rtl8169.c revision 1.11 1 /* $NetBSD: rtl8169.c,v 1.11 2005/02/23 09:20:46 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #if NBPFILTER > 0
134 #include <net/bpf.h>
135 #endif
136
137 #include <machine/bus.h>
138
139 #include <dev/mii/mii.h>
140 #include <dev/mii/miivar.h>
141
142 #include <dev/pci/pcireg.h>
143 #include <dev/pci/pcivar.h>
144 #include <dev/pci/pcidevs.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151
152 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, caddr_t);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static void re_shutdown(void *);
167 static int re_enable(struct rtk_softc *);
168 static void re_disable(struct rtk_softc *);
169 static void re_power(int, void *);
170
171 static int re_ifmedia_upd(struct ifnet *);
172 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
173
174 static int re_gmii_readreg(struct device *, int, int);
175 static void re_gmii_writereg(struct device *, int, int, int);
176
177 static int re_miibus_readreg(struct device *, int, int);
178 static void re_miibus_writereg(struct device *, int, int, int);
179 static void re_miibus_statchg(struct device *);
180
181 static void re_reset(struct rtk_softc *);
182
183 static int
184 re_gmii_readreg(struct device *self, int phy, int reg)
185 {
186 struct rtk_softc *sc = (void *)self;
187 u_int32_t rval;
188 int i;
189
190 if (phy != 7)
191 return 0;
192
193 /* Let the rgephy driver read the GMEDIASTAT register */
194
195 if (reg == RTK_GMEDIASTAT) {
196 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
197 return rval;
198 }
199
200 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
201 DELAY(1000);
202
203 for (i = 0; i < RTK_TIMEOUT; i++) {
204 rval = CSR_READ_4(sc, RTK_PHYAR);
205 if (rval & RTK_PHYAR_BUSY)
206 break;
207 DELAY(100);
208 }
209
210 if (i == RTK_TIMEOUT) {
211 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
212 return 0;
213 }
214
215 return rval & RTK_PHYAR_PHYDATA;
216 }
217
218 static void
219 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
220 {
221 struct rtk_softc *sc = (void *)dev;
222 u_int32_t rval;
223 int i;
224
225 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
226 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
227 DELAY(1000);
228
229 for (i = 0; i < RTK_TIMEOUT; i++) {
230 rval = CSR_READ_4(sc, RTK_PHYAR);
231 if (!(rval & RTK_PHYAR_BUSY))
232 break;
233 DELAY(100);
234 }
235
236 if (i == RTK_TIMEOUT) {
237 aprint_error("%s: PHY write reg %x <- %x failed\n",
238 sc->sc_dev.dv_xname, reg, data);
239 return;
240 }
241
242 return;
243 }
244
245 static int
246 re_miibus_readreg(struct device *dev, int phy, int reg)
247 {
248 struct rtk_softc *sc = (void *)dev;
249 u_int16_t rval = 0;
250 u_int16_t re8139_reg = 0;
251 int s;
252
253 s = splnet();
254
255 if (sc->rtk_type == RTK_8169) {
256 rval = re_gmii_readreg(dev, phy, reg);
257 splx(s);
258 return rval;
259 }
260
261 /* Pretend the internal PHY is only at address 0 */
262 if (phy) {
263 splx(s);
264 return 0;
265 }
266 switch (reg) {
267 case MII_BMCR:
268 re8139_reg = RTK_BMCR;
269 break;
270 case MII_BMSR:
271 re8139_reg = RTK_BMSR;
272 break;
273 case MII_ANAR:
274 re8139_reg = RTK_ANAR;
275 break;
276 case MII_ANER:
277 re8139_reg = RTK_ANER;
278 break;
279 case MII_ANLPAR:
280 re8139_reg = RTK_LPAR;
281 break;
282 case MII_PHYIDR1:
283 case MII_PHYIDR2:
284 splx(s);
285 return 0;
286 /*
287 * Allow the rlphy driver to read the media status
288 * register. If we have a link partner which does not
289 * support NWAY, this is the register which will tell
290 * us the results of parallel detection.
291 */
292 case RTK_MEDIASTAT:
293 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
294 splx(s);
295 return rval;
296 default:
297 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
298 splx(s);
299 return 0;
300 }
301 rval = CSR_READ_2(sc, re8139_reg);
302 splx(s);
303 return rval;
304 }
305
306 static void
307 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
308 {
309 struct rtk_softc *sc = (void *)dev;
310 u_int16_t re8139_reg = 0;
311 int s;
312
313 s = splnet();
314
315 if (sc->rtk_type == RTK_8169) {
316 re_gmii_writereg(dev, phy, reg, data);
317 splx(s);
318 return;
319 }
320
321 /* Pretend the internal PHY is only at address 0 */
322 if (phy) {
323 splx(s);
324 return;
325 }
326 switch (reg) {
327 case MII_BMCR:
328 re8139_reg = RTK_BMCR;
329 break;
330 case MII_BMSR:
331 re8139_reg = RTK_BMSR;
332 break;
333 case MII_ANAR:
334 re8139_reg = RTK_ANAR;
335 break;
336 case MII_ANER:
337 re8139_reg = RTK_ANER;
338 break;
339 case MII_ANLPAR:
340 re8139_reg = RTK_LPAR;
341 break;
342 case MII_PHYIDR1:
343 case MII_PHYIDR2:
344 splx(s);
345 return;
346 break;
347 default:
348 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
349 splx(s);
350 return;
351 }
352 CSR_WRITE_2(sc, re8139_reg, data);
353 splx(s);
354 return;
355 }
356
357 static void
358 re_miibus_statchg(struct device *dev)
359 {
360
361 return;
362 }
363
364 static void
365 re_reset(struct rtk_softc *sc)
366 {
367 register int i;
368
369 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
370
371 for (i = 0; i < RTK_TIMEOUT; i++) {
372 DELAY(10);
373 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
374 break;
375 }
376 if (i == RTK_TIMEOUT)
377 aprint_error("%s: reset never completed!\n",
378 sc->sc_dev.dv_xname);
379
380 /*
381 * NB: Realtek-supplied Linux driver does this only for
382 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
383 */
384 if (1) /* XXX check softc flag for 8169s version */
385 CSR_WRITE_1(sc, 0x82, 1);
386
387 return;
388 }
389
390 /*
391 * The following routine is designed to test for a defect on some
392 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
393 * lines connected to the bus, however for a 32-bit only card, they
394 * should be pulled high. The result of this defect is that the
395 * NIC will not work right if you plug it into a 64-bit slot: DMA
396 * operations will be done with 64-bit transfers, which will fail
397 * because the 64-bit data lines aren't connected.
398 *
399 * There's no way to work around this (short of talking a soldering
400 * iron to the board), however we can detect it. The method we use
401 * here is to put the NIC into digital loopback mode, set the receiver
402 * to promiscuous mode, and then try to send a frame. We then compare
403 * the frame data we sent to what was received. If the data matches,
404 * then the NIC is working correctly, otherwise we know the user has
405 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
406 * slot. In the latter case, there's no way the NIC can work correctly,
407 * so we print out a message on the console and abort the device attach.
408 */
409
410 int
411 re_diag(struct rtk_softc *sc)
412 {
413 struct ifnet *ifp = &sc->ethercom.ec_if;
414 struct mbuf *m0;
415 struct ether_header *eh;
416 struct rtk_desc *cur_rx;
417 bus_dmamap_t dmamap;
418 u_int16_t status;
419 u_int32_t rxstat;
420 int total_len, i, s, error = 0;
421 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
422 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
423
424 /* Allocate a single mbuf */
425
426 MGETHDR(m0, M_DONTWAIT, MT_DATA);
427 if (m0 == NULL)
428 return ENOBUFS;
429
430 /*
431 * Initialize the NIC in test mode. This sets the chip up
432 * so that it can send and receive frames, but performs the
433 * following special functions:
434 * - Puts receiver in promiscuous mode
435 * - Enables digital loopback mode
436 * - Leaves interrupts turned off
437 */
438
439 ifp->if_flags |= IFF_PROMISC;
440 sc->rtk_testmode = 1;
441 re_init(ifp);
442 re_stop(ifp, 0);
443 DELAY(100000);
444 re_init(ifp);
445
446 /* Put some data in the mbuf */
447
448 eh = mtod(m0, struct ether_header *);
449 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
450 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
451 eh->ether_type = htons(ETHERTYPE_IP);
452 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
453
454 /*
455 * Queue the packet, start transmission.
456 */
457
458 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
459 s = splnet();
460 IF_ENQUEUE(&ifp->if_snd, m0);
461 re_start(ifp);
462 splx(s);
463 m0 = NULL;
464
465 /* Wait for it to propagate through the chip */
466
467 DELAY(100000);
468 for (i = 0; i < RTK_TIMEOUT; i++) {
469 status = CSR_READ_2(sc, RTK_ISR);
470 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
471 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
472 break;
473 DELAY(10);
474 }
475 if (i == RTK_TIMEOUT) {
476 aprint_error("%s: diagnostic failed, failed to receive packet "
477 "in loopback mode\n", sc->sc_dev.dv_xname);
478 error = EIO;
479 goto done;
480 }
481
482 /*
483 * The packet should have been dumped into the first
484 * entry in the RX DMA ring. Grab it from there.
485 */
486
487 dmamap = sc->rtk_ldata.rtk_rx_list_map;
488 bus_dmamap_sync(sc->sc_dmat,
489 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
490 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
491 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
492 BUS_DMASYNC_POSTWRITE);
493 bus_dmamap_unload(sc->sc_dmat,
494 sc->rtk_ldata.rtk_rx_dmamap[0]);
495
496 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
497 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
498 eh = mtod(m0, struct ether_header *);
499
500 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
501 total_len = RTK_RXBYTES(cur_rx);
502 rxstat = le32toh(cur_rx->rtk_cmdstat);
503
504 if (total_len != ETHER_MIN_LEN) {
505 aprint_error("%s: diagnostic failed, received short packet\n",
506 sc->sc_dev.dv_xname);
507 error = EIO;
508 goto done;
509 }
510
511 /* Test that the received packet data matches what we sent. */
512
513 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
514 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
515 ntohs(eh->ether_type) != ETHERTYPE_IP) {
516 aprint_error("%s: WARNING, DMA FAILURE!\n",
517 sc->sc_dev.dv_xname);
518 aprint_error("%s: expected TX data: %s",
519 sc->sc_dev.dv_xname, ether_sprintf(dst));
520 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
521 aprint_error("%s: received RX data: %s",
522 sc->sc_dev.dv_xname,
523 ether_sprintf(eh->ether_dhost));
524 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
525 ntohs(eh->ether_type));
526 aprint_error("%s: You may have a defective 32-bit NIC plugged "
527 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
528 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
529 "for proper operation.\n", sc->sc_dev.dv_xname);
530 aprint_error("%s: Read the re(4) man page for more details.\n",
531 sc->sc_dev.dv_xname);
532 error = EIO;
533 }
534
535 done:
536 /* Turn interface off, release resources */
537
538 sc->rtk_testmode = 0;
539 ifp->if_flags &= ~IFF_PROMISC;
540 re_stop(ifp, 0);
541 if (m0 != NULL)
542 m_freem(m0);
543
544 return error;
545 }
546
547
548 /*
549 * Attach the interface. Allocate softc structures, do ifmedia
550 * setup and ethernet/BPF attach.
551 */
552 void
553 re_attach(struct rtk_softc *sc)
554 {
555 u_char eaddr[ETHER_ADDR_LEN];
556 u_int16_t val;
557 struct ifnet *ifp;
558 int error = 0, i, addr_len;
559
560
561 /* XXX JRS: bus-attach-independent code begins approximately here */
562
563 /* Reset the adapter. */
564 re_reset(sc);
565
566 if (sc->rtk_type == RTK_8169) {
567 uint32_t hwrev;
568
569 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
570 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
571 if (hwrev == (0x1 << 28)) {
572 sc->sc_rev = 4;
573 } else if (hwrev == (0x1 << 26)) {
574 sc->sc_rev = 3;
575 } else if (hwrev == (0x1 << 23)) {
576 sc->sc_rev = 2;
577 } else
578 sc->sc_rev = 1;
579
580 /* Set RX length mask */
581
582 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
583
584 /* Force station address autoload from the EEPROM */
585
586 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
587 for (i = 0; i < RTK_TIMEOUT; i++) {
588 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
589 break;
590 DELAY(100);
591 }
592 if (i == RTK_TIMEOUT)
593 aprint_error("%s: eeprom autoload timed out\n",
594 sc->sc_dev.dv_xname);
595
596 for (i = 0; i < ETHER_ADDR_LEN; i++)
597 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
598 } else {
599
600 /* Set RX length mask */
601
602 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
603
604 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
605 addr_len = RTK_EEADDR_LEN1;
606 else
607 addr_len = RTK_EEADDR_LEN0;
608
609 /*
610 * Get station address from the EEPROM.
611 */
612 for (i = 0; i < 3; i++) {
613 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
614 eaddr[(i * 2) + 0] = val & 0xff;
615 eaddr[(i * 2) + 1] = val >> 8;
616 }
617 }
618
619 aprint_normal("%s: Ethernet address %s\n",
620 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
621
622
623 /* Allocate DMA'able memory for the TX ring */
624 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
625 RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
626 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
627 aprint_error("%s: can't allocate tx listseg, error = %d\n",
628 sc->sc_dev.dv_xname, error);
629 goto fail_0;
630 }
631
632 /* Load the map for the TX ring. */
633 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
634 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ,
635 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
636 BUS_DMA_NOWAIT)) != 0) {
637 aprint_error("%s: can't map tx list, error = %d\n",
638 sc->sc_dev.dv_xname, error);
639 goto fail_1;
640 }
641 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
642
643 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
644 RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
645 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
646 aprint_error("%s: can't create tx list map, error = %d\n",
647 sc->sc_dev.dv_xname, error);
648 goto fail_2;
649 }
650
651
652 if ((error = bus_dmamap_load(sc->sc_dmat,
653 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
654 RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
655 aprint_error("%s: can't load tx list, error = %d\n",
656 sc->sc_dev.dv_xname, error);
657 goto fail_3;
658 }
659
660 /* Create DMA maps for TX buffers */
661 for (i = 0; i < RTK_TX_DESC_CNT; i++) {
662 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES * RTK_NTXSEGS,
663 RTK_NTXSEGS, MCLBYTES, 0, BUS_DMA_ALLOCNOW,
664 &sc->rtk_ldata.rtk_tx_dmamap[i]);
665 if (error) {
666 aprint_error("%s: can't create DMA map for TX\n",
667 sc->sc_dev.dv_xname);
668 goto fail_4;
669 }
670 }
671
672 /* Allocate DMA'able memory for the RX ring */
673 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
674 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
675 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
676 aprint_error("%s: can't allocate rx listseg, error = %d\n",
677 sc->sc_dev.dv_xname, error);
678 goto fail_4;
679 }
680
681 /* Load the map for the RX ring. */
682 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
683 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
684 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
685 BUS_DMA_NOWAIT)) != 0) {
686 aprint_error("%s: can't map rx list, error = %d\n",
687 sc->sc_dev.dv_xname, error);
688 goto fail_5;
689 }
690 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
691
692 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
693 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
694 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
695 aprint_error("%s: can't create rx list map, error = %d\n",
696 sc->sc_dev.dv_xname, error);
697 goto fail_6;
698 }
699
700 if ((error = bus_dmamap_load(sc->sc_dmat,
701 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
702 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
703 aprint_error("%s: can't load rx list, error = %d\n",
704 sc->sc_dev.dv_xname, error);
705 goto fail_7;
706 }
707
708 /* Create DMA maps for RX buffers */
709 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
710 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
711 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
712 if (error) {
713 aprint_error("%s: can't create DMA map for RX\n",
714 sc->sc_dev.dv_xname);
715 goto fail_8;
716 }
717 }
718
719 /*
720 * Record interface as attached. From here, we should not fail.
721 */
722 sc->sc_flags |= RTK_ATTACHED;
723
724 ifp = &sc->ethercom.ec_if;
725 ifp->if_softc = sc;
726 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
727 ifp->if_mtu = ETHERMTU;
728 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
729 ifp->if_ioctl = re_ioctl;
730 sc->ethercom.ec_capabilities |=
731 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
732 ifp->if_start = re_start;
733 ifp->if_stop = re_stop;
734 ifp->if_capabilities |=
735 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
736 ifp->if_watchdog = re_watchdog;
737 ifp->if_init = re_init;
738 if (sc->rtk_type == RTK_8169)
739 ifp->if_baudrate = 1000000000;
740 else
741 ifp->if_baudrate = 100000000;
742 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
743 ifp->if_capenable = ifp->if_capabilities;
744 IFQ_SET_READY(&ifp->if_snd);
745
746 callout_init(&sc->rtk_tick_ch);
747
748 /* Do MII setup */
749 sc->mii.mii_ifp = ifp;
750 sc->mii.mii_readreg = re_miibus_readreg;
751 sc->mii.mii_writereg = re_miibus_writereg;
752 sc->mii.mii_statchg = re_miibus_statchg;
753 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
754 re_ifmedia_sts);
755 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
756 MII_OFFSET_ANY, 0);
757 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
758
759 /*
760 * Call MI attach routine.
761 */
762 if_attach(ifp);
763 ether_ifattach(ifp, eaddr);
764
765
766 /*
767 * Make sure the interface is shutdown during reboot.
768 */
769 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
770 if (sc->sc_sdhook == NULL)
771 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
772 sc->sc_dev.dv_xname);
773 /*
774 * Add a suspend hook to make sure we come back up after a
775 * resume.
776 */
777 sc->sc_powerhook = powerhook_establish(re_power, sc);
778 if (sc->sc_powerhook == NULL)
779 aprint_error("%s: WARNING: unable to establish power hook\n",
780 sc->sc_dev.dv_xname);
781
782
783 return;
784
785 fail_8:
786 /* Destroy DMA maps for RX buffers. */
787 for (i = 0; i < RTK_RX_DESC_CNT; i++)
788 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
789 bus_dmamap_destroy(sc->sc_dmat,
790 sc->rtk_ldata.rtk_rx_dmamap[i]);
791
792 /* Free DMA'able memory for the RX ring. */
793 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
794 fail_7:
795 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
796 fail_6:
797 bus_dmamem_unmap(sc->sc_dmat,
798 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
799 fail_5:
800 bus_dmamem_free(sc->sc_dmat,
801 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
802
803 fail_4:
804 /* Destroy DMA maps for TX buffers. */
805 for (i = 0; i < RTK_TX_DESC_CNT; i++)
806 if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
807 bus_dmamap_destroy(sc->sc_dmat,
808 sc->rtk_ldata.rtk_tx_dmamap[i]);
809
810 /* Free DMA'able memory for the TX ring. */
811 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
812 fail_3:
813 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
814 fail_2:
815 bus_dmamem_unmap(sc->sc_dmat,
816 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
817 fail_1:
818 bus_dmamem_free(sc->sc_dmat,
819 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
820 fail_0:
821 return;
822 }
823
824
825 /*
826 * re_activate:
827 * Handle device activation/deactivation requests.
828 */
829 int
830 re_activate(struct device *self, enum devact act)
831 {
832 struct rtk_softc *sc = (void *) self;
833 int s, error = 0;
834
835 s = splnet();
836 switch (act) {
837 case DVACT_ACTIVATE:
838 error = EOPNOTSUPP;
839 break;
840 case DVACT_DEACTIVATE:
841 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
842 if_deactivate(&sc->ethercom.ec_if);
843 break;
844 }
845 splx(s);
846
847 return error;
848 }
849
850 /*
851 * re_detach:
852 * Detach a rtk interface.
853 */
854 int
855 re_detach(struct rtk_softc *sc)
856 {
857 struct ifnet *ifp = &sc->ethercom.ec_if;
858 int i;
859
860 /*
861 * Succeed now if there isn't any work to do.
862 */
863 if ((sc->sc_flags & RTK_ATTACHED) == 0)
864 return 0;
865
866 /* Unhook our tick handler. */
867 callout_stop(&sc->rtk_tick_ch);
868
869 /* Detach all PHYs. */
870 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
871
872 /* Delete all remaining media. */
873 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
874
875 ether_ifdetach(ifp);
876 if_detach(ifp);
877
878 /* XXX undo re_allocmem() */
879
880 /* Destroy DMA maps for RX buffers. */
881 for (i = 0; i < RTK_RX_DESC_CNT; i++)
882 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
883 bus_dmamap_destroy(sc->sc_dmat,
884 sc->rtk_ldata.rtk_rx_dmamap[i]);
885
886 /* Free DMA'able memory for the RX ring. */
887 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
888 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
889 bus_dmamem_unmap(sc->sc_dmat,
890 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
891 bus_dmamem_free(sc->sc_dmat,
892 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
893
894 /* Destroy DMA maps for TX buffers. */
895 for (i = 0; i < RTK_TX_DESC_CNT; i++)
896 if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
897 bus_dmamap_destroy(sc->sc_dmat,
898 sc->rtk_ldata.rtk_tx_dmamap[i]);
899
900 /* Free DMA'able memory for the TX ring. */
901 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
902 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
903 bus_dmamem_unmap(sc->sc_dmat,
904 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
905 bus_dmamem_free(sc->sc_dmat,
906 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
907
908
909 shutdownhook_disestablish(sc->sc_sdhook);
910 powerhook_disestablish(sc->sc_powerhook);
911
912 return 0;
913 }
914
915 /*
916 * re_enable:
917 * Enable the RTL81X9 chip.
918 */
919 static int
920 re_enable(struct rtk_softc *sc)
921 {
922 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
923 if ((*sc->sc_enable)(sc) != 0) {
924 aprint_error("%s: device enable failed\n",
925 sc->sc_dev.dv_xname);
926 return EIO;
927 }
928 sc->sc_flags |= RTK_ENABLED;
929 }
930 return 0;
931 }
932
933 /*
934 * re_disable:
935 * Disable the RTL81X9 chip.
936 */
937 static void
938 re_disable(struct rtk_softc *sc)
939 {
940
941 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
942 (*sc->sc_disable)(sc);
943 sc->sc_flags &= ~RTK_ENABLED;
944 }
945 }
946
947 /*
948 * re_power:
949 * Power management (suspend/resume) hook.
950 */
951 void
952 re_power(int why, void *arg)
953 {
954 struct rtk_softc *sc = (void *) arg;
955 struct ifnet *ifp = &sc->ethercom.ec_if;
956 int s;
957
958 s = splnet();
959 switch (why) {
960 case PWR_SUSPEND:
961 case PWR_STANDBY:
962 re_stop(ifp, 0);
963 if (sc->sc_power != NULL)
964 (*sc->sc_power)(sc, why);
965 break;
966 case PWR_RESUME:
967 if (ifp->if_flags & IFF_UP) {
968 if (sc->sc_power != NULL)
969 (*sc->sc_power)(sc, why);
970 re_init(ifp);
971 }
972 break;
973 case PWR_SOFTSUSPEND:
974 case PWR_SOFTSTANDBY:
975 case PWR_SOFTRESUME:
976 break;
977 }
978 splx(s);
979 }
980
981
982 static int
983 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
984 {
985 struct mbuf *n = NULL;
986 bus_dmamap_t map;
987 struct rtk_desc *d;
988 u_int32_t cmdstat;
989 int error;
990
991 if (m == NULL) {
992 MGETHDR(n, M_DONTWAIT, MT_DATA);
993 if (n == NULL)
994 return ENOBUFS;
995 m = n;
996
997 MCLGET(m, M_DONTWAIT);
998 if (!(m->m_flags & M_EXT)) {
999 m_freem(m);
1000 return ENOBUFS;
1001 }
1002 } else
1003 m->m_data = m->m_ext.ext_buf;
1004
1005 /*
1006 * Initialize mbuf length fields and fixup
1007 * alignment so that the frame payload is
1008 * longword aligned.
1009 */
1010 m->m_len = m->m_pkthdr.len = MCLBYTES;
1011 m_adj(m, RTK_ETHER_ALIGN);
1012
1013 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1014 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1015
1016 if (error)
1017 goto out;
1018
1019 d = &sc->rtk_ldata.rtk_rx_list[idx];
1020 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1021 goto out;
1022
1023 cmdstat = map->dm_segs[0].ds_len;
1024 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1025 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1026 cmdstat |= RTK_TDESC_CMD_SOF;
1027 if (idx == (RTK_RX_DESC_CNT - 1))
1028 cmdstat |= RTK_TDESC_CMD_EOR;
1029 d->rtk_cmdstat = htole32(cmdstat);
1030
1031 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1032
1033
1034 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1035 htole32(RTK_RDESC_CMD_OWN);
1036 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1037
1038 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1039 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1040 BUS_DMASYNC_PREREAD);
1041
1042 return 0;
1043 out:
1044 if (n != NULL)
1045 m_freem(n);
1046 return ENOMEM;
1047 }
1048
1049 static int
1050 re_tx_list_init(struct rtk_softc *sc)
1051 {
1052 memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
1053 memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
1054 (RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
1055
1056 bus_dmamap_sync(sc->sc_dmat,
1057 sc->rtk_ldata.rtk_tx_list_map, 0,
1058 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1059 sc->rtk_ldata.rtk_tx_prodidx = 0;
1060 sc->rtk_ldata.rtk_tx_considx = 0;
1061 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
1062
1063 return 0;
1064 }
1065
1066 static int
1067 re_rx_list_init(struct rtk_softc *sc)
1068 {
1069 int i;
1070
1071 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1072 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1073 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1074
1075 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1076 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1077 return ENOBUFS;
1078 }
1079
1080 /* Flush the RX descriptors */
1081
1082 bus_dmamap_sync(sc->sc_dmat,
1083 sc->rtk_ldata.rtk_rx_list_map,
1084 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1085 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1086
1087 sc->rtk_ldata.rtk_rx_prodidx = 0;
1088 sc->rtk_head = sc->rtk_tail = NULL;
1089
1090 return 0;
1091 }
1092
1093 /*
1094 * RX handler for C+ and 8169. For the gigE chips, we support
1095 * the reception of jumbo frames that have been fragmented
1096 * across multiple 2K mbuf cluster buffers.
1097 */
1098 static void
1099 re_rxeof(struct rtk_softc *sc)
1100 {
1101 struct mbuf *m;
1102 struct ifnet *ifp;
1103 int i, total_len;
1104 struct rtk_desc *cur_rx;
1105 u_int32_t rxstat, rxvlan;
1106
1107 ifp = &sc->ethercom.ec_if;
1108 i = sc->rtk_ldata.rtk_rx_prodidx;
1109
1110 /* Invalidate the descriptor memory */
1111
1112 bus_dmamap_sync(sc->sc_dmat,
1113 sc->rtk_ldata.rtk_rx_list_map,
1114 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1115 BUS_DMASYNC_POSTREAD);
1116
1117 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1118
1119 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1120 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1121 total_len = RTK_RXBYTES(cur_rx);
1122 rxstat = le32toh(cur_rx->rtk_cmdstat);
1123 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1124
1125 /* Invalidate the RX mbuf and unload its map */
1126
1127 bus_dmamap_sync(sc->sc_dmat,
1128 sc->rtk_ldata.rtk_rx_dmamap[i],
1129 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1130 BUS_DMASYNC_POSTWRITE);
1131 bus_dmamap_unload(sc->sc_dmat,
1132 sc->rtk_ldata.rtk_rx_dmamap[i]);
1133
1134 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1135 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1136 if (sc->rtk_head == NULL)
1137 sc->rtk_head = sc->rtk_tail = m;
1138 else {
1139 m->m_flags &= ~M_PKTHDR;
1140 sc->rtk_tail->m_next = m;
1141 sc->rtk_tail = m;
1142 }
1143 re_newbuf(sc, i, NULL);
1144 RTK_DESC_INC(i);
1145 continue;
1146 }
1147
1148 /*
1149 * NOTE: for the 8139C+, the frame length field
1150 * is always 12 bits in size, but for the gigE chips,
1151 * it is 13 bits (since the max RX frame length is 16K).
1152 * Unfortunately, all 32 bits in the status word
1153 * were already used, so to make room for the extra
1154 * length bit, RealTek took out the 'frame alignment
1155 * error' bit and shifted the other status bits
1156 * over one slot. The OWN, EOR, FS and LS bits are
1157 * still in the same places. We have already extracted
1158 * the frame length and checked the OWN bit, so rather
1159 * than using an alternate bit mapping, we shift the
1160 * status bits one space to the right so we can evaluate
1161 * them using the 8169 status as though it was in the
1162 * same format as that of the 8139C+.
1163 */
1164 if (sc->rtk_type == RTK_8169)
1165 rxstat >>= 1;
1166
1167 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1168 ifp->if_ierrors++;
1169 /*
1170 * If this is part of a multi-fragment packet,
1171 * discard all the pieces.
1172 */
1173 if (sc->rtk_head != NULL) {
1174 m_freem(sc->rtk_head);
1175 sc->rtk_head = sc->rtk_tail = NULL;
1176 }
1177 re_newbuf(sc, i, m);
1178 RTK_DESC_INC(i);
1179 continue;
1180 }
1181
1182 /*
1183 * If allocating a replacement mbuf fails,
1184 * reload the current one.
1185 */
1186
1187 if (re_newbuf(sc, i, NULL)) {
1188 ifp->if_ierrors++;
1189 if (sc->rtk_head != NULL) {
1190 m_freem(sc->rtk_head);
1191 sc->rtk_head = sc->rtk_tail = NULL;
1192 }
1193 re_newbuf(sc, i, m);
1194 RTK_DESC_INC(i);
1195 continue;
1196 }
1197
1198 RTK_DESC_INC(i);
1199
1200 if (sc->rtk_head != NULL) {
1201 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1202 /*
1203 * Special case: if there's 4 bytes or less
1204 * in this buffer, the mbuf can be discarded:
1205 * the last 4 bytes is the CRC, which we don't
1206 * care about anyway.
1207 */
1208 if (m->m_len <= ETHER_CRC_LEN) {
1209 sc->rtk_tail->m_len -=
1210 (ETHER_CRC_LEN - m->m_len);
1211 m_freem(m);
1212 } else {
1213 m->m_len -= ETHER_CRC_LEN;
1214 m->m_flags &= ~M_PKTHDR;
1215 sc->rtk_tail->m_next = m;
1216 }
1217 m = sc->rtk_head;
1218 sc->rtk_head = sc->rtk_tail = NULL;
1219 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1220 } else
1221 m->m_pkthdr.len = m->m_len =
1222 (total_len - ETHER_CRC_LEN);
1223
1224 ifp->if_ipackets++;
1225 m->m_pkthdr.rcvif = ifp;
1226
1227 /* Do RX checksumming if enabled */
1228
1229 if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
1230
1231 /* Check IP header checksum */
1232 if (rxstat & RTK_RDESC_STAT_PROTOID)
1233 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1234 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1235 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1236 }
1237
1238 /* Check TCP/UDP checksum */
1239 if (RTK_TCPPKT(rxstat) &&
1240 (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
1241 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1242 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1243 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1244 }
1245 if (RTK_UDPPKT(rxstat) &&
1246 (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
1247 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1248 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1249 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1250 }
1251
1252 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1253 VLAN_INPUT_TAG(ifp, m,
1254 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1255 continue);
1256 }
1257 #if NBPFILTER > 0
1258 if (ifp->if_bpf)
1259 bpf_mtap(ifp->if_bpf, m);
1260 #endif
1261 (*ifp->if_input)(ifp, m);
1262 }
1263
1264 /* Flush the RX DMA ring */
1265
1266 bus_dmamap_sync(sc->sc_dmat,
1267 sc->rtk_ldata.rtk_rx_list_map,
1268 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1269 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1270
1271 sc->rtk_ldata.rtk_rx_prodidx = i;
1272
1273 return;
1274 }
1275
1276 static void
1277 re_txeof(struct rtk_softc *sc)
1278 {
1279 struct ifnet *ifp;
1280 u_int32_t txstat;
1281 int idx;
1282
1283 ifp = &sc->ethercom.ec_if;
1284 idx = sc->rtk_ldata.rtk_tx_considx;
1285
1286 /* Invalidate the TX descriptor list */
1287
1288 bus_dmamap_sync(sc->sc_dmat,
1289 sc->rtk_ldata.rtk_tx_list_map,
1290 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1291 BUS_DMASYNC_POSTREAD);
1292
1293 while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
1294
1295 txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
1296 if (txstat & RTK_TDESC_CMD_OWN)
1297 break;
1298
1299 /*
1300 * We only stash mbufs in the last descriptor
1301 * in a fragment chain, which also happens to
1302 * be the only place where the TX status bits
1303 * are valid.
1304 */
1305
1306 if (txstat & RTK_TDESC_CMD_EOF) {
1307 m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
1308 sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
1309 bus_dmamap_unload(sc->sc_dmat,
1310 sc->rtk_ldata.rtk_tx_dmamap[idx]);
1311 if (txstat & (RTK_TDESC_STAT_EXCESSCOL |
1312 RTK_TDESC_STAT_COLCNT))
1313 ifp->if_collisions++;
1314 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1315 ifp->if_oerrors++;
1316 else
1317 ifp->if_opackets++;
1318 }
1319 sc->rtk_ldata.rtk_tx_free++;
1320 RTK_DESC_INC(idx);
1321 }
1322
1323 /* No changes made to the TX ring, so no flush needed */
1324
1325 if (idx != sc->rtk_ldata.rtk_tx_considx) {
1326 sc->rtk_ldata.rtk_tx_considx = idx;
1327 ifp->if_flags &= ~IFF_OACTIVE;
1328 ifp->if_timer = 0;
1329 }
1330
1331 /*
1332 * If not all descriptors have been released reaped yet,
1333 * reload the timer so that we will eventually get another
1334 * interrupt that will cause us to re-enter this routine.
1335 * This is done in case the transmitter has gone idle.
1336 */
1337 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
1338 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1339
1340 return;
1341 }
1342
1343 /*
1344 * Stop all chip I/O so that the kernel's probe routines don't
1345 * get confused by errant DMAs when rebooting.
1346 */
1347 static void
1348 re_shutdown(void *vsc)
1349
1350 {
1351 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1352
1353 re_stop(&sc->ethercom.ec_if, 0);
1354 }
1355
1356
1357 static void
1358 re_tick(void *xsc)
1359 {
1360 struct rtk_softc *sc = xsc;
1361 int s;
1362
1363 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1364 s = splnet();
1365
1366 mii_tick(&sc->mii);
1367 splx(s);
1368
1369 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1370 }
1371
1372 #ifdef DEVICE_POLLING
1373 static void
1374 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1375 {
1376 struct rtk_softc *sc = ifp->if_softc;
1377
1378 RTK_LOCK(sc);
1379 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1380 ether_poll_deregister(ifp);
1381 cmd = POLL_DEREGISTER;
1382 }
1383 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1384 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1385 goto done;
1386 }
1387
1388 sc->rxcycles = count;
1389 re_rxeof(sc);
1390 re_txeof(sc);
1391
1392 if (ifp->if_snd.ifq_head != NULL)
1393 (*ifp->if_start)(ifp);
1394
1395 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1396 u_int16_t status;
1397
1398 status = CSR_READ_2(sc, RTK_ISR);
1399 if (status == 0xffff)
1400 goto done;
1401 if (status)
1402 CSR_WRITE_2(sc, RTK_ISR, status);
1403
1404 /*
1405 * XXX check behaviour on receiver stalls.
1406 */
1407
1408 if (status & RTK_ISR_SYSTEM_ERR) {
1409 re_reset(sc);
1410 re_init(sc);
1411 }
1412 }
1413 done:
1414 RTK_UNLOCK(sc);
1415 }
1416 #endif /* DEVICE_POLLING */
1417
1418 int
1419 re_intr(void *arg)
1420 {
1421 struct rtk_softc *sc = arg;
1422 struct ifnet *ifp;
1423 u_int16_t status;
1424 int handled = 0;
1425
1426 ifp = &sc->ethercom.ec_if;
1427
1428 if (!(ifp->if_flags & IFF_UP))
1429 return 0;
1430
1431 #ifdef DEVICE_POLLING
1432 if (ifp->if_flags & IFF_POLLING)
1433 goto done;
1434 if ((ifp->if_capenable & IFCAP_POLLING) &&
1435 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1436 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1437 re_poll(ifp, 0, 1);
1438 goto done;
1439 }
1440 #endif /* DEVICE_POLLING */
1441
1442 for (;;) {
1443
1444 status = CSR_READ_2(sc, RTK_ISR);
1445 /* If the card has gone away the read returns 0xffff. */
1446 if (status == 0xffff)
1447 break;
1448 if (status) {
1449 handled = 1;
1450 CSR_WRITE_2(sc, RTK_ISR, status);
1451 }
1452
1453 if ((status & RTK_INTRS_CPLUS) == 0)
1454 break;
1455
1456 if ((status & RTK_ISR_RX_OK) ||
1457 (status & RTK_ISR_RX_ERR))
1458 re_rxeof(sc);
1459
1460 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1461 (status & RTK_ISR_TX_ERR) ||
1462 (status & RTK_ISR_TX_DESC_UNAVAIL))
1463 re_txeof(sc);
1464
1465 if (status & RTK_ISR_SYSTEM_ERR) {
1466 re_reset(sc);
1467 re_init(ifp);
1468 }
1469
1470 if (status & RTK_ISR_LINKCHG) {
1471 callout_stop(&sc->rtk_tick_ch);
1472 re_tick(sc);
1473 }
1474 }
1475
1476 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1477 if (ifp->if_snd.ifq_head != NULL)
1478 (*ifp->if_start)(ifp);
1479
1480 #ifdef DEVICE_POLLING
1481 done:
1482 #endif
1483
1484 return handled;
1485 }
1486
1487 static int
1488 re_encap(struct rtk_softc *sc, struct mbuf *m_head, int *idx)
1489 {
1490 bus_dmamap_t map;
1491 int error, i, curidx;
1492 struct m_tag *mtag;
1493 struct rtk_desc *d;
1494 u_int32_t cmdstat, rtk_flags;
1495
1496 if (sc->rtk_ldata.rtk_tx_free <= 4)
1497 return EFBIG;
1498
1499 /*
1500 * Set up checksum offload. Note: checksum offload bits must
1501 * appear in all descriptors of a multi-descriptor transmit
1502 * attempt. (This is according to testing done with an 8169
1503 * chip. I'm not sure if this is a requirement or a bug.)
1504 */
1505
1506 rtk_flags = 0;
1507
1508 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1509 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1510 if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1511 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1512 if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1513 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1514
1515 map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
1516 error = bus_dmamap_load_mbuf(sc->sc_dmat, map,
1517 m_head, BUS_DMA_NOWAIT);
1518
1519 if (error) {
1520 aprint_error("%s: can't map mbuf (error %d)\n",
1521 sc->sc_dev.dv_xname, error);
1522 return ENOBUFS;
1523 }
1524
1525 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4)
1526 return ENOBUFS;
1527 /*
1528 * Map the segment array into descriptors. Note that we set the
1529 * start-of-frame and end-of-frame markers for either TX or RX, but
1530 * they really only have meaning in the TX case. (In the RX case,
1531 * it's the chip that tells us where packets begin and end.)
1532 * We also keep track of the end of the ring and set the
1533 * end-of-ring bits as needed, and we set the ownership bits
1534 * in all except the very first descriptor. (The caller will
1535 * set this descriptor later when it start transmission or
1536 * reception.)
1537 */
1538 i = 0;
1539 curidx = *idx;
1540 while (1) {
1541 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1542 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1543 return ENOBUFS;
1544
1545 cmdstat = map->dm_segs[i].ds_len;
1546 d->rtk_bufaddr_lo =
1547 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1548 d->rtk_bufaddr_hi =
1549 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1550 if (i == 0)
1551 cmdstat |= RTK_TDESC_CMD_SOF;
1552 else
1553 cmdstat |= RTK_TDESC_CMD_OWN;
1554 if (curidx == (RTK_RX_DESC_CNT - 1))
1555 cmdstat |= RTK_TDESC_CMD_EOR;
1556 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1557 i++;
1558 if (i == map->dm_nsegs)
1559 break;
1560 RTK_DESC_INC(curidx);
1561 }
1562
1563 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1564
1565 /*
1566 * Insure that the map for this transmission
1567 * is placed at the array index of the last descriptor
1568 * in this chain.
1569 */
1570 sc->rtk_ldata.rtk_tx_dmamap[*idx] =
1571 sc->rtk_ldata.rtk_tx_dmamap[curidx];
1572 sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
1573 sc->rtk_ldata.rtk_tx_mbuf[curidx] = m_head;
1574 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1575
1576 /*
1577 * Set up hardware VLAN tagging. Note: vlan tag info must
1578 * appear in the first descriptor of a multi-descriptor
1579 * transmission attempt.
1580 */
1581
1582 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head)) != NULL) {
1583 sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
1584 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1585 RTK_TDESC_VLANCTL_TAG);
1586 }
1587
1588 /* Transfer ownership of packet to the chip. */
1589
1590 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1591 htole32(RTK_TDESC_CMD_OWN);
1592 if (*idx != curidx)
1593 sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
1594 htole32(RTK_TDESC_CMD_OWN);
1595
1596 RTK_DESC_INC(curidx);
1597 *idx = curidx;
1598
1599 return 0;
1600 }
1601
1602 /*
1603 * Main transmit routine for C+ and gigE NICs.
1604 */
1605
1606 static void
1607 re_start(struct ifnet *ifp)
1608 {
1609 struct rtk_softc *sc;
1610 struct mbuf *m_head = NULL;
1611 int idx;
1612
1613 sc = ifp->if_softc;
1614
1615 idx = sc->rtk_ldata.rtk_tx_prodidx;
1616 while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
1617 IF_DEQUEUE(&ifp->if_snd, m_head);
1618 if (m_head == NULL)
1619 break;
1620
1621 if (re_encap(sc, m_head, &idx)) {
1622 IF_PREPEND(&ifp->if_snd, m_head);
1623 ifp->if_flags |= IFF_OACTIVE;
1624 break;
1625 }
1626 #if NBPFILTER > 0
1627 /*
1628 * If there's a BPF listener, bounce a copy of this frame
1629 * to him.
1630 */
1631 if (ifp->if_bpf)
1632 bpf_mtap(ifp->if_bpf, m_head);
1633 #endif
1634 }
1635
1636 /* Flush the TX descriptors */
1637
1638 bus_dmamap_sync(sc->sc_dmat,
1639 sc->rtk_ldata.rtk_tx_list_map,
1640 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1641 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1642
1643 sc->rtk_ldata.rtk_tx_prodidx = idx;
1644
1645 /*
1646 * RealTek put the TX poll request register in a different
1647 * location on the 8169 gigE chip. I don't know why.
1648 */
1649
1650 if (sc->rtk_type == RTK_8169)
1651 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1652 else
1653 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1654
1655 /*
1656 * Use the countdown timer for interrupt moderation.
1657 * 'TX done' interrupts are disabled. Instead, we reset the
1658 * countdown timer, which will begin counting until it hits
1659 * the value in the TIMERINT register, and then trigger an
1660 * interrupt. Each time we write to the TIMERCNT register,
1661 * the timer count is reset to 0.
1662 */
1663 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1664
1665 /*
1666 * Set a timeout in case the chip goes out to lunch.
1667 */
1668 ifp->if_timer = 5;
1669
1670 return;
1671 }
1672
1673 static int
1674 re_init(struct ifnet *ifp)
1675 {
1676 struct rtk_softc *sc = ifp->if_softc;
1677 u_int32_t rxcfg = 0;
1678 u_int32_t reg;
1679 int error;
1680
1681 if ((error = re_enable(sc)) != 0)
1682 goto out;
1683
1684 /*
1685 * Cancel pending I/O and free all RX/TX buffers.
1686 */
1687 re_stop(ifp, 0);
1688
1689 /*
1690 * Enable C+ RX and TX mode, as well as VLAN stripping and
1691 * RX checksum offload. We must configure the C+ register
1692 * before all others.
1693 */
1694 reg = 0;
1695
1696 /*
1697 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1698 * FreeBSD drivers set these bits anyway (for 8139C+?).
1699 * So far, it works.
1700 */
1701
1702 /*
1703 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1704 * For 8169S/8110S rev 2 and above, do not set bit 14.
1705 */
1706 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1707 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1708
1709 if (1) {/* not for 8169S ? */
1710 reg |= RTK_CPLUSCMD_VLANSTRIP |
1711 (ifp->if_capenable &
1712 (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
1713 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1714 }
1715
1716 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1717 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1718
1719 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1720 if (sc->rtk_type == RTK_8169)
1721 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1722
1723 DELAY(10000);
1724
1725 /*
1726 * Init our MAC address. Even though the chipset
1727 * documentation doesn't mention it, we need to enter "Config
1728 * register write enable" mode to modify the ID registers.
1729 */
1730 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1731 memcpy(®, LLADDR(ifp->if_sadl), 4);
1732 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1733 reg = 0;
1734 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1735 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1736 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1737
1738 /*
1739 * For C+ mode, initialize the RX descriptors and mbufs.
1740 */
1741 re_rx_list_init(sc);
1742 re_tx_list_init(sc);
1743
1744 /*
1745 * Enable transmit and receive.
1746 */
1747 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1748
1749 /*
1750 * Set the initial TX and RX configuration.
1751 */
1752 if (sc->rtk_testmode) {
1753 if (sc->rtk_type == RTK_8169)
1754 CSR_WRITE_4(sc, RTK_TXCFG,
1755 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1756 else
1757 CSR_WRITE_4(sc, RTK_TXCFG,
1758 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1759 } else
1760 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1761 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1762
1763 /* Set the individual bit to receive frames for this host only. */
1764 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1765 rxcfg |= RTK_RXCFG_RX_INDIV;
1766
1767 /* If we want promiscuous mode, set the allframes bit. */
1768 if (ifp->if_flags & IFF_PROMISC)
1769 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1770 else
1771 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1772 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1773
1774 /*
1775 * Set capture broadcast bit to capture broadcast frames.
1776 */
1777 if (ifp->if_flags & IFF_BROADCAST)
1778 rxcfg |= RTK_RXCFG_RX_BROAD;
1779 else
1780 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1781 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1782
1783 /*
1784 * Program the multicast filter, if necessary.
1785 */
1786 rtk_setmulti(sc);
1787
1788 #ifdef DEVICE_POLLING
1789 /*
1790 * Disable interrupts if we are polling.
1791 */
1792 if (ifp->if_flags & IFF_POLLING)
1793 CSR_WRITE_2(sc, RTK_IMR, 0);
1794 else /* otherwise ... */
1795 #endif /* DEVICE_POLLING */
1796 /*
1797 * Enable interrupts.
1798 */
1799 if (sc->rtk_testmode)
1800 CSR_WRITE_2(sc, RTK_IMR, 0);
1801 else
1802 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1803
1804 /* Start RX/TX process. */
1805 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1806 #ifdef notdef
1807 /* Enable receiver and transmitter. */
1808 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1809 #endif
1810 /*
1811 * Load the addresses of the RX and TX lists into the chip.
1812 */
1813
1814 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1815 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1816 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1817 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1818
1819 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1820 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1821 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1822 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1823
1824 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1825
1826 /*
1827 * Initialize the timer interrupt register so that
1828 * a timer interrupt will be generated once the timer
1829 * reaches a certain number of ticks. The timer is
1830 * reloaded on each transmit. This gives us TX interrupt
1831 * moderation, which dramatically improves TX frame rate.
1832 */
1833
1834 if (sc->rtk_type == RTK_8169)
1835 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1836 else
1837 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1838
1839 /*
1840 * For 8169 gigE NICs, set the max allowed RX packet
1841 * size so we can receive jumbo frames.
1842 */
1843 if (sc->rtk_type == RTK_8169)
1844 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1845
1846 if (sc->rtk_testmode)
1847 return 0;
1848
1849 mii_mediachg(&sc->mii);
1850
1851 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1852
1853 ifp->if_flags |= IFF_RUNNING;
1854 ifp->if_flags &= ~IFF_OACTIVE;
1855
1856 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1857
1858 out:
1859 if (error) {
1860 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1861 ifp->if_timer = 0;
1862 aprint_error("%s: interface not running\n",
1863 sc->sc_dev.dv_xname);
1864 }
1865
1866 return error;
1867
1868 }
1869
1870 /*
1871 * Set media options.
1872 */
1873 static int
1874 re_ifmedia_upd(struct ifnet *ifp)
1875 {
1876 struct rtk_softc *sc;
1877
1878 sc = ifp->if_softc;
1879
1880 return mii_mediachg(&sc->mii);
1881 }
1882
1883 /*
1884 * Report current media status.
1885 */
1886 static void
1887 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1888 {
1889 struct rtk_softc *sc;
1890
1891 sc = ifp->if_softc;
1892
1893 mii_pollstat(&sc->mii);
1894 ifmr->ifm_active = sc->mii.mii_media_active;
1895 ifmr->ifm_status = sc->mii.mii_media_status;
1896
1897 return;
1898 }
1899
1900 static int
1901 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1902 {
1903 struct rtk_softc *sc = ifp->if_softc;
1904 struct ifreq *ifr = (struct ifreq *) data;
1905 int s, error = 0;
1906
1907 s = splnet();
1908
1909 switch (command) {
1910 case SIOCSIFMTU:
1911 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1912 error = EINVAL;
1913 ifp->if_mtu = ifr->ifr_mtu;
1914 break;
1915 case SIOCGIFMEDIA:
1916 case SIOCSIFMEDIA:
1917 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1918 break;
1919 default:
1920 error = ether_ioctl(ifp, command, data);
1921 if (error == ENETRESET) {
1922 if (ifp->if_flags & IFF_RUNNING)
1923 rtk_setmulti(sc);
1924 error = 0;
1925 }
1926 break;
1927 }
1928
1929 splx(s);
1930
1931 return error;
1932 }
1933
1934 static void
1935 re_watchdog(struct ifnet *ifp)
1936 {
1937 struct rtk_softc *sc;
1938 int s;
1939
1940 sc = ifp->if_softc;
1941 s = splnet();
1942 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1943 ifp->if_oerrors++;
1944
1945 re_txeof(sc);
1946 re_rxeof(sc);
1947
1948 re_init(ifp);
1949
1950 splx(s);
1951 }
1952
1953 /*
1954 * Stop the adapter and free any mbufs allocated to the
1955 * RX and TX lists.
1956 */
1957 static void
1958 re_stop(struct ifnet *ifp, int disable)
1959 {
1960 register int i;
1961 struct rtk_softc *sc = ifp->if_softc;
1962
1963 callout_stop(&sc->rtk_tick_ch);
1964
1965 #ifdef DEVICE_POLLING
1966 ether_poll_deregister(ifp);
1967 #endif /* DEVICE_POLLING */
1968
1969 mii_down(&sc->mii);
1970
1971 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1972 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1973
1974 if (sc->rtk_head != NULL) {
1975 m_freem(sc->rtk_head);
1976 sc->rtk_head = sc->rtk_tail = NULL;
1977 }
1978
1979 /* Free the TX list buffers. */
1980 for (i = 0; i < RTK_TX_DESC_CNT; i++) {
1981 if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
1982 bus_dmamap_unload(sc->sc_dmat,
1983 sc->rtk_ldata.rtk_tx_dmamap[i]);
1984 m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
1985 sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
1986 }
1987 }
1988
1989 /* Free the RX list buffers. */
1990 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1991 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
1992 bus_dmamap_unload(sc->sc_dmat,
1993 sc->rtk_ldata.rtk_rx_dmamap[i]);
1994 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
1995 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
1996 }
1997 }
1998
1999 if (disable)
2000 re_disable(sc);
2001
2002 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2003 ifp->if_timer = 0;
2004
2005 return;
2006 }
2007