rtl8169.c revision 1.124 1 /* $NetBSD: rtl8169.c,v 1.124 2009/08/31 13:05:30 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.124 2009/08/31 13:05:30 tsutsui Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <sys/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, void *);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static int re_enable(struct rtk_softc *);
166 static void re_disable(struct rtk_softc *);
167
168 static int re_gmii_readreg(device_t, int, int);
169 static void re_gmii_writereg(device_t, int, int, int);
170
171 static int re_miibus_readreg(device_t, int, int);
172 static void re_miibus_writereg(device_t, int, int, int);
173 static void re_miibus_statchg(device_t);
174
175 static void re_reset(struct rtk_softc *);
176
177 static inline void
178 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
179 {
180
181 d->re_bufaddr_lo = htole32((uint32_t)addr);
182 if (sizeof(bus_addr_t) == sizeof(uint64_t))
183 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
184 else
185 d->re_bufaddr_hi = 0;
186 }
187
188 static int
189 re_gmii_readreg(device_t dev, int phy, int reg)
190 {
191 struct rtk_softc *sc = device_private(dev);
192 uint32_t rval;
193 int i;
194
195 if (phy != 7)
196 return 0;
197
198 /* Let the rgephy driver read the GMEDIASTAT register */
199
200 if (reg == RTK_GMEDIASTAT) {
201 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
202 return rval;
203 }
204
205 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
206 DELAY(1000);
207
208 for (i = 0; i < RTK_TIMEOUT; i++) {
209 rval = CSR_READ_4(sc, RTK_PHYAR);
210 if (rval & RTK_PHYAR_BUSY)
211 break;
212 DELAY(100);
213 }
214
215 if (i == RTK_TIMEOUT) {
216 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
217 return 0;
218 }
219
220 return rval & RTK_PHYAR_PHYDATA;
221 }
222
223 static void
224 re_gmii_writereg(device_t dev, int phy, int reg, int data)
225 {
226 struct rtk_softc *sc = device_private(dev);
227 uint32_t rval;
228 int i;
229
230 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
231 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
232 DELAY(1000);
233
234 for (i = 0; i < RTK_TIMEOUT; i++) {
235 rval = CSR_READ_4(sc, RTK_PHYAR);
236 if (!(rval & RTK_PHYAR_BUSY))
237 break;
238 DELAY(100);
239 }
240
241 if (i == RTK_TIMEOUT) {
242 printf("%s: PHY write reg %x <- %x failed\n",
243 device_xname(sc->sc_dev), reg, data);
244 }
245 }
246
247 static int
248 re_miibus_readreg(device_t dev, int phy, int reg)
249 {
250 struct rtk_softc *sc = device_private(dev);
251 uint16_t rval = 0;
252 uint16_t re8139_reg = 0;
253 int s;
254
255 s = splnet();
256
257 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
258 rval = re_gmii_readreg(dev, phy, reg);
259 splx(s);
260 return rval;
261 }
262
263 /* Pretend the internal PHY is only at address 0 */
264 if (phy) {
265 splx(s);
266 return 0;
267 }
268 switch (reg) {
269 case MII_BMCR:
270 re8139_reg = RTK_BMCR;
271 break;
272 case MII_BMSR:
273 re8139_reg = RTK_BMSR;
274 break;
275 case MII_ANAR:
276 re8139_reg = RTK_ANAR;
277 break;
278 case MII_ANER:
279 re8139_reg = RTK_ANER;
280 break;
281 case MII_ANLPAR:
282 re8139_reg = RTK_LPAR;
283 break;
284 case MII_PHYIDR1:
285 case MII_PHYIDR2:
286 splx(s);
287 return 0;
288 /*
289 * Allow the rlphy driver to read the media status
290 * register. If we have a link partner which does not
291 * support NWAY, this is the register which will tell
292 * us the results of parallel detection.
293 */
294 case RTK_MEDIASTAT:
295 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
296 splx(s);
297 return rval;
298 default:
299 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
300 splx(s);
301 return 0;
302 }
303 rval = CSR_READ_2(sc, re8139_reg);
304 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
305 /* 8139C+ has different bit layout. */
306 rval &= ~(BMCR_LOOP | BMCR_ISO);
307 }
308 splx(s);
309 return rval;
310 }
311
312 static void
313 re_miibus_writereg(device_t dev, int phy, int reg, int data)
314 {
315 struct rtk_softc *sc = device_private(dev);
316 uint16_t re8139_reg = 0;
317 int s;
318
319 s = splnet();
320
321 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
322 re_gmii_writereg(dev, phy, reg, data);
323 splx(s);
324 return;
325 }
326
327 /* Pretend the internal PHY is only at address 0 */
328 if (phy) {
329 splx(s);
330 return;
331 }
332 switch (reg) {
333 case MII_BMCR:
334 re8139_reg = RTK_BMCR;
335 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
336 /* 8139C+ has different bit layout. */
337 data &= ~(BMCR_LOOP | BMCR_ISO);
338 }
339 break;
340 case MII_BMSR:
341 re8139_reg = RTK_BMSR;
342 break;
343 case MII_ANAR:
344 re8139_reg = RTK_ANAR;
345 break;
346 case MII_ANER:
347 re8139_reg = RTK_ANER;
348 break;
349 case MII_ANLPAR:
350 re8139_reg = RTK_LPAR;
351 break;
352 case MII_PHYIDR1:
353 case MII_PHYIDR2:
354 splx(s);
355 return;
356 break;
357 default:
358 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
359 splx(s);
360 return;
361 }
362 CSR_WRITE_2(sc, re8139_reg, data);
363 splx(s);
364 return;
365 }
366
367 static void
368 re_miibus_statchg(device_t dev)
369 {
370
371 return;
372 }
373
374 static void
375 re_reset(struct rtk_softc *sc)
376 {
377 int i;
378
379 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
380
381 for (i = 0; i < RTK_TIMEOUT; i++) {
382 DELAY(10);
383 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
384 break;
385 }
386 if (i == RTK_TIMEOUT)
387 printf("%s: reset never completed!\n",
388 device_xname(sc->sc_dev));
389
390 /*
391 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
392 * but also says "Rtl8169s sigle chip detected".
393 */
394 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
395 CSR_WRITE_1(sc, RTK_LDPS, 1);
396
397 }
398
399 /*
400 * The following routine is designed to test for a defect on some
401 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
402 * lines connected to the bus, however for a 32-bit only card, they
403 * should be pulled high. The result of this defect is that the
404 * NIC will not work right if you plug it into a 64-bit slot: DMA
405 * operations will be done with 64-bit transfers, which will fail
406 * because the 64-bit data lines aren't connected.
407 *
408 * There's no way to work around this (short of talking a soldering
409 * iron to the board), however we can detect it. The method we use
410 * here is to put the NIC into digital loopback mode, set the receiver
411 * to promiscuous mode, and then try to send a frame. We then compare
412 * the frame data we sent to what was received. If the data matches,
413 * then the NIC is working correctly, otherwise we know the user has
414 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
415 * slot. In the latter case, there's no way the NIC can work correctly,
416 * so we print out a message on the console and abort the device attach.
417 */
418
419 int
420 re_diag(struct rtk_softc *sc)
421 {
422 struct ifnet *ifp = &sc->ethercom.ec_if;
423 struct mbuf *m0;
424 struct ether_header *eh;
425 struct re_rxsoft *rxs;
426 struct re_desc *cur_rx;
427 bus_dmamap_t dmamap;
428 uint16_t status;
429 uint32_t rxstat;
430 int total_len, i, s, error = 0;
431 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
432 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
433
434 /* Allocate a single mbuf */
435
436 MGETHDR(m0, M_DONTWAIT, MT_DATA);
437 if (m0 == NULL)
438 return ENOBUFS;
439
440 /*
441 * Initialize the NIC in test mode. This sets the chip up
442 * so that it can send and receive frames, but performs the
443 * following special functions:
444 * - Puts receiver in promiscuous mode
445 * - Enables digital loopback mode
446 * - Leaves interrupts turned off
447 */
448
449 ifp->if_flags |= IFF_PROMISC;
450 sc->re_testmode = 1;
451 re_init(ifp);
452 re_stop(ifp, 0);
453 DELAY(100000);
454 re_init(ifp);
455
456 /* Put some data in the mbuf */
457
458 eh = mtod(m0, struct ether_header *);
459 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
460 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
461 eh->ether_type = htons(ETHERTYPE_IP);
462 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
463
464 /*
465 * Queue the packet, start transmission.
466 */
467
468 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
469 s = splnet();
470 IF_ENQUEUE(&ifp->if_snd, m0);
471 re_start(ifp);
472 splx(s);
473 m0 = NULL;
474
475 /* Wait for it to propagate through the chip */
476
477 DELAY(100000);
478 for (i = 0; i < RTK_TIMEOUT; i++) {
479 status = CSR_READ_2(sc, RTK_ISR);
480 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
481 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
482 break;
483 DELAY(10);
484 }
485 if (i == RTK_TIMEOUT) {
486 aprint_error_dev(sc->sc_dev,
487 "diagnostic failed, failed to receive packet "
488 "in loopback mode\n");
489 error = EIO;
490 goto done;
491 }
492
493 /*
494 * The packet should have been dumped into the first
495 * entry in the RX DMA ring. Grab it from there.
496 */
497
498 rxs = &sc->re_ldata.re_rxsoft[0];
499 dmamap = rxs->rxs_dmamap;
500 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
501 BUS_DMASYNC_POSTREAD);
502 bus_dmamap_unload(sc->sc_dmat, dmamap);
503
504 m0 = rxs->rxs_mbuf;
505 rxs->rxs_mbuf = NULL;
506 eh = mtod(m0, struct ether_header *);
507
508 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
509 cur_rx = &sc->re_ldata.re_rx_list[0];
510 rxstat = le32toh(cur_rx->re_cmdstat);
511 total_len = rxstat & sc->re_rxlenmask;
512
513 if (total_len != ETHER_MIN_LEN) {
514 aprint_error_dev(sc->sc_dev,
515 "diagnostic failed, received short packet\n");
516 error = EIO;
517 goto done;
518 }
519
520 /* Test that the received packet data matches what we sent. */
521
522 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
523 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
524 ntohs(eh->ether_type) != ETHERTYPE_IP) {
525 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
526 "expected TX data: %s/%s/0x%x\n"
527 "received RX data: %s/%s/0x%x\n"
528 "You may have a defective 32-bit NIC plugged "
529 "into a 64-bit PCI slot.\n"
530 "Please re-install the NIC in a 32-bit slot "
531 "for proper operation.\n"
532 "Read the re(4) man page for more details.\n" ,
533 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
534 ether_sprintf(eh->ether_dhost),
535 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
536 error = EIO;
537 }
538
539 done:
540 /* Turn interface off, release resources */
541
542 sc->re_testmode = 0;
543 ifp->if_flags &= ~IFF_PROMISC;
544 re_stop(ifp, 0);
545 if (m0 != NULL)
546 m_freem(m0);
547
548 return error;
549 }
550
551
552 /*
553 * Attach the interface. Allocate softc structures, do ifmedia
554 * setup and ethernet/BPF attach.
555 */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 uint8_t eaddr[ETHER_ADDR_LEN];
560 uint16_t val;
561 struct ifnet *ifp;
562 int error = 0, i, addr_len;
563
564 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
565 uint32_t hwrev;
566
567 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
568 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
569 switch (hwrev) {
570 case RTK_HWREV_8169:
571 sc->sc_quirk |= RTKQ_8169NONS;
572 break;
573 case RTK_HWREV_8169S:
574 case RTK_HWREV_8110S:
575 case RTK_HWREV_8169_8110SB:
576 case RTK_HWREV_8169_8110SC:
577 sc->sc_quirk |= RTKQ_MACLDPS;
578 break;
579 case RTK_HWREV_8168_SPIN1:
580 case RTK_HWREV_8168_SPIN2:
581 case RTK_HWREV_8168_SPIN3:
582 sc->sc_quirk |= RTKQ_MACSTAT;
583 break;
584 case RTK_HWREV_8168C:
585 case RTK_HWREV_8168C_SPIN2:
586 case RTK_HWREV_8168CP:
587 case RTK_HWREV_8168D:
588 case RTK_HWREV_8168DP:
589 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
590 RTKQ_MACSTAT | RTKQ_CMDSTOP;
591 /*
592 * From FreeBSD driver:
593 *
594 * These (8168/8111) controllers support jumbo frame
595 * but it seems that enabling it requires touching
596 * additional magic registers. Depending on MAC
597 * revisions some controllers need to disable
598 * checksum offload. So disable jumbo frame until
599 * I have better idea what it really requires to
600 * make it support.
601 * RTL8168C/CP : supports up to 6KB jumbo frame.
602 * RTL8111C/CP : supports up to 9KB jumbo frame.
603 */
604 sc->sc_quirk |= RTKQ_NOJUMBO;
605 break;
606 case RTK_HWREV_8100E:
607 case RTK_HWREV_8100E_SPIN2:
608 case RTK_HWREV_8101E:
609 sc->sc_quirk |= RTKQ_NOJUMBO;
610 break;
611 case RTK_HWREV_8102E:
612 case RTK_HWREV_8102EL:
613 case RTK_HWREV_8103E:
614 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
615 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
616 break;
617 default:
618 aprint_normal_dev(sc->sc_dev,
619 "Unknown revision (0x%08x)\n", hwrev);
620 /* assume the latest features */
621 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
622 sc->sc_quirk |= RTKQ_NOJUMBO;
623 }
624
625 /* Set RX length mask */
626 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
627 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
628 } else {
629 sc->sc_quirk |= RTKQ_NOJUMBO;
630
631 /* Set RX length mask */
632 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
633 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
634 }
635
636 /* Reset the adapter. */
637 re_reset(sc);
638
639 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
640 /*
641 * Get station address from ID registers.
642 */
643 for (i = 0; i < ETHER_ADDR_LEN; i++)
644 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
645 } else {
646 /*
647 * Get station address from the EEPROM.
648 */
649 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
650 addr_len = RTK_EEADDR_LEN1;
651 else
652 addr_len = RTK_EEADDR_LEN0;
653
654 /*
655 * Get station address from the EEPROM.
656 */
657 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
658 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
659 eaddr[(i * 2) + 0] = val & 0xff;
660 eaddr[(i * 2) + 1] = val >> 8;
661 }
662 }
663
664 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
665 ether_sprintf(eaddr));
666
667 if (sc->re_ldata.re_tx_desc_cnt >
668 PAGE_SIZE / sizeof(struct re_desc)) {
669 sc->re_ldata.re_tx_desc_cnt =
670 PAGE_SIZE / sizeof(struct re_desc);
671 }
672
673 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
674 sc->re_ldata.re_tx_desc_cnt);
675 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
676
677 /* Allocate DMA'able memory for the TX ring */
678 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
679 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
680 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
681 aprint_error_dev(sc->sc_dev,
682 "can't allocate tx listseg, error = %d\n", error);
683 goto fail_0;
684 }
685
686 /* Load the map for the TX ring. */
687 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
688 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
689 (void **)&sc->re_ldata.re_tx_list,
690 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
691 aprint_error_dev(sc->sc_dev,
692 "can't map tx list, error = %d\n", error);
693 goto fail_1;
694 }
695 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
696
697 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
698 RE_TX_LIST_SZ(sc), 0, 0,
699 &sc->re_ldata.re_tx_list_map)) != 0) {
700 aprint_error_dev(sc->sc_dev,
701 "can't create tx list map, error = %d\n", error);
702 goto fail_2;
703 }
704
705
706 if ((error = bus_dmamap_load(sc->sc_dmat,
707 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
708 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
709 aprint_error_dev(sc->sc_dev,
710 "can't load tx list, error = %d\n", error);
711 goto fail_3;
712 }
713
714 /* Create DMA maps for TX buffers */
715 for (i = 0; i < RE_TX_QLEN; i++) {
716 error = bus_dmamap_create(sc->sc_dmat,
717 round_page(IP_MAXPACKET),
718 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
719 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
720 if (error) {
721 aprint_error_dev(sc->sc_dev,
722 "can't create DMA map for TX\n");
723 goto fail_4;
724 }
725 }
726
727 /* Allocate DMA'able memory for the RX ring */
728 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
729 if ((error = bus_dmamem_alloc(sc->sc_dmat,
730 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
731 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
732 aprint_error_dev(sc->sc_dev,
733 "can't allocate rx listseg, error = %d\n", error);
734 goto fail_4;
735 }
736
737 /* Load the map for the RX ring. */
738 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
739 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
740 (void **)&sc->re_ldata.re_rx_list,
741 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
742 aprint_error_dev(sc->sc_dev,
743 "can't map rx list, error = %d\n", error);
744 goto fail_5;
745 }
746 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
747
748 if ((error = bus_dmamap_create(sc->sc_dmat,
749 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
750 &sc->re_ldata.re_rx_list_map)) != 0) {
751 aprint_error_dev(sc->sc_dev,
752 "can't create rx list map, error = %d\n", error);
753 goto fail_6;
754 }
755
756 if ((error = bus_dmamap_load(sc->sc_dmat,
757 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
758 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
759 aprint_error_dev(sc->sc_dev,
760 "can't load rx list, error = %d\n", error);
761 goto fail_7;
762 }
763
764 /* Create DMA maps for RX buffers */
765 for (i = 0; i < RE_RX_DESC_CNT; i++) {
766 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
767 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
768 if (error) {
769 aprint_error_dev(sc->sc_dev,
770 "can't create DMA map for RX\n");
771 goto fail_8;
772 }
773 }
774
775 /*
776 * Record interface as attached. From here, we should not fail.
777 */
778 sc->sc_flags |= RTK_ATTACHED;
779
780 ifp = &sc->ethercom.ec_if;
781 ifp->if_softc = sc;
782 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
783 ifp->if_mtu = ETHERMTU;
784 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
785 ifp->if_ioctl = re_ioctl;
786 sc->ethercom.ec_capabilities |=
787 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788 ifp->if_start = re_start;
789 ifp->if_stop = re_stop;
790
791 /*
792 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
793 * so we have a workaround to handle the bug by padding
794 * such packets manually.
795 */
796 ifp->if_capabilities |=
797 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
798 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
799 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
800 IFCAP_TSOv4;
801
802 /*
803 * XXX
804 * Still have no idea how to make TSO work on 8168C, 8168CP,
805 * 8102E, 8111C and 8111CP.
806 */
807 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
808 ifp->if_capabilities &= ~IFCAP_TSOv4;
809
810 ifp->if_watchdog = re_watchdog;
811 ifp->if_init = re_init;
812 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
813 ifp->if_capenable = ifp->if_capabilities;
814 IFQ_SET_READY(&ifp->if_snd);
815
816 callout_init(&sc->rtk_tick_ch, 0);
817
818 /* Do MII setup */
819 sc->mii.mii_ifp = ifp;
820 sc->mii.mii_readreg = re_miibus_readreg;
821 sc->mii.mii_writereg = re_miibus_writereg;
822 sc->mii.mii_statchg = re_miibus_statchg;
823 sc->ethercom.ec_mii = &sc->mii;
824 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
825 ether_mediastatus);
826 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
827 MII_OFFSET_ANY, 0);
828 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
829
830 /*
831 * Call MI attach routine.
832 */
833 if_attach(ifp);
834 ether_ifattach(ifp, eaddr);
835
836 return;
837
838 fail_8:
839 /* Destroy DMA maps for RX buffers. */
840 for (i = 0; i < RE_RX_DESC_CNT; i++)
841 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
842 bus_dmamap_destroy(sc->sc_dmat,
843 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
844
845 /* Free DMA'able memory for the RX ring. */
846 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
847 fail_7:
848 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
849 fail_6:
850 bus_dmamem_unmap(sc->sc_dmat,
851 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
852 fail_5:
853 bus_dmamem_free(sc->sc_dmat,
854 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
855
856 fail_4:
857 /* Destroy DMA maps for TX buffers. */
858 for (i = 0; i < RE_TX_QLEN; i++)
859 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
860 bus_dmamap_destroy(sc->sc_dmat,
861 sc->re_ldata.re_txq[i].txq_dmamap);
862
863 /* Free DMA'able memory for the TX ring. */
864 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
865 fail_3:
866 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
867 fail_2:
868 bus_dmamem_unmap(sc->sc_dmat,
869 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
870 fail_1:
871 bus_dmamem_free(sc->sc_dmat,
872 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
873 fail_0:
874 return;
875 }
876
877
878 /*
879 * re_activate:
880 * Handle device activation/deactivation requests.
881 */
882 int
883 re_activate(device_t self, enum devact act)
884 {
885 struct rtk_softc *sc = device_private(self);
886 int s, error = 0;
887
888 s = splnet();
889 switch (act) {
890 case DVACT_ACTIVATE:
891 error = EOPNOTSUPP;
892 break;
893 case DVACT_DEACTIVATE:
894 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
895 if_deactivate(&sc->ethercom.ec_if);
896 break;
897 }
898 splx(s);
899
900 return error;
901 }
902
903 /*
904 * re_detach:
905 * Detach a rtk interface.
906 */
907 int
908 re_detach(struct rtk_softc *sc)
909 {
910 struct ifnet *ifp = &sc->ethercom.ec_if;
911 int i;
912
913 /*
914 * Succeed now if there isn't any work to do.
915 */
916 if ((sc->sc_flags & RTK_ATTACHED) == 0)
917 return 0;
918
919 /* Unhook our tick handler. */
920 callout_stop(&sc->rtk_tick_ch);
921
922 /* Detach all PHYs. */
923 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
924
925 /* Delete all remaining media. */
926 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
927
928 ether_ifdetach(ifp);
929 if_detach(ifp);
930
931 /* Destroy DMA maps for RX buffers. */
932 for (i = 0; i < RE_RX_DESC_CNT; i++)
933 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
934 bus_dmamap_destroy(sc->sc_dmat,
935 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
936
937 /* Free DMA'able memory for the RX ring. */
938 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
939 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
940 bus_dmamem_unmap(sc->sc_dmat,
941 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
942 bus_dmamem_free(sc->sc_dmat,
943 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
944
945 /* Destroy DMA maps for TX buffers. */
946 for (i = 0; i < RE_TX_QLEN; i++)
947 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
948 bus_dmamap_destroy(sc->sc_dmat,
949 sc->re_ldata.re_txq[i].txq_dmamap);
950
951 /* Free DMA'able memory for the TX ring. */
952 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
953 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
954 bus_dmamem_unmap(sc->sc_dmat,
955 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
956 bus_dmamem_free(sc->sc_dmat,
957 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
958
959 return 0;
960 }
961
962 /*
963 * re_enable:
964 * Enable the RTL81X9 chip.
965 */
966 static int
967 re_enable(struct rtk_softc *sc)
968 {
969
970 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
971 if ((*sc->sc_enable)(sc) != 0) {
972 printf("%s: device enable failed\n",
973 device_xname(sc->sc_dev));
974 return EIO;
975 }
976 sc->sc_flags |= RTK_ENABLED;
977 }
978 return 0;
979 }
980
981 /*
982 * re_disable:
983 * Disable the RTL81X9 chip.
984 */
985 static void
986 re_disable(struct rtk_softc *sc)
987 {
988
989 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
990 (*sc->sc_disable)(sc);
991 sc->sc_flags &= ~RTK_ENABLED;
992 }
993 }
994
995 static int
996 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
997 {
998 struct mbuf *n = NULL;
999 bus_dmamap_t map;
1000 struct re_desc *d;
1001 struct re_rxsoft *rxs;
1002 uint32_t cmdstat;
1003 int error;
1004
1005 if (m == NULL) {
1006 MGETHDR(n, M_DONTWAIT, MT_DATA);
1007 if (n == NULL)
1008 return ENOBUFS;
1009
1010 MCLGET(n, M_DONTWAIT);
1011 if ((n->m_flags & M_EXT) == 0) {
1012 m_freem(n);
1013 return ENOBUFS;
1014 }
1015 m = n;
1016 } else
1017 m->m_data = m->m_ext.ext_buf;
1018
1019 /*
1020 * Initialize mbuf length fields and fixup
1021 * alignment so that the frame payload is
1022 * longword aligned.
1023 */
1024 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1025 m->m_data += RE_ETHER_ALIGN;
1026
1027 rxs = &sc->re_ldata.re_rxsoft[idx];
1028 map = rxs->rxs_dmamap;
1029 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1030 BUS_DMA_READ|BUS_DMA_NOWAIT);
1031
1032 if (error)
1033 goto out;
1034
1035 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1036 BUS_DMASYNC_PREREAD);
1037
1038 d = &sc->re_ldata.re_rx_list[idx];
1039 #ifdef DIAGNOSTIC
1040 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1041 cmdstat = le32toh(d->re_cmdstat);
1042 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1043 if (cmdstat & RE_RDESC_STAT_OWN) {
1044 panic("%s: tried to map busy RX descriptor",
1045 device_xname(sc->sc_dev));
1046 }
1047 #endif
1048
1049 rxs->rxs_mbuf = m;
1050
1051 d->re_vlanctl = 0;
1052 cmdstat = map->dm_segs[0].ds_len;
1053 if (idx == (RE_RX_DESC_CNT - 1))
1054 cmdstat |= RE_RDESC_CMD_EOR;
1055 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1056 d->re_cmdstat = htole32(cmdstat);
1057 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1058 cmdstat |= RE_RDESC_CMD_OWN;
1059 d->re_cmdstat = htole32(cmdstat);
1060 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1061
1062 return 0;
1063 out:
1064 if (n != NULL)
1065 m_freem(n);
1066 return ENOMEM;
1067 }
1068
1069 static int
1070 re_tx_list_init(struct rtk_softc *sc)
1071 {
1072 int i;
1073
1074 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1075 for (i = 0; i < RE_TX_QLEN; i++) {
1076 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1077 }
1078
1079 bus_dmamap_sync(sc->sc_dmat,
1080 sc->re_ldata.re_tx_list_map, 0,
1081 sc->re_ldata.re_tx_list_map->dm_mapsize,
1082 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1083 sc->re_ldata.re_txq_prodidx = 0;
1084 sc->re_ldata.re_txq_considx = 0;
1085 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1086 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1087 sc->re_ldata.re_tx_nextfree = 0;
1088
1089 return 0;
1090 }
1091
1092 static int
1093 re_rx_list_init(struct rtk_softc *sc)
1094 {
1095 int i;
1096
1097 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1098
1099 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1100 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1101 return ENOBUFS;
1102 }
1103
1104 sc->re_ldata.re_rx_prodidx = 0;
1105 sc->re_head = sc->re_tail = NULL;
1106
1107 return 0;
1108 }
1109
1110 /*
1111 * RX handler for C+ and 8169. For the gigE chips, we support
1112 * the reception of jumbo frames that have been fragmented
1113 * across multiple 2K mbuf cluster buffers.
1114 */
1115 static void
1116 re_rxeof(struct rtk_softc *sc)
1117 {
1118 struct mbuf *m;
1119 struct ifnet *ifp;
1120 int i, total_len;
1121 struct re_desc *cur_rx;
1122 struct re_rxsoft *rxs;
1123 uint32_t rxstat, rxvlan;
1124
1125 ifp = &sc->ethercom.ec_if;
1126
1127 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1128 cur_rx = &sc->re_ldata.re_rx_list[i];
1129 RE_RXDESCSYNC(sc, i,
1130 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1131 rxstat = le32toh(cur_rx->re_cmdstat);
1132 rxvlan = le32toh(cur_rx->re_vlanctl);
1133 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1134 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1135 break;
1136 }
1137 total_len = rxstat & sc->re_rxlenmask;
1138 rxs = &sc->re_ldata.re_rxsoft[i];
1139 m = rxs->rxs_mbuf;
1140
1141 /* Invalidate the RX mbuf and unload its map */
1142
1143 bus_dmamap_sync(sc->sc_dmat,
1144 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1145 BUS_DMASYNC_POSTREAD);
1146 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1147
1148 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1149 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1150 if (sc->re_head == NULL)
1151 sc->re_head = sc->re_tail = m;
1152 else {
1153 m->m_flags &= ~M_PKTHDR;
1154 sc->re_tail->m_next = m;
1155 sc->re_tail = m;
1156 }
1157 re_newbuf(sc, i, NULL);
1158 continue;
1159 }
1160
1161 /*
1162 * NOTE: for the 8139C+, the frame length field
1163 * is always 12 bits in size, but for the gigE chips,
1164 * it is 13 bits (since the max RX frame length is 16K).
1165 * Unfortunately, all 32 bits in the status word
1166 * were already used, so to make room for the extra
1167 * length bit, RealTek took out the 'frame alignment
1168 * error' bit and shifted the other status bits
1169 * over one slot. The OWN, EOR, FS and LS bits are
1170 * still in the same places. We have already extracted
1171 * the frame length and checked the OWN bit, so rather
1172 * than using an alternate bit mapping, we shift the
1173 * status bits one space to the right so we can evaluate
1174 * them using the 8169 status as though it was in the
1175 * same format as that of the 8139C+.
1176 */
1177 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1178 rxstat >>= 1;
1179
1180 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1181 #ifdef RE_DEBUG
1182 printf("%s: RX error (rxstat = 0x%08x)",
1183 device_xname(sc->sc_dev), rxstat);
1184 if (rxstat & RE_RDESC_STAT_FRALIGN)
1185 printf(", frame alignment error");
1186 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1187 printf(", out of buffer space");
1188 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1189 printf(", FIFO overrun");
1190 if (rxstat & RE_RDESC_STAT_GIANT)
1191 printf(", giant packet");
1192 if (rxstat & RE_RDESC_STAT_RUNT)
1193 printf(", runt packet");
1194 if (rxstat & RE_RDESC_STAT_CRCERR)
1195 printf(", CRC error");
1196 printf("\n");
1197 #endif
1198 ifp->if_ierrors++;
1199 /*
1200 * If this is part of a multi-fragment packet,
1201 * discard all the pieces.
1202 */
1203 if (sc->re_head != NULL) {
1204 m_freem(sc->re_head);
1205 sc->re_head = sc->re_tail = NULL;
1206 }
1207 re_newbuf(sc, i, m);
1208 continue;
1209 }
1210
1211 /*
1212 * If allocating a replacement mbuf fails,
1213 * reload the current one.
1214 */
1215
1216 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1217 ifp->if_ierrors++;
1218 if (sc->re_head != NULL) {
1219 m_freem(sc->re_head);
1220 sc->re_head = sc->re_tail = NULL;
1221 }
1222 re_newbuf(sc, i, m);
1223 continue;
1224 }
1225
1226 if (sc->re_head != NULL) {
1227 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1228 /*
1229 * Special case: if there's 4 bytes or less
1230 * in this buffer, the mbuf can be discarded:
1231 * the last 4 bytes is the CRC, which we don't
1232 * care about anyway.
1233 */
1234 if (m->m_len <= ETHER_CRC_LEN) {
1235 sc->re_tail->m_len -=
1236 (ETHER_CRC_LEN - m->m_len);
1237 m_freem(m);
1238 } else {
1239 m->m_len -= ETHER_CRC_LEN;
1240 m->m_flags &= ~M_PKTHDR;
1241 sc->re_tail->m_next = m;
1242 }
1243 m = sc->re_head;
1244 sc->re_head = sc->re_tail = NULL;
1245 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1246 } else
1247 m->m_pkthdr.len = m->m_len =
1248 (total_len - ETHER_CRC_LEN);
1249
1250 ifp->if_ipackets++;
1251 m->m_pkthdr.rcvif = ifp;
1252
1253 /* Do RX checksumming */
1254 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1255 /* Check IP header checksum */
1256 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1257 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1258 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1259 m->m_pkthdr.csum_flags |=
1260 M_CSUM_IPv4_BAD;
1261
1262 /* Check TCP/UDP checksum */
1263 if (RE_TCPPKT(rxstat)) {
1264 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1265 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1266 m->m_pkthdr.csum_flags |=
1267 M_CSUM_TCP_UDP_BAD;
1268 } else if (RE_UDPPKT(rxstat)) {
1269 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1270 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1271 m->m_pkthdr.csum_flags |=
1272 M_CSUM_TCP_UDP_BAD;
1273 }
1274 }
1275 } else {
1276 /* Check IPv4 header checksum */
1277 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1278 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1279 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1280 m->m_pkthdr.csum_flags |=
1281 M_CSUM_IPv4_BAD;
1282
1283 /* Check TCPv4/UDPv4 checksum */
1284 if (RE_TCPPKT(rxstat)) {
1285 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1286 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1287 m->m_pkthdr.csum_flags |=
1288 M_CSUM_TCP_UDP_BAD;
1289 } else if (RE_UDPPKT(rxstat)) {
1290 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1291 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1292 m->m_pkthdr.csum_flags |=
1293 M_CSUM_TCP_UDP_BAD;
1294 }
1295 }
1296 /* XXX Check TCPv6/UDPv6 checksum? */
1297 }
1298
1299 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1300 VLAN_INPUT_TAG(ifp, m,
1301 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1302 continue);
1303 }
1304 #if NBPFILTER > 0
1305 if (ifp->if_bpf)
1306 bpf_mtap(ifp->if_bpf, m);
1307 #endif
1308 (*ifp->if_input)(ifp, m);
1309 }
1310
1311 sc->re_ldata.re_rx_prodidx = i;
1312 }
1313
1314 static void
1315 re_txeof(struct rtk_softc *sc)
1316 {
1317 struct ifnet *ifp;
1318 struct re_txq *txq;
1319 uint32_t txstat;
1320 int idx, descidx;
1321
1322 ifp = &sc->ethercom.ec_if;
1323
1324 for (idx = sc->re_ldata.re_txq_considx;
1325 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1326 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1327 txq = &sc->re_ldata.re_txq[idx];
1328 KASSERT(txq->txq_mbuf != NULL);
1329
1330 descidx = txq->txq_descidx;
1331 RE_TXDESCSYNC(sc, descidx,
1332 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1333 txstat =
1334 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1335 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1336 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1337 if (txstat & RE_TDESC_CMD_OWN) {
1338 break;
1339 }
1340
1341 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1342 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1343 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1344 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1345 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1346 m_freem(txq->txq_mbuf);
1347 txq->txq_mbuf = NULL;
1348
1349 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1350 ifp->if_collisions++;
1351 if (txstat & RE_TDESC_STAT_TXERRSUM)
1352 ifp->if_oerrors++;
1353 else
1354 ifp->if_opackets++;
1355 }
1356
1357 sc->re_ldata.re_txq_considx = idx;
1358
1359 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1360 ifp->if_flags &= ~IFF_OACTIVE;
1361
1362 /*
1363 * If not all descriptors have been released reaped yet,
1364 * reload the timer so that we will eventually get another
1365 * interrupt that will cause us to re-enter this routine.
1366 * This is done in case the transmitter has gone idle.
1367 */
1368 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1369 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1370 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1371 /*
1372 * Some chips will ignore a second TX request
1373 * issued while an existing transmission is in
1374 * progress. If the transmitter goes idle but
1375 * there are still packets waiting to be sent,
1376 * we need to restart the channel here to flush
1377 * them out. This only seems to be required with
1378 * the PCIe devices.
1379 */
1380 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1381 }
1382 } else
1383 ifp->if_timer = 0;
1384 }
1385
1386 static void
1387 re_tick(void *arg)
1388 {
1389 struct rtk_softc *sc = arg;
1390 int s;
1391
1392 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1393 s = splnet();
1394
1395 mii_tick(&sc->mii);
1396 splx(s);
1397
1398 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1399 }
1400
1401 int
1402 re_intr(void *arg)
1403 {
1404 struct rtk_softc *sc = arg;
1405 struct ifnet *ifp;
1406 uint16_t status;
1407 int handled = 0;
1408
1409 if (!device_has_power(sc->sc_dev))
1410 return 0;
1411
1412 ifp = &sc->ethercom.ec_if;
1413
1414 if ((ifp->if_flags & IFF_UP) == 0)
1415 return 0;
1416
1417 for (;;) {
1418
1419 status = CSR_READ_2(sc, RTK_ISR);
1420 /* If the card has gone away the read returns 0xffff. */
1421 if (status == 0xffff)
1422 break;
1423 if (status) {
1424 handled = 1;
1425 CSR_WRITE_2(sc, RTK_ISR, status);
1426 }
1427
1428 if ((status & RTK_INTRS_CPLUS) == 0)
1429 break;
1430
1431 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1432 re_rxeof(sc);
1433
1434 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1435 RTK_ISR_TX_DESC_UNAVAIL))
1436 re_txeof(sc);
1437
1438 if (status & RTK_ISR_SYSTEM_ERR) {
1439 re_init(ifp);
1440 }
1441
1442 if (status & RTK_ISR_LINKCHG) {
1443 callout_stop(&sc->rtk_tick_ch);
1444 re_tick(sc);
1445 }
1446 }
1447
1448 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1449 re_start(ifp);
1450
1451 return handled;
1452 }
1453
1454
1455
1456 /*
1457 * Main transmit routine for C+ and gigE NICs.
1458 */
1459
1460 static void
1461 re_start(struct ifnet *ifp)
1462 {
1463 struct rtk_softc *sc;
1464 struct mbuf *m;
1465 bus_dmamap_t map;
1466 struct re_txq *txq;
1467 struct re_desc *d;
1468 struct m_tag *mtag;
1469 uint32_t cmdstat, re_flags, vlanctl;
1470 int ofree, idx, error, nsegs, seg;
1471 int startdesc, curdesc, lastdesc;
1472 bool pad;
1473
1474 sc = ifp->if_softc;
1475 ofree = sc->re_ldata.re_txq_free;
1476
1477 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1478
1479 IFQ_POLL(&ifp->if_snd, m);
1480 if (m == NULL)
1481 break;
1482
1483 if (sc->re_ldata.re_txq_free == 0 ||
1484 sc->re_ldata.re_tx_free == 0) {
1485 /* no more free slots left */
1486 ifp->if_flags |= IFF_OACTIVE;
1487 break;
1488 }
1489
1490 /*
1491 * Set up checksum offload. Note: checksum offload bits must
1492 * appear in all descriptors of a multi-descriptor transmit
1493 * attempt. (This is according to testing done with an 8169
1494 * chip. I'm not sure if this is a requirement or a bug.)
1495 */
1496
1497 vlanctl = 0;
1498 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1499 uint32_t segsz = m->m_pkthdr.segsz;
1500
1501 re_flags = RE_TDESC_CMD_LGSEND |
1502 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1503 } else {
1504 /*
1505 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1506 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1507 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1508 */
1509 re_flags = 0;
1510 if ((m->m_pkthdr.csum_flags &
1511 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1512 != 0) {
1513 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1514 re_flags |= RE_TDESC_CMD_IPCSUM;
1515 if (m->m_pkthdr.csum_flags &
1516 M_CSUM_TCPv4) {
1517 re_flags |=
1518 RE_TDESC_CMD_TCPCSUM;
1519 } else if (m->m_pkthdr.csum_flags &
1520 M_CSUM_UDPv4) {
1521 re_flags |=
1522 RE_TDESC_CMD_UDPCSUM;
1523 }
1524 } else {
1525 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1526 if (m->m_pkthdr.csum_flags &
1527 M_CSUM_TCPv4) {
1528 vlanctl |=
1529 RE_TDESC_VLANCTL_TCPCSUM;
1530 } else if (m->m_pkthdr.csum_flags &
1531 M_CSUM_UDPv4) {
1532 vlanctl |=
1533 RE_TDESC_VLANCTL_UDPCSUM;
1534 }
1535 }
1536 }
1537 }
1538
1539 txq = &sc->re_ldata.re_txq[idx];
1540 map = txq->txq_dmamap;
1541 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1542 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1543
1544 if (__predict_false(error)) {
1545 /* XXX try to defrag if EFBIG? */
1546 printf("%s: can't map mbuf (error %d)\n",
1547 device_xname(sc->sc_dev), error);
1548
1549 IFQ_DEQUEUE(&ifp->if_snd, m);
1550 m_freem(m);
1551 ifp->if_oerrors++;
1552 continue;
1553 }
1554
1555 nsegs = map->dm_nsegs;
1556 pad = false;
1557 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1558 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1559 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1560 pad = true;
1561 nsegs++;
1562 }
1563
1564 if (nsegs > sc->re_ldata.re_tx_free) {
1565 /*
1566 * Not enough free descriptors to transmit this packet.
1567 */
1568 ifp->if_flags |= IFF_OACTIVE;
1569 bus_dmamap_unload(sc->sc_dmat, map);
1570 break;
1571 }
1572
1573 IFQ_DEQUEUE(&ifp->if_snd, m);
1574
1575 /*
1576 * Make sure that the caches are synchronized before we
1577 * ask the chip to start DMA for the packet data.
1578 */
1579 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1580 BUS_DMASYNC_PREWRITE);
1581
1582 /*
1583 * Set up hardware VLAN tagging. Note: vlan tag info must
1584 * appear in all descriptors of a multi-descriptor
1585 * transmission attempt.
1586 */
1587 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1588 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1589 RE_TDESC_VLANCTL_TAG;
1590
1591 /*
1592 * Map the segment array into descriptors.
1593 * Note that we set the start-of-frame and
1594 * end-of-frame markers for either TX or RX,
1595 * but they really only have meaning in the TX case.
1596 * (In the RX case, it's the chip that tells us
1597 * where packets begin and end.)
1598 * We also keep track of the end of the ring
1599 * and set the end-of-ring bits as needed,
1600 * and we set the ownership bits in all except
1601 * the very first descriptor. (The caller will
1602 * set this descriptor later when it start
1603 * transmission or reception.)
1604 */
1605 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1606 lastdesc = -1;
1607 for (seg = 0; seg < map->dm_nsegs;
1608 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1609 d = &sc->re_ldata.re_tx_list[curdesc];
1610 #ifdef DIAGNOSTIC
1611 RE_TXDESCSYNC(sc, curdesc,
1612 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1613 cmdstat = le32toh(d->re_cmdstat);
1614 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1615 if (cmdstat & RE_TDESC_STAT_OWN) {
1616 panic("%s: tried to map busy TX descriptor",
1617 device_xname(sc->sc_dev));
1618 }
1619 #endif
1620
1621 d->re_vlanctl = htole32(vlanctl);
1622 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1623 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1624 if (seg == 0)
1625 cmdstat |= RE_TDESC_CMD_SOF;
1626 else
1627 cmdstat |= RE_TDESC_CMD_OWN;
1628 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1629 cmdstat |= RE_TDESC_CMD_EOR;
1630 if (seg == nsegs - 1) {
1631 cmdstat |= RE_TDESC_CMD_EOF;
1632 lastdesc = curdesc;
1633 }
1634 d->re_cmdstat = htole32(cmdstat);
1635 RE_TXDESCSYNC(sc, curdesc,
1636 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1637 }
1638 if (__predict_false(pad)) {
1639 d = &sc->re_ldata.re_tx_list[curdesc];
1640 d->re_vlanctl = htole32(vlanctl);
1641 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1642 cmdstat = re_flags |
1643 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1644 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1645 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1646 cmdstat |= RE_TDESC_CMD_EOR;
1647 d->re_cmdstat = htole32(cmdstat);
1648 RE_TXDESCSYNC(sc, curdesc,
1649 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1650 lastdesc = curdesc;
1651 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1652 }
1653 KASSERT(lastdesc != -1);
1654
1655 /* Transfer ownership of packet to the chip. */
1656
1657 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1658 htole32(RE_TDESC_CMD_OWN);
1659 RE_TXDESCSYNC(sc, startdesc,
1660 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1661
1662 /* update info of TX queue and descriptors */
1663 txq->txq_mbuf = m;
1664 txq->txq_descidx = lastdesc;
1665 txq->txq_nsegs = nsegs;
1666
1667 sc->re_ldata.re_txq_free--;
1668 sc->re_ldata.re_tx_free -= nsegs;
1669 sc->re_ldata.re_tx_nextfree = curdesc;
1670
1671 #if NBPFILTER > 0
1672 /*
1673 * If there's a BPF listener, bounce a copy of this frame
1674 * to him.
1675 */
1676 if (ifp->if_bpf)
1677 bpf_mtap(ifp->if_bpf, m);
1678 #endif
1679 }
1680
1681 if (sc->re_ldata.re_txq_free < ofree) {
1682 /*
1683 * TX packets are enqueued.
1684 */
1685 sc->re_ldata.re_txq_prodidx = idx;
1686
1687 /*
1688 * Start the transmitter to poll.
1689 *
1690 * RealTek put the TX poll request register in a different
1691 * location on the 8169 gigE chip. I don't know why.
1692 */
1693 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1694 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1695 else
1696 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1697
1698 /*
1699 * Use the countdown timer for interrupt moderation.
1700 * 'TX done' interrupts are disabled. Instead, we reset the
1701 * countdown timer, which will begin counting until it hits
1702 * the value in the TIMERINT register, and then trigger an
1703 * interrupt. Each time we write to the TIMERCNT register,
1704 * the timer count is reset to 0.
1705 */
1706 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1707
1708 /*
1709 * Set a timeout in case the chip goes out to lunch.
1710 */
1711 ifp->if_timer = 5;
1712 }
1713 }
1714
1715 static int
1716 re_init(struct ifnet *ifp)
1717 {
1718 struct rtk_softc *sc = ifp->if_softc;
1719 const uint8_t *enaddr;
1720 uint32_t rxcfg = 0;
1721 uint32_t reg;
1722 uint16_t cfg;
1723 int error;
1724
1725 if ((error = re_enable(sc)) != 0)
1726 goto out;
1727
1728 /*
1729 * Cancel pending I/O and free all RX/TX buffers.
1730 */
1731 re_stop(ifp, 0);
1732
1733 re_reset(sc);
1734
1735 /*
1736 * Enable C+ RX and TX mode, as well as VLAN stripping and
1737 * RX checksum offload. We must configure the C+ register
1738 * before all others.
1739 */
1740 cfg = RE_CPLUSCMD_PCI_MRW;
1741
1742 /*
1743 * XXX: For old 8169 set bit 14.
1744 * For 8169S/8110S and above, do not set bit 14.
1745 */
1746 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1747 cfg |= (0x1 << 14);
1748
1749 if ((ifp->if_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1750 cfg |= RE_CPLUSCMD_VLANSTRIP;
1751 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1752 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1753 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1754 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1755 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1756 cfg |= RE_CPLUSCMD_TXENB;
1757 } else
1758 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1759
1760 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1761
1762 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1763 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1764 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1765
1766 DELAY(10000);
1767
1768 /*
1769 * Init our MAC address. Even though the chipset
1770 * documentation doesn't mention it, we need to enter "Config
1771 * register write enable" mode to modify the ID registers.
1772 */
1773 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1774 enaddr = CLLADDR(ifp->if_sadl);
1775 reg = enaddr[0] | (enaddr[1] << 8) |
1776 (enaddr[2] << 16) | (enaddr[3] << 24);
1777 CSR_WRITE_4(sc, RTK_IDR0, reg);
1778 reg = enaddr[4] | (enaddr[5] << 8);
1779 CSR_WRITE_4(sc, RTK_IDR4, reg);
1780 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1781
1782 /*
1783 * For C+ mode, initialize the RX descriptors and mbufs.
1784 */
1785 re_rx_list_init(sc);
1786 re_tx_list_init(sc);
1787
1788 /*
1789 * Load the addresses of the RX and TX lists into the chip.
1790 */
1791 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1792 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1793 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1794 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1795
1796 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1797 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1798 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1799 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1800
1801 /*
1802 * Enable transmit and receive.
1803 */
1804 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1805
1806 /*
1807 * Set the initial TX and RX configuration.
1808 */
1809 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1810 /* test mode is needed only for old 8169 */
1811 CSR_WRITE_4(sc, RTK_TXCFG,
1812 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1813 } else
1814 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1815
1816 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1817
1818 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1819
1820 /* Set the individual bit to receive frames for this host only. */
1821 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1822 rxcfg |= RTK_RXCFG_RX_INDIV;
1823
1824 /* If we want promiscuous mode, set the allframes bit. */
1825 if (ifp->if_flags & IFF_PROMISC)
1826 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1827 else
1828 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1829 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1830
1831 /*
1832 * Set capture broadcast bit to capture broadcast frames.
1833 */
1834 if (ifp->if_flags & IFF_BROADCAST)
1835 rxcfg |= RTK_RXCFG_RX_BROAD;
1836 else
1837 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1838 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1839
1840 /*
1841 * Program the multicast filter, if necessary.
1842 */
1843 rtk_setmulti(sc);
1844
1845 /*
1846 * Enable interrupts.
1847 */
1848 if (sc->re_testmode)
1849 CSR_WRITE_2(sc, RTK_IMR, 0);
1850 else
1851 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1852
1853 /* Start RX/TX process. */
1854 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1855 #ifdef notdef
1856 /* Enable receiver and transmitter. */
1857 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1858 #endif
1859
1860 /*
1861 * Initialize the timer interrupt register so that
1862 * a timer interrupt will be generated once the timer
1863 * reaches a certain number of ticks. The timer is
1864 * reloaded on each transmit. This gives us TX interrupt
1865 * moderation, which dramatically improves TX frame rate.
1866 */
1867
1868 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1869 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1870 else {
1871 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1872
1873 /*
1874 * For 8169 gigE NICs, set the max allowed RX packet
1875 * size so we can receive jumbo frames.
1876 */
1877 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1878 }
1879
1880 if (sc->re_testmode)
1881 return 0;
1882
1883 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1884
1885 ifp->if_flags |= IFF_RUNNING;
1886 ifp->if_flags &= ~IFF_OACTIVE;
1887
1888 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1889
1890 out:
1891 if (error) {
1892 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1893 ifp->if_timer = 0;
1894 printf("%s: interface not running\n",
1895 device_xname(sc->sc_dev));
1896 }
1897
1898 return error;
1899 }
1900
1901 static int
1902 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1903 {
1904 struct rtk_softc *sc = ifp->if_softc;
1905 struct ifreq *ifr = data;
1906 int s, error = 0;
1907
1908 s = splnet();
1909
1910 switch (command) {
1911 case SIOCSIFMTU:
1912 /*
1913 * Disable jumbo frames if it's not supported.
1914 */
1915 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1916 ifr->ifr_mtu > ETHERMTU) {
1917 error = EINVAL;
1918 break;
1919 }
1920
1921 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1922 error = EINVAL;
1923 else if ((error = ifioctl_common(ifp, command, data)) ==
1924 ENETRESET)
1925 error = 0;
1926 break;
1927 default:
1928 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1929 break;
1930
1931 error = 0;
1932
1933 if (command == SIOCSIFCAP)
1934 error = (*ifp->if_init)(ifp);
1935 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1936 ;
1937 else if (ifp->if_flags & IFF_RUNNING)
1938 rtk_setmulti(sc);
1939 break;
1940 }
1941
1942 splx(s);
1943
1944 return error;
1945 }
1946
1947 static void
1948 re_watchdog(struct ifnet *ifp)
1949 {
1950 struct rtk_softc *sc;
1951 int s;
1952
1953 sc = ifp->if_softc;
1954 s = splnet();
1955 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1956 ifp->if_oerrors++;
1957
1958 re_txeof(sc);
1959 re_rxeof(sc);
1960
1961 re_init(ifp);
1962
1963 splx(s);
1964 }
1965
1966 /*
1967 * Stop the adapter and free any mbufs allocated to the
1968 * RX and TX lists.
1969 */
1970 static void
1971 re_stop(struct ifnet *ifp, int disable)
1972 {
1973 int i;
1974 struct rtk_softc *sc = ifp->if_softc;
1975
1976 callout_stop(&sc->rtk_tick_ch);
1977
1978 mii_down(&sc->mii);
1979
1980 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
1981 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
1982 RTK_CMD_RX_ENB);
1983 else
1984 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1985 DELAY(1000);
1986 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1987 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
1988
1989 if (sc->re_head != NULL) {
1990 m_freem(sc->re_head);
1991 sc->re_head = sc->re_tail = NULL;
1992 }
1993
1994 /* Free the TX list buffers. */
1995 for (i = 0; i < RE_TX_QLEN; i++) {
1996 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1997 bus_dmamap_unload(sc->sc_dmat,
1998 sc->re_ldata.re_txq[i].txq_dmamap);
1999 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2000 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2001 }
2002 }
2003
2004 /* Free the RX list buffers. */
2005 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2006 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2007 bus_dmamap_unload(sc->sc_dmat,
2008 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2009 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2010 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2011 }
2012 }
2013
2014 if (disable)
2015 re_disable(sc);
2016
2017 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2018 ifp->if_timer = 0;
2019 }
2020