rtl8169.c revision 1.115 1 /* $NetBSD: rtl8169.c,v 1.115 2009/04/13 12:33:05 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.115 2009/04/13 12:33:05 tsutsui Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115 #include "vlan.h"
116
117 #include <sys/param.h>
118 #include <sys/endian.h>
119 #include <sys/systm.h>
120 #include <sys/sockio.h>
121 #include <sys/mbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/device.h>
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_ether.h>
131 #include <net/if_media.h>
132 #include <net/if_vlanvar.h>
133
134 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
136 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
137
138 #if NBPFILTER > 0
139 #include <net/bpf.h>
140 #endif
141
142 #include <sys/bus.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/ic/rtl81x9reg.h>
148 #include <dev/ic/rtl81x9var.h>
149
150 #include <dev/ic/rtl8169var.h>
151
152 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, void *);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168
169 static int re_gmii_readreg(struct device *, int, int);
170 static void re_gmii_writereg(struct device *, int, int, int);
171
172 static int re_miibus_readreg(struct device *, int, int);
173 static void re_miibus_writereg(struct device *, int, int, int);
174 static void re_miibus_statchg(struct device *);
175
176 static void re_reset(struct rtk_softc *);
177
178 static inline void
179 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
180 {
181
182 d->re_bufaddr_lo = htole32((uint32_t)addr);
183 if (sizeof(bus_addr_t) == sizeof(uint64_t))
184 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
185 else
186 d->re_bufaddr_hi = 0;
187 }
188
189 static int
190 re_gmii_readreg(device_t dev, int phy, int reg)
191 {
192 struct rtk_softc *sc = device_private(dev);
193 uint32_t rval;
194 int i;
195
196 if (phy != 7)
197 return 0;
198
199 /* Let the rgephy driver read the GMEDIASTAT register */
200
201 if (reg == RTK_GMEDIASTAT) {
202 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
203 return rval;
204 }
205
206 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
207 DELAY(1000);
208
209 for (i = 0; i < RTK_TIMEOUT; i++) {
210 rval = CSR_READ_4(sc, RTK_PHYAR);
211 if (rval & RTK_PHYAR_BUSY)
212 break;
213 DELAY(100);
214 }
215
216 if (i == RTK_TIMEOUT) {
217 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
218 return 0;
219 }
220
221 return rval & RTK_PHYAR_PHYDATA;
222 }
223
224 static void
225 re_gmii_writereg(device_t dev, int phy, int reg, int data)
226 {
227 struct rtk_softc *sc = device_private(dev);
228 uint32_t rval;
229 int i;
230
231 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
232 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
233 DELAY(1000);
234
235 for (i = 0; i < RTK_TIMEOUT; i++) {
236 rval = CSR_READ_4(sc, RTK_PHYAR);
237 if (!(rval & RTK_PHYAR_BUSY))
238 break;
239 DELAY(100);
240 }
241
242 if (i == RTK_TIMEOUT) {
243 printf("%s: PHY write reg %x <- %x failed\n",
244 device_xname(sc->sc_dev), reg, data);
245 }
246 }
247
248 static int
249 re_miibus_readreg(device_t dev, int phy, int reg)
250 {
251 struct rtk_softc *sc = device_private(dev);
252 uint16_t rval = 0;
253 uint16_t re8139_reg = 0;
254 int s;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rval = re_gmii_readreg(dev, phy, reg);
260 splx(s);
261 return rval;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return 0;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 splx(s);
288 return 0;
289 /*
290 * Allow the rlphy driver to read the media status
291 * register. If we have a link partner which does not
292 * support NWAY, this is the register which will tell
293 * us the results of parallel detection.
294 */
295 case RTK_MEDIASTAT:
296 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
297 splx(s);
298 return rval;
299 default:
300 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
301 splx(s);
302 return 0;
303 }
304 rval = CSR_READ_2(sc, re8139_reg);
305 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
306 /* 8139C+ has different bit layout. */
307 rval &= ~(BMCR_LOOP | BMCR_ISO);
308 }
309 splx(s);
310 return rval;
311 }
312
313 static void
314 re_miibus_writereg(device_t dev, int phy, int reg, int data)
315 {
316 struct rtk_softc *sc = device_private(dev);
317 uint16_t re8139_reg = 0;
318 int s;
319
320 s = splnet();
321
322 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
323 re_gmii_writereg(dev, phy, reg, data);
324 splx(s);
325 return;
326 }
327
328 /* Pretend the internal PHY is only at address 0 */
329 if (phy) {
330 splx(s);
331 return;
332 }
333 switch (reg) {
334 case MII_BMCR:
335 re8139_reg = RTK_BMCR;
336 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
337 /* 8139C+ has different bit layout. */
338 data &= ~(BMCR_LOOP | BMCR_ISO);
339 }
340 break;
341 case MII_BMSR:
342 re8139_reg = RTK_BMSR;
343 break;
344 case MII_ANAR:
345 re8139_reg = RTK_ANAR;
346 break;
347 case MII_ANER:
348 re8139_reg = RTK_ANER;
349 break;
350 case MII_ANLPAR:
351 re8139_reg = RTK_LPAR;
352 break;
353 case MII_PHYIDR1:
354 case MII_PHYIDR2:
355 splx(s);
356 return;
357 break;
358 default:
359 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
360 splx(s);
361 return;
362 }
363 CSR_WRITE_2(sc, re8139_reg, data);
364 splx(s);
365 return;
366 }
367
368 static void
369 re_miibus_statchg(device_t dev)
370 {
371
372 return;
373 }
374
375 static void
376 re_reset(struct rtk_softc *sc)
377 {
378 int i;
379
380 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
381
382 for (i = 0; i < RTK_TIMEOUT; i++) {
383 DELAY(10);
384 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
385 break;
386 }
387 if (i == RTK_TIMEOUT)
388 printf("%s: reset never completed!\n",
389 device_xname(sc->sc_dev));
390
391 /*
392 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
393 * but also says "Rtl8169s sigle chip detected".
394 */
395 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
396 CSR_WRITE_1(sc, RTK_LDPS, 1);
397
398 }
399
400 /*
401 * The following routine is designed to test for a defect on some
402 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
403 * lines connected to the bus, however for a 32-bit only card, they
404 * should be pulled high. The result of this defect is that the
405 * NIC will not work right if you plug it into a 64-bit slot: DMA
406 * operations will be done with 64-bit transfers, which will fail
407 * because the 64-bit data lines aren't connected.
408 *
409 * There's no way to work around this (short of talking a soldering
410 * iron to the board), however we can detect it. The method we use
411 * here is to put the NIC into digital loopback mode, set the receiver
412 * to promiscuous mode, and then try to send a frame. We then compare
413 * the frame data we sent to what was received. If the data matches,
414 * then the NIC is working correctly, otherwise we know the user has
415 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
416 * slot. In the latter case, there's no way the NIC can work correctly,
417 * so we print out a message on the console and abort the device attach.
418 */
419
420 int
421 re_diag(struct rtk_softc *sc)
422 {
423 struct ifnet *ifp = &sc->ethercom.ec_if;
424 struct mbuf *m0;
425 struct ether_header *eh;
426 struct re_rxsoft *rxs;
427 struct re_desc *cur_rx;
428 bus_dmamap_t dmamap;
429 uint16_t status;
430 uint32_t rxstat;
431 int total_len, i, s, error = 0;
432 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
433 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
434
435 /* Allocate a single mbuf */
436
437 MGETHDR(m0, M_DONTWAIT, MT_DATA);
438 if (m0 == NULL)
439 return ENOBUFS;
440
441 /*
442 * Initialize the NIC in test mode. This sets the chip up
443 * so that it can send and receive frames, but performs the
444 * following special functions:
445 * - Puts receiver in promiscuous mode
446 * - Enables digital loopback mode
447 * - Leaves interrupts turned off
448 */
449
450 ifp->if_flags |= IFF_PROMISC;
451 sc->re_testmode = 1;
452 re_init(ifp);
453 re_stop(ifp, 0);
454 DELAY(100000);
455 re_init(ifp);
456
457 /* Put some data in the mbuf */
458
459 eh = mtod(m0, struct ether_header *);
460 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
461 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
462 eh->ether_type = htons(ETHERTYPE_IP);
463 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
464
465 /*
466 * Queue the packet, start transmission.
467 */
468
469 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
470 s = splnet();
471 IF_ENQUEUE(&ifp->if_snd, m0);
472 re_start(ifp);
473 splx(s);
474 m0 = NULL;
475
476 /* Wait for it to propagate through the chip */
477
478 DELAY(100000);
479 for (i = 0; i < RTK_TIMEOUT; i++) {
480 status = CSR_READ_2(sc, RTK_ISR);
481 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
482 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
483 break;
484 DELAY(10);
485 }
486 if (i == RTK_TIMEOUT) {
487 aprint_error_dev(sc->sc_dev,
488 "diagnostic failed, failed to receive packet "
489 "in loopback mode\n");
490 error = EIO;
491 goto done;
492 }
493
494 /*
495 * The packet should have been dumped into the first
496 * entry in the RX DMA ring. Grab it from there.
497 */
498
499 rxs = &sc->re_ldata.re_rxsoft[0];
500 dmamap = rxs->rxs_dmamap;
501 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
502 BUS_DMASYNC_POSTREAD);
503 bus_dmamap_unload(sc->sc_dmat, dmamap);
504
505 m0 = rxs->rxs_mbuf;
506 rxs->rxs_mbuf = NULL;
507 eh = mtod(m0, struct ether_header *);
508
509 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
510 cur_rx = &sc->re_ldata.re_rx_list[0];
511 rxstat = le32toh(cur_rx->re_cmdstat);
512 total_len = rxstat & sc->re_rxlenmask;
513
514 if (total_len != ETHER_MIN_LEN) {
515 aprint_error_dev(sc->sc_dev,
516 "diagnostic failed, received short packet\n");
517 error = EIO;
518 goto done;
519 }
520
521 /* Test that the received packet data matches what we sent. */
522
523 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
524 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
525 ntohs(eh->ether_type) != ETHERTYPE_IP) {
526 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
527 "expected TX data: %s/%s/0x%x\n"
528 "received RX data: %s/%s/0x%x\n"
529 "You may have a defective 32-bit NIC plugged "
530 "into a 64-bit PCI slot.\n"
531 "Please re-install the NIC in a 32-bit slot "
532 "for proper operation.\n"
533 "Read the re(4) man page for more details.\n" ,
534 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
535 ether_sprintf(eh->ether_dhost),
536 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
537 error = EIO;
538 }
539
540 done:
541 /* Turn interface off, release resources */
542
543 sc->re_testmode = 0;
544 ifp->if_flags &= ~IFF_PROMISC;
545 re_stop(ifp, 0);
546 if (m0 != NULL)
547 m_freem(m0);
548
549 return error;
550 }
551
552
553 /*
554 * Attach the interface. Allocate softc structures, do ifmedia
555 * setup and ethernet/BPF attach.
556 */
557 void
558 re_attach(struct rtk_softc *sc)
559 {
560 uint8_t eaddr[ETHER_ADDR_LEN];
561 uint16_t val;
562 struct ifnet *ifp;
563 int error = 0, i, addr_len;
564
565 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
566 uint32_t hwrev;
567
568 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
569 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
570 /* These rev numbers are taken from Realtek's driver */
571 switch (hwrev) {
572 case RTK_HWREV_8169:
573 /* XXX not in the Realtek driver */
574 sc->sc_rev = 1;
575 sc->sc_quirk |= RTKQ_8169NONS;
576 break;
577 case RTK_HWREV_8169S:
578 case RTK_HWREV_8110S:
579 sc->sc_rev = 3;
580 sc->sc_quirk |= RTKQ_MACLDPS;
581 break;
582 case RTK_HWREV_8169_8110SB:
583 sc->sc_rev = 4;
584 sc->sc_quirk |= RTKQ_MACLDPS;
585 break;
586 case RTK_HWREV_8169_8110SC:
587 sc->sc_rev = 5;
588 sc->sc_quirk |= RTKQ_MACLDPS;
589 break;
590 case RTK_HWREV_8101E:
591 sc->sc_rev = 11;
592 sc->sc_quirk |= RTKQ_NOJUMBO;
593 break;
594 case RTK_HWREV_8168_SPIN1:
595 sc->sc_rev = 21;
596 break;
597 case RTK_HWREV_8168_SPIN2:
598 sc->sc_rev = 22;
599 break;
600 case RTK_HWREV_8168_SPIN3:
601 sc->sc_rev = 23;
602 break;
603 case RTK_HWREV_8168C:
604 case RTK_HWREV_8168C_SPIN2:
605 case RTK_HWREV_8168CP:
606 case RTK_HWREV_8168D:
607 sc->sc_rev = 24;
608 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
609 /*
610 * From FreeBSD driver:
611 *
612 * These (8168/8111) controllers support jumbo frame
613 * but it seems that enabling it requires touching
614 * additional magic registers. Depending on MAC
615 * revisions some controllers need to disable
616 * checksum offload. So disable jumbo frame until
617 * I have better idea what it really requires to
618 * make it support.
619 * RTL8168C/CP : supports up to 6KB jumbo frame.
620 * RTL8111C/CP : supports up to 9KB jumbo frame.
621 */
622 sc->sc_quirk |= RTKQ_NOJUMBO;
623 break;
624 case RTK_HWREV_8102E:
625 case RTK_HWREV_8102EL:
626 case RTK_HWREV_8102EL_SPIN2:
627 sc->sc_rev = 25;
628 sc->sc_quirk |=
629 RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_NOJUMBO;
630 break;
631 case RTK_HWREV_8100E:
632 case RTK_HWREV_8100E_SPIN2:
633 /* XXX not in the Realtek driver */
634 sc->sc_rev = 0;
635 sc->sc_quirk |= RTKQ_NOJUMBO;
636 break;
637 default:
638 aprint_normal_dev(sc->sc_dev,
639 "Unknown revision (0x%08x)\n", hwrev);
640 sc->sc_rev = 0;
641 }
642
643 /* Set RX length mask */
644 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
645 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
646 } else {
647 sc->sc_quirk |= RTKQ_NOJUMBO;
648
649 /* Set RX length mask */
650 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
651 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
652 }
653
654 /* Reset the adapter. */
655 re_reset(sc);
656
657 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
658 /*
659 * Get station address from ID registers.
660 */
661 for (i = 0; i < ETHER_ADDR_LEN; i++)
662 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
663 } else {
664 /*
665 * Get station address from the EEPROM.
666 */
667 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
668 addr_len = RTK_EEADDR_LEN1;
669 else
670 addr_len = RTK_EEADDR_LEN0;
671
672 /*
673 * Get station address from the EEPROM.
674 */
675 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
676 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
677 eaddr[(i * 2) + 0] = val & 0xff;
678 eaddr[(i * 2) + 1] = val >> 8;
679 }
680 }
681
682 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
683 ether_sprintf(eaddr));
684
685 if (sc->re_ldata.re_tx_desc_cnt >
686 PAGE_SIZE / sizeof(struct re_desc)) {
687 sc->re_ldata.re_tx_desc_cnt =
688 PAGE_SIZE / sizeof(struct re_desc);
689 }
690
691 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
692 sc->re_ldata.re_tx_desc_cnt);
693 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
694
695 /* Allocate DMA'able memory for the TX ring */
696 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
697 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
698 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
699 aprint_error_dev(sc->sc_dev,
700 "can't allocate tx listseg, error = %d\n", error);
701 goto fail_0;
702 }
703
704 /* Load the map for the TX ring. */
705 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
706 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
707 (void **)&sc->re_ldata.re_tx_list,
708 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
709 aprint_error_dev(sc->sc_dev,
710 "can't map tx list, error = %d\n", error);
711 goto fail_1;
712 }
713 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
714
715 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
716 RE_TX_LIST_SZ(sc), 0, 0,
717 &sc->re_ldata.re_tx_list_map)) != 0) {
718 aprint_error_dev(sc->sc_dev,
719 "can't create tx list map, error = %d\n", error);
720 goto fail_2;
721 }
722
723
724 if ((error = bus_dmamap_load(sc->sc_dmat,
725 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
726 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
727 aprint_error_dev(sc->sc_dev,
728 "can't load tx list, error = %d\n", error);
729 goto fail_3;
730 }
731
732 /* Create DMA maps for TX buffers */
733 for (i = 0; i < RE_TX_QLEN; i++) {
734 error = bus_dmamap_create(sc->sc_dmat,
735 round_page(IP_MAXPACKET),
736 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
737 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
738 if (error) {
739 aprint_error_dev(sc->sc_dev,
740 "can't create DMA map for TX\n");
741 goto fail_4;
742 }
743 }
744
745 /* Allocate DMA'able memory for the RX ring */
746 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
747 if ((error = bus_dmamem_alloc(sc->sc_dmat,
748 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
749 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
750 aprint_error_dev(sc->sc_dev,
751 "can't allocate rx listseg, error = %d\n", error);
752 goto fail_4;
753 }
754
755 /* Load the map for the RX ring. */
756 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
757 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
758 (void **)&sc->re_ldata.re_rx_list,
759 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
760 aprint_error_dev(sc->sc_dev,
761 "can't map rx list, error = %d\n", error);
762 goto fail_5;
763 }
764 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
765
766 if ((error = bus_dmamap_create(sc->sc_dmat,
767 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
768 &sc->re_ldata.re_rx_list_map)) != 0) {
769 aprint_error_dev(sc->sc_dev,
770 "can't create rx list map, error = %d\n", error);
771 goto fail_6;
772 }
773
774 if ((error = bus_dmamap_load(sc->sc_dmat,
775 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
776 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
777 aprint_error_dev(sc->sc_dev,
778 "can't load rx list, error = %d\n", error);
779 goto fail_7;
780 }
781
782 /* Create DMA maps for RX buffers */
783 for (i = 0; i < RE_RX_DESC_CNT; i++) {
784 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
785 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
786 if (error) {
787 aprint_error_dev(sc->sc_dev,
788 "can't create DMA map for RX\n");
789 goto fail_8;
790 }
791 }
792
793 /*
794 * Record interface as attached. From here, we should not fail.
795 */
796 sc->sc_flags |= RTK_ATTACHED;
797
798 ifp = &sc->ethercom.ec_if;
799 ifp->if_softc = sc;
800 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
801 ifp->if_mtu = ETHERMTU;
802 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
803 ifp->if_ioctl = re_ioctl;
804 sc->ethercom.ec_capabilities |=
805 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
806 ifp->if_start = re_start;
807 ifp->if_stop = re_stop;
808
809 /*
810 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
811 * so we have a workaround to handle the bug by padding
812 * such packets manually.
813 */
814 ifp->if_capabilities |=
815 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
816 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
817 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
818 IFCAP_TSOv4;
819
820 /*
821 * XXX
822 * Still have no idea how to make TSO work on 8168C, 8168CP,
823 * 8102E, 8111C and 8111CP.
824 */
825 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
826 ifp->if_capabilities &= ~IFCAP_TSOv4;
827
828 ifp->if_watchdog = re_watchdog;
829 ifp->if_init = re_init;
830 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
831 ifp->if_capenable = ifp->if_capabilities;
832 IFQ_SET_READY(&ifp->if_snd);
833
834 callout_init(&sc->rtk_tick_ch, 0);
835
836 /* Do MII setup */
837 sc->mii.mii_ifp = ifp;
838 sc->mii.mii_readreg = re_miibus_readreg;
839 sc->mii.mii_writereg = re_miibus_writereg;
840 sc->mii.mii_statchg = re_miibus_statchg;
841 sc->ethercom.ec_mii = &sc->mii;
842 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
843 ether_mediastatus);
844 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
845 MII_OFFSET_ANY, 0);
846 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
847
848 /*
849 * Call MI attach routine.
850 */
851 if_attach(ifp);
852 ether_ifattach(ifp, eaddr);
853
854 return;
855
856 fail_8:
857 /* Destroy DMA maps for RX buffers. */
858 for (i = 0; i < RE_RX_DESC_CNT; i++)
859 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
860 bus_dmamap_destroy(sc->sc_dmat,
861 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
862
863 /* Free DMA'able memory for the RX ring. */
864 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
865 fail_7:
866 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
867 fail_6:
868 bus_dmamem_unmap(sc->sc_dmat,
869 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
870 fail_5:
871 bus_dmamem_free(sc->sc_dmat,
872 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
873
874 fail_4:
875 /* Destroy DMA maps for TX buffers. */
876 for (i = 0; i < RE_TX_QLEN; i++)
877 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
878 bus_dmamap_destroy(sc->sc_dmat,
879 sc->re_ldata.re_txq[i].txq_dmamap);
880
881 /* Free DMA'able memory for the TX ring. */
882 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
883 fail_3:
884 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
885 fail_2:
886 bus_dmamem_unmap(sc->sc_dmat,
887 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
888 fail_1:
889 bus_dmamem_free(sc->sc_dmat,
890 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
891 fail_0:
892 return;
893 }
894
895
896 /*
897 * re_activate:
898 * Handle device activation/deactivation requests.
899 */
900 int
901 re_activate(device_t self, enum devact act)
902 {
903 struct rtk_softc *sc = device_private(self);
904 int s, error = 0;
905
906 s = splnet();
907 switch (act) {
908 case DVACT_ACTIVATE:
909 error = EOPNOTSUPP;
910 break;
911 case DVACT_DEACTIVATE:
912 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
913 if_deactivate(&sc->ethercom.ec_if);
914 break;
915 }
916 splx(s);
917
918 return error;
919 }
920
921 /*
922 * re_detach:
923 * Detach a rtk interface.
924 */
925 int
926 re_detach(struct rtk_softc *sc)
927 {
928 struct ifnet *ifp = &sc->ethercom.ec_if;
929 int i;
930
931 /*
932 * Succeed now if there isn't any work to do.
933 */
934 if ((sc->sc_flags & RTK_ATTACHED) == 0)
935 return 0;
936
937 /* Unhook our tick handler. */
938 callout_stop(&sc->rtk_tick_ch);
939
940 /* Detach all PHYs. */
941 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
942
943 /* Delete all remaining media. */
944 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
945
946 ether_ifdetach(ifp);
947 if_detach(ifp);
948
949 /* Destroy DMA maps for RX buffers. */
950 for (i = 0; i < RE_RX_DESC_CNT; i++)
951 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
952 bus_dmamap_destroy(sc->sc_dmat,
953 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
954
955 /* Free DMA'able memory for the RX ring. */
956 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
957 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
958 bus_dmamem_unmap(sc->sc_dmat,
959 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
960 bus_dmamem_free(sc->sc_dmat,
961 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
962
963 /* Destroy DMA maps for TX buffers. */
964 for (i = 0; i < RE_TX_QLEN; i++)
965 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
966 bus_dmamap_destroy(sc->sc_dmat,
967 sc->re_ldata.re_txq[i].txq_dmamap);
968
969 /* Free DMA'able memory for the TX ring. */
970 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
971 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
972 bus_dmamem_unmap(sc->sc_dmat,
973 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
974 bus_dmamem_free(sc->sc_dmat,
975 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
976
977 return 0;
978 }
979
980 /*
981 * re_enable:
982 * Enable the RTL81X9 chip.
983 */
984 static int
985 re_enable(struct rtk_softc *sc)
986 {
987
988 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
989 if ((*sc->sc_enable)(sc) != 0) {
990 printf("%s: device enable failed\n",
991 device_xname(sc->sc_dev));
992 return EIO;
993 }
994 sc->sc_flags |= RTK_ENABLED;
995 }
996 return 0;
997 }
998
999 /*
1000 * re_disable:
1001 * Disable the RTL81X9 chip.
1002 */
1003 static void
1004 re_disable(struct rtk_softc *sc)
1005 {
1006
1007 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1008 (*sc->sc_disable)(sc);
1009 sc->sc_flags &= ~RTK_ENABLED;
1010 }
1011 }
1012
1013 static int
1014 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1015 {
1016 struct mbuf *n = NULL;
1017 bus_dmamap_t map;
1018 struct re_desc *d;
1019 struct re_rxsoft *rxs;
1020 uint32_t cmdstat;
1021 int error;
1022
1023 if (m == NULL) {
1024 MGETHDR(n, M_DONTWAIT, MT_DATA);
1025 if (n == NULL)
1026 return ENOBUFS;
1027
1028 MCLGET(n, M_DONTWAIT);
1029 if ((n->m_flags & M_EXT) == 0) {
1030 m_freem(n);
1031 return ENOBUFS;
1032 }
1033 m = n;
1034 } else
1035 m->m_data = m->m_ext.ext_buf;
1036
1037 /*
1038 * Initialize mbuf length fields and fixup
1039 * alignment so that the frame payload is
1040 * longword aligned.
1041 */
1042 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1043 m->m_data += RE_ETHER_ALIGN;
1044
1045 rxs = &sc->re_ldata.re_rxsoft[idx];
1046 map = rxs->rxs_dmamap;
1047 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1048 BUS_DMA_READ|BUS_DMA_NOWAIT);
1049
1050 if (error)
1051 goto out;
1052
1053 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1054 BUS_DMASYNC_PREREAD);
1055
1056 d = &sc->re_ldata.re_rx_list[idx];
1057 #ifdef DIAGNOSTIC
1058 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1059 cmdstat = le32toh(d->re_cmdstat);
1060 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1061 if (cmdstat & RE_RDESC_STAT_OWN) {
1062 panic("%s: tried to map busy RX descriptor",
1063 device_xname(sc->sc_dev));
1064 }
1065 #endif
1066
1067 rxs->rxs_mbuf = m;
1068
1069 d->re_vlanctl = 0;
1070 cmdstat = map->dm_segs[0].ds_len;
1071 if (idx == (RE_RX_DESC_CNT - 1))
1072 cmdstat |= RE_RDESC_CMD_EOR;
1073 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1074 d->re_cmdstat = htole32(cmdstat);
1075 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1076 cmdstat |= RE_RDESC_CMD_OWN;
1077 d->re_cmdstat = htole32(cmdstat);
1078 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1079
1080 return 0;
1081 out:
1082 if (n != NULL)
1083 m_freem(n);
1084 return ENOMEM;
1085 }
1086
1087 static int
1088 re_tx_list_init(struct rtk_softc *sc)
1089 {
1090 int i;
1091
1092 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1093 for (i = 0; i < RE_TX_QLEN; i++) {
1094 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1095 }
1096
1097 bus_dmamap_sync(sc->sc_dmat,
1098 sc->re_ldata.re_tx_list_map, 0,
1099 sc->re_ldata.re_tx_list_map->dm_mapsize,
1100 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1101 sc->re_ldata.re_txq_prodidx = 0;
1102 sc->re_ldata.re_txq_considx = 0;
1103 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1104 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1105 sc->re_ldata.re_tx_nextfree = 0;
1106
1107 return 0;
1108 }
1109
1110 static int
1111 re_rx_list_init(struct rtk_softc *sc)
1112 {
1113 int i;
1114
1115 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1116
1117 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1118 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1119 return ENOBUFS;
1120 }
1121
1122 sc->re_ldata.re_rx_prodidx = 0;
1123 sc->re_head = sc->re_tail = NULL;
1124
1125 return 0;
1126 }
1127
1128 /*
1129 * RX handler for C+ and 8169. For the gigE chips, we support
1130 * the reception of jumbo frames that have been fragmented
1131 * across multiple 2K mbuf cluster buffers.
1132 */
1133 static void
1134 re_rxeof(struct rtk_softc *sc)
1135 {
1136 struct mbuf *m;
1137 struct ifnet *ifp;
1138 int i, total_len;
1139 struct re_desc *cur_rx;
1140 struct re_rxsoft *rxs;
1141 uint32_t rxstat, rxvlan;
1142
1143 ifp = &sc->ethercom.ec_if;
1144
1145 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1146 cur_rx = &sc->re_ldata.re_rx_list[i];
1147 RE_RXDESCSYNC(sc, i,
1148 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1149 rxstat = le32toh(cur_rx->re_cmdstat);
1150 rxvlan = le32toh(cur_rx->re_vlanctl);
1151 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1152 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1153 break;
1154 }
1155 total_len = rxstat & sc->re_rxlenmask;
1156 rxs = &sc->re_ldata.re_rxsoft[i];
1157 m = rxs->rxs_mbuf;
1158
1159 /* Invalidate the RX mbuf and unload its map */
1160
1161 bus_dmamap_sync(sc->sc_dmat,
1162 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1163 BUS_DMASYNC_POSTREAD);
1164 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1165
1166 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1167 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1168 if (sc->re_head == NULL)
1169 sc->re_head = sc->re_tail = m;
1170 else {
1171 m->m_flags &= ~M_PKTHDR;
1172 sc->re_tail->m_next = m;
1173 sc->re_tail = m;
1174 }
1175 re_newbuf(sc, i, NULL);
1176 continue;
1177 }
1178
1179 /*
1180 * NOTE: for the 8139C+, the frame length field
1181 * is always 12 bits in size, but for the gigE chips,
1182 * it is 13 bits (since the max RX frame length is 16K).
1183 * Unfortunately, all 32 bits in the status word
1184 * were already used, so to make room for the extra
1185 * length bit, RealTek took out the 'frame alignment
1186 * error' bit and shifted the other status bits
1187 * over one slot. The OWN, EOR, FS and LS bits are
1188 * still in the same places. We have already extracted
1189 * the frame length and checked the OWN bit, so rather
1190 * than using an alternate bit mapping, we shift the
1191 * status bits one space to the right so we can evaluate
1192 * them using the 8169 status as though it was in the
1193 * same format as that of the 8139C+.
1194 */
1195 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1196 rxstat >>= 1;
1197
1198 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1199 #ifdef RE_DEBUG
1200 printf("%s: RX error (rxstat = 0x%08x)",
1201 device_xname(sc->sc_dev), rxstat);
1202 if (rxstat & RE_RDESC_STAT_FRALIGN)
1203 printf(", frame alignment error");
1204 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1205 printf(", out of buffer space");
1206 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1207 printf(", FIFO overrun");
1208 if (rxstat & RE_RDESC_STAT_GIANT)
1209 printf(", giant packet");
1210 if (rxstat & RE_RDESC_STAT_RUNT)
1211 printf(", runt packet");
1212 if (rxstat & RE_RDESC_STAT_CRCERR)
1213 printf(", CRC error");
1214 printf("\n");
1215 #endif
1216 ifp->if_ierrors++;
1217 /*
1218 * If this is part of a multi-fragment packet,
1219 * discard all the pieces.
1220 */
1221 if (sc->re_head != NULL) {
1222 m_freem(sc->re_head);
1223 sc->re_head = sc->re_tail = NULL;
1224 }
1225 re_newbuf(sc, i, m);
1226 continue;
1227 }
1228
1229 /*
1230 * If allocating a replacement mbuf fails,
1231 * reload the current one.
1232 */
1233
1234 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1235 ifp->if_ierrors++;
1236 if (sc->re_head != NULL) {
1237 m_freem(sc->re_head);
1238 sc->re_head = sc->re_tail = NULL;
1239 }
1240 re_newbuf(sc, i, m);
1241 continue;
1242 }
1243
1244 if (sc->re_head != NULL) {
1245 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1246 /*
1247 * Special case: if there's 4 bytes or less
1248 * in this buffer, the mbuf can be discarded:
1249 * the last 4 bytes is the CRC, which we don't
1250 * care about anyway.
1251 */
1252 if (m->m_len <= ETHER_CRC_LEN) {
1253 sc->re_tail->m_len -=
1254 (ETHER_CRC_LEN - m->m_len);
1255 m_freem(m);
1256 } else {
1257 m->m_len -= ETHER_CRC_LEN;
1258 m->m_flags &= ~M_PKTHDR;
1259 sc->re_tail->m_next = m;
1260 }
1261 m = sc->re_head;
1262 sc->re_head = sc->re_tail = NULL;
1263 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1264 } else
1265 m->m_pkthdr.len = m->m_len =
1266 (total_len - ETHER_CRC_LEN);
1267
1268 ifp->if_ipackets++;
1269 m->m_pkthdr.rcvif = ifp;
1270
1271 /* Do RX checksumming */
1272
1273 /* Check IP header checksum */
1274 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0 &&
1275 ((sc->sc_quirk & RTKQ_DESCV2) == 0 ||
1276 (rxvlan & RE_RDESC_VLANCTL_IPV4) != 0)) {
1277 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1278 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1279 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1280 }
1281
1282 /* Check TCP/UDP checksum */
1283 if (RE_TCPPKT(rxstat)) {
1284 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1285 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1286 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1287 } else if (RE_UDPPKT(rxstat)) {
1288 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1289 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1290 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1291 }
1292
1293 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1294 VLAN_INPUT_TAG(ifp, m,
1295 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1296 continue);
1297 }
1298 #if NBPFILTER > 0
1299 if (ifp->if_bpf)
1300 bpf_mtap(ifp->if_bpf, m);
1301 #endif
1302 (*ifp->if_input)(ifp, m);
1303 }
1304
1305 sc->re_ldata.re_rx_prodidx = i;
1306 }
1307
1308 static void
1309 re_txeof(struct rtk_softc *sc)
1310 {
1311 struct ifnet *ifp;
1312 struct re_txq *txq;
1313 uint32_t txstat;
1314 int idx, descidx;
1315
1316 ifp = &sc->ethercom.ec_if;
1317
1318 for (idx = sc->re_ldata.re_txq_considx;
1319 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1320 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1321 txq = &sc->re_ldata.re_txq[idx];
1322 KASSERT(txq->txq_mbuf != NULL);
1323
1324 descidx = txq->txq_descidx;
1325 RE_TXDESCSYNC(sc, descidx,
1326 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1327 txstat =
1328 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1329 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1330 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1331 if (txstat & RE_TDESC_CMD_OWN) {
1332 break;
1333 }
1334
1335 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1336 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1337 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1338 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1339 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1340 m_freem(txq->txq_mbuf);
1341 txq->txq_mbuf = NULL;
1342
1343 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1344 ifp->if_collisions++;
1345 if (txstat & RE_TDESC_STAT_TXERRSUM)
1346 ifp->if_oerrors++;
1347 else
1348 ifp->if_opackets++;
1349 }
1350
1351 sc->re_ldata.re_txq_considx = idx;
1352
1353 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1354 ifp->if_flags &= ~IFF_OACTIVE;
1355
1356 /*
1357 * If not all descriptors have been released reaped yet,
1358 * reload the timer so that we will eventually get another
1359 * interrupt that will cause us to re-enter this routine.
1360 * This is done in case the transmitter has gone idle.
1361 */
1362 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1363 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1364 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1365 /*
1366 * Some chips will ignore a second TX request
1367 * issued while an existing transmission is in
1368 * progress. If the transmitter goes idle but
1369 * there are still packets waiting to be sent,
1370 * we need to restart the channel here to flush
1371 * them out. This only seems to be required with
1372 * the PCIe devices.
1373 */
1374 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1375 }
1376 } else
1377 ifp->if_timer = 0;
1378 }
1379
1380 static void
1381 re_tick(void *arg)
1382 {
1383 struct rtk_softc *sc = arg;
1384 int s;
1385
1386 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1387 s = splnet();
1388
1389 mii_tick(&sc->mii);
1390 splx(s);
1391
1392 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1393 }
1394
1395 int
1396 re_intr(void *arg)
1397 {
1398 struct rtk_softc *sc = arg;
1399 struct ifnet *ifp;
1400 uint16_t status;
1401 int handled = 0;
1402
1403 if (!device_has_power(sc->sc_dev))
1404 return 0;
1405
1406 ifp = &sc->ethercom.ec_if;
1407
1408 if ((ifp->if_flags & IFF_UP) == 0)
1409 return 0;
1410
1411 for (;;) {
1412
1413 status = CSR_READ_2(sc, RTK_ISR);
1414 /* If the card has gone away the read returns 0xffff. */
1415 if (status == 0xffff)
1416 break;
1417 if (status) {
1418 handled = 1;
1419 CSR_WRITE_2(sc, RTK_ISR, status);
1420 }
1421
1422 if ((status & RTK_INTRS_CPLUS) == 0)
1423 break;
1424
1425 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1426 re_rxeof(sc);
1427
1428 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1429 RTK_ISR_TX_DESC_UNAVAIL))
1430 re_txeof(sc);
1431
1432 if (status & RTK_ISR_SYSTEM_ERR) {
1433 re_init(ifp);
1434 }
1435
1436 if (status & RTK_ISR_LINKCHG) {
1437 callout_stop(&sc->rtk_tick_ch);
1438 re_tick(sc);
1439 }
1440 }
1441
1442 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1443 re_start(ifp);
1444
1445 return handled;
1446 }
1447
1448
1449
1450 /*
1451 * Main transmit routine for C+ and gigE NICs.
1452 */
1453
1454 static void
1455 re_start(struct ifnet *ifp)
1456 {
1457 struct rtk_softc *sc;
1458 struct mbuf *m;
1459 bus_dmamap_t map;
1460 struct re_txq *txq;
1461 struct re_desc *d;
1462 struct m_tag *mtag;
1463 uint32_t cmdstat, re_flags, vlanctl;
1464 int ofree, idx, error, nsegs, seg;
1465 int startdesc, curdesc, lastdesc;
1466 bool pad;
1467
1468 sc = ifp->if_softc;
1469 ofree = sc->re_ldata.re_txq_free;
1470
1471 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1472
1473 IFQ_POLL(&ifp->if_snd, m);
1474 if (m == NULL)
1475 break;
1476
1477 if (sc->re_ldata.re_txq_free == 0 ||
1478 sc->re_ldata.re_tx_free == 0) {
1479 /* no more free slots left */
1480 ifp->if_flags |= IFF_OACTIVE;
1481 break;
1482 }
1483
1484 /*
1485 * Set up checksum offload. Note: checksum offload bits must
1486 * appear in all descriptors of a multi-descriptor transmit
1487 * attempt. (This is according to testing done with an 8169
1488 * chip. I'm not sure if this is a requirement or a bug.)
1489 */
1490
1491 vlanctl = 0;
1492 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1493 uint32_t segsz = m->m_pkthdr.segsz;
1494
1495 re_flags = RE_TDESC_CMD_LGSEND |
1496 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1497 } else {
1498 /*
1499 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1500 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1501 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1502 */
1503 re_flags = 0;
1504 if ((m->m_pkthdr.csum_flags &
1505 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1506 != 0) {
1507 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1508 re_flags |= RE_TDESC_CMD_IPCSUM;
1509 if (m->m_pkthdr.csum_flags &
1510 M_CSUM_TCPv4) {
1511 re_flags |=
1512 RE_TDESC_CMD_TCPCSUM;
1513 } else if (m->m_pkthdr.csum_flags &
1514 M_CSUM_UDPv4) {
1515 re_flags |=
1516 RE_TDESC_CMD_UDPCSUM;
1517 }
1518 } else {
1519 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1520 if (m->m_pkthdr.csum_flags &
1521 M_CSUM_TCPv4) {
1522 vlanctl |=
1523 RE_TDESC_VLANCTL_TCPCSUM;
1524 } else if (m->m_pkthdr.csum_flags &
1525 M_CSUM_UDPv4) {
1526 vlanctl |=
1527 RE_TDESC_VLANCTL_UDPCSUM;
1528 }
1529 }
1530 }
1531 }
1532
1533 txq = &sc->re_ldata.re_txq[idx];
1534 map = txq->txq_dmamap;
1535 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1536 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1537
1538 if (__predict_false(error)) {
1539 /* XXX try to defrag if EFBIG? */
1540 printf("%s: can't map mbuf (error %d)\n",
1541 device_xname(sc->sc_dev), error);
1542
1543 IFQ_DEQUEUE(&ifp->if_snd, m);
1544 m_freem(m);
1545 ifp->if_oerrors++;
1546 continue;
1547 }
1548
1549 nsegs = map->dm_nsegs;
1550 pad = false;
1551 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1552 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1553 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1554 pad = true;
1555 nsegs++;
1556 }
1557
1558 if (nsegs > sc->re_ldata.re_tx_free) {
1559 /*
1560 * Not enough free descriptors to transmit this packet.
1561 */
1562 ifp->if_flags |= IFF_OACTIVE;
1563 bus_dmamap_unload(sc->sc_dmat, map);
1564 break;
1565 }
1566
1567 IFQ_DEQUEUE(&ifp->if_snd, m);
1568
1569 /*
1570 * Make sure that the caches are synchronized before we
1571 * ask the chip to start DMA for the packet data.
1572 */
1573 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1574 BUS_DMASYNC_PREWRITE);
1575
1576 /*
1577 * Set up hardware VLAN tagging. Note: vlan tag info must
1578 * appear in all descriptors of a multi-descriptor
1579 * transmission attempt.
1580 */
1581 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1582 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1583 RE_TDESC_VLANCTL_TAG;
1584
1585 /*
1586 * Map the segment array into descriptors.
1587 * Note that we set the start-of-frame and
1588 * end-of-frame markers for either TX or RX,
1589 * but they really only have meaning in the TX case.
1590 * (In the RX case, it's the chip that tells us
1591 * where packets begin and end.)
1592 * We also keep track of the end of the ring
1593 * and set the end-of-ring bits as needed,
1594 * and we set the ownership bits in all except
1595 * the very first descriptor. (The caller will
1596 * set this descriptor later when it start
1597 * transmission or reception.)
1598 */
1599 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1600 lastdesc = -1;
1601 for (seg = 0; seg < map->dm_nsegs;
1602 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1603 d = &sc->re_ldata.re_tx_list[curdesc];
1604 #ifdef DIAGNOSTIC
1605 RE_TXDESCSYNC(sc, curdesc,
1606 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1607 cmdstat = le32toh(d->re_cmdstat);
1608 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1609 if (cmdstat & RE_TDESC_STAT_OWN) {
1610 panic("%s: tried to map busy TX descriptor",
1611 device_xname(sc->sc_dev));
1612 }
1613 #endif
1614
1615 d->re_vlanctl = htole32(vlanctl);
1616 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1617 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1618 if (seg == 0)
1619 cmdstat |= RE_TDESC_CMD_SOF;
1620 else
1621 cmdstat |= RE_TDESC_CMD_OWN;
1622 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1623 cmdstat |= RE_TDESC_CMD_EOR;
1624 if (seg == nsegs - 1) {
1625 cmdstat |= RE_TDESC_CMD_EOF;
1626 lastdesc = curdesc;
1627 }
1628 d->re_cmdstat = htole32(cmdstat);
1629 RE_TXDESCSYNC(sc, curdesc,
1630 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1631 }
1632 if (__predict_false(pad)) {
1633 bus_addr_t paddaddr;
1634
1635 d = &sc->re_ldata.re_tx_list[curdesc];
1636 d->re_vlanctl = htole32(vlanctl);
1637 paddaddr = RE_TXPADDADDR(sc);
1638 re_set_bufaddr(d, paddaddr);
1639 cmdstat = re_flags |
1640 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1641 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1642 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1643 cmdstat |= RE_TDESC_CMD_EOR;
1644 d->re_cmdstat = htole32(cmdstat);
1645 RE_TXDESCSYNC(sc, curdesc,
1646 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1647 lastdesc = curdesc;
1648 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1649 }
1650 KASSERT(lastdesc != -1);
1651
1652 /* Transfer ownership of packet to the chip. */
1653
1654 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1655 htole32(RE_TDESC_CMD_OWN);
1656 RE_TXDESCSYNC(sc, startdesc,
1657 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1658
1659 /* update info of TX queue and descriptors */
1660 txq->txq_mbuf = m;
1661 txq->txq_descidx = lastdesc;
1662 txq->txq_nsegs = nsegs;
1663
1664 sc->re_ldata.re_txq_free--;
1665 sc->re_ldata.re_tx_free -= nsegs;
1666 sc->re_ldata.re_tx_nextfree = curdesc;
1667
1668 #if NBPFILTER > 0
1669 /*
1670 * If there's a BPF listener, bounce a copy of this frame
1671 * to him.
1672 */
1673 if (ifp->if_bpf)
1674 bpf_mtap(ifp->if_bpf, m);
1675 #endif
1676 }
1677
1678 if (sc->re_ldata.re_txq_free < ofree) {
1679 /*
1680 * TX packets are enqueued.
1681 */
1682 sc->re_ldata.re_txq_prodidx = idx;
1683
1684 /*
1685 * Start the transmitter to poll.
1686 *
1687 * RealTek put the TX poll request register in a different
1688 * location on the 8169 gigE chip. I don't know why.
1689 */
1690 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1691 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1692 else
1693 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1694
1695 /*
1696 * Use the countdown timer for interrupt moderation.
1697 * 'TX done' interrupts are disabled. Instead, we reset the
1698 * countdown timer, which will begin counting until it hits
1699 * the value in the TIMERINT register, and then trigger an
1700 * interrupt. Each time we write to the TIMERCNT register,
1701 * the timer count is reset to 0.
1702 */
1703 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1704
1705 /*
1706 * Set a timeout in case the chip goes out to lunch.
1707 */
1708 ifp->if_timer = 5;
1709 }
1710 }
1711
1712 static int
1713 re_init(struct ifnet *ifp)
1714 {
1715 struct rtk_softc *sc = ifp->if_softc;
1716 const uint8_t *enaddr;
1717 uint32_t rxcfg = 0;
1718 uint32_t reg;
1719 int error;
1720
1721 if ((error = re_enable(sc)) != 0)
1722 goto out;
1723
1724 /*
1725 * Cancel pending I/O and free all RX/TX buffers.
1726 */
1727 re_stop(ifp, 0);
1728
1729 re_reset(sc);
1730
1731 /*
1732 * Enable C+ RX and TX mode, as well as VLAN stripping and
1733 * RX checksum offload. We must configure the C+ register
1734 * before all others.
1735 */
1736 reg = 0;
1737
1738 /*
1739 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1740 * FreeBSD drivers set these bits anyway (for 8139C+?).
1741 * So far, it works.
1742 */
1743
1744 /*
1745 * XXX: For old 8169 set bit 14.
1746 * For 8169S/8110S and above, do not set bit 14.
1747 */
1748 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1749 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;
1750
1751 if (1) {/* not for 8169S ? */
1752 reg |=
1753 RTK_CPLUSCMD_VLANSTRIP |
1754 (ifp->if_capenable &
1755 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1756 IFCAP_CSUM_UDPv4_Rx) ?
1757 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1758 }
1759
1760 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1761 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1762
1763 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1764 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1765 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1766
1767 DELAY(10000);
1768
1769 /*
1770 * Init our MAC address. Even though the chipset
1771 * documentation doesn't mention it, we need to enter "Config
1772 * register write enable" mode to modify the ID registers.
1773 */
1774 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1775 enaddr = CLLADDR(ifp->if_sadl);
1776 reg = enaddr[0] | (enaddr[1] << 8) |
1777 (enaddr[2] << 16) | (enaddr[3] << 24);
1778 CSR_WRITE_4(sc, RTK_IDR0, reg);
1779 reg = enaddr[4] | (enaddr[5] << 8);
1780 CSR_WRITE_4(sc, RTK_IDR4, reg);
1781 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1782
1783 /*
1784 * For C+ mode, initialize the RX descriptors and mbufs.
1785 */
1786 re_rx_list_init(sc);
1787 re_tx_list_init(sc);
1788
1789 /*
1790 * Load the addresses of the RX and TX lists into the chip.
1791 */
1792 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1793 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1794 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1795 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1796
1797 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1798 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1799 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1800 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1801
1802 /*
1803 * Enable transmit and receive.
1804 */
1805 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1806
1807 /*
1808 * Set the initial TX and RX configuration.
1809 */
1810 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1811 /* test mode is needed only for old 8169 */
1812 CSR_WRITE_4(sc, RTK_TXCFG,
1813 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1814 } else
1815 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1816
1817 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1818
1819 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1820
1821 /* Set the individual bit to receive frames for this host only. */
1822 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1823 rxcfg |= RTK_RXCFG_RX_INDIV;
1824
1825 /* If we want promiscuous mode, set the allframes bit. */
1826 if (ifp->if_flags & IFF_PROMISC)
1827 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1828 else
1829 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1830 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1831
1832 /*
1833 * Set capture broadcast bit to capture broadcast frames.
1834 */
1835 if (ifp->if_flags & IFF_BROADCAST)
1836 rxcfg |= RTK_RXCFG_RX_BROAD;
1837 else
1838 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1839 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1840
1841 /*
1842 * Program the multicast filter, if necessary.
1843 */
1844 rtk_setmulti(sc);
1845
1846 /*
1847 * Enable interrupts.
1848 */
1849 if (sc->re_testmode)
1850 CSR_WRITE_2(sc, RTK_IMR, 0);
1851 else
1852 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1853
1854 /* Start RX/TX process. */
1855 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1856 #ifdef notdef
1857 /* Enable receiver and transmitter. */
1858 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1859 #endif
1860
1861 /*
1862 * Initialize the timer interrupt register so that
1863 * a timer interrupt will be generated once the timer
1864 * reaches a certain number of ticks. The timer is
1865 * reloaded on each transmit. This gives us TX interrupt
1866 * moderation, which dramatically improves TX frame rate.
1867 */
1868
1869 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1870 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1871 else {
1872 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1873
1874 /*
1875 * For 8169 gigE NICs, set the max allowed RX packet
1876 * size so we can receive jumbo frames.
1877 */
1878 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1879 }
1880
1881 if (sc->re_testmode)
1882 return 0;
1883
1884 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1885
1886 ifp->if_flags |= IFF_RUNNING;
1887 ifp->if_flags &= ~IFF_OACTIVE;
1888
1889 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1890
1891 out:
1892 if (error) {
1893 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1894 ifp->if_timer = 0;
1895 printf("%s: interface not running\n",
1896 device_xname(sc->sc_dev));
1897 }
1898
1899 return error;
1900 }
1901
1902 static int
1903 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1904 {
1905 struct rtk_softc *sc = ifp->if_softc;
1906 struct ifreq *ifr = data;
1907 int s, error = 0;
1908
1909 s = splnet();
1910
1911 switch (command) {
1912 case SIOCSIFMTU:
1913 /*
1914 * Disable jumbo frames if it's not supported.
1915 */
1916 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1917 ifr->ifr_mtu > ETHERMTU) {
1918 error = EINVAL;
1919 break;
1920 }
1921
1922 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1923 error = EINVAL;
1924 else if ((error = ifioctl_common(ifp, command, data)) ==
1925 ENETRESET)
1926 error = 0;
1927 break;
1928 default:
1929 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1930 break;
1931
1932 error = 0;
1933
1934 if (command == SIOCSIFCAP)
1935 error = (*ifp->if_init)(ifp);
1936 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1937 ;
1938 else if (ifp->if_flags & IFF_RUNNING)
1939 rtk_setmulti(sc);
1940 break;
1941 }
1942
1943 splx(s);
1944
1945 return error;
1946 }
1947
1948 static void
1949 re_watchdog(struct ifnet *ifp)
1950 {
1951 struct rtk_softc *sc;
1952 int s;
1953
1954 sc = ifp->if_softc;
1955 s = splnet();
1956 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1957 ifp->if_oerrors++;
1958
1959 re_txeof(sc);
1960 re_rxeof(sc);
1961
1962 re_init(ifp);
1963
1964 splx(s);
1965 }
1966
1967 /*
1968 * Stop the adapter and free any mbufs allocated to the
1969 * RX and TX lists.
1970 */
1971 static void
1972 re_stop(struct ifnet *ifp, int disable)
1973 {
1974 int i;
1975 struct rtk_softc *sc = ifp->if_softc;
1976
1977 callout_stop(&sc->rtk_tick_ch);
1978
1979 mii_down(&sc->mii);
1980
1981 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1982 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1983
1984 if (sc->re_head != NULL) {
1985 m_freem(sc->re_head);
1986 sc->re_head = sc->re_tail = NULL;
1987 }
1988
1989 /* Free the TX list buffers. */
1990 for (i = 0; i < RE_TX_QLEN; i++) {
1991 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1992 bus_dmamap_unload(sc->sc_dmat,
1993 sc->re_ldata.re_txq[i].txq_dmamap);
1994 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1995 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1996 }
1997 }
1998
1999 /* Free the RX list buffers. */
2000 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2001 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2002 bus_dmamap_unload(sc->sc_dmat,
2003 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2004 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2005 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2006 }
2007 }
2008
2009 if (disable)
2010 re_disable(sc);
2011
2012 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2013 ifp->if_timer = 0;
2014 }
2015