->sc_dmat,
839 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
840
841 fail_4:
842 /* Destroy DMA maps for TX buffers. */
843 for (i = 0; i < RE_TX_QLEN; i++)
844 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
845 bus_dmamap_destroy(sc->sc_dmat,
846 sc->re_ldata.re_txq[i].txq_dmamap);
847
848 /* Free DMA'able memory for the TX ring. */
849 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
850 fail_3:
851 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
852 fail_2:
853 bus_dmamem_unmap(sc->sc_dmat,
854 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
855 fail_1:
856 bus_dmamem_free(sc->sc_dmat,
857 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
858 fail_0:
859 return;
860 }
861
862
863 /*
864 * re_activate:
865 * Handle device activation/deactivation requests.
866 */
867 int
868 re_activate(device_t self, enum devact act)
869 {
870 struct rtk_softc *sc = device_private(self);
871 int s, error = 0;
872
873 s = splnet();
874 switch (act) {
875 case DVACT_ACTIVATE:
876 error = EOPNOTSUPP;
877 break;
878 case DVACT_DEACTIVATE:
879 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
880 if_deactivate(&sc->ethercom.ec_if);
881 break;
882 }
883 splx(s);
884
885 return error;
886 }
887
888 /*
889 * re_detach:
890 * Detach a rtk interface.
891 */
892 int
893 re_detach(struct rtk_softc *sc)
894 {
895 struct ifnet *ifp = &sc->ethercom.ec_if;
896 int i;
897
898 /*
899 * Succeed now if there isn't any work to do.
900 */
901 if ((sc->sc_flags & RTK_ATTACHED) == 0)
902 return 0;
903
904 /* Unhook our tick handler. */
905 callout_stop(&sc->rtk_tick_ch);
906
907 /* Detach all PHYs. */
908 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
909
910 /* Delete all remaining media. */
911 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
912
913 ether_ifdetach(ifp);
914 if_detach(ifp);
915
916 /* Destroy DMA maps for RX buffers. */
917 for (i = 0; i < RE_RX_DESC_CNT; i++)
918 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
919 bus_dmamap_destroy(sc->sc_dmat,
920 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
921
922 /* Free DMA'able memory for the RX ring. */
923 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
924 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
925 bus_dmamem_unmap(sc->sc_dmat,
926 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
927 bus_dmamem_free(sc->sc_dmat,
928 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
929
930 /* Destroy DMA maps for TX buffers. */
931 for (i = 0; i < RE_TX_QLEN; i++)
932 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
933 bus_dmamap_destroy(sc->sc_dmat,
934 sc->re_ldata.re_txq[i].txq_dmamap);
935
936 /* Free DMA'able memory for the TX ring. */
937 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
938 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
939 bus_dmamem_unmap(sc->sc_dmat,
940 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
941 bus_dmamem_free(sc->sc_dmat,
942 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
943
944 return 0;
945 }
946
947 /*
948 * re_enable:
949 * Enable the RTL81X9 chip.
950 */
951 static int
952 re_enable(struct rtk_softc *sc)
953 {
954
955 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
956 if ((*sc->sc_enable)(sc) != 0) {
957 printf("%s: device enable failed\n",
958 device_xname(sc->sc_dev));
959 return EIO;
960 }
961 sc->sc_flags |= RTK_ENABLED;
962 }
963 return 0;
964 }
965
966 /*
967 * re_disable:
968 * Disable the RTL81X9 chip.
969 */
970 static void
971 re_disable(struct rtk_softc *sc)
972 {
973
974 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
975 (*sc->sc_disable)(sc);
976 sc->sc_flags &= ~RTK_ENABLED;
977 }
978 }
979
980 static int
981 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
982 {
983 struct mbuf *n = NULL;
984 bus_dmamap_t map;
985 struct re_desc *d;
986 struct re_rxsoft *rxs;
987 uint32_t cmdstat;
988 int error;
989
990 if (m == NULL) {
991 MGETHDR(n, M_DONTWAIT, MT_DATA);
992 if (n == NULL)
993 return ENOBUFS;
994
995 MCLGET(n, M_DONTWAIT);
996 if ((n->m_flags & M_EXT) == 0) {
997 m_freem(n);
998 return ENOBUFS;
999 }
1000 m = n;
1001 } else
1002 m->m_data = m->m_ext.ext_buf;
1003
1004 /*
1005 * Initialize mbuf length fields and fixup
1006 * alignment so that the frame payload is
1007 * longword aligned.
1008 */
1009 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1010 m->m_data += RE_ETHER_ALIGN;
1011
1012 rxs = &sc->re_ldata.re_rxsoft[idx];
1013 map = rxs->rxs_dmamap;
1014 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1015 BUS_DMA_READ|BUS_DMA_NOWAIT);
1016
1017 if (error)
1018 goto out;
1019
1020 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1021 BUS_DMASYNC_PREREAD);
1022
1023 d = &sc->re_ldata.re_rx_list[idx];
1024 #ifdef DIAGNOSTIC
1025 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1026 cmdstat = le32toh(d->re_cmdstat);
1027 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1028 if (cmdstat & RE_RDESC_STAT_OWN) {
1029 panic("%s: tried to map busy RX descriptor",
1030 device_xname(sc->sc_dev));
1031 }
1032 #endif
1033
1034 rxs->rxs_mbuf = m;
1035
1036 d->re_vlanctl = 0;
1037 cmdstat = map->dm_segs[0].ds_len;
1038 if (idx == (RE_RX_DESC_CNT - 1))
1039 cmdstat |= RE_RDESC_CMD_EOR;
1040 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1041 d->re_cmdstat = htole32(cmdstat);
1042 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1043 cmdstat |= RE_RDESC_CMD_OWN;
1044 d->re_cmdstat = htole32(cmdstat);
1045 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1046
1047 return 0;
1048 out:
1049 if (n != NULL)
1050 m_freem(n);
1051 return ENOMEM;
1052 }
1053
1054 static int
1055 re_tx_list_init(struct rtk_softc *sc)
1056 {
1057 int i;
1058
1059 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1060 for (i = 0; i < RE_TX_QLEN; i++) {
1061 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1062 }
1063
1064 bus_dmamap_sync(sc->sc_dmat,
1065 sc->re_ldata.re_tx_list_map, 0,
1066 sc->re_ldata.re_tx_list_map->dm_mapsize,
1067 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1068 sc->re_ldata.re_txq_prodidx = 0;
1069 sc->re_ldata.re_txq_considx = 0;
1070 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1071 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1072 sc->re_ldata.re_tx_nextfree = 0;
1073
1074 return 0;
1075 }
1076
1077 static int
1078 re_rx_list_init(struct rtk_softc *sc)
1079 {
1080 int i;
1081
1082 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1083
1084 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1085 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1086 return ENOBUFS;
1087 }
1088
1089 sc->re_ldata.re_rx_prodidx = 0;
1090 sc->re_head = sc->re_tail = NULL;
1091
1092 return 0;
1093 }
1094
1095 /*
1096 * RX handler for C+ and 8169. For the gigE chips, we support
1097 * the reception of jumbo frames that have been fragmented
1098 * across multiple 2K mbuf cluster buffers.
1099 */
1100 static void
1101 re_rxeof(struct rtk_softc *sc)
1102 {
1103 struct mbuf *m;
1104 struct ifnet *ifp;
1105 int i, total_len;
1106 struct re_desc *cur_rx;
1107 struct re_rxsoft *rxs;
1108 uint32_t rxstat, rxvlan;
1109
1110 ifp = &sc->ethercom.ec_if;
1111
1112 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1113 cur_rx = &sc->re_ldata.re_rx_list[i];
1114 RE_RXDESCSYNC(sc, i,
1115 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1116 rxstat = le32toh(cur_rx->re_cmdstat);
1117 rxvlan = le32toh(cur_rx->re_vlanctl);
1118 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1119 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1120 break;
1121 }
1122 total_len = rxstat & sc->re_rxlenmask;
1123 rxs = &sc->re_ldata.re_rxsoft[i];
1124 m = rxs->rxs_mbuf;
1125
1126 /* Invalidate the RX mbuf and unload its map */
1127
1128 bus_dmamap_sync(sc->sc_dmat,
1129 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1130 BUS_DMASYNC_POSTREAD);
1131 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1132
1133 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1134 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1135 if (sc->re_head == NULL)
1136 sc->re_head = sc->re_tail = m;
1137 else {
1138 m->m_flags &= ~M_PKTHDR;
1139 sc->re_tail->m_next = m;
1140 sc->re_tail = m;
1141 }
1142 re_newbuf(sc, i, NULL);
1143 continue;
1144 }
1145
1146 /*
1147 * NOTE: for the 8139C+, the frame length field
1148 * is always 12 bits in size, but for the gigE chips,
1149 * it is 13 bits (since the max RX frame length is 16K).
1150 * Unfortunately, all 32 bits in the status word
1151 * were already used, so to make room for the extra
1152 * length bit, RealTek took out the 'frame alignment
1153 * error' bit and shifted the other status bits
1154 * over one slot. The OWN, EOR, FS and LS bits are
1155 * still in the same places. We have already extracted
1156 * the frame length and checked the OWN bit, so rather
1157 * than using an alternate bit mapping, we shift the
1158 * status bits one space to the right so we can evaluate
1159 * them using the 8169 status as though it was in the
1160 * same format as that of the 8139C+.
1161 */
1162 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1163 rxstat >>= 1;
1164
1165 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1166 #ifdef RE_DEBUG
1167 printf("%s: RX error (rxstat = 0x%08x)",
1168 device_xname(sc->sc_dev), rxstat);
1169 if (rxstat & RE_RDESC_STAT_FRALIGN)
1170 printf(", frame alignment error");
1171 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1172 printf(", out of buffer space");
1173 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1174 printf(", FIFO overrun");
1175 if (rxstat & RE_RDESC_STAT_GIANT)
1176 printf(", giant packet");
1177 if (rxstat & RE_RDESC_STAT_RUNT)
1178 printf(", runt packet");
1179 if (rxstat & RE_RDESC_STAT_CRCERR)
1180 printf(", CRC error");
1181 printf("\n");
1182 #endif
1183 ifp->if_ierrors++;
1184 /*
1185 * If this is part of a multi-fragment packet,
1186 * discard all the pieces.
1187 */
1188 if (sc->re_head != NULL) {
1189 m_freem(sc->re_head);
1190 sc->re_head = sc->re_tail = NULL;
1191 }
1192 re_newbuf(sc, i, m);
1193 continue;
1194 }
1195
1196 /*
1197 * If allocating a replacement mbuf fails,
1198 * reload the current one.
1199 */
1200
1201 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1202 ifp->if_ierrors++;
1203 if (sc->re_head != NULL) {
1204 m_freem(sc->re_head);
1205 sc->re_head = sc->re_tail = NULL;
1206 }
1207 re_newbuf(sc, i, m);
1208 continue;
1209 }
1210
1211 if (sc->re_head != NULL) {
1212 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1213 /*
1214 * Special case: if there's 4 bytes or less
1215 * in this buffer, the mbuf can be discarded:
1216 * the last 4 bytes is the CRC, which we don't
1217 * care about anyway.
1218 */
1219 if (m->m_len <= ETHER_CRC_LEN) {
1220 sc->re_tail->m_len -=
1221 (ETHER_CRC_LEN - m->m_len);
1222 m_freem(m);
1223 } else {
1224 m->m_len -= ETHER_CRC_LEN;
1225 m->m_flags &= ~M_PKTHDR;
1226 sc->re_tail->m_next = m;
1227 }
1228 m = sc->re_head;
1229 sc->re_head = sc->re_tail = NULL;
1230 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1231 } else
1232 m->m_pkthdr.len = m->m_len =
1233 (total_len - ETHER_CRC_LEN);
1234
1235 ifp->if_ipackets++;
1236 m->m_pkthdr.rcvif = ifp;
1237
1238 /* Do RX checksumming */
1239
1240 /* Check IP header checksum */
1241 if (rxstat & RE_RDESC_STAT_PROTOID) {
1242 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1243 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1244 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1245 }
1246
1247 /* Check TCP/UDP checksum */
1248 if (RE_TCPPKT(rxstat)) {
1249 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1250 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1251 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1252 } else if (RE_UDPPKT(rxstat)) {
1253 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1254 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1255 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1256 }
1257
1258 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1259 VLAN_INPUT_TAG(ifp, m,
1260 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1261 continue);
1262 }
1263 #if NBPFILTER > 0
1264 if (ifp->if_bpf)
1265 bpf_mtap(ifp->if_bpf, m);
1266 #endif
1267 (*ifp->if_input)(ifp, m);
1268 }
1269
1270 sc->re_ldata.re_rx_prodidx = i;
1271 }
1272
1273 static void
1274 re_txeof(struct rtk_softc *sc)
1275 {
1276 struct ifnet *ifp;
1277 struct re_txq *txq;
1278 uint32_t txstat;
1279 int idx, descidx;
1280
1281 ifp = &sc->ethercom.ec_if;
1282
1283 for (idx = sc->re_ldata.re_txq_considx;
1284 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1285 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1286 txq = &sc->re_ldata.re_txq[idx];
1287 KASSERT(txq->txq_mbuf != NULL);
1288
1289 descidx = txq->txq_descidx;
1290 RE_TXDESCSYNC(sc, descidx,
1291 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1292 txstat =
1293 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1294 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1295 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1296 if (txstat & RE_TDESC_CMD_OWN) {
1297 break;
1298 }
1299
1300 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1301 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1302 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1303 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1304 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1305 m_freem(txq->txq_mbuf);
1306 txq->txq_mbuf = NULL;
1307
1308 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1309 ifp->if_collisions++;
1310 if (txstat & RE_TDESC_STAT_TXERRSUM)
1311 ifp->if_oerrors++;
1312 else
1313 ifp->if_opackets++;
1314 }
1315
1316 sc->re_ldata.re_txq_considx = idx;
1317
1318 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1319 ifp->if_flags &= ~IFF_OACTIVE;
1320
1321 /*
1322 * If not all descriptors have been released reaped yet,
1323 * reload the timer so that we will eventually get another
1324 * interrupt that will cause us to re-enter this routine.
1325 * This is done in case the transmitter has gone idle.
1326 */
1327 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1328 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1329 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1330 /*
1331 * Some chips will ignore a second TX request
1332 * issued while an existing transmission is in
1333 * progress. If the transmitter goes idle but
1334 * there are still packets waiting to be sent,
1335 * we need to restart the channel here to flush
1336 * them out. This only seems to be required with
1337 * the PCIe devices.
1338 */
1339 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1340 }
1341 } else
1342 ifp->if_timer = 0;
1343 }
1344
1345 static void
1346 re_tick(void *arg)
1347 {
1348 struct rtk_softc *sc = arg;
1349 int s;
1350
1351 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1352 s = splnet();
1353
1354 mii_tick(&sc->mii);
1355 splx(s);
1356
1357 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1358 }
1359
1360 int
1361 re_intr(void *arg)
1362 {
1363 struct rtk_softc *sc = arg;
1364 struct ifnet *ifp;
1365 uint16_t status;
1366 int handled = 0;
1367
1368 if (!device_has_power(sc->sc_dev))
1369 return 0;
1370
1371 ifp = &sc->ethercom.ec_if;
1372
1373 if ((ifp->if_flags & IFF_UP) == 0)
1374 return 0;
1375
1376 for (;;) {
1377
1378 status = CSR_READ_2(sc, RTK_ISR);
1379 /* If the card has gone away the read returns 0xffff. */
1380 if (status == 0xffff)
1381 break;
1382 if (status) {
1383 handled = 1;
1384 CSR_WRITE_2(sc, RTK_ISR, status);
1385 }
1386
1387 if ((status & RTK_INTRS_CPLUS) == 0)
1388 break;
1389
1390 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1391 re_rxeof(sc);
1392
1393 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1394 RTK_ISR_TX_DESC_UNAVAIL))
1395 re_txeof(sc);
1396
1397 if (status & RTK_ISR_SYSTEM_ERR) {
1398 re_init(ifp);
1399 }
1400
1401 if (status & RTK_ISR_LINKCHG) {
1402 callout_stop(&sc->rtk_tick_ch);
1403 re_tick(sc);
1404 }
1405 }
1406
1407 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1408 re_start(ifp);
1409
1410 return handled;
1411 }
1412
1413
1414
1415 /*
1416 * Main transmit routine for C+ and gigE NICs.
1417 */
1418
1419 static void
1420 re_start(struct ifnet *ifp)
1421 {
1422 struct rtk_softc *sc;
1423 struct mbuf *m;
1424 bus_dmamap_t map;
1425 struct re_txq *txq;
1426 struct re_desc *d;
1427 struct m_tag *mtag;
1428 uint32_t cmdstat, re_flags, vlanctl;
1429 int ofree, idx, error, nsegs, seg;
1430 int startdesc, curdesc, lastdesc;
1431 bool pad;
1432
1433 sc = ifp->if_softc;
1434 ofree = sc->re_ldata.re_txq_free;
1435
1436 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1437
1438 IFQ_POLL(&ifp->if_snd, m);
1439 if (m == NULL)
1440 break;
1441
1442 if (sc->re_ldata.re_txq_free == 0 ||
1443 sc->re_ldata.re_tx_free == 0) {
1444 /* no more free slots left */
1445 ifp->if_flags |= IFF_OACTIVE;
1446 break;
1447 }
1448
1449 /*
1450 * Set up checksum offload. Note: checksum offload bits must
1451 * appear in all descriptors of a multi-descriptor transmit
1452 * attempt. (This is according to testing done with an 8169
1453 * chip. I'm not sure if this is a requirement or a bug.)
1454 */
1455
1456 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1457 uint32_t segsz = m->m_pkthdr.segsz;
1458
1459 re_flags = RE_TDESC_CMD_LGSEND |
1460 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1461 } else {
1462 /*
1463 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1464 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1465 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1466 */
1467 re_flags = 0;
1468 if ((m->m_pkthdr.csum_flags &
1469 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1470 != 0) {
1471 re_flags |= RE_TDESC_CMD_IPCSUM;
1472 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1473 re_flags |= RE_TDESC_CMD_TCPCSUM;
1474 } else if (m->m_pkthdr.csum_flags &
1475 M_CSUM_UDPv4) {
1476 re_flags |= RE_TDESC_CMD_UDPCSUM;
1477 }
1478 }
1479 }
1480
1481 txq = &sc->re_ldata.re_txq[idx];
1482 map = txq->txq_dmamap;
1483 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1484 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1485
1486 if (__predict_false(error)) {
1487 /* XXX try to defrag if EFBIG? */
1488 printf("%s: can't map mbuf (error %d)\n",
1489 device_xname(sc->sc_dev), error);
1490
1491 IFQ_DEQUEUE(&ifp->if_snd, m);
1492 m_freem(m);
1493 ifp->if_oerrors++;
1494 continue;
1495 }
1496
1497 nsegs = map->dm_nsegs;
1498 pad = false;
1499 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1500 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1501 pad = true;
1502 nsegs++;
1503 }
1504
1505 if (nsegs > sc->re_ldata.re_tx_free) {
1506 /*
1507 * Not enough free descriptors to transmit this packet.
1508 */
1509 ifp->if_flags |= IFF_OACTIVE;
1510 bus_dmamap_unload(sc->sc_dmat, map);
1511 break;
1512 }
1513
1514 IFQ_DEQUEUE(&ifp->if_snd, m);
1515
1516 /*
1517 * Make sure that the caches are synchronized before we
1518 * ask the chip to start DMA for the packet data.
1519 */
1520 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1521 BUS_DMASYNC_PREWRITE);
1522
1523 /*
1524 * Set up hardware VLAN tagging. Note: vlan tag info must
1525 * appear in all descriptors of a multi-descriptor
1526 * transmission attempt.
1527 */
1528 vlanctl = 0;
1529 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1530 vlanctl = bswap16(VLAN_TAG_VALUE(mtag)) |
1531 RE_TDESC_VLANCTL_TAG;
1532
1533 /*
1534 * Map the segment array into descriptors.
1535 * Note that we set the start-of-frame and
1536 * end-of-frame markers for either TX or RX,
1537 * but they really only have meaning in the TX case.
1538 * (In the RX case, it's the chip that tells us
1539 * where packets begin and end.)
1540 * We also keep track of the end of the ring
1541 * and set the end-of-ring bits as needed,
1542 * and we set the ownership bits in all except
1543 * the very first descriptor. (The caller will
1544 * set this descriptor later when it start
1545 * transmission or reception.)
1546 */
1547 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1548 lastdesc = -1;
1549 for (seg = 0; seg < map->dm_nsegs;
1550 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1551 d = &sc->re_ldata.re_tx_list[curdesc];
1552 #ifdef DIAGNOSTIC
1553 RE_TXDESCSYNC(sc, curdesc,
1554 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1555 cmdstat = le32toh(d->re_cmdstat);
1556 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1557 if (cmdstat & RE_TDESC_STAT_OWN) {
1558 panic("%s: tried to map busy TX descriptor",
1559 device_xname(sc->sc_dev));
1560 }
1561 #endif
1562
1563 d->re_vlanctl = htole32(vlanctl);
1564 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1565 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1566 if (seg == 0)
1567 cmdstat |= RE_TDESC_CMD_SOF;
1568 else
1569 cmdstat |= RE_TDESC_CMD_OWN;
1570 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1571 cmdstat |= RE_TDESC_CMD_EOR;
1572 if (seg == nsegs - 1) {
1573 cmdstat |= RE_TDESC_CMD_EOF;
1574 lastdesc = curdesc;
1575 }
1576 d->re_cmdstat = htole32(cmdstat);
1577 RE_TXDESCSYNC(sc, curdesc,
1578 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1579 }
1580 if (__predict_false(pad)) {
1581 bus_addr_t paddaddr;
1582
1583 d = &sc->re_ldata.re_tx_list[curdesc];
1584 d->re_vlanctl = htole32(vlanctl);
1585 paddaddr = RE_TXPADDADDR(sc);
1586 re_set_bufaddr(d, paddaddr);
1587 cmdstat = re_flags |
1588 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1589 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1590 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1591 cmdstat |= RE_TDESC_CMD_EOR;
1592 d->re_cmdstat = htole32(cmdstat);
1593 RE_TXDESCSYNC(sc, curdesc,
1594 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1595 lastdesc = curdesc;
1596 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1597 }
1598 KASSERT(lastdesc != -1);
1599
1600 /* Transfer ownership of packet to the chip. */
1601
1602 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1603 htole32(RE_TDESC_CMD_OWN);
1604 RE_TXDESCSYNC(sc, startdesc,
1605 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1606
1607 /* update info of TX queue and descriptors */
1608 txq->txq_mbuf = m;
1609 txq->txq_descidx = lastdesc;
1610 txq->txq_nsegs = nsegs;
1611
1612 sc->re_ldata.re_txq_free--;
1613 sc->re_ldata.re_tx_free -= nsegs;
1614 sc->re_ldata.re_tx_nextfree = curdesc;
1615
1616 #if NBPFILTER > 0
1617 /*
1618 * If there's a BPF listener, bounce a copy of this frame
1619 * to him.
1620 */
1621 if (ifp->if_bpf)
1622 bpf_mtap(ifp->if_bpf, m);
1623 #endif
1624 }
1625
1626 if (sc->re_ldata.re_txq_free < ofree) {
1627 /*
1628 * TX packets are enqueued.
1629 */
1630 sc->re_ldata.re_txq_prodidx = idx;
1631
1632 /*
1633 * Start the transmitter to poll.
1634 *
1635 * RealTek put the TX poll request register in a different
1636 * location on the 8169 gigE chip. I don't know why.
1637 */
1638 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1639 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1640 else
1641 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1642
1643 /*
1644 * Use the countdown timer for interrupt moderation.
1645 * 'TX done' interrupts are disabled. Instead, we reset the
1646 * countdown timer, which will begin counting until it hits
1647 * the value in the TIMERINT register, and then trigger an
1648 * interrupt. Each time we write to the TIMERCNT register,
1649 * the timer count is reset to 0.
1650 */
1651 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1652
1653 /*
1654 * Set a timeout in case the chip goes out to lunch.
1655 */
1656 ifp->if_timer = 5;
1657 }
1658 }
1659
1660 static int
1661 re_init(struct ifnet *ifp)
1662 {
1663 struct rtk_softc *sc = ifp->if_softc;
1664 const uint8_t *enaddr;
1665 uint32_t rxcfg = 0;
1666 uint32_t reg;
1667 int error;
1668
1669 if ((error = re_enable(sc)) != 0)
1670 goto out;
1671
1672 /*
1673 * Cancel pending I/O and free all RX/TX buffers.
1674 */
1675 re_stop(ifp, 0);
1676
1677 re_reset(sc);
1678
1679 /*
1680 * Enable C+ RX and TX mode, as well as VLAN stripping and
1681 * RX checksum offload. We must configure the C+ register
1682 * before all others.
1683 */
1684 reg = 0;
1685
1686 /*
1687 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1688 * FreeBSD drivers set these bits anyway (for 8139C+?).
1689 * So far, it works.
1690 */
1691
1692 /*
1693 * XXX: For old 8169 set bit 14.
1694 * For 8169S/8110S and above, do not set bit 14.
1695 */
1696 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1697 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;
1698
1699 if (1) {/* not for 8169S ? */
1700 reg |=
1701 RTK_CPLUSCMD_VLANSTRIP |
1702 (ifp->if_capenable &
1703 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1704 IFCAP_CSUM_UDPv4_Rx) ?
1705 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1706 }
1707
1708 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1709 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1710
1711 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1712 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1713 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1714
1715 DELAY(10000);
1716
1717 /*
1718 * Init our MAC address. Even though the chipset
1719 * documentation doesn't mention it, we need to enter "Config
1720 * register write enable" mode to modify the ID registers.
1721 */
1722 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1723 enaddr = CLLADDR(ifp->if_sadl);
1724 reg = enaddr[0] | (enaddr[1] << 8) |
1725 (enaddr[2] << 16) | (enaddr[3] << 24);
1726 CSR_WRITE_4(sc, RTK_IDR0, reg);
1727 reg = enaddr[4] | (enaddr[5] << 8);
1728 CSR_WRITE_4(sc, RTK_IDR4, reg);
1729 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1730
1731 /*
1732 * For C+ mode, initialize the RX descriptors and mbufs.
1733 */
1734 re_rx_list_init(sc);
1735 re_tx_list_init(sc);
1736
1737 /*
1738 * Load the addresses of the RX and TX lists into the chip.
1739 */
1740 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1741 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1742 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1743 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1744
1745 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1746 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1747 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1748 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1749
1750 /*
1751 * Enable transmit and receive.
1752 */
1753 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1754
1755 /*
1756 * Set the initial TX and RX configuration.
1757 */
1758 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1759 /* test mode is needed only for old 8169 */
1760 CSR_WRITE_4(sc, RTK_TXCFG,
1761 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1762 } else
1763 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1764
1765 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1766
1767 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1768
1769 /* Set the individual bit to receive frames for this host only. */
1770 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1771 rxcfg |= RTK_RXCFG_RX_INDIV;
1772
1773 /* If we want promiscuous mode, set the allframes bit. */
1774 if (ifp->if_flags & IFF_PROMISC)
1775 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1776 else
1777 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1778 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1779
1780 /*
1781 * Set capture broadcast bit to capture broadcast frames.
1782 */
1783 if (ifp->if_flags & IFF_BROADCAST)
1784 rxcfg |= RTK_RXCFG_RX_BROAD;
1785 else
1786 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1787 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1788
1789 /*
1790 * Program the multicast filter, if necessary.
1791 */
1792 rtk_setmulti(sc);
1793
1794 /*
1795 * Enable interrupts.
1796 */
1797 if (sc->re_testmode)
1798 CSR_WRITE_2(sc, RTK_IMR, 0);
1799 else
1800 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1801
1802 /* Start RX/TX process. */
1803 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1804 #ifdef notdef
1805 /* Enable receiver and transmitter. */
1806 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1807 #endif
1808
1809 /*
1810 * Initialize the timer interrupt register so that
1811 * a timer interrupt will be generated once the timer
1812 * reaches a certain number of ticks. The timer is
1813 * reloaded on each transmit. This gives us TX interrupt
1814 * moderation, which dramatically improves TX frame rate.
1815 */
1816
1817 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1818 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1819 else {
1820 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1821
1822 /*
1823 * For 8169 gigE NICs, set the max allowed RX packet
1824 * size so we can receive jumbo frames.
1825 */
1826 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1827 }
1828
1829 if (sc->re_testmode)
1830 return 0;
1831
1832 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1833
1834 ifp->if_flags |= IFF_RUNNING;
1835 ifp->if_flags &= ~IFF_OACTIVE;
1836
1837 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1838
1839 out:
1840 if (error) {
1841 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1842 ifp->if_timer = 0;
1843 printf("%s: interface not running\n",
1844 device_xname(sc->sc_dev));
1845 }
1846
1847 return error;
1848 }
1849
1850 static int
1851 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1852 {
1853 struct rtk_softc *sc = ifp->if_softc;
1854 struct ifreq *ifr = data;
1855 int s, error = 0;
1856
1857 s = splnet();
1858
1859 switch (command) {
1860 case SIOCSIFMTU:
1861 /*
1862 * According to FreeBSD, 8102E/8102EL use a different DMA
1863 * descriptor format. 8168C/8111C requires touching additional
1864 * magic registers. Depending on MAC revisions some controllers
1865 * need to disable checksum offload.
1866 *
1867 * Disable jumbo frames for those parts.
1868 */
1869 if ((sc->sc_rev == 24 || sc->sc_rev == 25) &&
1870 ifr->ifr_mtu > ETHERMTU) {
1871 error = EINVAL;
1872 break;
1873 }
1874
1875 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1876 error = EINVAL;
1877 else if ((error = ifioctl_common(ifp, command, data)) ==
1878 ENETRESET)
1879 error = 0;
1880 break;
1881 default:
1882 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1883 break;
1884
1885 error = 0;
1886
1887 if (command == SIOCSIFCAP)
1888 error = (*ifp->if_init)(ifp);
1889 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1890 ;
1891 else if (ifp->if_flags & IFF_RUNNING)
1892 rtk_setmulti(sc);
1893 break;
1894 }
1895
1896 splx(s);
1897
1898 return error;
1899 }
1900
1901 static void
1902 re_watchdog(struct ifnet *ifp)
1903 {
1904 struct rtk_softc *sc;
1905 int s;
1906
1907 sc = ifp->if_softc;
1908 s = splnet();
1909 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1910 ifp->if_oerrors++;
1911
1912 re_txeof(sc);
1913 re_rxeof(sc);
1914
1915 re_init(ifp);
1916
1917 splx(s);
1918 }
1919
1920 /*
1921 * Stop the adapter and free any mbufs allocated to the
1922 * RX and TX lists.
1923 */
1924 static void
1925 re_stop(struct ifnet *ifp, int disable)
1926 {
1927 int i;
1928 struct rtk_softc *sc = ifp->if_softc;
1929
1930 callout_stop(&sc->rtk_tick_ch);
1931
1932 mii_down(&sc->mii);
1933
1934 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1935 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1936
1937 if (sc->re_head != NULL) {
1938 m_freem(sc->re_head);
1939 sc->re_head = sc->re_tail = NULL;
1940 }
1941
1942 /* Free the TX list buffers. */
1943 for (i = 0; i < RE_TX_QLEN; i++) {
1944 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1945 bus_dmamap_unload(sc->sc_dmat,
1946 sc->re_ldata.re_txq[i].txq_dmamap);
1947 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1948 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1949 }
1950 }
1951
1952 /* Free the RX list buffers. */
1953 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1954 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
1955 bus_dmamap_unload(sc->sc_dmat,
1956 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
1957 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
1958 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
1959 }
1960 }
1961
1962 if (disable)
1963 re_disable(sc);
1964
1965 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1966 ifp->if_timer = 0;
1967 }
1968