rtl8169.c revision 1.117 1 /* $NetBSD: rtl8169.c,v 1.117 2009/04/29 15:10:57 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.117 2009/04/29 15:10:57 tsutsui Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115 #include "vlan.h"
116
117 #include <sys/param.h>
118 #include <sys/endian.h>
119 #include <sys/systm.h>
120 #include <sys/sockio.h>
121 #include <sys/mbuf.h>
122 #include <sys/malloc.h>
123 #include <sys/kernel.h>
124 #include <sys/socket.h>
125 #include <sys/device.h>
126
127 #include <net/if.h>
128 #include <net/if_arp.h>
129 #include <net/if_dl.h>
130 #include <net/if_ether.h>
131 #include <net/if_media.h>
132 #include <net/if_vlanvar.h>
133
134 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
136 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
137
138 #if NBPFILTER > 0
139 #include <net/bpf.h>
140 #endif
141
142 #include <sys/bus.h>
143
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146
147 #include <dev/ic/rtl81x9reg.h>
148 #include <dev/ic/rtl81x9var.h>
149
150 #include <dev/ic/rtl8169var.h>
151
152 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
153
154 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
155 static int re_rx_list_init(struct rtk_softc *);
156 static int re_tx_list_init(struct rtk_softc *);
157 static void re_rxeof(struct rtk_softc *);
158 static void re_txeof(struct rtk_softc *);
159 static void re_tick(void *);
160 static void re_start(struct ifnet *);
161 static int re_ioctl(struct ifnet *, u_long, void *);
162 static int re_init(struct ifnet *);
163 static void re_stop(struct ifnet *, int);
164 static void re_watchdog(struct ifnet *);
165
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168
169 static int re_gmii_readreg(struct device *, int, int);
170 static void re_gmii_writereg(struct device *, int, int, int);
171
172 static int re_miibus_readreg(struct device *, int, int);
173 static void re_miibus_writereg(struct device *, int, int, int);
174 static void re_miibus_statchg(struct device *);
175
176 static void re_reset(struct rtk_softc *);
177
178 static inline void
179 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
180 {
181
182 d->re_bufaddr_lo = htole32((uint32_t)addr);
183 if (sizeof(bus_addr_t) == sizeof(uint64_t))
184 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
185 else
186 d->re_bufaddr_hi = 0;
187 }
188
189 static int
190 re_gmii_readreg(device_t dev, int phy, int reg)
191 {
192 struct rtk_softc *sc = device_private(dev);
193 uint32_t rval;
194 int i;
195
196 if (phy != 7)
197 return 0;
198
199 /* Let the rgephy driver read the GMEDIASTAT register */
200
201 if (reg == RTK_GMEDIASTAT) {
202 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
203 return rval;
204 }
205
206 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
207 DELAY(1000);
208
209 for (i = 0; i < RTK_TIMEOUT; i++) {
210 rval = CSR_READ_4(sc, RTK_PHYAR);
211 if (rval & RTK_PHYAR_BUSY)
212 break;
213 DELAY(100);
214 }
215
216 if (i == RTK_TIMEOUT) {
217 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
218 return 0;
219 }
220
221 return rval & RTK_PHYAR_PHYDATA;
222 }
223
224 static void
225 re_gmii_writereg(device_t dev, int phy, int reg, int data)
226 {
227 struct rtk_softc *sc = device_private(dev);
228 uint32_t rval;
229 int i;
230
231 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
232 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
233 DELAY(1000);
234
235 for (i = 0; i < RTK_TIMEOUT; i++) {
236 rval = CSR_READ_4(sc, RTK_PHYAR);
237 if (!(rval & RTK_PHYAR_BUSY))
238 break;
239 DELAY(100);
240 }
241
242 if (i == RTK_TIMEOUT) {
243 printf("%s: PHY write reg %x <- %x failed\n",
244 device_xname(sc->sc_dev), reg, data);
245 }
246 }
247
248 static int
249 re_miibus_readreg(device_t dev, int phy, int reg)
250 {
251 struct rtk_softc *sc = device_private(dev);
252 uint16_t rval = 0;
253 uint16_t re8139_reg = 0;
254 int s;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rval = re_gmii_readreg(dev, phy, reg);
260 splx(s);
261 return rval;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return 0;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 splx(s);
288 return 0;
289 /*
290 * Allow the rlphy driver to read the media status
291 * register. If we have a link partner which does not
292 * support NWAY, this is the register which will tell
293 * us the results of parallel detection.
294 */
295 case RTK_MEDIASTAT:
296 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
297 splx(s);
298 return rval;
299 default:
300 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
301 splx(s);
302 return 0;
303 }
304 rval = CSR_READ_2(sc, re8139_reg);
305 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
306 /* 8139C+ has different bit layout. */
307 rval &= ~(BMCR_LOOP | BMCR_ISO);
308 }
309 splx(s);
310 return rval;
311 }
312
313 static void
314 re_miibus_writereg(device_t dev, int phy, int reg, int data)
315 {
316 struct rtk_softc *sc = device_private(dev);
317 uint16_t re8139_reg = 0;
318 int s;
319
320 s = splnet();
321
322 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
323 re_gmii_writereg(dev, phy, reg, data);
324 splx(s);
325 return;
326 }
327
328 /* Pretend the internal PHY is only at address 0 */
329 if (phy) {
330 splx(s);
331 return;
332 }
333 switch (reg) {
334 case MII_BMCR:
335 re8139_reg = RTK_BMCR;
336 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
337 /* 8139C+ has different bit layout. */
338 data &= ~(BMCR_LOOP | BMCR_ISO);
339 }
340 break;
341 case MII_BMSR:
342 re8139_reg = RTK_BMSR;
343 break;
344 case MII_ANAR:
345 re8139_reg = RTK_ANAR;
346 break;
347 case MII_ANER:
348 re8139_reg = RTK_ANER;
349 break;
350 case MII_ANLPAR:
351 re8139_reg = RTK_LPAR;
352 break;
353 case MII_PHYIDR1:
354 case MII_PHYIDR2:
355 splx(s);
356 return;
357 break;
358 default:
359 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
360 splx(s);
361 return;
362 }
363 CSR_WRITE_2(sc, re8139_reg, data);
364 splx(s);
365 return;
366 }
367
368 static void
369 re_miibus_statchg(device_t dev)
370 {
371
372 return;
373 }
374
375 static void
376 re_reset(struct rtk_softc *sc)
377 {
378 int i;
379
380 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
381
382 for (i = 0; i < RTK_TIMEOUT; i++) {
383 DELAY(10);
384 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
385 break;
386 }
387 if (i == RTK_TIMEOUT)
388 printf("%s: reset never completed!\n",
389 device_xname(sc->sc_dev));
390
391 /*
392 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
393 * but also says "Rtl8169s sigle chip detected".
394 */
395 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
396 CSR_WRITE_1(sc, RTK_LDPS, 1);
397
398 }
399
400 /*
401 * The following routine is designed to test for a defect on some
402 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
403 * lines connected to the bus, however for a 32-bit only card, they
404 * should be pulled high. The result of this defect is that the
405 * NIC will not work right if you plug it into a 64-bit slot: DMA
406 * operations will be done with 64-bit transfers, which will fail
407 * because the 64-bit data lines aren't connected.
408 *
409 * There's no way to work around this (short of talking a soldering
410 * iron to the board), however we can detect it. The method we use
411 * here is to put the NIC into digital loopback mode, set the receiver
412 * to promiscuous mode, and then try to send a frame. We then compare
413 * the frame data we sent to what was received. If the data matches,
414 * then the NIC is working correctly, otherwise we know the user has
415 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
416 * slot. In the latter case, there's no way the NIC can work correctly,
417 * so we print out a message on the console and abort the device attach.
418 */
419
420 int
421 re_diag(struct rtk_softc *sc)
422 {
423 struct ifnet *ifp = &sc->ethercom.ec_if;
424 struct mbuf *m0;
425 struct ether_header *eh;
426 struct re_rxsoft *rxs;
427 struct re_desc *cur_rx;
428 bus_dmamap_t dmamap;
429 uint16_t status;
430 uint32_t rxstat;
431 int total_len, i, s, error = 0;
432 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
433 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
434
435 /* Allocate a single mbuf */
436
437 MGETHDR(m0, M_DONTWAIT, MT_DATA);
438 if (m0 == NULL)
439 return ENOBUFS;
440
441 /*
442 * Initialize the NIC in test mode. This sets the chip up
443 * so that it can send and receive frames, but performs the
444 * following special functions:
445 * - Puts receiver in promiscuous mode
446 * - Enables digital loopback mode
447 * - Leaves interrupts turned off
448 */
449
450 ifp->if_flags |= IFF_PROMISC;
451 sc->re_testmode = 1;
452 re_init(ifp);
453 re_stop(ifp, 0);
454 DELAY(100000);
455 re_init(ifp);
456
457 /* Put some data in the mbuf */
458
459 eh = mtod(m0, struct ether_header *);
460 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
461 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
462 eh->ether_type = htons(ETHERTYPE_IP);
463 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
464
465 /*
466 * Queue the packet, start transmission.
467 */
468
469 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
470 s = splnet();
471 IF_ENQUEUE(&ifp->if_snd, m0);
472 re_start(ifp);
473 splx(s);
474 m0 = NULL;
475
476 /* Wait for it to propagate through the chip */
477
478 DELAY(100000);
479 for (i = 0; i < RTK_TIMEOUT; i++) {
480 status = CSR_READ_2(sc, RTK_ISR);
481 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
482 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
483 break;
484 DELAY(10);
485 }
486 if (i == RTK_TIMEOUT) {
487 aprint_error_dev(sc->sc_dev,
488 "diagnostic failed, failed to receive packet "
489 "in loopback mode\n");
490 error = EIO;
491 goto done;
492 }
493
494 /*
495 * The packet should have been dumped into the first
496 * entry in the RX DMA ring. Grab it from there.
497 */
498
499 rxs = &sc->re_ldata.re_rxsoft[0];
500 dmamap = rxs->rxs_dmamap;
501 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
502 BUS_DMASYNC_POSTREAD);
503 bus_dmamap_unload(sc->sc_dmat, dmamap);
504
505 m0 = rxs->rxs_mbuf;
506 rxs->rxs_mbuf = NULL;
507 eh = mtod(m0, struct ether_header *);
508
509 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
510 cur_rx = &sc->re_ldata.re_rx_list[0];
511 rxstat = le32toh(cur_rx->re_cmdstat);
512 total_len = rxstat & sc->re_rxlenmask;
513
514 if (total_len != ETHER_MIN_LEN) {
515 aprint_error_dev(sc->sc_dev,
516 "diagnostic failed, received short packet\n");
517 error = EIO;
518 goto done;
519 }
520
521 /* Test that the received packet data matches what we sent. */
522
523 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
524 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
525 ntohs(eh->ether_type) != ETHERTYPE_IP) {
526 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
527 "expected TX data: %s/%s/0x%x\n"
528 "received RX data: %s/%s/0x%x\n"
529 "You may have a defective 32-bit NIC plugged "
530 "into a 64-bit PCI slot.\n"
531 "Please re-install the NIC in a 32-bit slot "
532 "for proper operation.\n"
533 "Read the re(4) man page for more details.\n" ,
534 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
535 ether_sprintf(eh->ether_dhost),
536 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
537 error = EIO;
538 }
539
540 done:
541 /* Turn interface off, release resources */
542
543 sc->re_testmode = 0;
544 ifp->if_flags &= ~IFF_PROMISC;
545 re_stop(ifp, 0);
546 if (m0 != NULL)
547 m_freem(m0);
548
549 return error;
550 }
551
552
553 /*
554 * Attach the interface. Allocate softc structures, do ifmedia
555 * setup and ethernet/BPF attach.
556 */
557 void
558 re_attach(struct rtk_softc *sc)
559 {
560 uint8_t eaddr[ETHER_ADDR_LEN];
561 uint16_t val;
562 struct ifnet *ifp;
563 int error = 0, i, addr_len;
564
565 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
566 uint32_t hwrev;
567
568 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
569 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
570 /* These rev numbers are taken from Realtek's driver */
571 switch (hwrev) {
572 case RTK_HWREV_8169:
573 /* XXX not in the Realtek driver */
574 sc->sc_rev = 1;
575 sc->sc_quirk |= RTKQ_8169NONS;
576 break;
577 case RTK_HWREV_8169S:
578 case RTK_HWREV_8110S:
579 sc->sc_rev = 3;
580 sc->sc_quirk |= RTKQ_MACLDPS;
581 break;
582 case RTK_HWREV_8169_8110SB:
583 sc->sc_rev = 4;
584 sc->sc_quirk |= RTKQ_MACLDPS;
585 break;
586 case RTK_HWREV_8169_8110SC:
587 sc->sc_rev = 5;
588 sc->sc_quirk |= RTKQ_MACLDPS;
589 break;
590 case RTK_HWREV_8101E:
591 sc->sc_rev = 11;
592 sc->sc_quirk |= RTKQ_NOJUMBO;
593 break;
594 case RTK_HWREV_8168_SPIN1:
595 sc->sc_rev = 21;
596 sc->sc_quirk |= RTKQ_MACSTAT;
597 break;
598 case RTK_HWREV_8168_SPIN2:
599 sc->sc_rev = 22;
600 sc->sc_quirk |= RTKQ_MACSTAT;
601 break;
602 case RTK_HWREV_8168_SPIN3:
603 sc->sc_rev = 23;
604 sc->sc_quirk |= RTKQ_MACSTAT;
605 break;
606 case RTK_HWREV_8168C:
607 case RTK_HWREV_8168C_SPIN2:
608 case RTK_HWREV_8168CP:
609 case RTK_HWREV_8168D:
610 sc->sc_rev = 24;
611 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
612 RTKQ_MACSTAT | RTKQ_CMDSTOP;
613 /*
614 * From FreeBSD driver:
615 *
616 * These (8168/8111) controllers support jumbo frame
617 * but it seems that enabling it requires touching
618 * additional magic registers. Depending on MAC
619 * revisions some controllers need to disable
620 * checksum offload. So disable jumbo frame until
621 * I have better idea what it really requires to
622 * make it support.
623 * RTL8168C/CP : supports up to 6KB jumbo frame.
624 * RTL8111C/CP : supports up to 9KB jumbo frame.
625 */
626 sc->sc_quirk |= RTKQ_NOJUMBO;
627 break;
628 case RTK_HWREV_8102E:
629 case RTK_HWREV_8102EL:
630 case RTK_HWREV_8102EL_SPIN2:
631 sc->sc_rev = 25;
632 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
633 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
634 break;
635 case RTK_HWREV_8100E:
636 case RTK_HWREV_8100E_SPIN2:
637 /* XXX not in the Realtek driver */
638 sc->sc_rev = 0;
639 sc->sc_quirk |= RTKQ_NOJUMBO;
640 break;
641 default:
642 aprint_normal_dev(sc->sc_dev,
643 "Unknown revision (0x%08x)\n", hwrev);
644 sc->sc_rev = 0;
645 /* assume the latest features */
646 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
647 sc->sc_quirk |= RTKQ_NOJUMBO;
648 }
649
650 /* Set RX length mask */
651 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
652 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
653 } else {
654 sc->sc_quirk |= RTKQ_NOJUMBO;
655
656 /* Set RX length mask */
657 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
658 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
659 }
660
661 /* Reset the adapter. */
662 re_reset(sc);
663
664 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
665 /*
666 * Get station address from ID registers.
667 */
668 for (i = 0; i < ETHER_ADDR_LEN; i++)
669 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
670 } else {
671 /*
672 * Get station address from the EEPROM.
673 */
674 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
675 addr_len = RTK_EEADDR_LEN1;
676 else
677 addr_len = RTK_EEADDR_LEN0;
678
679 /*
680 * Get station address from the EEPROM.
681 */
682 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
683 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
684 eaddr[(i * 2) + 0] = val & 0xff;
685 eaddr[(i * 2) + 1] = val >> 8;
686 }
687 }
688
689 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
690 ether_sprintf(eaddr));
691
692 if (sc->re_ldata.re_tx_desc_cnt >
693 PAGE_SIZE / sizeof(struct re_desc)) {
694 sc->re_ldata.re_tx_desc_cnt =
695 PAGE_SIZE / sizeof(struct re_desc);
696 }
697
698 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
699 sc->re_ldata.re_tx_desc_cnt);
700 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
701
702 /* Allocate DMA'able memory for the TX ring */
703 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
704 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
705 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
706 aprint_error_dev(sc->sc_dev,
707 "can't allocate tx listseg, error = %d\n", error);
708 goto fail_0;
709 }
710
711 /* Load the map for the TX ring. */
712 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
713 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
714 (void **)&sc->re_ldata.re_tx_list,
715 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
716 aprint_error_dev(sc->sc_dev,
717 "can't map tx list, error = %d\n", error);
718 goto fail_1;
719 }
720 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
721
722 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
723 RE_TX_LIST_SZ(sc), 0, 0,
724 &sc->re_ldata.re_tx_list_map)) != 0) {
725 aprint_error_dev(sc->sc_dev,
726 "can't create tx list map, error = %d\n", error);
727 goto fail_2;
728 }
729
730
731 if ((error = bus_dmamap_load(sc->sc_dmat,
732 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
733 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
734 aprint_error_dev(sc->sc_dev,
735 "can't load tx list, error = %d\n", error);
736 goto fail_3;
737 }
738
739 /* Create DMA maps for TX buffers */
740 for (i = 0; i < RE_TX_QLEN; i++) {
741 error = bus_dmamap_create(sc->sc_dmat,
742 round_page(IP_MAXPACKET),
743 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
744 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
745 if (error) {
746 aprint_error_dev(sc->sc_dev,
747 "can't create DMA map for TX\n");
748 goto fail_4;
749 }
750 }
751
752 /* Allocate DMA'able memory for the RX ring */
753 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
754 if ((error = bus_dmamem_alloc(sc->sc_dmat,
755 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
756 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
757 aprint_error_dev(sc->sc_dev,
758 "can't allocate rx listseg, error = %d\n", error);
759 goto fail_4;
760 }
761
762 /* Load the map for the RX ring. */
763 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
764 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
765 (void **)&sc->re_ldata.re_rx_list,
766 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
767 aprint_error_dev(sc->sc_dev,
768 "can't map rx list, error = %d\n", error);
769 goto fail_5;
770 }
771 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
772
773 if ((error = bus_dmamap_create(sc->sc_dmat,
774 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
775 &sc->re_ldata.re_rx_list_map)) != 0) {
776 aprint_error_dev(sc->sc_dev,
777 "can't create rx list map, error = %d\n", error);
778 goto fail_6;
779 }
780
781 if ((error = bus_dmamap_load(sc->sc_dmat,
782 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
783 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
784 aprint_error_dev(sc->sc_dev,
785 "can't load rx list, error = %d\n", error);
786 goto fail_7;
787 }
788
789 /* Create DMA maps for RX buffers */
790 for (i = 0; i < RE_RX_DESC_CNT; i++) {
791 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
792 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
793 if (error) {
794 aprint_error_dev(sc->sc_dev,
795 "can't create DMA map for RX\n");
796 goto fail_8;
797 }
798 }
799
800 /*
801 * Record interface as attached. From here, we should not fail.
802 */
803 sc->sc_flags |= RTK_ATTACHED;
804
805 ifp = &sc->ethercom.ec_if;
806 ifp->if_softc = sc;
807 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
808 ifp->if_mtu = ETHERMTU;
809 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
810 ifp->if_ioctl = re_ioctl;
811 sc->ethercom.ec_capabilities |=
812 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
813 ifp->if_start = re_start;
814 ifp->if_stop = re_stop;
815
816 /*
817 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
818 * so we have a workaround to handle the bug by padding
819 * such packets manually.
820 */
821 ifp->if_capabilities |=
822 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
823 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
824 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
825 IFCAP_TSOv4;
826
827 /*
828 * XXX
829 * Still have no idea how to make TSO work on 8168C, 8168CP,
830 * 8102E, 8111C and 8111CP.
831 */
832 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
833 ifp->if_capabilities &= ~IFCAP_TSOv4;
834
835 ifp->if_watchdog = re_watchdog;
836 ifp->if_init = re_init;
837 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
838 ifp->if_capenable = ifp->if_capabilities;
839 IFQ_SET_READY(&ifp->if_snd);
840
841 callout_init(&sc->rtk_tick_ch, 0);
842
843 /* Do MII setup */
844 sc->mii.mii_ifp = ifp;
845 sc->mii.mii_readreg = re_miibus_readreg;
846 sc->mii.mii_writereg = re_miibus_writereg;
847 sc->mii.mii_statchg = re_miibus_statchg;
848 sc->ethercom.ec_mii = &sc->mii;
849 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
850 ether_mediastatus);
851 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
852 MII_OFFSET_ANY, 0);
853 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
854
855 /*
856 * Call MI attach routine.
857 */
858 if_attach(ifp);
859 ether_ifattach(ifp, eaddr);
860
861 return;
862
863 fail_8:
864 /* Destroy DMA maps for RX buffers. */
865 for (i = 0; i < RE_RX_DESC_CNT; i++)
866 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
867 bus_dmamap_destroy(sc->sc_dmat,
868 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
869
870 /* Free DMA'able memory for the RX ring. */
871 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
872 fail_7:
873 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
874 fail_6:
875 bus_dmamem_unmap(sc->sc_dmat,
876 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
877 fail_5:
878 bus_dmamem_free(sc->sc_dmat,
879 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
880
881 fail_4:
882 /* Destroy DMA maps for TX buffers. */
883 for (i = 0; i < RE_TX_QLEN; i++)
884 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
885 bus_dmamap_destroy(sc->sc_dmat,
886 sc->re_ldata.re_txq[i].txq_dmamap);
887
888 /* Free DMA'able memory for the TX ring. */
889 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
890 fail_3:
891 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
892 fail_2:
893 bus_dmamem_unmap(sc->sc_dmat,
894 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
895 fail_1:
896 bus_dmamem_free(sc->sc_dmat,
897 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
898 fail_0:
899 return;
900 }
901
902
903 /*
904 * re_activate:
905 * Handle device activation/deactivation requests.
906 */
907 int
908 re_activate(device_t self, enum devact act)
909 {
910 struct rtk_softc *sc = device_private(self);
911 int s, error = 0;
912
913 s = splnet();
914 switch (act) {
915 case DVACT_ACTIVATE:
916 error = EOPNOTSUPP;
917 break;
918 case DVACT_DEACTIVATE:
919 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
920 if_deactivate(&sc->ethercom.ec_if);
921 break;
922 }
923 splx(s);
924
925 return error;
926 }
927
928 /*
929 * re_detach:
930 * Detach a rtk interface.
931 */
932 int
933 re_detach(struct rtk_softc *sc)
934 {
935 struct ifnet *ifp = &sc->ethercom.ec_if;
936 int i;
937
938 /*
939 * Succeed now if there isn't any work to do.
940 */
941 if ((sc->sc_flags & RTK_ATTACHED) == 0)
942 return 0;
943
944 /* Unhook our tick handler. */
945 callout_stop(&sc->rtk_tick_ch);
946
947 /* Detach all PHYs. */
948 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
949
950 /* Delete all remaining media. */
951 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
952
953 ether_ifdetach(ifp);
954 if_detach(ifp);
955
956 /* Destroy DMA maps for RX buffers. */
957 for (i = 0; i < RE_RX_DESC_CNT; i++)
958 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
959 bus_dmamap_destroy(sc->sc_dmat,
960 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
961
962 /* Free DMA'able memory for the RX ring. */
963 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
964 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
965 bus_dmamem_unmap(sc->sc_dmat,
966 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
967 bus_dmamem_free(sc->sc_dmat,
968 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
969
970 /* Destroy DMA maps for TX buffers. */
971 for (i = 0; i < RE_TX_QLEN; i++)
972 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
973 bus_dmamap_destroy(sc->sc_dmat,
974 sc->re_ldata.re_txq[i].txq_dmamap);
975
976 /* Free DMA'able memory for the TX ring. */
977 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
978 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
979 bus_dmamem_unmap(sc->sc_dmat,
980 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
981 bus_dmamem_free(sc->sc_dmat,
982 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
983
984 return 0;
985 }
986
987 /*
988 * re_enable:
989 * Enable the RTL81X9 chip.
990 */
991 static int
992 re_enable(struct rtk_softc *sc)
993 {
994
995 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
996 if ((*sc->sc_enable)(sc) != 0) {
997 printf("%s: device enable failed\n",
998 device_xname(sc->sc_dev));
999 return EIO;
1000 }
1001 sc->sc_flags |= RTK_ENABLED;
1002 }
1003 return 0;
1004 }
1005
1006 /*
1007 * re_disable:
1008 * Disable the RTL81X9 chip.
1009 */
1010 static void
1011 re_disable(struct rtk_softc *sc)
1012 {
1013
1014 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1015 (*sc->sc_disable)(sc);
1016 sc->sc_flags &= ~RTK_ENABLED;
1017 }
1018 }
1019
1020 static int
1021 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1022 {
1023 struct mbuf *n = NULL;
1024 bus_dmamap_t map;
1025 struct re_desc *d;
1026 struct re_rxsoft *rxs;
1027 uint32_t cmdstat;
1028 int error;
1029
1030 if (m == NULL) {
1031 MGETHDR(n, M_DONTWAIT, MT_DATA);
1032 if (n == NULL)
1033 return ENOBUFS;
1034
1035 MCLGET(n, M_DONTWAIT);
1036 if ((n->m_flags & M_EXT) == 0) {
1037 m_freem(n);
1038 return ENOBUFS;
1039 }
1040 m = n;
1041 } else
1042 m->m_data = m->m_ext.ext_buf;
1043
1044 /*
1045 * Initialize mbuf length fields and fixup
1046 * alignment so that the frame payload is
1047 * longword aligned.
1048 */
1049 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1050 m->m_data += RE_ETHER_ALIGN;
1051
1052 rxs = &sc->re_ldata.re_rxsoft[idx];
1053 map = rxs->rxs_dmamap;
1054 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1055 BUS_DMA_READ|BUS_DMA_NOWAIT);
1056
1057 if (error)
1058 goto out;
1059
1060 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1061 BUS_DMASYNC_PREREAD);
1062
1063 d = &sc->re_ldata.re_rx_list[idx];
1064 #ifdef DIAGNOSTIC
1065 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1066 cmdstat = le32toh(d->re_cmdstat);
1067 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1068 if (cmdstat & RE_RDESC_STAT_OWN) {
1069 panic("%s: tried to map busy RX descriptor",
1070 device_xname(sc->sc_dev));
1071 }
1072 #endif
1073
1074 rxs->rxs_mbuf = m;
1075
1076 d->re_vlanctl = 0;
1077 cmdstat = map->dm_segs[0].ds_len;
1078 if (idx == (RE_RX_DESC_CNT - 1))
1079 cmdstat |= RE_RDESC_CMD_EOR;
1080 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1081 d->re_cmdstat = htole32(cmdstat);
1082 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1083 cmdstat |= RE_RDESC_CMD_OWN;
1084 d->re_cmdstat = htole32(cmdstat);
1085 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1086
1087 return 0;
1088 out:
1089 if (n != NULL)
1090 m_freem(n);
1091 return ENOMEM;
1092 }
1093
1094 static int
1095 re_tx_list_init(struct rtk_softc *sc)
1096 {
1097 int i;
1098
1099 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1100 for (i = 0; i < RE_TX_QLEN; i++) {
1101 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1102 }
1103
1104 bus_dmamap_sync(sc->sc_dmat,
1105 sc->re_ldata.re_tx_list_map, 0,
1106 sc->re_ldata.re_tx_list_map->dm_mapsize,
1107 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1108 sc->re_ldata.re_txq_prodidx = 0;
1109 sc->re_ldata.re_txq_considx = 0;
1110 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1111 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1112 sc->re_ldata.re_tx_nextfree = 0;
1113
1114 return 0;
1115 }
1116
1117 static int
1118 re_rx_list_init(struct rtk_softc *sc)
1119 {
1120 int i;
1121
1122 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1123
1124 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1125 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1126 return ENOBUFS;
1127 }
1128
1129 sc->re_ldata.re_rx_prodidx = 0;
1130 sc->re_head = sc->re_tail = NULL;
1131
1132 return 0;
1133 }
1134
1135 /*
1136 * RX handler for C+ and 8169. For the gigE chips, we support
1137 * the reception of jumbo frames that have been fragmented
1138 * across multiple 2K mbuf cluster buffers.
1139 */
1140 static void
1141 re_rxeof(struct rtk_softc *sc)
1142 {
1143 struct mbuf *m;
1144 struct ifnet *ifp;
1145 int i, total_len;
1146 struct re_desc *cur_rx;
1147 struct re_rxsoft *rxs;
1148 uint32_t rxstat, rxvlan;
1149
1150 ifp = &sc->ethercom.ec_if;
1151
1152 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1153 cur_rx = &sc->re_ldata.re_rx_list[i];
1154 RE_RXDESCSYNC(sc, i,
1155 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1156 rxstat = le32toh(cur_rx->re_cmdstat);
1157 rxvlan = le32toh(cur_rx->re_vlanctl);
1158 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1159 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1160 break;
1161 }
1162 total_len = rxstat & sc->re_rxlenmask;
1163 rxs = &sc->re_ldata.re_rxsoft[i];
1164 m = rxs->rxs_mbuf;
1165
1166 /* Invalidate the RX mbuf and unload its map */
1167
1168 bus_dmamap_sync(sc->sc_dmat,
1169 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1170 BUS_DMASYNC_POSTREAD);
1171 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1172
1173 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1174 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1175 if (sc->re_head == NULL)
1176 sc->re_head = sc->re_tail = m;
1177 else {
1178 m->m_flags &= ~M_PKTHDR;
1179 sc->re_tail->m_next = m;
1180 sc->re_tail = m;
1181 }
1182 re_newbuf(sc, i, NULL);
1183 continue;
1184 }
1185
1186 /*
1187 * NOTE: for the 8139C+, the frame length field
1188 * is always 12 bits in size, but for the gigE chips,
1189 * it is 13 bits (since the max RX frame length is 16K).
1190 * Unfortunately, all 32 bits in the status word
1191 * were already used, so to make room for the extra
1192 * length bit, RealTek took out the 'frame alignment
1193 * error' bit and shifted the other status bits
1194 * over one slot. The OWN, EOR, FS and LS bits are
1195 * still in the same places. We have already extracted
1196 * the frame length and checked the OWN bit, so rather
1197 * than using an alternate bit mapping, we shift the
1198 * status bits one space to the right so we can evaluate
1199 * them using the 8169 status as though it was in the
1200 * same format as that of the 8139C+.
1201 */
1202 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1203 rxstat >>= 1;
1204
1205 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1206 #ifdef RE_DEBUG
1207 printf("%s: RX error (rxstat = 0x%08x)",
1208 device_xname(sc->sc_dev), rxstat);
1209 if (rxstat & RE_RDESC_STAT_FRALIGN)
1210 printf(", frame alignment error");
1211 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1212 printf(", out of buffer space");
1213 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1214 printf(", FIFO overrun");
1215 if (rxstat & RE_RDESC_STAT_GIANT)
1216 printf(", giant packet");
1217 if (rxstat & RE_RDESC_STAT_RUNT)
1218 printf(", runt packet");
1219 if (rxstat & RE_RDESC_STAT_CRCERR)
1220 printf(", CRC error");
1221 printf("\n");
1222 #endif
1223 ifp->if_ierrors++;
1224 /*
1225 * If this is part of a multi-fragment packet,
1226 * discard all the pieces.
1227 */
1228 if (sc->re_head != NULL) {
1229 m_freem(sc->re_head);
1230 sc->re_head = sc->re_tail = NULL;
1231 }
1232 re_newbuf(sc, i, m);
1233 continue;
1234 }
1235
1236 /*
1237 * If allocating a replacement mbuf fails,
1238 * reload the current one.
1239 */
1240
1241 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1242 ifp->if_ierrors++;
1243 if (sc->re_head != NULL) {
1244 m_freem(sc->re_head);
1245 sc->re_head = sc->re_tail = NULL;
1246 }
1247 re_newbuf(sc, i, m);
1248 continue;
1249 }
1250
1251 if (sc->re_head != NULL) {
1252 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1253 /*
1254 * Special case: if there's 4 bytes or less
1255 * in this buffer, the mbuf can be discarded:
1256 * the last 4 bytes is the CRC, which we don't
1257 * care about anyway.
1258 */
1259 if (m->m_len <= ETHER_CRC_LEN) {
1260 sc->re_tail->m_len -=
1261 (ETHER_CRC_LEN - m->m_len);
1262 m_freem(m);
1263 } else {
1264 m->m_len -= ETHER_CRC_LEN;
1265 m->m_flags &= ~M_PKTHDR;
1266 sc->re_tail->m_next = m;
1267 }
1268 m = sc->re_head;
1269 sc->re_head = sc->re_tail = NULL;
1270 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1271 } else
1272 m->m_pkthdr.len = m->m_len =
1273 (total_len - ETHER_CRC_LEN);
1274
1275 ifp->if_ipackets++;
1276 m->m_pkthdr.rcvif = ifp;
1277
1278 /* Do RX checksumming */
1279
1280 /* Check IP header checksum */
1281 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0 &&
1282 ((sc->sc_quirk & RTKQ_DESCV2) == 0 ||
1283 (rxvlan & RE_RDESC_VLANCTL_IPV4) != 0)) {
1284 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1285 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1286 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1287 }
1288
1289 /* Check TCP/UDP checksum */
1290 if (RE_TCPPKT(rxstat)) {
1291 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1292 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1293 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1294 } else if (RE_UDPPKT(rxstat)) {
1295 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1296 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1297 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1298 }
1299
1300 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1301 VLAN_INPUT_TAG(ifp, m,
1302 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1303 continue);
1304 }
1305 #if NBPFILTER > 0
1306 if (ifp->if_bpf)
1307 bpf_mtap(ifp->if_bpf, m);
1308 #endif
1309 (*ifp->if_input)(ifp, m);
1310 }
1311
1312 sc->re_ldata.re_rx_prodidx = i;
1313 }
1314
1315 static void
1316 re_txeof(struct rtk_softc *sc)
1317 {
1318 struct ifnet *ifp;
1319 struct re_txq *txq;
1320 uint32_t txstat;
1321 int idx, descidx;
1322
1323 ifp = &sc->ethercom.ec_if;
1324
1325 for (idx = sc->re_ldata.re_txq_considx;
1326 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1327 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1328 txq = &sc->re_ldata.re_txq[idx];
1329 KASSERT(txq->txq_mbuf != NULL);
1330
1331 descidx = txq->txq_descidx;
1332 RE_TXDESCSYNC(sc, descidx,
1333 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1334 txstat =
1335 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1336 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1337 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1338 if (txstat & RE_TDESC_CMD_OWN) {
1339 break;
1340 }
1341
1342 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1343 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1344 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1345 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1346 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1347 m_freem(txq->txq_mbuf);
1348 txq->txq_mbuf = NULL;
1349
1350 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1351 ifp->if_collisions++;
1352 if (txstat & RE_TDESC_STAT_TXERRSUM)
1353 ifp->if_oerrors++;
1354 else
1355 ifp->if_opackets++;
1356 }
1357
1358 sc->re_ldata.re_txq_considx = idx;
1359
1360 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1361 ifp->if_flags &= ~IFF_OACTIVE;
1362
1363 /*
1364 * If not all descriptors have been released reaped yet,
1365 * reload the timer so that we will eventually get another
1366 * interrupt that will cause us to re-enter this routine.
1367 * This is done in case the transmitter has gone idle.
1368 */
1369 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1370 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1371 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1372 /*
1373 * Some chips will ignore a second TX request
1374 * issued while an existing transmission is in
1375 * progress. If the transmitter goes idle but
1376 * there are still packets waiting to be sent,
1377 * we need to restart the channel here to flush
1378 * them out. This only seems to be required with
1379 * the PCIe devices.
1380 */
1381 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1382 }
1383 } else
1384 ifp->if_timer = 0;
1385 }
1386
1387 static void
1388 re_tick(void *arg)
1389 {
1390 struct rtk_softc *sc = arg;
1391 int s;
1392
1393 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1394 s = splnet();
1395
1396 mii_tick(&sc->mii);
1397 splx(s);
1398
1399 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1400 }
1401
1402 int
1403 re_intr(void *arg)
1404 {
1405 struct rtk_softc *sc = arg;
1406 struct ifnet *ifp;
1407 uint16_t status;
1408 int handled = 0;
1409
1410 if (!device_has_power(sc->sc_dev))
1411 return 0;
1412
1413 ifp = &sc->ethercom.ec_if;
1414
1415 if ((ifp->if_flags & IFF_UP) == 0)
1416 return 0;
1417
1418 for (;;) {
1419
1420 status = CSR_READ_2(sc, RTK_ISR);
1421 /* If the card has gone away the read returns 0xffff. */
1422 if (status == 0xffff)
1423 break;
1424 if (status) {
1425 handled = 1;
1426 CSR_WRITE_2(sc, RTK_ISR, status);
1427 }
1428
1429 if ((status & RTK_INTRS_CPLUS) == 0)
1430 break;
1431
1432 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1433 re_rxeof(sc);
1434
1435 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1436 RTK_ISR_TX_DESC_UNAVAIL))
1437 re_txeof(sc);
1438
1439 if (status & RTK_ISR_SYSTEM_ERR) {
1440 re_init(ifp);
1441 }
1442
1443 if (status & RTK_ISR_LINKCHG) {
1444 callout_stop(&sc->rtk_tick_ch);
1445 re_tick(sc);
1446 }
1447 }
1448
1449 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1450 re_start(ifp);
1451
1452 return handled;
1453 }
1454
1455
1456
1457 /*
1458 * Main transmit routine for C+ and gigE NICs.
1459 */
1460
1461 static void
1462 re_start(struct ifnet *ifp)
1463 {
1464 struct rtk_softc *sc;
1465 struct mbuf *m;
1466 bus_dmamap_t map;
1467 struct re_txq *txq;
1468 struct re_desc *d;
1469 struct m_tag *mtag;
1470 uint32_t cmdstat, re_flags, vlanctl;
1471 int ofree, idx, error, nsegs, seg;
1472 int startdesc, curdesc, lastdesc;
1473 bool pad;
1474
1475 sc = ifp->if_softc;
1476 ofree = sc->re_ldata.re_txq_free;
1477
1478 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1479
1480 IFQ_POLL(&ifp->if_snd, m);
1481 if (m == NULL)
1482 break;
1483
1484 if (sc->re_ldata.re_txq_free == 0 ||
1485 sc->re_ldata.re_tx_free == 0) {
1486 /* no more free slots left */
1487 ifp->if_flags |= IFF_OACTIVE;
1488 break;
1489 }
1490
1491 /*
1492 * Set up checksum offload. Note: checksum offload bits must
1493 * appear in all descriptors of a multi-descriptor transmit
1494 * attempt. (This is according to testing done with an 8169
1495 * chip. I'm not sure if this is a requirement or a bug.)
1496 */
1497
1498 vlanctl = 0;
1499 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1500 uint32_t segsz = m->m_pkthdr.segsz;
1501
1502 re_flags = RE_TDESC_CMD_LGSEND |
1503 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1504 } else {
1505 /*
1506 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1507 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1508 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1509 */
1510 re_flags = 0;
1511 if ((m->m_pkthdr.csum_flags &
1512 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1513 != 0) {
1514 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1515 re_flags |= RE_TDESC_CMD_IPCSUM;
1516 if (m->m_pkthdr.csum_flags &
1517 M_CSUM_TCPv4) {
1518 re_flags |=
1519 RE_TDESC_CMD_TCPCSUM;
1520 } else if (m->m_pkthdr.csum_flags &
1521 M_CSUM_UDPv4) {
1522 re_flags |=
1523 RE_TDESC_CMD_UDPCSUM;
1524 }
1525 } else {
1526 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1527 if (m->m_pkthdr.csum_flags &
1528 M_CSUM_TCPv4) {
1529 vlanctl |=
1530 RE_TDESC_VLANCTL_TCPCSUM;
1531 } else if (m->m_pkthdr.csum_flags &
1532 M_CSUM_UDPv4) {
1533 vlanctl |=
1534 RE_TDESC_VLANCTL_UDPCSUM;
1535 }
1536 }
1537 }
1538 }
1539
1540 txq = &sc->re_ldata.re_txq[idx];
1541 map = txq->txq_dmamap;
1542 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1543 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1544
1545 if (__predict_false(error)) {
1546 /* XXX try to defrag if EFBIG? */
1547 printf("%s: can't map mbuf (error %d)\n",
1548 device_xname(sc->sc_dev), error);
1549
1550 IFQ_DEQUEUE(&ifp->if_snd, m);
1551 m_freem(m);
1552 ifp->if_oerrors++;
1553 continue;
1554 }
1555
1556 nsegs = map->dm_nsegs;
1557 pad = false;
1558 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1559 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1560 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1561 pad = true;
1562 nsegs++;
1563 }
1564
1565 if (nsegs > sc->re_ldata.re_tx_free) {
1566 /*
1567 * Not enough free descriptors to transmit this packet.
1568 */
1569 ifp->if_flags |= IFF_OACTIVE;
1570 bus_dmamap_unload(sc->sc_dmat, map);
1571 break;
1572 }
1573
1574 IFQ_DEQUEUE(&ifp->if_snd, m);
1575
1576 /*
1577 * Make sure that the caches are synchronized before we
1578 * ask the chip to start DMA for the packet data.
1579 */
1580 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1581 BUS_DMASYNC_PREWRITE);
1582
1583 /*
1584 * Set up hardware VLAN tagging. Note: vlan tag info must
1585 * appear in all descriptors of a multi-descriptor
1586 * transmission attempt.
1587 */
1588 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1589 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1590 RE_TDESC_VLANCTL_TAG;
1591
1592 /*
1593 * Map the segment array into descriptors.
1594 * Note that we set the start-of-frame and
1595 * end-of-frame markers for either TX or RX,
1596 * but they really only have meaning in the TX case.
1597 * (In the RX case, it's the chip that tells us
1598 * where packets begin and end.)
1599 * We also keep track of the end of the ring
1600 * and set the end-of-ring bits as needed,
1601 * and we set the ownership bits in all except
1602 * the very first descriptor. (The caller will
1603 * set this descriptor later when it start
1604 * transmission or reception.)
1605 */
1606 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1607 lastdesc = -1;
1608 for (seg = 0; seg < map->dm_nsegs;
1609 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1610 d = &sc->re_ldata.re_tx_list[curdesc];
1611 #ifdef DIAGNOSTIC
1612 RE_TXDESCSYNC(sc, curdesc,
1613 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1614 cmdstat = le32toh(d->re_cmdstat);
1615 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1616 if (cmdstat & RE_TDESC_STAT_OWN) {
1617 panic("%s: tried to map busy TX descriptor",
1618 device_xname(sc->sc_dev));
1619 }
1620 #endif
1621
1622 d->re_vlanctl = htole32(vlanctl);
1623 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1624 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1625 if (seg == 0)
1626 cmdstat |= RE_TDESC_CMD_SOF;
1627 else
1628 cmdstat |= RE_TDESC_CMD_OWN;
1629 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1630 cmdstat |= RE_TDESC_CMD_EOR;
1631 if (seg == nsegs - 1) {
1632 cmdstat |= RE_TDESC_CMD_EOF;
1633 lastdesc = curdesc;
1634 }
1635 d->re_cmdstat = htole32(cmdstat);
1636 RE_TXDESCSYNC(sc, curdesc,
1637 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1638 }
1639 if (__predict_false(pad)) {
1640 bus_addr_t paddaddr;
1641
1642 d = &sc->re_ldata.re_tx_list[curdesc];
1643 d->re_vlanctl = htole32(vlanctl);
1644 paddaddr = RE_TXPADDADDR(sc);
1645 re_set_bufaddr(d, paddaddr);
1646 cmdstat = re_flags |
1647 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1648 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1649 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1650 cmdstat |= RE_TDESC_CMD_EOR;
1651 d->re_cmdstat = htole32(cmdstat);
1652 RE_TXDESCSYNC(sc, curdesc,
1653 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1654 lastdesc = curdesc;
1655 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1656 }
1657 KASSERT(lastdesc != -1);
1658
1659 /* Transfer ownership of packet to the chip. */
1660
1661 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1662 htole32(RE_TDESC_CMD_OWN);
1663 RE_TXDESCSYNC(sc, startdesc,
1664 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1665
1666 /* update info of TX queue and descriptors */
1667 txq->txq_mbuf = m;
1668 txq->txq_descidx = lastdesc;
1669 txq->txq_nsegs = nsegs;
1670
1671 sc->re_ldata.re_txq_free--;
1672 sc->re_ldata.re_tx_free -= nsegs;
1673 sc->re_ldata.re_tx_nextfree = curdesc;
1674
1675 #if NBPFILTER > 0
1676 /*
1677 * If there's a BPF listener, bounce a copy of this frame
1678 * to him.
1679 */
1680 if (ifp->if_bpf)
1681 bpf_mtap(ifp->if_bpf, m);
1682 #endif
1683 }
1684
1685 if (sc->re_ldata.re_txq_free < ofree) {
1686 /*
1687 * TX packets are enqueued.
1688 */
1689 sc->re_ldata.re_txq_prodidx = idx;
1690
1691 /*
1692 * Start the transmitter to poll.
1693 *
1694 * RealTek put the TX poll request register in a different
1695 * location on the 8169 gigE chip. I don't know why.
1696 */
1697 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1698 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1699 else
1700 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1701
1702 /*
1703 * Use the countdown timer for interrupt moderation.
1704 * 'TX done' interrupts are disabled. Instead, we reset the
1705 * countdown timer, which will begin counting until it hits
1706 * the value in the TIMERINT register, and then trigger an
1707 * interrupt. Each time we write to the TIMERCNT register,
1708 * the timer count is reset to 0.
1709 */
1710 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1711
1712 /*
1713 * Set a timeout in case the chip goes out to lunch.
1714 */
1715 ifp->if_timer = 5;
1716 }
1717 }
1718
1719 static int
1720 re_init(struct ifnet *ifp)
1721 {
1722 struct rtk_softc *sc = ifp->if_softc;
1723 const uint8_t *enaddr;
1724 uint32_t rxcfg = 0;
1725 uint32_t reg;
1726 uint16_t cfg;
1727 int error;
1728
1729 if ((error = re_enable(sc)) != 0)
1730 goto out;
1731
1732 /*
1733 * Cancel pending I/O and free all RX/TX buffers.
1734 */
1735 re_stop(ifp, 0);
1736
1737 re_reset(sc);
1738
1739 /*
1740 * Enable C+ RX and TX mode, as well as VLAN stripping and
1741 * RX checksum offload. We must configure the C+ register
1742 * before all others.
1743 */
1744 cfg = RE_CPLUSCMD_PCI_MRW;
1745
1746 /*
1747 * XXX: For old 8169 set bit 14.
1748 * For 8169S/8110S and above, do not set bit 14.
1749 */
1750 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1751 cfg |= (0x1 << 14);
1752
1753 if ((ifp->if_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1754 cfg |= RE_CPLUSCMD_VLANSTRIP;
1755 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1756 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1757 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1758 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1759 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1760 cfg |= RE_CPLUSCMD_TXENB;
1761 } else
1762 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1763
1764 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1765
1766 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1767 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1768 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1769
1770 DELAY(10000);
1771
1772 /*
1773 * Init our MAC address. Even though the chipset
1774 * documentation doesn't mention it, we need to enter "Config
1775 * register write enable" mode to modify the ID registers.
1776 */
1777 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1778 enaddr = CLLADDR(ifp->if_sadl);
1779 reg = enaddr[0] | (enaddr[1] << 8) |
1780 (enaddr[2] << 16) | (enaddr[3] << 24);
1781 CSR_WRITE_4(sc, RTK_IDR0, reg);
1782 reg = enaddr[4] | (enaddr[5] << 8);
1783 CSR_WRITE_4(sc, RTK_IDR4, reg);
1784 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1785
1786 /*
1787 * For C+ mode, initialize the RX descriptors and mbufs.
1788 */
1789 re_rx_list_init(sc);
1790 re_tx_list_init(sc);
1791
1792 /*
1793 * Load the addresses of the RX and TX lists into the chip.
1794 */
1795 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1796 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1797 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1798 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1799
1800 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1801 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1802 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1803 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1804
1805 /*
1806 * Enable transmit and receive.
1807 */
1808 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1809
1810 /*
1811 * Set the initial TX and RX configuration.
1812 */
1813 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1814 /* test mode is needed only for old 8169 */
1815 CSR_WRITE_4(sc, RTK_TXCFG,
1816 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1817 } else
1818 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1819
1820 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1821
1822 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1823
1824 /* Set the individual bit to receive frames for this host only. */
1825 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1826 rxcfg |= RTK_RXCFG_RX_INDIV;
1827
1828 /* If we want promiscuous mode, set the allframes bit. */
1829 if (ifp->if_flags & IFF_PROMISC)
1830 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1831 else
1832 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1833 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1834
1835 /*
1836 * Set capture broadcast bit to capture broadcast frames.
1837 */
1838 if (ifp->if_flags & IFF_BROADCAST)
1839 rxcfg |= RTK_RXCFG_RX_BROAD;
1840 else
1841 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1842 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1843
1844 /*
1845 * Program the multicast filter, if necessary.
1846 */
1847 rtk_setmulti(sc);
1848
1849 /*
1850 * Enable interrupts.
1851 */
1852 if (sc->re_testmode)
1853 CSR_WRITE_2(sc, RTK_IMR, 0);
1854 else
1855 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1856
1857 /* Start RX/TX process. */
1858 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1859 #ifdef notdef
1860 /* Enable receiver and transmitter. */
1861 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1862 #endif
1863
1864 /*
1865 * Initialize the timer interrupt register so that
1866 * a timer interrupt will be generated once the timer
1867 * reaches a certain number of ticks. The timer is
1868 * reloaded on each transmit. This gives us TX interrupt
1869 * moderation, which dramatically improves TX frame rate.
1870 */
1871
1872 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1873 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1874 else {
1875 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1876
1877 /*
1878 * For 8169 gigE NICs, set the max allowed RX packet
1879 * size so we can receive jumbo frames.
1880 */
1881 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1882 }
1883
1884 if (sc->re_testmode)
1885 return 0;
1886
1887 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1888
1889 ifp->if_flags |= IFF_RUNNING;
1890 ifp->if_flags &= ~IFF_OACTIVE;
1891
1892 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1893
1894 out:
1895 if (error) {
1896 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1897 ifp->if_timer = 0;
1898 printf("%s: interface not running\n",
1899 device_xname(sc->sc_dev));
1900 }
1901
1902 return error;
1903 }
1904
1905 static int
1906 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1907 {
1908 struct rtk_softc *sc = ifp->if_softc;
1909 struct ifreq *ifr = data;
1910 int s, error = 0;
1911
1912 s = splnet();
1913
1914 switch (command) {
1915 case SIOCSIFMTU:
1916 /*
1917 * Disable jumbo frames if it's not supported.
1918 */
1919 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1920 ifr->ifr_mtu > ETHERMTU) {
1921 error = EINVAL;
1922 break;
1923 }
1924
1925 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1926 error = EINVAL;
1927 else if ((error = ifioctl_common(ifp, command, data)) ==
1928 ENETRESET)
1929 error = 0;
1930 break;
1931 default:
1932 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1933 break;
1934
1935 error = 0;
1936
1937 if (command == SIOCSIFCAP)
1938 error = (*ifp->if_init)(ifp);
1939 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1940 ;
1941 else if (ifp->if_flags & IFF_RUNNING)
1942 rtk_setmulti(sc);
1943 break;
1944 }
1945
1946 splx(s);
1947
1948 return error;
1949 }
1950
1951 static void
1952 re_watchdog(struct ifnet *ifp)
1953 {
1954 struct rtk_softc *sc;
1955 int s;
1956
1957 sc = ifp->if_softc;
1958 s = splnet();
1959 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1960 ifp->if_oerrors++;
1961
1962 re_txeof(sc);
1963 re_rxeof(sc);
1964
1965 re_init(ifp);
1966
1967 splx(s);
1968 }
1969
1970 /*
1971 * Stop the adapter and free any mbufs allocated to the
1972 * RX and TX lists.
1973 */
1974 static void
1975 re_stop(struct ifnet *ifp, int disable)
1976 {
1977 int i;
1978 struct rtk_softc *sc = ifp->if_softc;
1979
1980 callout_stop(&sc->rtk_tick_ch);
1981
1982 mii_down(&sc->mii);
1983
1984 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
1985 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
1986 RTK_CMD_RX_ENB);
1987 else
1988 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1989 DELAY(1000);
1990 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1991 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
1992
1993 if (sc->re_head != NULL) {
1994 m_freem(sc->re_head);
1995 sc->re_head = sc->re_tail = NULL;
1996 }
1997
1998 /* Free the TX list buffers. */
1999 for (i = 0; i < RE_TX_QLEN; i++) {
2000 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2001 bus_dmamap_unload(sc->sc_dmat,
2002 sc->re_ldata.re_txq[i].txq_dmamap);
2003 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2004 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2005 }
2006 }
2007
2008 /* Free the RX list buffers. */
2009 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2010 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2011 bus_dmamap_unload(sc->sc_dmat,
2012 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2013 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2014 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2015 }
2016 }
2017
2018 if (disable)
2019 re_disable(sc);
2020
2021 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2022 ifp->if_timer = 0;
2023 }
2024