rtl8169.c revision 1.112 1 /* $NetBSD: rtl8169.c,v 1.112 2009/03/27 12:19:17 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.112 2009/03/27 12:19:17 tsutsui Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115 #include "vlan.h"
116
117 #include <sys/param.h>
118 #include <sys/endian.h>
119 #include <sys/systm.h>
120 #include <sys/sockio.h>
121 #include <sys/mbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/device.h>
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_ether.h>
131 #include <net/if_media.h>
132 #include <net/if_vlanvar.h>
133
134 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
136 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
137
138 #if NBPFILTER > 0
139 #include <net/bpf.h>
140 #endif
141
142 #include <sys/bus.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/ic/rtl81x9reg.h>
148 #include <dev/ic/rtl81x9var.h>
149
150 #include <dev/ic/rtl8169var.h>
151
152 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, void *);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168
169 static int re_gmii_readreg(struct device *, int, int);
170 static void re_gmii_writereg(struct device *, int, int, int);
171
172 static int re_miibus_readreg(struct device *, int, int);
173 static void re_miibus_writereg(struct device *, int, int, int);
174 static void re_miibus_statchg(struct device *);
175
176 static void re_reset(struct rtk_softc *);
177
178 static inline void
179 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
180 {
181
182 d->re_bufaddr_lo = htole32((uint32_t)addr);
183 if (sizeof(bus_addr_t) == sizeof(uint64_t))
184 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
185 else
186 d->re_bufaddr_hi = 0;
187 }
188
189 static int
190 re_gmii_readreg(device_t dev, int phy, int reg)
191 {
192 struct rtk_softc *sc = device_private(dev);
193 uint32_t rval;
194 int i;
195
196 if (phy != 7)
197 return 0;
198
199 /* Let the rgephy driver read the GMEDIASTAT register */
200
201 if (reg == RTK_GMEDIASTAT) {
202 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
203 return rval;
204 }
205
206 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
207 DELAY(1000);
208
209 for (i = 0; i < RTK_TIMEOUT; i++) {
210 rval = CSR_READ_4(sc, RTK_PHYAR);
211 if (rval & RTK_PHYAR_BUSY)
212 break;
213 DELAY(100);
214 }
215
216 if (i == RTK_TIMEOUT) {
217 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
218 return 0;
219 }
220
221 return rval & RTK_PHYAR_PHYDATA;
222 }
223
224 static void
225 re_gmii_writereg(device_t dev, int phy, int reg, int data)
226 {
227 struct rtk_softc *sc = device_private(dev);
228 uint32_t rval;
229 int i;
230
231 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
232 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
233 DELAY(1000);
234
235 for (i = 0; i < RTK_TIMEOUT; i++) {
236 rval = CSR_READ_4(sc, RTK_PHYAR);
237 if (!(rval & RTK_PHYAR_BUSY))
238 break;
239 DELAY(100);
240 }
241
242 if (i == RTK_TIMEOUT) {
243 printf("%s: PHY write reg %x <- %x failed\n",
244 device_xname(sc->sc_dev), reg, data);
245 }
246 }
247
248 static int
249 re_miibus_readreg(device_t dev, int phy, int reg)
250 {
251 struct rtk_softc *sc = device_private(dev);
252 uint16_t rval = 0;
253 uint16_t re8139_reg = 0;
254 int s;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rval = re_gmii_readreg(dev, phy, reg);
260 splx(s);
261 return rval;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return 0;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 splx(s);
288 return 0;
289 /*
290 * Allow the rlphy driver to read the media status
291 * register. If we have a link partner which does not
292 * support NWAY, this is the register which will tell
293 * us the results of parallel detection.
294 */
295 case RTK_MEDIASTAT:
296 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
297 splx(s);
298 return rval;
299 default:
300 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
301 splx(s);
302 return 0;
303 }
304 rval = CSR_READ_2(sc, re8139_reg);
305 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
306 /* 8139C+ has different bit layout. */
307 rval &= ~(BMCR_LOOP | BMCR_ISO);
308 }
309 splx(s);
310 return rval;
311 }
312
313 static void
314 re_miibus_writereg(device_t dev, int phy, int reg, int data)
315 {
316 struct rtk_softc *sc = device_private(dev);
317 uint16_t re8139_reg = 0;
318 int s;
319
320 s = splnet();
321
322 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
323 re_gmii_writereg(dev, phy, reg, data);
324 splx(s);
325 return;
326 }
327
328 /* Pretend the internal PHY is only at address 0 */
329 if (phy) {
330 splx(s);
331 return;
332 }
333 switch (reg) {
334 case MII_BMCR:
335 re8139_reg = RTK_BMCR;
336 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
337 /* 8139C+ has different bit layout. */
338 data &= ~(BMCR_LOOP | BMCR_ISO);
339 }
340 break;
341 case MII_BMSR:
342 re8139_reg = RTK_BMSR;
343 break;
344 case MII_ANAR:
345 re8139_reg = RTK_ANAR;
346 break;
347 case MII_ANER:
348 re8139_reg = RTK_ANER;
349 break;
350 case MII_ANLPAR:
351 re8139_reg = RTK_LPAR;
352 break;
353 case MII_PHYIDR1:
354 case MII_PHYIDR2:
355 splx(s);
356 return;
357 break;
358 default:
359 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
360 splx(s);
361 return;
362 }
363 CSR_WRITE_2(sc, re8139_reg, data);
364 splx(s);
365 return;
366 }
367
368 static void
369 re_miibus_statchg(device_t dev)
370 {
371
372 return;
373 }
374
375 static void
376 re_reset(struct rtk_softc *sc)
377 {
378 int i;
379
380 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
381
382 for (i = 0; i < RTK_TIMEOUT; i++) {
383 DELAY(10);
384 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
385 break;
386 }
387 if (i == RTK_TIMEOUT)
388 printf("%s: reset never completed!\n",
389 device_xname(sc->sc_dev));
390
391 /*
392 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
393 * but also says "Rtl8169s sigle chip detected".
394 */
395 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
396 CSR_WRITE_1(sc, RTK_LDPS, 1);
397
398 }
399
400 /*
401 * The following routine is designed to test for a defect on some
402 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
403 * lines connected to the bus, however for a 32-bit only card, they
404 * should be pulled high. The result of this defect is that the
405 * NIC will not work right if you plug it into a 64-bit slot: DMA
406 * operations will be done with 64-bit transfers, which will fail
407 * because the 64-bit data lines aren't connected.
408 *
409 * There's no way to work around this (short of talking a soldering
410 * iron to the board), however we can detect it. The method we use
411 * here is to put the NIC into digital loopback mode, set the receiver
412 * to promiscuous mode, and then try to send a frame. We then compare
413 * the frame data we sent to what was received. If the data matches,
414 * then the NIC is working correctly, otherwise we know the user has
415 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
416 * slot. In the latter case, there's no way the NIC can work correctly,
417 * so we print out a message on the console and abort the device attach.
418 */
419
420 int
421 re_diag(struct rtk_softc *sc)
422 {
423 struct ifnet *ifp = &sc->ethercom.ec_if;
424 struct mbuf *m0;
425 struct ether_header *eh;
426 struct re_rxsoft *rxs;
427 struct re_desc *cur_rx;
428 bus_dmamap_t dmamap;
429 uint16_t status;
430 uint32_t rxstat;
431 int total_len, i, s, error = 0;
432 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
433 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
434
435 /* Allocate a single mbuf */
436
437 MGETHDR(m0, M_DONTWAIT, MT_DATA);
438 if (m0 == NULL)
439 return ENOBUFS;
440
441 /*
442 * Initialize the NIC in test mode. This sets the chip up
443 * so that it can send and receive frames, but performs the
444 * following special functions:
445 * - Puts receiver in promiscuous mode
446 * - Enables digital loopback mode
447 * - Leaves interrupts turned off
448 */
449
450 ifp->if_flags |= IFF_PROMISC;
451 sc->re_testmode = 1;
452 re_init(ifp);
453 re_stop(ifp, 0);
454 DELAY(100000);
455 re_init(ifp);
456
457 /* Put some data in the mbuf */
458
459 eh = mtod(m0, struct ether_header *);
460 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
461 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
462 eh->ether_type = htons(ETHERTYPE_IP);
463 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
464
465 /*
466 * Queue the packet, start transmission.
467 */
468
469 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
470 s = splnet();
471 IF_ENQUEUE(&ifp->if_snd, m0);
472 re_start(ifp);
473 splx(s);
474 m0 = NULL;
475
476 /* Wait for it to propagate through the chip */
477
478 DELAY(100000);
479 for (i = 0; i < RTK_TIMEOUT; i++) {
480 status = CSR_READ_2(sc, RTK_ISR);
481 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
482 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
483 break;
484 DELAY(10);
485 }
486 if (i == RTK_TIMEOUT) {
487 aprint_error_dev(sc->sc_dev,
488 "diagnostic failed, failed to receive packet "
489 "in loopback mode\n");
490 error = EIO;
491 goto done;
492 }
493
494 /*
495 * The packet should have been dumped into the first
496 * entry in the RX DMA ring. Grab it from there.
497 */
498
499 rxs = &sc->re_ldata.re_rxsoft[0];
500 dmamap = rxs->rxs_dmamap;
501 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
502 BUS_DMASYNC_POSTREAD);
503 bus_dmamap_unload(sc->sc_dmat, dmamap);
504
505 m0 = rxs->rxs_mbuf;
506 rxs->rxs_mbuf = NULL;
507 eh = mtod(m0, struct ether_header *);
508
509 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
510 cur_rx = &sc->re_ldata.re_rx_list[0];
511 rxstat = le32toh(cur_rx->re_cmdstat);
512 total_len = rxstat & sc->re_rxlenmask;
513
514 if (total_len != ETHER_MIN_LEN) {
515 aprint_error_dev(sc->sc_dev,
516 "diagnostic failed, received short packet\n");
517 error = EIO;
518 goto done;
519 }
520
521 /* Test that the received packet data matches what we sent. */
522
523 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
524 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
525 ntohs(eh->ether_type) != ETHERTYPE_IP) {
526 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
527 "expected TX data: %s/%s/0x%x\n"
528 "received RX data: %s/%s/0x%x\n"
529 "You may have a defective 32-bit NIC plugged "
530 "into a 64-bit PCI slot.\n"
531 "Please re-install the NIC in a 32-bit slot "
532 "for proper operation.\n"
533 "Read the re(4) man page for more details.\n" ,
534 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
535 ether_sprintf(eh->ether_dhost),
536 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
537 error = EIO;
538 }
539
540 done:
541 /* Turn interface off, release resources */
542
543 sc->re_testmode = 0;
544 ifp->if_flags &= ~IFF_PROMISC;
545 re_stop(ifp, 0);
546 if (m0 != NULL)
547 m_freem(m0);
548
549 return error;
550 }
551
552
553 /*
554 * Attach the interface. Allocate softc structures, do ifmedia
555 * setup and ethernet/BPF attach.
556 */
557 void
558 re_attach(struct rtk_softc *sc)
559 {
560 uint8_t eaddr[ETHER_ADDR_LEN];
561 uint16_t val;
562 struct ifnet *ifp;
563 int error = 0, i, addr_len;
564
565 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
566 uint32_t hwrev;
567
568 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
569 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
570 /* These rev numbers are taken from Realtek's driver */
571 switch (hwrev) {
572 case RTK_HWREV_8169:
573 /* XXX not in the Realtek driver */
574 sc->sc_rev = 1;
575 sc->sc_quirk |= RTKQ_8169NONS;
576 break;
577 case RTK_HWREV_8169S:
578 case RTK_HWREV_8110S:
579 sc->sc_rev = 3;
580 sc->sc_quirk |= RTKQ_MACLDPS;
581 break;
582 case RTK_HWREV_8169_8110SB:
583 sc->sc_rev = 4;
584 sc->sc_quirk |= RTKQ_MACLDPS;
585 break;
586 case RTK_HWREV_8169_8110SC:
587 sc->sc_rev = 5;
588 sc->sc_quirk |= RTKQ_MACLDPS;
589 break;
590 case RTK_HWREV_8101E:
591 sc->sc_rev = 11;
592 sc->sc_quirk |= RTKQ_NOJUMBO;
593 break;
594 case RTK_HWREV_8168_SPIN1:
595 sc->sc_rev = 21;
596 sc->sc_quirk |= RTKQ_DESCV2;
597 /*
598 * From FreeBSD driver:
599 *
600 * These (8168/8111) controllers support jumbo frame
601 * but it seems that enabling it requires touching
602 * additional magic registers. Depending on MAC
603 * revisions some controllers need to disable
604 * checksum offload. So disable jumbo frame until
605 * I have better idea what it really requires to
606 * make it support.
607 * RTL8168C/CP : supports up to 6KB jumbo frame.
608 * RTL8111C/CP : supports up to 9KB jumbo frame.
609 */
610 sc->sc_quirk |= RTKQ_NOJUMBO;
611 break;
612 case RTK_HWREV_8168_SPIN2:
613 sc->sc_rev = 22;
614 sc->sc_quirk |= RTKQ_DESCV2;
615 sc->sc_quirk |= RTKQ_NOJUMBO; /* see above */
616 break;
617 case RTK_HWREV_8168_SPIN3:
618 sc->sc_rev = 23;
619 sc->sc_quirk |= RTKQ_DESCV2;
620 sc->sc_quirk |= RTKQ_NOJUMBO; /* see above */
621 break;
622 case RTK_HWREV_8168C:
623 case RTK_HWREV_8168C_SPIN2:
624 sc->sc_rev = 24;
625 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
626 sc->sc_quirk |= RTKQ_NOJUMBO; /* see above */
627 break;
628 case RTK_HWREV_8102E:
629 case RTK_HWREV_8102EL:
630 sc->sc_rev = 25;
631 sc->sc_quirk |=
632 RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_NOJUMBO;
633 break;
634 case RTK_HWREV_8100E:
635 case RTK_HWREV_8100E_SPIN2:
636 /* XXX not in the Realtek driver */
637 sc->sc_rev = 0;
638 sc->sc_quirk |= RTKQ_NOJUMBO;
639 break;
640 default:
641 aprint_normal_dev(sc->sc_dev,
642 "Unknown revision (0x%08x)\n", hwrev);
643 sc->sc_rev = 0;
644 }
645
646 /* Set RX length mask */
647 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
648 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
649 } else {
650 sc->sc_quirk |= RTKQ_NOJUMBO;
651
652 /* Set RX length mask */
653 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
654 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
655 }
656
657 /* Reset the adapter. */
658 re_reset(sc);
659
660 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
661 /*
662 * Get station address from ID registers.
663 */
664 for (i = 0; i < ETHER_ADDR_LEN; i++)
665 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
666 } else {
667 /*
668 * Get station address from the EEPROM.
669 */
670 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
671 addr_len = RTK_EEADDR_LEN1;
672 else
673 addr_len = RTK_EEADDR_LEN0;
674
675 /*
676 * Get station address from the EEPROM.
677 */
678 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
679 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
680 eaddr[(i * 2) + 0] = val & 0xff;
681 eaddr[(i * 2) + 1] = val >> 8;
682 }
683 }
684
685 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
686 ether_sprintf(eaddr));
687
688 if (sc->re_ldata.re_tx_desc_cnt >
689 PAGE_SIZE / sizeof(struct re_desc)) {
690 sc->re_ldata.re_tx_desc_cnt =
691 PAGE_SIZE / sizeof(struct re_desc);
692 }
693
694 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
695 sc->re_ldata.re_tx_desc_cnt);
696 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
697
698 /* Allocate DMA'able memory for the TX ring */
699 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
700 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
701 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
702 aprint_error_dev(sc->sc_dev,
703 "can't allocate tx listseg, error = %d\n", error);
704 goto fail_0;
705 }
706
707 /* Load the map for the TX ring. */
708 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
709 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
710 (void **)&sc->re_ldata.re_tx_list,
711 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
712 aprint_error_dev(sc->sc_dev,
713 "can't map tx list, error = %d\n", error);
714 goto fail_1;
715 }
716 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
717
718 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
719 RE_TX_LIST_SZ(sc), 0, 0,
720 &sc->re_ldata.re_tx_list_map)) != 0) {
721 aprint_error_dev(sc->sc_dev,
722 "can't create tx list map, error = %d\n", error);
723 goto fail_2;
724 }
725
726
727 if ((error = bus_dmamap_load(sc->sc_dmat,
728 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
729 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
730 aprint_error_dev(sc->sc_dev,
731 "can't load tx list, error = %d\n", error);
732 goto fail_3;
733 }
734
735 /* Create DMA maps for TX buffers */
736 for (i = 0; i < RE_TX_QLEN; i++) {
737 error = bus_dmamap_create(sc->sc_dmat,
738 round_page(IP_MAXPACKET),
739 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
740 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
741 if (error) {
742 aprint_error_dev(sc->sc_dev,
743 "can't create DMA map for TX\n");
744 goto fail_4;
745 }
746 }
747
748 /* Allocate DMA'able memory for the RX ring */
749 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
750 if ((error = bus_dmamem_alloc(sc->sc_dmat,
751 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
752 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
753 aprint_error_dev(sc->sc_dev,
754 "can't allocate rx listseg, error = %d\n", error);
755 goto fail_4;
756 }
757
758 /* Load the map for the RX ring. */
759 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
760 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
761 (void **)&sc->re_ldata.re_rx_list,
762 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
763 aprint_error_dev(sc->sc_dev,
764 "can't map rx list, error = %d\n", error);
765 goto fail_5;
766 }
767 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
768
769 if ((error = bus_dmamap_create(sc->sc_dmat,
770 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
771 &sc->re_ldata.re_rx_list_map)) != 0) {
772 aprint_error_dev(sc->sc_dev,
773 "can't create rx list map, error = %d\n", error);
774 goto fail_6;
775 }
776
777 if ((error = bus_dmamap_load(sc->sc_dmat,
778 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
779 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
780 aprint_error_dev(sc->sc_dev,
781 "can't load rx list, error = %d\n", error);
782 goto fail_7;
783 }
784
785 /* Create DMA maps for RX buffers */
786 for (i = 0; i < RE_RX_DESC_CNT; i++) {
787 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
788 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
789 if (error) {
790 aprint_error_dev(sc->sc_dev,
791 "can't create DMA map for RX\n");
792 goto fail_8;
793 }
794 }
795
796 /*
797 * Record interface as attached. From here, we should not fail.
798 */
799 sc->sc_flags |= RTK_ATTACHED;
800
801 ifp = &sc->ethercom.ec_if;
802 ifp->if_softc = sc;
803 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
804 ifp->if_mtu = ETHERMTU;
805 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
806 ifp->if_ioctl = re_ioctl;
807 sc->ethercom.ec_capabilities |=
808 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
809 ifp->if_start = re_start;
810 ifp->if_stop = re_stop;
811
812 /*
813 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
814 * so we have a workaround to handle the bug by padding
815 * such packets manually.
816 */
817 ifp->if_capabilities |=
818 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
819 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
820 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
821 IFCAP_TSOv4;
822
823 /*
824 * XXX
825 * Still have no idea how to make TSO work on 8168C, 8168CP,
826 * 8102E, 8111C and 8111CP.
827 */
828 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
829 ifp->if_capabilities &= ~IFCAP_TSOv4;
830
831 ifp->if_watchdog = re_watchdog;
832 ifp->if_init = re_init;
833 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
834 ifp->if_capenable = ifp->if_capabilities;
835 IFQ_SET_READY(&ifp->if_snd);
836
837 callout_init(&sc->rtk_tick_ch, 0);
838
839 /* Do MII setup */
840 sc->mii.mii_ifp = ifp;
841 sc->mii.mii_readreg = re_miibus_readreg;
842 sc->mii.mii_writereg = re_miibus_writereg;
843 sc->mii.mii_statchg = re_miibus_statchg;
844 sc->ethercom.ec_mii = &sc->mii;
845 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
846 ether_mediastatus);
847 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
848 MII_OFFSET_ANY, 0);
849 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
850
851 /*
852 * Call MI attach routine.
853 */
854 if_attach(ifp);
855 ether_ifattach(ifp, eaddr);
856
857 return;
858
859 fail_8:
860 /* Destroy DMA maps for RX buffers. */
861 for (i = 0; i < RE_RX_DESC_CNT; i++)
862 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
863 bus_dmamap_destroy(sc->sc_dmat,
864 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
865
866 /* Free DMA'able memory for the RX ring. */
867 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
868 fail_7:
869 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
870 fail_6:
871 bus_dmamem_unmap(sc->sc_dmat,
872 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
873 fail_5:
874 bus_dmamem_free(sc->sc_dmat,
875 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
876
877 fail_4:
878 /* Destroy DMA maps for TX buffers. */
879 for (i = 0; i < RE_TX_QLEN; i++)
880 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
881 bus_dmamap_destroy(sc->sc_dmat,
882 sc->re_ldata.re_txq[i].txq_dmamap);
883
884 /* Free DMA'able memory for the TX ring. */
885 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
886 fail_3:
887 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
888 fail_2:
889 bus_dmamem_unmap(sc->sc_dmat,
890 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
891 fail_1:
892 bus_dmamem_free(sc->sc_dmat,
893 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
894 fail_0:
895 return;
896 }
897
898
899 /*
900 * re_activate:
901 * Handle device activation/deactivation requests.
902 */
903 int
904 re_activate(device_t self, enum devact act)
905 {
906 struct rtk_softc *sc = device_private(self);
907 int s, error = 0;
908
909 s = splnet();
910 switch (act) {
911 case DVACT_ACTIVATE:
912 error = EOPNOTSUPP;
913 break;
914 case DVACT_DEACTIVATE:
915 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
916 if_deactivate(&sc->ethercom.ec_if);
917 break;
918 }
919 splx(s);
920
921 return error;
922 }
923
924 /*
925 * re_detach:
926 * Detach a rtk interface.
927 */
928 int
929 re_detach(struct rtk_softc *sc)
930 {
931 struct ifnet *ifp = &sc->ethercom.ec_if;
932 int i;
933
934 /*
935 * Succeed now if there isn't any work to do.
936 */
937 if ((sc->sc_flags & RTK_ATTACHED) == 0)
938 return 0;
939
940 /* Unhook our tick handler. */
941 callout_stop(&sc->rtk_tick_ch);
942
943 /* Detach all PHYs. */
944 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
945
946 /* Delete all remaining media. */
947 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
948
949 ether_ifdetach(ifp);
950 if_detach(ifp);
951
952 /* Destroy DMA maps for RX buffers. */
953 for (i = 0; i < RE_RX_DESC_CNT; i++)
954 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
955 bus_dmamap_destroy(sc->sc_dmat,
956 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
957
958 /* Free DMA'able memory for the RX ring. */
959 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
960 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
961 bus_dmamem_unmap(sc->sc_dmat,
962 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
963 bus_dmamem_free(sc->sc_dmat,
964 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
965
966 /* Destroy DMA maps for TX buffers. */
967 for (i = 0; i < RE_TX_QLEN; i++)
968 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
969 bus_dmamap_destroy(sc->sc_dmat,
970 sc->re_ldata.re_txq[i].txq_dmamap);
971
972 /* Free DMA'able memory for the TX ring. */
973 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
974 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
975 bus_dmamem_unmap(sc->sc_dmat,
976 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
977 bus_dmamem_free(sc->sc_dmat,
978 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
979
980 return 0;
981 }
982
983 /*
984 * re_enable:
985 * Enable the RTL81X9 chip.
986 */
987 static int
988 re_enable(struct rtk_softc *sc)
989 {
990
991 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
992 if ((*sc->sc_enable)(sc) != 0) {
993 printf("%s: device enable failed\n",
994 device_xname(sc->sc_dev));
995 return EIO;
996 }
997 sc->sc_flags |= RTK_ENABLED;
998 }
999 return 0;
1000 }
1001
1002 /*
1003 * re_disable:
1004 * Disable the RTL81X9 chip.
1005 */
1006 static void
1007 re_disable(struct rtk_softc *sc)
1008 {
1009
1010 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1011 (*sc->sc_disable)(sc);
1012 sc->sc_flags &= ~RTK_ENABLED;
1013 }
1014 }
1015
1016 static int
1017 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1018 {
1019 struct mbuf *n = NULL;
1020 bus_dmamap_t map;
1021 struct re_desc *d;
1022 struct re_rxsoft *rxs;
1023 uint32_t cmdstat;
1024 int error;
1025
1026 if (m == NULL) {
1027 MGETHDR(n, M_DONTWAIT, MT_DATA);
1028 if (n == NULL)
1029 return ENOBUFS;
1030
1031 MCLGET(n, M_DONTWAIT);
1032 if ((n->m_flags & M_EXT) == 0) {
1033 m_freem(n);
1034 return ENOBUFS;
1035 }
1036 m = n;
1037 } else
1038 m->m_data = m->m_ext.ext_buf;
1039
1040 /*
1041 * Initialize mbuf length fields and fixup
1042 * alignment so that the frame payload is
1043 * longword aligned.
1044 */
1045 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1046 m->m_data += RE_ETHER_ALIGN;
1047
1048 rxs = &sc->re_ldata.re_rxsoft[idx];
1049 map = rxs->rxs_dmamap;
1050 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1051 BUS_DMA_READ|BUS_DMA_NOWAIT);
1052
1053 if (error)
1054 goto out;
1055
1056 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1057 BUS_DMASYNC_PREREAD);
1058
1059 d = &sc->re_ldata.re_rx_list[idx];
1060 #ifdef DIAGNOSTIC
1061 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1062 cmdstat = le32toh(d->re_cmdstat);
1063 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1064 if (cmdstat & RE_RDESC_STAT_OWN) {
1065 panic("%s: tried to map busy RX descriptor",
1066 device_xname(sc->sc_dev));
1067 }
1068 #endif
1069
1070 rxs->rxs_mbuf = m;
1071
1072 d->re_vlanctl = 0;
1073 cmdstat = map->dm_segs[0].ds_len;
1074 if (idx == (RE_RX_DESC_CNT - 1))
1075 cmdstat |= RE_RDESC_CMD_EOR;
1076 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1077 d->re_cmdstat = htole32(cmdstat);
1078 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1079 cmdstat |= RE_RDESC_CMD_OWN;
1080 d->re_cmdstat = htole32(cmdstat);
1081 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1082
1083 return 0;
1084 out:
1085 if (n != NULL)
1086 m_freem(n);
1087 return ENOMEM;
1088 }
1089
1090 static int
1091 re_tx_list_init(struct rtk_softc *sc)
1092 {
1093 int i;
1094
1095 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1096 for (i = 0; i < RE_TX_QLEN; i++) {
1097 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1098 }
1099
1100 bus_dmamap_sync(sc->sc_dmat,
1101 sc->re_ldata.re_tx_list_map, 0,
1102 sc->re_ldata.re_tx_list_map->dm_mapsize,
1103 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1104 sc->re_ldata.re_txq_prodidx = 0;
1105 sc->re_ldata.re_txq_considx = 0;
1106 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1107 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1108 sc->re_ldata.re_tx_nextfree = 0;
1109
1110 return 0;
1111 }
1112
1113 static int
1114 re_rx_list_init(struct rtk_softc *sc)
1115 {
1116 int i;
1117
1118 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1119
1120 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1121 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1122 return ENOBUFS;
1123 }
1124
1125 sc->re_ldata.re_rx_prodidx = 0;
1126 sc->re_head = sc->re_tail = NULL;
1127
1128 return 0;
1129 }
1130
1131 /*
1132 * RX handler for C+ and 8169. For the gigE chips, we support
1133 * the reception of jumbo frames that have been fragmented
1134 * across multiple 2K mbuf cluster buffers.
1135 */
1136 static void
1137 re_rxeof(struct rtk_softc *sc)
1138 {
1139 struct mbuf *m;
1140 struct ifnet *ifp;
1141 int i, total_len;
1142 struct re_desc *cur_rx;
1143 struct re_rxsoft *rxs;
1144 uint32_t rxstat, rxvlan;
1145
1146 ifp = &sc->ethercom.ec_if;
1147
1148 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1149 cur_rx = &sc->re_ldata.re_rx_list[i];
1150 RE_RXDESCSYNC(sc, i,
1151 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1152 rxstat = le32toh(cur_rx->re_cmdstat);
1153 rxvlan = le32toh(cur_rx->re_vlanctl);
1154 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1155 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1156 break;
1157 }
1158 total_len = rxstat & sc->re_rxlenmask;
1159 rxs = &sc->re_ldata.re_rxsoft[i];
1160 m = rxs->rxs_mbuf;
1161
1162 /* Invalidate the RX mbuf and unload its map */
1163
1164 bus_dmamap_sync(sc->sc_dmat,
1165 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1166 BUS_DMASYNC_POSTREAD);
1167 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1168
1169 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1170 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1171 if (sc->re_head == NULL)
1172 sc->re_head = sc->re_tail = m;
1173 else {
1174 m->m_flags &= ~M_PKTHDR;
1175 sc->re_tail->m_next = m;
1176 sc->re_tail = m;
1177 }
1178 re_newbuf(sc, i, NULL);
1179 continue;
1180 }
1181
1182 /*
1183 * NOTE: for the 8139C+, the frame length field
1184 * is always 12 bits in size, but for the gigE chips,
1185 * it is 13 bits (since the max RX frame length is 16K).
1186 * Unfortunately, all 32 bits in the status word
1187 * were already used, so to make room for the extra
1188 * length bit, RealTek took out the 'frame alignment
1189 * error' bit and shifted the other status bits
1190 * over one slot. The OWN, EOR, FS and LS bits are
1191 * still in the same places. We have already extracted
1192 * the frame length and checked the OWN bit, so rather
1193 * than using an alternate bit mapping, we shift the
1194 * status bits one space to the right so we can evaluate
1195 * them using the 8169 status as though it was in the
1196 * same format as that of the 8139C+.
1197 */
1198 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1199 rxstat >>= 1;
1200
1201 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1202 #ifdef RE_DEBUG
1203 printf("%s: RX error (rxstat = 0x%08x)",
1204 device_xname(sc->sc_dev), rxstat);
1205 if (rxstat & RE_RDESC_STAT_FRALIGN)
1206 printf(", frame alignment error");
1207 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1208 printf(", out of buffer space");
1209 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1210 printf(", FIFO overrun");
1211 if (rxstat & RE_RDESC_STAT_GIANT)
1212 printf(", giant packet");
1213 if (rxstat & RE_RDESC_STAT_RUNT)
1214 printf(", runt packet");
1215 if (rxstat & RE_RDESC_STAT_CRCERR)
1216 printf(", CRC error");
1217 printf("\n");
1218 #endif
1219 ifp->if_ierrors++;
1220 /*
1221 * If this is part of a multi-fragment packet,
1222 * discard all the pieces.
1223 */
1224 if (sc->re_head != NULL) {
1225 m_freem(sc->re_head);
1226 sc->re_head = sc->re_tail = NULL;
1227 }
1228 re_newbuf(sc, i, m);
1229 continue;
1230 }
1231
1232 /*
1233 * If allocating a replacement mbuf fails,
1234 * reload the current one.
1235 */
1236
1237 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1238 ifp->if_ierrors++;
1239 if (sc->re_head != NULL) {
1240 m_freem(sc->re_head);
1241 sc->re_head = sc->re_tail = NULL;
1242 }
1243 re_newbuf(sc, i, m);
1244 continue;
1245 }
1246
1247 if (sc->re_head != NULL) {
1248 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1249 /*
1250 * Special case: if there's 4 bytes or less
1251 * in this buffer, the mbuf can be discarded:
1252 * the last 4 bytes is the CRC, which we don't
1253 * care about anyway.
1254 */
1255 if (m->m_len <= ETHER_CRC_LEN) {
1256 sc->re_tail->m_len -=
1257 (ETHER_CRC_LEN - m->m_len);
1258 m_freem(m);
1259 } else {
1260 m->m_len -= ETHER_CRC_LEN;
1261 m->m_flags &= ~M_PKTHDR;
1262 sc->re_tail->m_next = m;
1263 }
1264 m = sc->re_head;
1265 sc->re_head = sc->re_tail = NULL;
1266 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1267 } else
1268 m->m_pkthdr.len = m->m_len =
1269 (total_len - ETHER_CRC_LEN);
1270
1271 ifp->if_ipackets++;
1272 m->m_pkthdr.rcvif = ifp;
1273
1274 /* Do RX checksumming */
1275
1276 /* Check IP header checksum */
1277 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0 &&
1278 ((sc->sc_quirk & RTKQ_DESCV2) == 0 ||
1279 (rxvlan & RE_RDESC_VLANCTL_IPV4) != 0)) {
1280 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1281 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1282 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1283 }
1284
1285 /* Check TCP/UDP checksum */
1286 if (RE_TCPPKT(rxstat)) {
1287 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1288 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1289 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1290 } else if (RE_UDPPKT(rxstat)) {
1291 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1292 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1293 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1294 }
1295
1296 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1297 VLAN_INPUT_TAG(ifp, m,
1298 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1299 continue);
1300 }
1301 #if NBPFILTER > 0
1302 if (ifp->if_bpf)
1303 bpf_mtap(ifp->if_bpf, m);
1304 #endif
1305 (*ifp->if_input)(ifp, m);
1306 }
1307
1308 sc->re_ldata.re_rx_prodidx = i;
1309 }
1310
1311 static void
1312 re_txeof(struct rtk_softc *sc)
1313 {
1314 struct ifnet *ifp;
1315 struct re_txq *txq;
1316 uint32_t txstat;
1317 int idx, descidx;
1318
1319 ifp = &sc->ethercom.ec_if;
1320
1321 for (idx = sc->re_ldata.re_txq_considx;
1322 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1323 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1324 txq = &sc->re_ldata.re_txq[idx];
1325 KASSERT(txq->txq_mbuf != NULL);
1326
1327 descidx = txq->txq_descidx;
1328 RE_TXDESCSYNC(sc, descidx,
1329 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1330 txstat =
1331 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1332 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1333 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1334 if (txstat & RE_TDESC_CMD_OWN) {
1335 break;
1336 }
1337
1338 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1339 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1340 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1341 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1342 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1343 m_freem(txq->txq_mbuf);
1344 txq->txq_mbuf = NULL;
1345
1346 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1347 ifp->if_collisions++;
1348 if (txstat & RE_TDESC_STAT_TXERRSUM)
1349 ifp->if_oerrors++;
1350 else
1351 ifp->if_opackets++;
1352 }
1353
1354 sc->re_ldata.re_txq_considx = idx;
1355
1356 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1357 ifp->if_flags &= ~IFF_OACTIVE;
1358
1359 /*
1360 * If not all descriptors have been released reaped yet,
1361 * reload the timer so that we will eventually get another
1362 * interrupt that will cause us to re-enter this routine.
1363 * This is done in case the transmitter has gone idle.
1364 */
1365 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1366 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1367 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1368 /*
1369 * Some chips will ignore a second TX request
1370 * issued while an existing transmission is in
1371 * progress. If the transmitter goes idle but
1372 * there are still packets waiting to be sent,
1373 * we need to restart the channel here to flush
1374 * them out. This only seems to be required with
1375 * the PCIe devices.
1376 */
1377 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1378 }
1379 } else
1380 ifp->if_timer = 0;
1381 }
1382
1383 static void
1384 re_tick(void *arg)
1385 {
1386 struct rtk_softc *sc = arg;
1387 int s;
1388
1389 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1390 s = splnet();
1391
1392 mii_tick(&sc->mii);
1393 splx(s);
1394
1395 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1396 }
1397
1398 int
1399 re_intr(void *arg)
1400 {
1401 struct rtk_softc *sc = arg;
1402 struct ifnet *ifp;
1403 uint16_t status;
1404 int handled = 0;
1405
1406 if (!device_has_power(sc->sc_dev))
1407 return 0;
1408
1409 ifp = &sc->ethercom.ec_if;
1410
1411 if ((ifp->if_flags & IFF_UP) == 0)
1412 return 0;
1413
1414 for (;;) {
1415
1416 status = CSR_READ_2(sc, RTK_ISR);
1417 /* If the card has gone away the read returns 0xffff. */
1418 if (status == 0xffff)
1419 break;
1420 if (status) {
1421 handled = 1;
1422 CSR_WRITE_2(sc, RTK_ISR, status);
1423 }
1424
1425 if ((status & RTK_INTRS_CPLUS) == 0)
1426 break;
1427
1428 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1429 re_rxeof(sc);
1430
1431 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1432 RTK_ISR_TX_DESC_UNAVAIL))
1433 re_txeof(sc);
1434
1435 if (status & RTK_ISR_SYSTEM_ERR) {
1436 re_init(ifp);
1437 }
1438
1439 if (status & RTK_ISR_LINKCHG) {
1440 callout_stop(&sc->rtk_tick_ch);
1441 re_tick(sc);
1442 }
1443 }
1444
1445 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1446 re_start(ifp);
1447
1448 return handled;
1449 }
1450
1451
1452
1453 /*
1454 * Main transmit routine for C+ and gigE NICs.
1455 */
1456
1457 static void
1458 re_start(struct ifnet *ifp)
1459 {
1460 struct rtk_softc *sc;
1461 struct mbuf *m;
1462 bus_dmamap_t map;
1463 struct re_txq *txq;
1464 struct re_desc *d;
1465 struct m_tag *mtag;
1466 uint32_t cmdstat, re_flags, vlanctl;
1467 int ofree, idx, error, nsegs, seg;
1468 int startdesc, curdesc, lastdesc;
1469 bool pad;
1470
1471 sc = ifp->if_softc;
1472 ofree = sc->re_ldata.re_txq_free;
1473
1474 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1475
1476 IFQ_POLL(&ifp->if_snd, m);
1477 if (m == NULL)
1478 break;
1479
1480 if (sc->re_ldata.re_txq_free == 0 ||
1481 sc->re_ldata.re_tx_free == 0) {
1482 /* no more free slots left */
1483 ifp->if_flags |= IFF_OACTIVE;
1484 break;
1485 }
1486
1487 /*
1488 * Set up checksum offload. Note: checksum offload bits must
1489 * appear in all descriptors of a multi-descriptor transmit
1490 * attempt. (This is according to testing done with an 8169
1491 * chip. I'm not sure if this is a requirement or a bug.)
1492 */
1493
1494 vlanctl = 0;
1495 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1496 uint32_t segsz = m->m_pkthdr.segsz;
1497
1498 re_flags = RE_TDESC_CMD_LGSEND |
1499 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1500 } else {
1501 /*
1502 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1503 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1504 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1505 */
1506 re_flags = 0;
1507 if ((m->m_pkthdr.csum_flags &
1508 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1509 != 0) {
1510 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1511 re_flags |= RE_TDESC_CMD_IPCSUM;
1512 if (m->m_pkthdr.csum_flags &
1513 M_CSUM_TCPv4) {
1514 re_flags |=
1515 RE_TDESC_CMD_TCPCSUM;
1516 } else if (m->m_pkthdr.csum_flags &
1517 M_CSUM_UDPv4) {
1518 re_flags |=
1519 RE_TDESC_CMD_UDPCSUM;
1520 }
1521 } else {
1522 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1523 if (m->m_pkthdr.csum_flags &
1524 M_CSUM_TCPv4) {
1525 vlanctl |=
1526 RE_TDESC_VLANCTL_TCPCSUM;
1527 } else if (m->m_pkthdr.csum_flags &
1528 M_CSUM_UDPv4) {
1529 vlanctl |=
1530 RE_TDESC_VLANCTL_UDPCSUM;
1531 }
1532 }
1533 }
1534 }
1535
1536 txq = &sc->re_ldata.re_txq[idx];
1537 map = txq->txq_dmamap;
1538 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1539 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1540
1541 if (__predict_false(error)) {
1542 /* XXX try to defrag if EFBIG? */
1543 printf("%s: can't map mbuf (error %d)\n",
1544 device_xname(sc->sc_dev), error);
1545
1546 IFQ_DEQUEUE(&ifp->if_snd, m);
1547 m_freem(m);
1548 ifp->if_oerrors++;
1549 continue;
1550 }
1551
1552 nsegs = map->dm_nsegs;
1553 pad = false;
1554 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1555 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1556 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1557 pad = true;
1558 nsegs++;
1559 }
1560
1561 if (nsegs > sc->re_ldata.re_tx_free) {
1562 /*
1563 * Not enough free descriptors to transmit this packet.
1564 */
1565 ifp->if_flags |= IFF_OACTIVE;
1566 bus_dmamap_unload(sc->sc_dmat, map);
1567 break;
1568 }
1569
1570 IFQ_DEQUEUE(&ifp->if_snd, m);
1571
1572 /*
1573 * Make sure that the caches are synchronized before we
1574 * ask the chip to start DMA for the packet data.
1575 */
1576 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1577 BUS_DMASYNC_PREWRITE);
1578
1579 /*
1580 * Set up hardware VLAN tagging. Note: vlan tag info must
1581 * appear in all descriptors of a multi-descriptor
1582 * transmission attempt.
1583 */
1584 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1585 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1586 RE_TDESC_VLANCTL_TAG;
1587
1588 /*
1589 * Map the segment array into descriptors.
1590 * Note that we set the start-of-frame and
1591 * end-of-frame markers for either TX or RX,
1592 * but they really only have meaning in the TX case.
1593 * (In the RX case, it's the chip that tells us
1594 * where packets begin and end.)
1595 * We also keep track of the end of the ring
1596 * and set the end-of-ring bits as needed,
1597 * and we set the ownership bits in all except
1598 * the very first descriptor. (The caller will
1599 * set this descriptor later when it start
1600 * transmission or reception.)
1601 */
1602 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1603 lastdesc = -1;
1604 for (seg = 0; seg < map->dm_nsegs;
1605 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1606 d = &sc->re_ldata.re_tx_list[curdesc];
1607 #ifdef DIAGNOSTIC
1608 RE_TXDESCSYNC(sc, curdesc,
1609 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1610 cmdstat = le32toh(d->re_cmdstat);
1611 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1612 if (cmdstat & RE_TDESC_STAT_OWN) {
1613 panic("%s: tried to map busy TX descriptor",
1614 device_xname(sc->sc_dev));
1615 }
1616 #endif
1617
1618 d->re_vlanctl = htole32(vlanctl);
1619 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1620 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1621 if (seg == 0)
1622 cmdstat |= RE_TDESC_CMD_SOF;
1623 else
1624 cmdstat |= RE_TDESC_CMD_OWN;
1625 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1626 cmdstat |= RE_TDESC_CMD_EOR;
1627 if (seg == nsegs - 1) {
1628 cmdstat |= RE_TDESC_CMD_EOF;
1629 lastdesc = curdesc;
1630 }
1631 d->re_cmdstat = htole32(cmdstat);
1632 RE_TXDESCSYNC(sc, curdesc,
1633 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1634 }
1635 if (__predict_false(pad)) {
1636 bus_addr_t paddaddr;
1637
1638 d = &sc->re_ldata.re_tx_list[curdesc];
1639 d->re_vlanctl = htole32(vlanctl);
1640 paddaddr = RE_TXPADDADDR(sc);
1641 re_set_bufaddr(d, paddaddr);
1642 cmdstat = re_flags |
1643 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1644 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1645 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1646 cmdstat |= RE_TDESC_CMD_EOR;
1647 d->re_cmdstat = htole32(cmdstat);
1648 RE_TXDESCSYNC(sc, curdesc,
1649 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1650 lastdesc = curdesc;
1651 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1652 }
1653 KASSERT(lastdesc != -1);
1654
1655 /* Transfer ownership of packet to the chip. */
1656
1657 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1658 htole32(RE_TDESC_CMD_OWN);
1659 RE_TXDESCSYNC(sc, startdesc,
1660 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1661
1662 /* update info of TX queue and descriptors */
1663 txq->txq_mbuf = m;
1664 txq->txq_descidx = lastdesc;
1665 txq->txq_nsegs = nsegs;
1666
1667 sc->re_ldata.re_txq_free--;
1668 sc->re_ldata.re_tx_free -= nsegs;
1669 sc->re_ldata.re_tx_nextfree = curdesc;
1670
1671 #if NBPFILTER > 0
1672 /*
1673 * If there's a BPF listener, bounce a copy of this frame
1674 * to him.
1675 */
1676 if (ifp->if_bpf)
1677 bpf_mtap(ifp->if_bpf, m);
1678 #endif
1679 }
1680
1681 if (sc->re_ldata.re_txq_free < ofree) {
1682 /*
1683 * TX packets are enqueued.
1684 */
1685 sc->re_ldata.re_txq_prodidx = idx;
1686
1687 /*
1688 * Start the transmitter to poll.
1689 *
1690 * RealTek put the TX poll request register in a different
1691 * location on the 8169 gigE chip. I don't know why.
1692 */
1693 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1694 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1695 else
1696 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1697
1698 /*
1699 * Use the countdown timer for interrupt moderation.
1700 * 'TX done' interrupts are disabled. Instead, we reset the
1701 * countdown timer, which will begin counting until it hits
1702 * the value in the TIMERINT register, and then trigger an
1703 * interrupt. Each time we write to the TIMERCNT register,
1704 * the timer count is reset to 0.
1705 */
1706 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1707
1708 /*
1709 * Set a timeout in case the chip goes out to lunch.
1710 */
1711 ifp->if_timer = 5;
1712 }
1713 }
1714
1715 static int
1716 re_init(struct ifnet *ifp)
1717 {
1718 struct rtk_softc *sc = ifp->if_softc;
1719 const uint8_t *enaddr;
1720 uint32_t rxcfg = 0;
1721 uint32_t reg;
1722 int error;
1723
1724 if ((error = re_enable(sc)) != 0)
1725 goto out;
1726
1727 /*
1728 * Cancel pending I/O and free all RX/TX buffers.
1729 */
1730 re_stop(ifp, 0);
1731
1732 re_reset(sc);
1733
1734 /*
1735 * Enable C+ RX and TX mode, as well as VLAN stripping and
1736 * RX checksum offload. We must configure the C+ register
1737 * before all others.
1738 */
1739 reg = 0;
1740
1741 /*
1742 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1743 * FreeBSD drivers set these bits anyway (for 8139C+?).
1744 * So far, it works.
1745 */
1746
1747 /*
1748 * XXX: For old 8169 set bit 14.
1749 * For 8169S/8110S and above, do not set bit 14.
1750 */
1751 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1752 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;
1753
1754 if (1) {/* not for 8169S ? */
1755 reg |=
1756 RTK_CPLUSCMD_VLANSTRIP |
1757 (ifp->if_capenable &
1758 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1759 IFCAP_CSUM_UDPv4_Rx) ?
1760 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1761 }
1762
1763 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1764 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1765
1766 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1767 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1768 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1769
1770 DELAY(10000);
1771
1772 /*
1773 * Init our MAC address. Even though the chipset
1774 * documentation doesn't mention it, we need to enter "Config
1775 * register write enable" mode to modify the ID registers.
1776 */
1777 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1778 enaddr = CLLADDR(ifp->if_sadl);
1779 reg = enaddr[0] | (enaddr[1] << 8) |
1780 (enaddr[2] << 16) | (enaddr[3] << 24);
1781 CSR_WRITE_4(sc, RTK_IDR0, reg);
1782 reg = enaddr[4] | (enaddr[5] << 8);
1783 CSR_WRITE_4(sc, RTK_IDR4, reg);
1784 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1785
1786 /*
1787 * For C+ mode, initialize the RX descriptors and mbufs.
1788 */
1789 re_rx_list_init(sc);
1790 re_tx_list_init(sc);
1791
1792 /*
1793 * Load the addresses of the RX and TX lists into the chip.
1794 */
1795 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1796 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1797 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1798 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1799
1800 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1801 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1802 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1803 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1804
1805 /*
1806 * Enable transmit and receive.
1807 */
1808 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1809
1810 /*
1811 * Set the initial TX and RX configuration.
1812 */
1813 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1814 /* test mode is needed only for old 8169 */
1815 CSR_WRITE_4(sc, RTK_TXCFG,
1816 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1817 } else
1818 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1819
1820 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1821
1822 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1823
1824 /* Set the individual bit to receive frames for this host only. */
1825 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1826 rxcfg |= RTK_RXCFG_RX_INDIV;
1827
1828 /* If we want promiscuous mode, set the allframes bit. */
1829 if (ifp->if_flags & IFF_PROMISC)
1830 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1831 else
1832 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1833 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1834
1835 /*
1836 * Set capture broadcast bit to capture broadcast frames.
1837 */
1838 if (ifp->if_flags & IFF_BROADCAST)
1839 rxcfg |= RTK_RXCFG_RX_BROAD;
1840 else
1841 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1842 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1843
1844 /*
1845 * Program the multicast filter, if necessary.
1846 */
1847 rtk_setmulti(sc);
1848
1849 /*
1850 * Enable interrupts.
1851 */
1852 if (sc->re_testmode)
1853 CSR_WRITE_2(sc, RTK_IMR, 0);
1854 else
1855 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1856
1857 /* Start RX/TX process. */
1858 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1859 #ifdef notdef
1860 /* Enable receiver and transmitter. */
1861 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1862 #endif
1863
1864 /*
1865 * Initialize the timer interrupt register so that
1866 * a timer interrupt will be generated once the timer
1867 * reaches a certain number of ticks. The timer is
1868 * reloaded on each transmit. This gives us TX interrupt
1869 * moderation, which dramatically improves TX frame rate.
1870 */
1871
1872 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1873 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1874 else {
1875 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1876
1877 /*
1878 * For 8169 gigE NICs, set the max allowed RX packet
1879 * size so we can receive jumbo frames.
1880 */
1881 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1882 }
1883
1884 if (sc->re_testmode)
1885 return 0;
1886
1887 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1888
1889 ifp->if_flags |= IFF_RUNNING;
1890 ifp->if_flags &= ~IFF_OACTIVE;
1891
1892 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1893
1894 out:
1895 if (error) {
1896 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1897 ifp->if_timer = 0;
1898 printf("%s: interface not running\n",
1899 device_xname(sc->sc_dev));
1900 }
1901
1902 return error;
1903 }
1904
1905 static int
1906 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1907 {
1908 struct rtk_softc *sc = ifp->if_softc;
1909 struct ifreq *ifr = data;
1910 int s, error = 0;
1911
1912 s = splnet();
1913
1914 switch (command) {
1915 case SIOCSIFMTU:
1916 /*
1917 * Disable jumbo frames if it's not supported.
1918 */
1919 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1920 ifr->ifr_mtu > ETHERMTU) {
1921 error = EINVAL;
1922 break;
1923 }
1924
1925 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1926 error = EINVAL;
1927 else if ((error = ifioctl_common(ifp, command, data)) ==
1928 ENETRESET)
1929 error = 0;
1930 break;
1931 default:
1932 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1933 break;
1934
1935 error = 0;
1936
1937 if (command == SIOCSIFCAP)
1938 error = (*ifp->if_init)(ifp);
1939 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1940 ;
1941 else if (ifp->if_flags & IFF_RUNNING)
1942 rtk_setmulti(sc);
1943 break;
1944 }
1945
1946 splx(s);
1947
1948 return error;
1949 }
1950
1951 static void
1952 re_watchdog(struct ifnet *ifp)
1953 {
1954 struct rtk_softc *sc;
1955 int s;
1956
1957 sc = ifp->if_softc;
1958 s = splnet();
1959 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1960 ifp->if_oerrors++;
1961
1962 re_txeof(sc);
1963 re_rxeof(sc);
1964
1965 re_init(ifp);
1966
1967 splx(s);
1968 }
1969
1970 /*
1971 * Stop the adapter and free any mbufs allocated to the
1972 * RX and TX lists.
1973 */
1974 static void
1975 re_stop(struct ifnet *ifp, int disable)
1976 {
1977 int i;
1978 struct rtk_softc *sc = ifp->if_softc;
1979
1980 callout_stop(&sc->rtk_tick_ch);
1981
1982 mii_down(&sc->mii);
1983
1984 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1985 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1986
1987 if (sc->re_head != NULL) {
1988 m_freem(sc->re_head);
1989 sc->re_head = sc->re_tail = NULL;
1990 }
1991
1992 /* Free the TX list buffers. */
1993 for (i = 0; i < RE_TX_QLEN; i++) {
1994 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1995 bus_dmamap_unload(sc->sc_dmat,
1996 sc->re_ldata.re_txq[i].txq_dmamap);
1997 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1998 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1999 }
2000 }
2001
2002 /* Free the RX list buffers. */
2003 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2004 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2005 bus_dmamap_unload(sc->sc_dmat,
2006 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2007 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2008 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2009 }
2010 }
2011
2012 if (disable)
2013 re_disable(sc);
2014
2015 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2016 ifp->if_timer = 0;
2017 }
2018