rtl8169.c revision 1.123 1 /* $NetBSD: rtl8169.c,v 1.123 2009/08/29 14:06:22 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.123 2009/08/29 14:06:22 tsutsui Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <sys/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, void *);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static int re_enable(struct rtk_softc *);
166 static void re_disable(struct rtk_softc *);
167
168 static int re_gmii_readreg(device_t, int, int);
169 static void re_gmii_writereg(device_t, int, int, int);
170
171 static int re_miibus_readreg(device_t, int, int);
172 static void re_miibus_writereg(device_t, int, int, int);
173 static void re_miibus_statchg(device_t);
174
175 static void re_reset(struct rtk_softc *);
176
177 static inline void
178 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
179 {
180
181 d->re_bufaddr_lo = htole32((uint32_t)addr);
182 if (sizeof(bus_addr_t) == sizeof(uint64_t))
183 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
184 else
185 d->re_bufaddr_hi = 0;
186 }
187
188 static int
189 re_gmii_readreg(device_t dev, int phy, int reg)
190 {
191 struct rtk_softc *sc = device_private(dev);
192 uint32_t rval;
193 int i;
194
195 if (phy != 7)
196 return 0;
197
198 /* Let the rgephy driver read the GMEDIASTAT register */
199
200 if (reg == RTK_GMEDIASTAT) {
201 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
202 return rval;
203 }
204
205 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
206 DELAY(1000);
207
208 for (i = 0; i < RTK_TIMEOUT; i++) {
209 rval = CSR_READ_4(sc, RTK_PHYAR);
210 if (rval & RTK_PHYAR_BUSY)
211 break;
212 DELAY(100);
213 }
214
215 if (i == RTK_TIMEOUT) {
216 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
217 return 0;
218 }
219
220 return rval & RTK_PHYAR_PHYDATA;
221 }
222
223 static void
224 re_gmii_writereg(device_t dev, int phy, int reg, int data)
225 {
226 struct rtk_softc *sc = device_private(dev);
227 uint32_t rval;
228 int i;
229
230 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
231 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
232 DELAY(1000);
233
234 for (i = 0; i < RTK_TIMEOUT; i++) {
235 rval = CSR_READ_4(sc, RTK_PHYAR);
236 if (!(rval & RTK_PHYAR_BUSY))
237 break;
238 DELAY(100);
239 }
240
241 if (i == RTK_TIMEOUT) {
242 printf("%s: PHY write reg %x <- %x failed\n",
243 device_xname(sc->sc_dev), reg, data);
244 }
245 }
246
247 static int
248 re_miibus_readreg(device_t dev, int phy, int reg)
249 {
250 struct rtk_softc *sc = device_private(dev);
251 uint16_t rval = 0;
252 uint16_t re8139_reg = 0;
253 int s;
254
255 s = splnet();
256
257 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
258 rval = re_gmii_readreg(dev, phy, reg);
259 splx(s);
260 return rval;
261 }
262
263 /* Pretend the internal PHY is only at address 0 */
264 if (phy) {
265 splx(s);
266 return 0;
267 }
268 switch (reg) {
269 case MII_BMCR:
270 re8139_reg = RTK_BMCR;
271 break;
272 case MII_BMSR:
273 re8139_reg = RTK_BMSR;
274 break;
275 case MII_ANAR:
276 re8139_reg = RTK_ANAR;
277 break;
278 case MII_ANER:
279 re8139_reg = RTK_ANER;
280 break;
281 case MII_ANLPAR:
282 re8139_reg = RTK_LPAR;
283 break;
284 case MII_PHYIDR1:
285 case MII_PHYIDR2:
286 splx(s);
287 return 0;
288 /*
289 * Allow the rlphy driver to read the media status
290 * register. If we have a link partner which does not
291 * support NWAY, this is the register which will tell
292 * us the results of parallel detection.
293 */
294 case RTK_MEDIASTAT:
295 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
296 splx(s);
297 return rval;
298 default:
299 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
300 splx(s);
301 return 0;
302 }
303 rval = CSR_READ_2(sc, re8139_reg);
304 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
305 /* 8139C+ has different bit layout. */
306 rval &= ~(BMCR_LOOP | BMCR_ISO);
307 }
308 splx(s);
309 return rval;
310 }
311
312 static void
313 re_miibus_writereg(device_t dev, int phy, int reg, int data)
314 {
315 struct rtk_softc *sc = device_private(dev);
316 uint16_t re8139_reg = 0;
317 int s;
318
319 s = splnet();
320
321 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
322 re_gmii_writereg(dev, phy, reg, data);
323 splx(s);
324 return;
325 }
326
327 /* Pretend the internal PHY is only at address 0 */
328 if (phy) {
329 splx(s);
330 return;
331 }
332 switch (reg) {
333 case MII_BMCR:
334 re8139_reg = RTK_BMCR;
335 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
336 /* 8139C+ has different bit layout. */
337 data &= ~(BMCR_LOOP | BMCR_ISO);
338 }
339 break;
340 case MII_BMSR:
341 re8139_reg = RTK_BMSR;
342 break;
343 case MII_ANAR:
344 re8139_reg = RTK_ANAR;
345 break;
346 case MII_ANER:
347 re8139_reg = RTK_ANER;
348 break;
349 case MII_ANLPAR:
350 re8139_reg = RTK_LPAR;
351 break;
352 case MII_PHYIDR1:
353 case MII_PHYIDR2:
354 splx(s);
355 return;
356 break;
357 default:
358 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
359 splx(s);
360 return;
361 }
362 CSR_WRITE_2(sc, re8139_reg, data);
363 splx(s);
364 return;
365 }
366
367 static void
368 re_miibus_statchg(device_t dev)
369 {
370
371 return;
372 }
373
374 static void
375 re_reset(struct rtk_softc *sc)
376 {
377 int i;
378
379 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
380
381 for (i = 0; i < RTK_TIMEOUT; i++) {
382 DELAY(10);
383 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
384 break;
385 }
386 if (i == RTK_TIMEOUT)
387 printf("%s: reset never completed!\n",
388 device_xname(sc->sc_dev));
389
390 /*
391 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
392 * but also says "Rtl8169s sigle chip detected".
393 */
394 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
395 CSR_WRITE_1(sc, RTK_LDPS, 1);
396
397 }
398
399 /*
400 * The following routine is designed to test for a defect on some
401 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
402 * lines connected to the bus, however for a 32-bit only card, they
403 * should be pulled high. The result of this defect is that the
404 * NIC will not work right if you plug it into a 64-bit slot: DMA
405 * operations will be done with 64-bit transfers, which will fail
406 * because the 64-bit data lines aren't connected.
407 *
408 * There's no way to work around this (short of talking a soldering
409 * iron to the board), however we can detect it. The method we use
410 * here is to put the NIC into digital loopback mode, set the receiver
411 * to promiscuous mode, and then try to send a frame. We then compare
412 * the frame data we sent to what was received. If the data matches,
413 * then the NIC is working correctly, otherwise we know the user has
414 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
415 * slot. In the latter case, there's no way the NIC can work correctly,
416 * so we print out a message on the console and abort the device attach.
417 */
418
419 int
420 re_diag(struct rtk_softc *sc)
421 {
422 struct ifnet *ifp = &sc->ethercom.ec_if;
423 struct mbuf *m0;
424 struct ether_header *eh;
425 struct re_rxsoft *rxs;
426 struct re_desc *cur_rx;
427 bus_dmamap_t dmamap;
428 uint16_t status;
429 uint32_t rxstat;
430 int total_len, i, s, error = 0;
431 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
432 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
433
434 /* Allocate a single mbuf */
435
436 MGETHDR(m0, M_DONTWAIT, MT_DATA);
437 if (m0 == NULL)
438 return ENOBUFS;
439
440 /*
441 * Initialize the NIC in test mode. This sets the chip up
442 * so that it can send and receive frames, but performs the
443 * following special functions:
444 * - Puts receiver in promiscuous mode
445 * - Enables digital loopback mode
446 * - Leaves interrupts turned off
447 */
448
449 ifp->if_flags |= IFF_PROMISC;
450 sc->re_testmode = 1;
451 re_init(ifp);
452 re_stop(ifp, 0);
453 DELAY(100000);
454 re_init(ifp);
455
456 /* Put some data in the mbuf */
457
458 eh = mtod(m0, struct ether_header *);
459 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
460 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
461 eh->ether_type = htons(ETHERTYPE_IP);
462 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
463
464 /*
465 * Queue the packet, start transmission.
466 */
467
468 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
469 s = splnet();
470 IF_ENQUEUE(&ifp->if_snd, m0);
471 re_start(ifp);
472 splx(s);
473 m0 = NULL;
474
475 /* Wait for it to propagate through the chip */
476
477 DELAY(100000);
478 for (i = 0; i < RTK_TIMEOUT; i++) {
479 status = CSR_READ_2(sc, RTK_ISR);
480 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
481 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
482 break;
483 DELAY(10);
484 }
485 if (i == RTK_TIMEOUT) {
486 aprint_error_dev(sc->sc_dev,
487 "diagnostic failed, failed to receive packet "
488 "in loopback mode\n");
489 error = EIO;
490 goto done;
491 }
492
493 /*
494 * The packet should have been dumped into the first
495 * entry in the RX DMA ring. Grab it from there.
496 */
497
498 rxs = &sc->re_ldata.re_rxsoft[0];
499 dmamap = rxs->rxs_dmamap;
500 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
501 BUS_DMASYNC_POSTREAD);
502 bus_dmamap_unload(sc->sc_dmat, dmamap);
503
504 m0 = rxs->rxs_mbuf;
505 rxs->rxs_mbuf = NULL;
506 eh = mtod(m0, struct ether_header *);
507
508 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
509 cur_rx = &sc->re_ldata.re_rx_list[0];
510 rxstat = le32toh(cur_rx->re_cmdstat);
511 total_len = rxstat & sc->re_rxlenmask;
512
513 if (total_len != ETHER_MIN_LEN) {
514 aprint_error_dev(sc->sc_dev,
515 "diagnostic failed, received short packet\n");
516 error = EIO;
517 goto done;
518 }
519
520 /* Test that the received packet data matches what we sent. */
521
522 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
523 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
524 ntohs(eh->ether_type) != ETHERTYPE_IP) {
525 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
526 "expected TX data: %s/%s/0x%x\n"
527 "received RX data: %s/%s/0x%x\n"
528 "You may have a defective 32-bit NIC plugged "
529 "into a 64-bit PCI slot.\n"
530 "Please re-install the NIC in a 32-bit slot "
531 "for proper operation.\n"
532 "Read the re(4) man page for more details.\n" ,
533 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
534 ether_sprintf(eh->ether_dhost),
535 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
536 error = EIO;
537 }
538
539 done:
540 /* Turn interface off, release resources */
541
542 sc->re_testmode = 0;
543 ifp->if_flags &= ~IFF_PROMISC;
544 re_stop(ifp, 0);
545 if (m0 != NULL)
546 m_freem(m0);
547
548 return error;
549 }
550
551
552 /*
553 * Attach the interface. Allocate softc structures, do ifmedia
554 * setup and ethernet/BPF attach.
555 */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 uint8_t eaddr[ETHER_ADDR_LEN];
560 uint16_t val;
561 struct ifnet *ifp;
562 int error = 0, i, addr_len;
563
564 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
565 uint32_t hwrev;
566
567 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
568 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
569 switch (hwrev) {
570 case RTK_HWREV_8169:
571 sc->sc_quirk |= RTKQ_8169NONS;
572 break;
573 case RTK_HWREV_8169S:
574 case RTK_HWREV_8110S:
575 case RTK_HWREV_8169_8110SB:
576 case RTK_HWREV_8169_8110SC:
577 sc->sc_quirk |= RTKQ_MACLDPS;
578 break;
579 case RTK_HWREV_8168_SPIN1:
580 case RTK_HWREV_8168_SPIN2:
581 case RTK_HWREV_8168_SPIN3:
582 sc->sc_quirk |= RTKQ_MACSTAT;
583 break;
584 case RTK_HWREV_8168C:
585 case RTK_HWREV_8168C_SPIN2:
586 case RTK_HWREV_8168CP:
587 case RTK_HWREV_8168D:
588 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
589 RTKQ_MACSTAT | RTKQ_CMDSTOP;
590 /*
591 * From FreeBSD driver:
592 *
593 * These (8168/8111) controllers support jumbo frame
594 * but it seems that enabling it requires touching
595 * additional magic registers. Depending on MAC
596 * revisions some controllers need to disable
597 * checksum offload. So disable jumbo frame until
598 * I have better idea what it really requires to
599 * make it support.
600 * RTL8168C/CP : supports up to 6KB jumbo frame.
601 * RTL8111C/CP : supports up to 9KB jumbo frame.
602 */
603 sc->sc_quirk |= RTKQ_NOJUMBO;
604 break;
605 case RTK_HWREV_8100E:
606 case RTK_HWREV_8100E_SPIN2:
607 case RTK_HWREV_8101E:
608 sc->sc_quirk |= RTKQ_NOJUMBO;
609 break;
610 case RTK_HWREV_8102E:
611 case RTK_HWREV_8102EL:
612 case RTK_HWREV_8103E:
613 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
614 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
615 break;
616 default:
617 aprint_normal_dev(sc->sc_dev,
618 "Unknown revision (0x%08x)\n", hwrev);
619 /* assume the latest features */
620 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
621 sc->sc_quirk |= RTKQ_NOJUMBO;
622 }
623
624 /* Set RX length mask */
625 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
626 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
627 } else {
628 sc->sc_quirk |= RTKQ_NOJUMBO;
629
630 /* Set RX length mask */
631 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
632 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
633 }
634
635 /* Reset the adapter. */
636 re_reset(sc);
637
638 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
639 /*
640 * Get station address from ID registers.
641 */
642 for (i = 0; i < ETHER_ADDR_LEN; i++)
643 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
644 } else {
645 /*
646 * Get station address from the EEPROM.
647 */
648 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
649 addr_len = RTK_EEADDR_LEN1;
650 else
651 addr_len = RTK_EEADDR_LEN0;
652
653 /*
654 * Get station address from the EEPROM.
655 */
656 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
657 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
658 eaddr[(i * 2) + 0] = val & 0xff;
659 eaddr[(i * 2) + 1] = val >> 8;
660 }
661 }
662
663 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
664 ether_sprintf(eaddr));
665
666 if (sc->re_ldata.re_tx_desc_cnt >
667 PAGE_SIZE / sizeof(struct re_desc)) {
668 sc->re_ldata.re_tx_desc_cnt =
669 PAGE_SIZE / sizeof(struct re_desc);
670 }
671
672 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
673 sc->re_ldata.re_tx_desc_cnt);
674 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
675
676 /* Allocate DMA'able memory for the TX ring */
677 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
678 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
679 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
680 aprint_error_dev(sc->sc_dev,
681 "can't allocate tx listseg, error = %d\n", error);
682 goto fail_0;
683 }
684
685 /* Load the map for the TX ring. */
686 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
687 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
688 (void **)&sc->re_ldata.re_tx_list,
689 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
690 aprint_error_dev(sc->sc_dev,
691 "can't map tx list, error = %d\n", error);
692 goto fail_1;
693 }
694 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
695
696 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
697 RE_TX_LIST_SZ(sc), 0, 0,
698 &sc->re_ldata.re_tx_list_map)) != 0) {
699 aprint_error_dev(sc->sc_dev,
700 "can't create tx list map, error = %d\n", error);
701 goto fail_2;
702 }
703
704
705 if ((error = bus_dmamap_load(sc->sc_dmat,
706 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
707 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
708 aprint_error_dev(sc->sc_dev,
709 "can't load tx list, error = %d\n", error);
710 goto fail_3;
711 }
712
713 /* Create DMA maps for TX buffers */
714 for (i = 0; i < RE_TX_QLEN; i++) {
715 error = bus_dmamap_create(sc->sc_dmat,
716 round_page(IP_MAXPACKET),
717 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
718 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
719 if (error) {
720 aprint_error_dev(sc->sc_dev,
721 "can't create DMA map for TX\n");
722 goto fail_4;
723 }
724 }
725
726 /* Allocate DMA'able memory for the RX ring */
727 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
728 if ((error = bus_dmamem_alloc(sc->sc_dmat,
729 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
730 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
731 aprint_error_dev(sc->sc_dev,
732 "can't allocate rx listseg, error = %d\n", error);
733 goto fail_4;
734 }
735
736 /* Load the map for the RX ring. */
737 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
738 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
739 (void **)&sc->re_ldata.re_rx_list,
740 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
741 aprint_error_dev(sc->sc_dev,
742 "can't map rx list, error = %d\n", error);
743 goto fail_5;
744 }
745 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
746
747 if ((error = bus_dmamap_create(sc->sc_dmat,
748 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
749 &sc->re_ldata.re_rx_list_map)) != 0) {
750 aprint_error_dev(sc->sc_dev,
751 "can't create rx list map, error = %d\n", error);
752 goto fail_6;
753 }
754
755 if ((error = bus_dmamap_load(sc->sc_dmat,
756 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
757 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
758 aprint_error_dev(sc->sc_dev,
759 "can't load rx list, error = %d\n", error);
760 goto fail_7;
761 }
762
763 /* Create DMA maps for RX buffers */
764 for (i = 0; i < RE_RX_DESC_CNT; i++) {
765 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
766 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
767 if (error) {
768 aprint_error_dev(sc->sc_dev,
769 "can't create DMA map for RX\n");
770 goto fail_8;
771 }
772 }
773
774 /*
775 * Record interface as attached. From here, we should not fail.
776 */
777 sc->sc_flags |= RTK_ATTACHED;
778
779 ifp = &sc->ethercom.ec_if;
780 ifp->if_softc = sc;
781 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
782 ifp->if_mtu = ETHERMTU;
783 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
784 ifp->if_ioctl = re_ioctl;
785 sc->ethercom.ec_capabilities |=
786 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
787 ifp->if_start = re_start;
788 ifp->if_stop = re_stop;
789
790 /*
791 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
792 * so we have a workaround to handle the bug by padding
793 * such packets manually.
794 */
795 ifp->if_capabilities |=
796 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
797 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
798 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
799 IFCAP_TSOv4;
800
801 /*
802 * XXX
803 * Still have no idea how to make TSO work on 8168C, 8168CP,
804 * 8102E, 8111C and 8111CP.
805 */
806 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
807 ifp->if_capabilities &= ~IFCAP_TSOv4;
808
809 ifp->if_watchdog = re_watchdog;
810 ifp->if_init = re_init;
811 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
812 ifp->if_capenable = ifp->if_capabilities;
813 IFQ_SET_READY(&ifp->if_snd);
814
815 callout_init(&sc->rtk_tick_ch, 0);
816
817 /* Do MII setup */
818 sc->mii.mii_ifp = ifp;
819 sc->mii.mii_readreg = re_miibus_readreg;
820 sc->mii.mii_writereg = re_miibus_writereg;
821 sc->mii.mii_statchg = re_miibus_statchg;
822 sc->ethercom.ec_mii = &sc->mii;
823 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
824 ether_mediastatus);
825 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
826 MII_OFFSET_ANY, 0);
827 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
828
829 /*
830 * Call MI attach routine.
831 */
832 if_attach(ifp);
833 ether_ifattach(ifp, eaddr);
834
835 return;
836
837 fail_8:
838 /* Destroy DMA maps for RX buffers. */
839 for (i = 0; i < RE_RX_DESC_CNT; i++)
840 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
841 bus_dmamap_destroy(sc->sc_dmat,
842 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
843
844 /* Free DMA'able memory for the RX ring. */
845 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
846 fail_7:
847 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
848 fail_6:
849 bus_dmamem_unmap(sc->sc_dmat,
850 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
851 fail_5:
852 bus_dmamem_free(sc->sc_dmat,
853 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
854
855 fail_4:
856 /* Destroy DMA maps for TX buffers. */
857 for (i = 0; i < RE_TX_QLEN; i++)
858 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
859 bus_dmamap_destroy(sc->sc_dmat,
860 sc->re_ldata.re_txq[i].txq_dmamap);
861
862 /* Free DMA'able memory for the TX ring. */
863 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
864 fail_3:
865 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
866 fail_2:
867 bus_dmamem_unmap(sc->sc_dmat,
868 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
869 fail_1:
870 bus_dmamem_free(sc->sc_dmat,
871 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
872 fail_0:
873 return;
874 }
875
876
877 /*
878 * re_activate:
879 * Handle device activation/deactivation requests.
880 */
881 int
882 re_activate(device_t self, enum devact act)
883 {
884 struct rtk_softc *sc = device_private(self);
885 int s, error = 0;
886
887 s = splnet();
888 switch (act) {
889 case DVACT_ACTIVATE:
890 error = EOPNOTSUPP;
891 break;
892 case DVACT_DEACTIVATE:
893 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
894 if_deactivate(&sc->ethercom.ec_if);
895 break;
896 }
897 splx(s);
898
899 return error;
900 }
901
902 /*
903 * re_detach:
904 * Detach a rtk interface.
905 */
906 int
907 re_detach(struct rtk_softc *sc)
908 {
909 struct ifnet *ifp = &sc->ethercom.ec_if;
910 int i;
911
912 /*
913 * Succeed now if there isn't any work to do.
914 */
915 if ((sc->sc_flags & RTK_ATTACHED) == 0)
916 return 0;
917
918 /* Unhook our tick handler. */
919 callout_stop(&sc->rtk_tick_ch);
920
921 /* Detach all PHYs. */
922 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
923
924 /* Delete all remaining media. */
925 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
926
927 ether_ifdetach(ifp);
928 if_detach(ifp);
929
930 /* Destroy DMA maps for RX buffers. */
931 for (i = 0; i < RE_RX_DESC_CNT; i++)
932 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
933 bus_dmamap_destroy(sc->sc_dmat,
934 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
935
936 /* Free DMA'able memory for the RX ring. */
937 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
938 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
939 bus_dmamem_unmap(sc->sc_dmat,
940 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
941 bus_dmamem_free(sc->sc_dmat,
942 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
943
944 /* Destroy DMA maps for TX buffers. */
945 for (i = 0; i < RE_TX_QLEN; i++)
946 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
947 bus_dmamap_destroy(sc->sc_dmat,
948 sc->re_ldata.re_txq[i].txq_dmamap);
949
950 /* Free DMA'able memory for the TX ring. */
951 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
952 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
953 bus_dmamem_unmap(sc->sc_dmat,
954 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
955 bus_dmamem_free(sc->sc_dmat,
956 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
957
958 return 0;
959 }
960
961 /*
962 * re_enable:
963 * Enable the RTL81X9 chip.
964 */
965 static int
966 re_enable(struct rtk_softc *sc)
967 {
968
969 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
970 if ((*sc->sc_enable)(sc) != 0) {
971 printf("%s: device enable failed\n",
972 device_xname(sc->sc_dev));
973 return EIO;
974 }
975 sc->sc_flags |= RTK_ENABLED;
976 }
977 return 0;
978 }
979
980 /*
981 * re_disable:
982 * Disable the RTL81X9 chip.
983 */
984 static void
985 re_disable(struct rtk_softc *sc)
986 {
987
988 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
989 (*sc->sc_disable)(sc);
990 sc->sc_flags &= ~RTK_ENABLED;
991 }
992 }
993
994 static int
995 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
996 {
997 struct mbuf *n = NULL;
998 bus_dmamap_t map;
999 struct re_desc *d;
1000 struct re_rxsoft *rxs;
1001 uint32_t cmdstat;
1002 int error;
1003
1004 if (m == NULL) {
1005 MGETHDR(n, M_DONTWAIT, MT_DATA);
1006 if (n == NULL)
1007 return ENOBUFS;
1008
1009 MCLGET(n, M_DONTWAIT);
1010 if ((n->m_flags & M_EXT) == 0) {
1011 m_freem(n);
1012 return ENOBUFS;
1013 }
1014 m = n;
1015 } else
1016 m->m_data = m->m_ext.ext_buf;
1017
1018 /*
1019 * Initialize mbuf length fields and fixup
1020 * alignment so that the frame payload is
1021 * longword aligned.
1022 */
1023 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1024 m->m_data += RE_ETHER_ALIGN;
1025
1026 rxs = &sc->re_ldata.re_rxsoft[idx];
1027 map = rxs->rxs_dmamap;
1028 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1029 BUS_DMA_READ|BUS_DMA_NOWAIT);
1030
1031 if (error)
1032 goto out;
1033
1034 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1035 BUS_DMASYNC_PREREAD);
1036
1037 d = &sc->re_ldata.re_rx_list[idx];
1038 #ifdef DIAGNOSTIC
1039 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1040 cmdstat = le32toh(d->re_cmdstat);
1041 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1042 if (cmdstat & RE_RDESC_STAT_OWN) {
1043 panic("%s: tried to map busy RX descriptor",
1044 device_xname(sc->sc_dev));
1045 }
1046 #endif
1047
1048 rxs->rxs_mbuf = m;
1049
1050 d->re_vlanctl = 0;
1051 cmdstat = map->dm_segs[0].ds_len;
1052 if (idx == (RE_RX_DESC_CNT - 1))
1053 cmdstat |= RE_RDESC_CMD_EOR;
1054 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1055 d->re_cmdstat = htole32(cmdstat);
1056 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1057 cmdstat |= RE_RDESC_CMD_OWN;
1058 d->re_cmdstat = htole32(cmdstat);
1059 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1060
1061 return 0;
1062 out:
1063 if (n != NULL)
1064 m_freem(n);
1065 return ENOMEM;
1066 }
1067
1068 static int
1069 re_tx_list_init(struct rtk_softc *sc)
1070 {
1071 int i;
1072
1073 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1074 for (i = 0; i < RE_TX_QLEN; i++) {
1075 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1076 }
1077
1078 bus_dmamap_sync(sc->sc_dmat,
1079 sc->re_ldata.re_tx_list_map, 0,
1080 sc->re_ldata.re_tx_list_map->dm_mapsize,
1081 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1082 sc->re_ldata.re_txq_prodidx = 0;
1083 sc->re_ldata.re_txq_considx = 0;
1084 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1085 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1086 sc->re_ldata.re_tx_nextfree = 0;
1087
1088 return 0;
1089 }
1090
1091 static int
1092 re_rx_list_init(struct rtk_softc *sc)
1093 {
1094 int i;
1095
1096 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1097
1098 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1099 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1100 return ENOBUFS;
1101 }
1102
1103 sc->re_ldata.re_rx_prodidx = 0;
1104 sc->re_head = sc->re_tail = NULL;
1105
1106 return 0;
1107 }
1108
1109 /*
1110 * RX handler for C+ and 8169. For the gigE chips, we support
1111 * the reception of jumbo frames that have been fragmented
1112 * across multiple 2K mbuf cluster buffers.
1113 */
1114 static void
1115 re_rxeof(struct rtk_softc *sc)
1116 {
1117 struct mbuf *m;
1118 struct ifnet *ifp;
1119 int i, total_len;
1120 struct re_desc *cur_rx;
1121 struct re_rxsoft *rxs;
1122 uint32_t rxstat, rxvlan;
1123
1124 ifp = &sc->ethercom.ec_if;
1125
1126 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1127 cur_rx = &sc->re_ldata.re_rx_list[i];
1128 RE_RXDESCSYNC(sc, i,
1129 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1130 rxstat = le32toh(cur_rx->re_cmdstat);
1131 rxvlan = le32toh(cur_rx->re_vlanctl);
1132 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1133 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1134 break;
1135 }
1136 total_len = rxstat & sc->re_rxlenmask;
1137 rxs = &sc->re_ldata.re_rxsoft[i];
1138 m = rxs->rxs_mbuf;
1139
1140 /* Invalidate the RX mbuf and unload its map */
1141
1142 bus_dmamap_sync(sc->sc_dmat,
1143 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1144 BUS_DMASYNC_POSTREAD);
1145 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1146
1147 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1148 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1149 if (sc->re_head == NULL)
1150 sc->re_head = sc->re_tail = m;
1151 else {
1152 m->m_flags &= ~M_PKTHDR;
1153 sc->re_tail->m_next = m;
1154 sc->re_tail = m;
1155 }
1156 re_newbuf(sc, i, NULL);
1157 continue;
1158 }
1159
1160 /*
1161 * NOTE: for the 8139C+, the frame length field
1162 * is always 12 bits in size, but for the gigE chips,
1163 * it is 13 bits (since the max RX frame length is 16K).
1164 * Unfortunately, all 32 bits in the status word
1165 * were already used, so to make room for the extra
1166 * length bit, RealTek took out the 'frame alignment
1167 * error' bit and shifted the other status bits
1168 * over one slot. The OWN, EOR, FS and LS bits are
1169 * still in the same places. We have already extracted
1170 * the frame length and checked the OWN bit, so rather
1171 * than using an alternate bit mapping, we shift the
1172 * status bits one space to the right so we can evaluate
1173 * them using the 8169 status as though it was in the
1174 * same format as that of the 8139C+.
1175 */
1176 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1177 rxstat >>= 1;
1178
1179 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1180 #ifdef RE_DEBUG
1181 printf("%s: RX error (rxstat = 0x%08x)",
1182 device_xname(sc->sc_dev), rxstat);
1183 if (rxstat & RE_RDESC_STAT_FRALIGN)
1184 printf(", frame alignment error");
1185 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1186 printf(", out of buffer space");
1187 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1188 printf(", FIFO overrun");
1189 if (rxstat & RE_RDESC_STAT_GIANT)
1190 printf(", giant packet");
1191 if (rxstat & RE_RDESC_STAT_RUNT)
1192 printf(", runt packet");
1193 if (rxstat & RE_RDESC_STAT_CRCERR)
1194 printf(", CRC error");
1195 printf("\n");
1196 #endif
1197 ifp->if_ierrors++;
1198 /*
1199 * If this is part of a multi-fragment packet,
1200 * discard all the pieces.
1201 */
1202 if (sc->re_head != NULL) {
1203 m_freem(sc->re_head);
1204 sc->re_head = sc->re_tail = NULL;
1205 }
1206 re_newbuf(sc, i, m);
1207 continue;
1208 }
1209
1210 /*
1211 * If allocating a replacement mbuf fails,
1212 * reload the current one.
1213 */
1214
1215 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1216 ifp->if_ierrors++;
1217 if (sc->re_head != NULL) {
1218 m_freem(sc->re_head);
1219 sc->re_head = sc->re_tail = NULL;
1220 }
1221 re_newbuf(sc, i, m);
1222 continue;
1223 }
1224
1225 if (sc->re_head != NULL) {
1226 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1227 /*
1228 * Special case: if there's 4 bytes or less
1229 * in this buffer, the mbuf can be discarded:
1230 * the last 4 bytes is the CRC, which we don't
1231 * care about anyway.
1232 */
1233 if (m->m_len <= ETHER_CRC_LEN) {
1234 sc->re_tail->m_len -=
1235 (ETHER_CRC_LEN - m->m_len);
1236 m_freem(m);
1237 } else {
1238 m->m_len -= ETHER_CRC_LEN;
1239 m->m_flags &= ~M_PKTHDR;
1240 sc->re_tail->m_next = m;
1241 }
1242 m = sc->re_head;
1243 sc->re_head = sc->re_tail = NULL;
1244 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1245 } else
1246 m->m_pkthdr.len = m->m_len =
1247 (total_len - ETHER_CRC_LEN);
1248
1249 ifp->if_ipackets++;
1250 m->m_pkthdr.rcvif = ifp;
1251
1252 /* Do RX checksumming */
1253 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1254 /* Check IP header checksum */
1255 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1256 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1257 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1258 m->m_pkthdr.csum_flags |=
1259 M_CSUM_IPv4_BAD;
1260
1261 /* Check TCP/UDP checksum */
1262 if (RE_TCPPKT(rxstat)) {
1263 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1264 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1265 m->m_pkthdr.csum_flags |=
1266 M_CSUM_TCP_UDP_BAD;
1267 } else if (RE_UDPPKT(rxstat)) {
1268 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1269 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1270 m->m_pkthdr.csum_flags |=
1271 M_CSUM_TCP_UDP_BAD;
1272 }
1273 }
1274 } else {
1275 /* Check IPv4 header checksum */
1276 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1277 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1278 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1279 m->m_pkthdr.csum_flags |=
1280 M_CSUM_IPv4_BAD;
1281
1282 /* Check TCPv4/UDPv4 checksum */
1283 if (RE_TCPPKT(rxstat)) {
1284 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1285 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1286 m->m_pkthdr.csum_flags |=
1287 M_CSUM_TCP_UDP_BAD;
1288 } else if (RE_UDPPKT(rxstat)) {
1289 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1290 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1291 m->m_pkthdr.csum_flags |=
1292 M_CSUM_TCP_UDP_BAD;
1293 }
1294 }
1295 /* XXX Check TCPv6/UDPv6 checksum? */
1296 }
1297
1298 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1299 VLAN_INPUT_TAG(ifp, m,
1300 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1301 continue);
1302 }
1303 #if NBPFILTER > 0
1304 if (ifp->if_bpf)
1305 bpf_mtap(ifp->if_bpf, m);
1306 #endif
1307 (*ifp->if_input)(ifp, m);
1308 }
1309
1310 sc->re_ldata.re_rx_prodidx = i;
1311 }
1312
1313 static void
1314 re_txeof(struct rtk_softc *sc)
1315 {
1316 struct ifnet *ifp;
1317 struct re_txq *txq;
1318 uint32_t txstat;
1319 int idx, descidx;
1320
1321 ifp = &sc->ethercom.ec_if;
1322
1323 for (idx = sc->re_ldata.re_txq_considx;
1324 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1325 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1326 txq = &sc->re_ldata.re_txq[idx];
1327 KASSERT(txq->txq_mbuf != NULL);
1328
1329 descidx = txq->txq_descidx;
1330 RE_TXDESCSYNC(sc, descidx,
1331 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1332 txstat =
1333 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1334 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1335 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1336 if (txstat & RE_TDESC_CMD_OWN) {
1337 break;
1338 }
1339
1340 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1341 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1342 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1343 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1344 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1345 m_freem(txq->txq_mbuf);
1346 txq->txq_mbuf = NULL;
1347
1348 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1349 ifp->if_collisions++;
1350 if (txstat & RE_TDESC_STAT_TXERRSUM)
1351 ifp->if_oerrors++;
1352 else
1353 ifp->if_opackets++;
1354 }
1355
1356 sc->re_ldata.re_txq_considx = idx;
1357
1358 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1359 ifp->if_flags &= ~IFF_OACTIVE;
1360
1361 /*
1362 * If not all descriptors have been released reaped yet,
1363 * reload the timer so that we will eventually get another
1364 * interrupt that will cause us to re-enter this routine.
1365 * This is done in case the transmitter has gone idle.
1366 */
1367 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1368 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1369 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1370 /*
1371 * Some chips will ignore a second TX request
1372 * issued while an existing transmission is in
1373 * progress. If the transmitter goes idle but
1374 * there are still packets waiting to be sent,
1375 * we need to restart the channel here to flush
1376 * them out. This only seems to be required with
1377 * the PCIe devices.
1378 */
1379 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1380 }
1381 } else
1382 ifp->if_timer = 0;
1383 }
1384
1385 static void
1386 re_tick(void *arg)
1387 {
1388 struct rtk_softc *sc = arg;
1389 int s;
1390
1391 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1392 s = splnet();
1393
1394 mii_tick(&sc->mii);
1395 splx(s);
1396
1397 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1398 }
1399
1400 int
1401 re_intr(void *arg)
1402 {
1403 struct rtk_softc *sc = arg;
1404 struct ifnet *ifp;
1405 uint16_t status;
1406 int handled = 0;
1407
1408 if (!device_has_power(sc->sc_dev))
1409 return 0;
1410
1411 ifp = &sc->ethercom.ec_if;
1412
1413 if ((ifp->if_flags & IFF_UP) == 0)
1414 return 0;
1415
1416 for (;;) {
1417
1418 status = CSR_READ_2(sc, RTK_ISR);
1419 /* If the card has gone away the read returns 0xffff. */
1420 if (status == 0xffff)
1421 break;
1422 if (status) {
1423 handled = 1;
1424 CSR_WRITE_2(sc, RTK_ISR, status);
1425 }
1426
1427 if ((status & RTK_INTRS_CPLUS) == 0)
1428 break;
1429
1430 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1431 re_rxeof(sc);
1432
1433 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1434 RTK_ISR_TX_DESC_UNAVAIL))
1435 re_txeof(sc);
1436
1437 if (status & RTK_ISR_SYSTEM_ERR) {
1438 re_init(ifp);
1439 }
1440
1441 if (status & RTK_ISR_LINKCHG) {
1442 callout_stop(&sc->rtk_tick_ch);
1443 re_tick(sc);
1444 }
1445 }
1446
1447 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1448 re_start(ifp);
1449
1450 return handled;
1451 }
1452
1453
1454
1455 /*
1456 * Main transmit routine for C+ and gigE NICs.
1457 */
1458
1459 static void
1460 re_start(struct ifnet *ifp)
1461 {
1462 struct rtk_softc *sc;
1463 struct mbuf *m;
1464 bus_dmamap_t map;
1465 struct re_txq *txq;
1466 struct re_desc *d;
1467 struct m_tag *mtag;
1468 uint32_t cmdstat, re_flags, vlanctl;
1469 int ofree, idx, error, nsegs, seg;
1470 int startdesc, curdesc, lastdesc;
1471 bool pad;
1472
1473 sc = ifp->if_softc;
1474 ofree = sc->re_ldata.re_txq_free;
1475
1476 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1477
1478 IFQ_POLL(&ifp->if_snd, m);
1479 if (m == NULL)
1480 break;
1481
1482 if (sc->re_ldata.re_txq_free == 0 ||
1483 sc->re_ldata.re_tx_free == 0) {
1484 /* no more free slots left */
1485 ifp->if_flags |= IFF_OACTIVE;
1486 break;
1487 }
1488
1489 /*
1490 * Set up checksum offload. Note: checksum offload bits must
1491 * appear in all descriptors of a multi-descriptor transmit
1492 * attempt. (This is according to testing done with an 8169
1493 * chip. I'm not sure if this is a requirement or a bug.)
1494 */
1495
1496 vlanctl = 0;
1497 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1498 uint32_t segsz = m->m_pkthdr.segsz;
1499
1500 re_flags = RE_TDESC_CMD_LGSEND |
1501 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1502 } else {
1503 /*
1504 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1505 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1506 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1507 */
1508 re_flags = 0;
1509 if ((m->m_pkthdr.csum_flags &
1510 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1511 != 0) {
1512 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1513 re_flags |= RE_TDESC_CMD_IPCSUM;
1514 if (m->m_pkthdr.csum_flags &
1515 M_CSUM_TCPv4) {
1516 re_flags |=
1517 RE_TDESC_CMD_TCPCSUM;
1518 } else if (m->m_pkthdr.csum_flags &
1519 M_CSUM_UDPv4) {
1520 re_flags |=
1521 RE_TDESC_CMD_UDPCSUM;
1522 }
1523 } else {
1524 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1525 if (m->m_pkthdr.csum_flags &
1526 M_CSUM_TCPv4) {
1527 vlanctl |=
1528 RE_TDESC_VLANCTL_TCPCSUM;
1529 } else if (m->m_pkthdr.csum_flags &
1530 M_CSUM_UDPv4) {
1531 vlanctl |=
1532 RE_TDESC_VLANCTL_UDPCSUM;
1533 }
1534 }
1535 }
1536 }
1537
1538 txq = &sc->re_ldata.re_txq[idx];
1539 map = txq->txq_dmamap;
1540 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1541 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1542
1543 if (__predict_false(error)) {
1544 /* XXX try to defrag if EFBIG? */
1545 printf("%s: can't map mbuf (error %d)\n",
1546 device_xname(sc->sc_dev), error);
1547
1548 IFQ_DEQUEUE(&ifp->if_snd, m);
1549 m_freem(m);
1550 ifp->if_oerrors++;
1551 continue;
1552 }
1553
1554 nsegs = map->dm_nsegs;
1555 pad = false;
1556 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1557 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1558 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1559 pad = true;
1560 nsegs++;
1561 }
1562
1563 if (nsegs > sc->re_ldata.re_tx_free) {
1564 /*
1565 * Not enough free descriptors to transmit this packet.
1566 */
1567 ifp->if_flags |= IFF_OACTIVE;
1568 bus_dmamap_unload(sc->sc_dmat, map);
1569 break;
1570 }
1571
1572 IFQ_DEQUEUE(&ifp->if_snd, m);
1573
1574 /*
1575 * Make sure that the caches are synchronized before we
1576 * ask the chip to start DMA for the packet data.
1577 */
1578 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1579 BUS_DMASYNC_PREWRITE);
1580
1581 /*
1582 * Set up hardware VLAN tagging. Note: vlan tag info must
1583 * appear in all descriptors of a multi-descriptor
1584 * transmission attempt.
1585 */
1586 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1587 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1588 RE_TDESC_VLANCTL_TAG;
1589
1590 /*
1591 * Map the segment array into descriptors.
1592 * Note that we set the start-of-frame and
1593 * end-of-frame markers for either TX or RX,
1594 * but they really only have meaning in the TX case.
1595 * (In the RX case, it's the chip that tells us
1596 * where packets begin and end.)
1597 * We also keep track of the end of the ring
1598 * and set the end-of-ring bits as needed,
1599 * and we set the ownership bits in all except
1600 * the very first descriptor. (The caller will
1601 * set this descriptor later when it start
1602 * transmission or reception.)
1603 */
1604 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1605 lastdesc = -1;
1606 for (seg = 0; seg < map->dm_nsegs;
1607 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1608 d = &sc->re_ldata.re_tx_list[curdesc];
1609 #ifdef DIAGNOSTIC
1610 RE_TXDESCSYNC(sc, curdesc,
1611 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1612 cmdstat = le32toh(d->re_cmdstat);
1613 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1614 if (cmdstat & RE_TDESC_STAT_OWN) {
1615 panic("%s: tried to map busy TX descriptor",
1616 device_xname(sc->sc_dev));
1617 }
1618 #endif
1619
1620 d->re_vlanctl = htole32(vlanctl);
1621 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1622 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1623 if (seg == 0)
1624 cmdstat |= RE_TDESC_CMD_SOF;
1625 else
1626 cmdstat |= RE_TDESC_CMD_OWN;
1627 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1628 cmdstat |= RE_TDESC_CMD_EOR;
1629 if (seg == nsegs - 1) {
1630 cmdstat |= RE_TDESC_CMD_EOF;
1631 lastdesc = curdesc;
1632 }
1633 d->re_cmdstat = htole32(cmdstat);
1634 RE_TXDESCSYNC(sc, curdesc,
1635 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1636 }
1637 if (__predict_false(pad)) {
1638 d = &sc->re_ldata.re_tx_list[curdesc];
1639 d->re_vlanctl = htole32(vlanctl);
1640 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1641 cmdstat = re_flags |
1642 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1643 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1644 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1645 cmdstat |= RE_TDESC_CMD_EOR;
1646 d->re_cmdstat = htole32(cmdstat);
1647 RE_TXDESCSYNC(sc, curdesc,
1648 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1649 lastdesc = curdesc;
1650 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1651 }
1652 KASSERT(lastdesc != -1);
1653
1654 /* Transfer ownership of packet to the chip. */
1655
1656 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1657 htole32(RE_TDESC_CMD_OWN);
1658 RE_TXDESCSYNC(sc, startdesc,
1659 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1660
1661 /* update info of TX queue and descriptors */
1662 txq->txq_mbuf = m;
1663 txq->txq_descidx = lastdesc;
1664 txq->txq_nsegs = nsegs;
1665
1666 sc->re_ldata.re_txq_free--;
1667 sc->re_ldata.re_tx_free -= nsegs;
1668 sc->re_ldata.re_tx_nextfree = curdesc;
1669
1670 #if NBPFILTER > 0
1671 /*
1672 * If there's a BPF listener, bounce a copy of this frame
1673 * to him.
1674 */
1675 if (ifp->if_bpf)
1676 bpf_mtap(ifp->if_bpf, m);
1677 #endif
1678 }
1679
1680 if (sc->re_ldata.re_txq_free < ofree) {
1681 /*
1682 * TX packets are enqueued.
1683 */
1684 sc->re_ldata.re_txq_prodidx = idx;
1685
1686 /*
1687 * Start the transmitter to poll.
1688 *
1689 * RealTek put the TX poll request register in a different
1690 * location on the 8169 gigE chip. I don't know why.
1691 */
1692 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1693 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1694 else
1695 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1696
1697 /*
1698 * Use the countdown timer for interrupt moderation.
1699 * 'TX done' interrupts are disabled. Instead, we reset the
1700 * countdown timer, which will begin counting until it hits
1701 * the value in the TIMERINT register, and then trigger an
1702 * interrupt. Each time we write to the TIMERCNT register,
1703 * the timer count is reset to 0.
1704 */
1705 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1706
1707 /*
1708 * Set a timeout in case the chip goes out to lunch.
1709 */
1710 ifp->if_timer = 5;
1711 }
1712 }
1713
1714 static int
1715 re_init(struct ifnet *ifp)
1716 {
1717 struct rtk_softc *sc = ifp->if_softc;
1718 const uint8_t *enaddr;
1719 uint32_t rxcfg = 0;
1720 uint32_t reg;
1721 uint16_t cfg;
1722 int error;
1723
1724 if ((error = re_enable(sc)) != 0)
1725 goto out;
1726
1727 /*
1728 * Cancel pending I/O and free all RX/TX buffers.
1729 */
1730 re_stop(ifp, 0);
1731
1732 re_reset(sc);
1733
1734 /*
1735 * Enable C+ RX and TX mode, as well as VLAN stripping and
1736 * RX checksum offload. We must configure the C+ register
1737 * before all others.
1738 */
1739 cfg = RE_CPLUSCMD_PCI_MRW;
1740
1741 /*
1742 * XXX: For old 8169 set bit 14.
1743 * For 8169S/8110S and above, do not set bit 14.
1744 */
1745 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1746 cfg |= (0x1 << 14);
1747
1748 if ((ifp->if_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1749 cfg |= RE_CPLUSCMD_VLANSTRIP;
1750 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1751 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1752 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1753 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1754 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1755 cfg |= RE_CPLUSCMD_TXENB;
1756 } else
1757 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1758
1759 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1760
1761 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1762 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1763 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1764
1765 DELAY(10000);
1766
1767 /*
1768 * Init our MAC address. Even though the chipset
1769 * documentation doesn't mention it, we need to enter "Config
1770 * register write enable" mode to modify the ID registers.
1771 */
1772 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1773 enaddr = CLLADDR(ifp->if_sadl);
1774 reg = enaddr[0] | (enaddr[1] << 8) |
1775 (enaddr[2] << 16) | (enaddr[3] << 24);
1776 CSR_WRITE_4(sc, RTK_IDR0, reg);
1777 reg = enaddr[4] | (enaddr[5] << 8);
1778 CSR_WRITE_4(sc, RTK_IDR4, reg);
1779 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1780
1781 /*
1782 * For C+ mode, initialize the RX descriptors and mbufs.
1783 */
1784 re_rx_list_init(sc);
1785 re_tx_list_init(sc);
1786
1787 /*
1788 * Load the addresses of the RX and TX lists into the chip.
1789 */
1790 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1791 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1792 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1793 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1794
1795 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1796 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1797 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1798 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1799
1800 /*
1801 * Enable transmit and receive.
1802 */
1803 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1804
1805 /*
1806 * Set the initial TX and RX configuration.
1807 */
1808 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1809 /* test mode is needed only for old 8169 */
1810 CSR_WRITE_4(sc, RTK_TXCFG,
1811 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1812 } else
1813 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1814
1815 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1816
1817 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1818
1819 /* Set the individual bit to receive frames for this host only. */
1820 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1821 rxcfg |= RTK_RXCFG_RX_INDIV;
1822
1823 /* If we want promiscuous mode, set the allframes bit. */
1824 if (ifp->if_flags & IFF_PROMISC)
1825 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1826 else
1827 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1828 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1829
1830 /*
1831 * Set capture broadcast bit to capture broadcast frames.
1832 */
1833 if (ifp->if_flags & IFF_BROADCAST)
1834 rxcfg |= RTK_RXCFG_RX_BROAD;
1835 else
1836 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1837 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1838
1839 /*
1840 * Program the multicast filter, if necessary.
1841 */
1842 rtk_setmulti(sc);
1843
1844 /*
1845 * Enable interrupts.
1846 */
1847 if (sc->re_testmode)
1848 CSR_WRITE_2(sc, RTK_IMR, 0);
1849 else
1850 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1851
1852 /* Start RX/TX process. */
1853 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1854 #ifdef notdef
1855 /* Enable receiver and transmitter. */
1856 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1857 #endif
1858
1859 /*
1860 * Initialize the timer interrupt register so that
1861 * a timer interrupt will be generated once the timer
1862 * reaches a certain number of ticks. The timer is
1863 * reloaded on each transmit. This gives us TX interrupt
1864 * moderation, which dramatically improves TX frame rate.
1865 */
1866
1867 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1868 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1869 else {
1870 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1871
1872 /*
1873 * For 8169 gigE NICs, set the max allowed RX packet
1874 * size so we can receive jumbo frames.
1875 */
1876 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1877 }
1878
1879 if (sc->re_testmode)
1880 return 0;
1881
1882 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1883
1884 ifp->if_flags |= IFF_RUNNING;
1885 ifp->if_flags &= ~IFF_OACTIVE;
1886
1887 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1888
1889 out:
1890 if (error) {
1891 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1892 ifp->if_timer = 0;
1893 printf("%s: interface not running\n",
1894 device_xname(sc->sc_dev));
1895 }
1896
1897 return error;
1898 }
1899
1900 static int
1901 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1902 {
1903 struct rtk_softc *sc = ifp->if_softc;
1904 struct ifreq *ifr = data;
1905 int s, error = 0;
1906
1907 s = splnet();
1908
1909 switch (command) {
1910 case SIOCSIFMTU:
1911 /*
1912 * Disable jumbo frames if it's not supported.
1913 */
1914 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1915 ifr->ifr_mtu > ETHERMTU) {
1916 error = EINVAL;
1917 break;
1918 }
1919
1920 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1921 error = EINVAL;
1922 else if ((error = ifioctl_common(ifp, command, data)) ==
1923 ENETRESET)
1924 error = 0;
1925 break;
1926 default:
1927 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1928 break;
1929
1930 error = 0;
1931
1932 if (command == SIOCSIFCAP)
1933 error = (*ifp->if_init)(ifp);
1934 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1935 ;
1936 else if (ifp->if_flags & IFF_RUNNING)
1937 rtk_setmulti(sc);
1938 break;
1939 }
1940
1941 splx(s);
1942
1943 return error;
1944 }
1945
1946 static void
1947 re_watchdog(struct ifnet *ifp)
1948 {
1949 struct rtk_softc *sc;
1950 int s;
1951
1952 sc = ifp->if_softc;
1953 s = splnet();
1954 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1955 ifp->if_oerrors++;
1956
1957 re_txeof(sc);
1958 re_rxeof(sc);
1959
1960 re_init(ifp);
1961
1962 splx(s);
1963 }
1964
1965 /*
1966 * Stop the adapter and free any mbufs allocated to the
1967 * RX and TX lists.
1968 */
1969 static void
1970 re_stop(struct ifnet *ifp, int disable)
1971 {
1972 int i;
1973 struct rtk_softc *sc = ifp->if_softc;
1974
1975 callout_stop(&sc->rtk_tick_ch);
1976
1977 mii_down(&sc->mii);
1978
1979 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
1980 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
1981 RTK_CMD_RX_ENB);
1982 else
1983 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1984 DELAY(1000);
1985 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1986 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
1987
1988 if (sc->re_head != NULL) {
1989 m_freem(sc->re_head);
1990 sc->re_head = sc->re_tail = NULL;
1991 }
1992
1993 /* Free the TX list buffers. */
1994 for (i = 0; i < RE_TX_QLEN; i++) {
1995 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1996 bus_dmamap_unload(sc->sc_dmat,
1997 sc->re_ldata.re_txq[i].txq_dmamap);
1998 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1999 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2000 }
2001 }
2002
2003 /* Free the RX list buffers. */
2004 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2005 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2006 bus_dmamap_unload(sc->sc_dmat,
2007 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2008 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2009 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2010 }
2011 }
2012
2013 if (disable)
2014 re_disable(sc);
2015
2016 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2017 ifp->if_timer = 0;
2018 }
2019