rtl8169.c revision 1.125 1 /* $NetBSD: rtl8169.c,v 1.125 2009/09/02 15:11:13 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.125 2009/09/02 15:11:13 tsutsui Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114 #include "bpfilter.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <sys/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, void *);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static int re_enable(struct rtk_softc *);
166 static void re_disable(struct rtk_softc *);
167
168 static int re_gmii_readreg(device_t, int, int);
169 static void re_gmii_writereg(device_t, int, int, int);
170
171 static int re_miibus_readreg(device_t, int, int);
172 static void re_miibus_writereg(device_t, int, int, int);
173 static void re_miibus_statchg(device_t);
174
175 static void re_reset(struct rtk_softc *);
176
177 static inline void
178 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
179 {
180
181 d->re_bufaddr_lo = htole32((uint32_t)addr);
182 if (sizeof(bus_addr_t) == sizeof(uint64_t))
183 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
184 else
185 d->re_bufaddr_hi = 0;
186 }
187
188 static int
189 re_gmii_readreg(device_t dev, int phy, int reg)
190 {
191 struct rtk_softc *sc = device_private(dev);
192 uint32_t rval;
193 int i;
194
195 if (phy != 7)
196 return 0;
197
198 /* Let the rgephy driver read the GMEDIASTAT register */
199
200 if (reg == RTK_GMEDIASTAT) {
201 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
202 return rval;
203 }
204
205 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
206 DELAY(1000);
207
208 for (i = 0; i < RTK_TIMEOUT; i++) {
209 rval = CSR_READ_4(sc, RTK_PHYAR);
210 if (rval & RTK_PHYAR_BUSY)
211 break;
212 DELAY(100);
213 }
214
215 if (i == RTK_TIMEOUT) {
216 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
217 return 0;
218 }
219
220 return rval & RTK_PHYAR_PHYDATA;
221 }
222
223 static void
224 re_gmii_writereg(device_t dev, int phy, int reg, int data)
225 {
226 struct rtk_softc *sc = device_private(dev);
227 uint32_t rval;
228 int i;
229
230 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
231 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
232 DELAY(1000);
233
234 for (i = 0; i < RTK_TIMEOUT; i++) {
235 rval = CSR_READ_4(sc, RTK_PHYAR);
236 if (!(rval & RTK_PHYAR_BUSY))
237 break;
238 DELAY(100);
239 }
240
241 if (i == RTK_TIMEOUT) {
242 printf("%s: PHY write reg %x <- %x failed\n",
243 device_xname(sc->sc_dev), reg, data);
244 }
245 }
246
247 static int
248 re_miibus_readreg(device_t dev, int phy, int reg)
249 {
250 struct rtk_softc *sc = device_private(dev);
251 uint16_t rval = 0;
252 uint16_t re8139_reg = 0;
253 int s;
254
255 s = splnet();
256
257 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
258 rval = re_gmii_readreg(dev, phy, reg);
259 splx(s);
260 return rval;
261 }
262
263 /* Pretend the internal PHY is only at address 0 */
264 if (phy) {
265 splx(s);
266 return 0;
267 }
268 switch (reg) {
269 case MII_BMCR:
270 re8139_reg = RTK_BMCR;
271 break;
272 case MII_BMSR:
273 re8139_reg = RTK_BMSR;
274 break;
275 case MII_ANAR:
276 re8139_reg = RTK_ANAR;
277 break;
278 case MII_ANER:
279 re8139_reg = RTK_ANER;
280 break;
281 case MII_ANLPAR:
282 re8139_reg = RTK_LPAR;
283 break;
284 case MII_PHYIDR1:
285 case MII_PHYIDR2:
286 splx(s);
287 return 0;
288 /*
289 * Allow the rlphy driver to read the media status
290 * register. If we have a link partner which does not
291 * support NWAY, this is the register which will tell
292 * us the results of parallel detection.
293 */
294 case RTK_MEDIASTAT:
295 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
296 splx(s);
297 return rval;
298 default:
299 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
300 splx(s);
301 return 0;
302 }
303 rval = CSR_READ_2(sc, re8139_reg);
304 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
305 /* 8139C+ has different bit layout. */
306 rval &= ~(BMCR_LOOP | BMCR_ISO);
307 }
308 splx(s);
309 return rval;
310 }
311
312 static void
313 re_miibus_writereg(device_t dev, int phy, int reg, int data)
314 {
315 struct rtk_softc *sc = device_private(dev);
316 uint16_t re8139_reg = 0;
317 int s;
318
319 s = splnet();
320
321 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
322 re_gmii_writereg(dev, phy, reg, data);
323 splx(s);
324 return;
325 }
326
327 /* Pretend the internal PHY is only at address 0 */
328 if (phy) {
329 splx(s);
330 return;
331 }
332 switch (reg) {
333 case MII_BMCR:
334 re8139_reg = RTK_BMCR;
335 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
336 /* 8139C+ has different bit layout. */
337 data &= ~(BMCR_LOOP | BMCR_ISO);
338 }
339 break;
340 case MII_BMSR:
341 re8139_reg = RTK_BMSR;
342 break;
343 case MII_ANAR:
344 re8139_reg = RTK_ANAR;
345 break;
346 case MII_ANER:
347 re8139_reg = RTK_ANER;
348 break;
349 case MII_ANLPAR:
350 re8139_reg = RTK_LPAR;
351 break;
352 case MII_PHYIDR1:
353 case MII_PHYIDR2:
354 splx(s);
355 return;
356 break;
357 default:
358 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
359 splx(s);
360 return;
361 }
362 CSR_WRITE_2(sc, re8139_reg, data);
363 splx(s);
364 return;
365 }
366
367 static void
368 re_miibus_statchg(device_t dev)
369 {
370
371 return;
372 }
373
374 static void
375 re_reset(struct rtk_softc *sc)
376 {
377 int i;
378
379 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
380
381 for (i = 0; i < RTK_TIMEOUT; i++) {
382 DELAY(10);
383 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
384 break;
385 }
386 if (i == RTK_TIMEOUT)
387 printf("%s: reset never completed!\n",
388 device_xname(sc->sc_dev));
389
390 /*
391 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
392 * but also says "Rtl8169s sigle chip detected".
393 */
394 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
395 CSR_WRITE_1(sc, RTK_LDPS, 1);
396
397 }
398
399 /*
400 * The following routine is designed to test for a defect on some
401 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
402 * lines connected to the bus, however for a 32-bit only card, they
403 * should be pulled high. The result of this defect is that the
404 * NIC will not work right if you plug it into a 64-bit slot: DMA
405 * operations will be done with 64-bit transfers, which will fail
406 * because the 64-bit data lines aren't connected.
407 *
408 * There's no way to work around this (short of talking a soldering
409 * iron to the board), however we can detect it. The method we use
410 * here is to put the NIC into digital loopback mode, set the receiver
411 * to promiscuous mode, and then try to send a frame. We then compare
412 * the frame data we sent to what was received. If the data matches,
413 * then the NIC is working correctly, otherwise we know the user has
414 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
415 * slot. In the latter case, there's no way the NIC can work correctly,
416 * so we print out a message on the console and abort the device attach.
417 */
418
419 int
420 re_diag(struct rtk_softc *sc)
421 {
422 struct ifnet *ifp = &sc->ethercom.ec_if;
423 struct mbuf *m0;
424 struct ether_header *eh;
425 struct re_rxsoft *rxs;
426 struct re_desc *cur_rx;
427 bus_dmamap_t dmamap;
428 uint16_t status;
429 uint32_t rxstat;
430 int total_len, i, s, error = 0;
431 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
432 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
433
434 /* Allocate a single mbuf */
435
436 MGETHDR(m0, M_DONTWAIT, MT_DATA);
437 if (m0 == NULL)
438 return ENOBUFS;
439
440 /*
441 * Initialize the NIC in test mode. This sets the chip up
442 * so that it can send and receive frames, but performs the
443 * following special functions:
444 * - Puts receiver in promiscuous mode
445 * - Enables digital loopback mode
446 * - Leaves interrupts turned off
447 */
448
449 ifp->if_flags |= IFF_PROMISC;
450 sc->re_testmode = 1;
451 re_init(ifp);
452 re_stop(ifp, 0);
453 DELAY(100000);
454 re_init(ifp);
455
456 /* Put some data in the mbuf */
457
458 eh = mtod(m0, struct ether_header *);
459 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
460 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
461 eh->ether_type = htons(ETHERTYPE_IP);
462 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
463
464 /*
465 * Queue the packet, start transmission.
466 */
467
468 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
469 s = splnet();
470 IF_ENQUEUE(&ifp->if_snd, m0);
471 re_start(ifp);
472 splx(s);
473 m0 = NULL;
474
475 /* Wait for it to propagate through the chip */
476
477 DELAY(100000);
478 for (i = 0; i < RTK_TIMEOUT; i++) {
479 status = CSR_READ_2(sc, RTK_ISR);
480 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
481 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
482 break;
483 DELAY(10);
484 }
485 if (i == RTK_TIMEOUT) {
486 aprint_error_dev(sc->sc_dev,
487 "diagnostic failed, failed to receive packet "
488 "in loopback mode\n");
489 error = EIO;
490 goto done;
491 }
492
493 /*
494 * The packet should have been dumped into the first
495 * entry in the RX DMA ring. Grab it from there.
496 */
497
498 rxs = &sc->re_ldata.re_rxsoft[0];
499 dmamap = rxs->rxs_dmamap;
500 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
501 BUS_DMASYNC_POSTREAD);
502 bus_dmamap_unload(sc->sc_dmat, dmamap);
503
504 m0 = rxs->rxs_mbuf;
505 rxs->rxs_mbuf = NULL;
506 eh = mtod(m0, struct ether_header *);
507
508 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
509 cur_rx = &sc->re_ldata.re_rx_list[0];
510 rxstat = le32toh(cur_rx->re_cmdstat);
511 total_len = rxstat & sc->re_rxlenmask;
512
513 if (total_len != ETHER_MIN_LEN) {
514 aprint_error_dev(sc->sc_dev,
515 "diagnostic failed, received short packet\n");
516 error = EIO;
517 goto done;
518 }
519
520 /* Test that the received packet data matches what we sent. */
521
522 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
523 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
524 ntohs(eh->ether_type) != ETHERTYPE_IP) {
525 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
526 "expected TX data: %s/%s/0x%x\n"
527 "received RX data: %s/%s/0x%x\n"
528 "You may have a defective 32-bit NIC plugged "
529 "into a 64-bit PCI slot.\n"
530 "Please re-install the NIC in a 32-bit slot "
531 "for proper operation.\n"
532 "Read the re(4) man page for more details.\n" ,
533 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
534 ether_sprintf(eh->ether_dhost),
535 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
536 error = EIO;
537 }
538
539 done:
540 /* Turn interface off, release resources */
541
542 sc->re_testmode = 0;
543 ifp->if_flags &= ~IFF_PROMISC;
544 re_stop(ifp, 0);
545 if (m0 != NULL)
546 m_freem(m0);
547
548 return error;
549 }
550
551
552 /*
553 * Attach the interface. Allocate softc structures, do ifmedia
554 * setup and ethernet/BPF attach.
555 */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 uint8_t eaddr[ETHER_ADDR_LEN];
560 uint16_t val;
561 struct ifnet *ifp;
562 int error = 0, i, addr_len;
563
564 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
565 uint32_t hwrev;
566
567 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
568 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
569 switch (hwrev) {
570 case RTK_HWREV_8169:
571 sc->sc_quirk |= RTKQ_8169NONS;
572 break;
573 case RTK_HWREV_8169S:
574 case RTK_HWREV_8110S:
575 case RTK_HWREV_8169_8110SB:
576 case RTK_HWREV_8169_8110SC:
577 sc->sc_quirk |= RTKQ_MACLDPS;
578 break;
579 case RTK_HWREV_8168_SPIN1:
580 case RTK_HWREV_8168_SPIN2:
581 case RTK_HWREV_8168_SPIN3:
582 sc->sc_quirk |= RTKQ_MACSTAT;
583 break;
584 case RTK_HWREV_8168C:
585 case RTK_HWREV_8168C_SPIN2:
586 case RTK_HWREV_8168CP:
587 case RTK_HWREV_8168D:
588 case RTK_HWREV_8168DP:
589 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
590 RTKQ_MACSTAT | RTKQ_CMDSTOP;
591 /*
592 * From FreeBSD driver:
593 *
594 * These (8168/8111) controllers support jumbo frame
595 * but it seems that enabling it requires touching
596 * additional magic registers. Depending on MAC
597 * revisions some controllers need to disable
598 * checksum offload. So disable jumbo frame until
599 * I have better idea what it really requires to
600 * make it support.
601 * RTL8168C/CP : supports up to 6KB jumbo frame.
602 * RTL8111C/CP : supports up to 9KB jumbo frame.
603 */
604 sc->sc_quirk |= RTKQ_NOJUMBO;
605 break;
606 case RTK_HWREV_8100E:
607 case RTK_HWREV_8100E_SPIN2:
608 case RTK_HWREV_8101E:
609 sc->sc_quirk |= RTKQ_NOJUMBO;
610 break;
611 case RTK_HWREV_8102E:
612 case RTK_HWREV_8102EL:
613 case RTK_HWREV_8103E:
614 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
615 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
616 break;
617 default:
618 aprint_normal_dev(sc->sc_dev,
619 "Unknown revision (0x%08x)\n", hwrev);
620 /* assume the latest features */
621 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
622 sc->sc_quirk |= RTKQ_NOJUMBO;
623 }
624
625 /* Set RX length mask */
626 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
627 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
628 } else {
629 sc->sc_quirk |= RTKQ_NOJUMBO;
630
631 /* Set RX length mask */
632 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
633 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
634 }
635
636 /* Reset the adapter. */
637 re_reset(sc);
638
639 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
640 /*
641 * Get station address from ID registers.
642 */
643 for (i = 0; i < ETHER_ADDR_LEN; i++)
644 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
645 } else {
646 /*
647 * Get station address from the EEPROM.
648 */
649 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
650 addr_len = RTK_EEADDR_LEN1;
651 else
652 addr_len = RTK_EEADDR_LEN0;
653
654 /*
655 * Get station address from the EEPROM.
656 */
657 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
658 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
659 eaddr[(i * 2) + 0] = val & 0xff;
660 eaddr[(i * 2) + 1] = val >> 8;
661 }
662 }
663
664 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
665 ether_sprintf(eaddr));
666
667 if (sc->re_ldata.re_tx_desc_cnt >
668 PAGE_SIZE / sizeof(struct re_desc)) {
669 sc->re_ldata.re_tx_desc_cnt =
670 PAGE_SIZE / sizeof(struct re_desc);
671 }
672
673 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
674 sc->re_ldata.re_tx_desc_cnt);
675 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
676
677 /* Allocate DMA'able memory for the TX ring */
678 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
679 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
680 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
681 aprint_error_dev(sc->sc_dev,
682 "can't allocate tx listseg, error = %d\n", error);
683 goto fail_0;
684 }
685
686 /* Load the map for the TX ring. */
687 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
688 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
689 (void **)&sc->re_ldata.re_tx_list,
690 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
691 aprint_error_dev(sc->sc_dev,
692 "can't map tx list, error = %d\n", error);
693 goto fail_1;
694 }
695 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
696
697 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
698 RE_TX_LIST_SZ(sc), 0, 0,
699 &sc->re_ldata.re_tx_list_map)) != 0) {
700 aprint_error_dev(sc->sc_dev,
701 "can't create tx list map, error = %d\n", error);
702 goto fail_2;
703 }
704
705
706 if ((error = bus_dmamap_load(sc->sc_dmat,
707 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
708 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
709 aprint_error_dev(sc->sc_dev,
710 "can't load tx list, error = %d\n", error);
711 goto fail_3;
712 }
713
714 /* Create DMA maps for TX buffers */
715 for (i = 0; i < RE_TX_QLEN; i++) {
716 error = bus_dmamap_create(sc->sc_dmat,
717 round_page(IP_MAXPACKET),
718 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
719 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
720 if (error) {
721 aprint_error_dev(sc->sc_dev,
722 "can't create DMA map for TX\n");
723 goto fail_4;
724 }
725 }
726
727 /* Allocate DMA'able memory for the RX ring */
728 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
729 if ((error = bus_dmamem_alloc(sc->sc_dmat,
730 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
731 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
732 aprint_error_dev(sc->sc_dev,
733 "can't allocate rx listseg, error = %d\n", error);
734 goto fail_4;
735 }
736
737 /* Load the map for the RX ring. */
738 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
739 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
740 (void **)&sc->re_ldata.re_rx_list,
741 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
742 aprint_error_dev(sc->sc_dev,
743 "can't map rx list, error = %d\n", error);
744 goto fail_5;
745 }
746 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
747
748 if ((error = bus_dmamap_create(sc->sc_dmat,
749 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
750 &sc->re_ldata.re_rx_list_map)) != 0) {
751 aprint_error_dev(sc->sc_dev,
752 "can't create rx list map, error = %d\n", error);
753 goto fail_6;
754 }
755
756 if ((error = bus_dmamap_load(sc->sc_dmat,
757 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
758 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
759 aprint_error_dev(sc->sc_dev,
760 "can't load rx list, error = %d\n", error);
761 goto fail_7;
762 }
763
764 /* Create DMA maps for RX buffers */
765 for (i = 0; i < RE_RX_DESC_CNT; i++) {
766 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
767 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
768 if (error) {
769 aprint_error_dev(sc->sc_dev,
770 "can't create DMA map for RX\n");
771 goto fail_8;
772 }
773 }
774
775 /*
776 * Record interface as attached. From here, we should not fail.
777 */
778 sc->sc_flags |= RTK_ATTACHED;
779
780 ifp = &sc->ethercom.ec_if;
781 ifp->if_softc = sc;
782 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
783 ifp->if_mtu = ETHERMTU;
784 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
785 ifp->if_ioctl = re_ioctl;
786 sc->ethercom.ec_capabilities |=
787 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788 ifp->if_start = re_start;
789 ifp->if_stop = re_stop;
790
791 /*
792 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
793 * so we have a workaround to handle the bug by padding
794 * such packets manually.
795 */
796 ifp->if_capabilities |=
797 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
798 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
799 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
800 IFCAP_TSOv4;
801
802 /*
803 * XXX
804 * Still have no idea how to make TSO work on 8168C, 8168CP,
805 * 8102E, 8111C and 8111CP.
806 */
807 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
808 ifp->if_capabilities &= ~IFCAP_TSOv4;
809
810 ifp->if_watchdog = re_watchdog;
811 ifp->if_init = re_init;
812 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
813 ifp->if_capenable = ifp->if_capabilities;
814 IFQ_SET_READY(&ifp->if_snd);
815
816 callout_init(&sc->rtk_tick_ch, 0);
817
818 /* Do MII setup */
819 sc->mii.mii_ifp = ifp;
820 sc->mii.mii_readreg = re_miibus_readreg;
821 sc->mii.mii_writereg = re_miibus_writereg;
822 sc->mii.mii_statchg = re_miibus_statchg;
823 sc->ethercom.ec_mii = &sc->mii;
824 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
825 ether_mediastatus);
826 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
827 MII_OFFSET_ANY, 0);
828 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
829
830 /*
831 * Call MI attach routine.
832 */
833 if_attach(ifp);
834 ether_ifattach(ifp, eaddr);
835
836 if (pmf_device_register(sc->sc_dev, NULL, NULL))
837 pmf_class_network_register(sc->sc_dev, ifp);
838 else
839 aprint_error_dev(sc->sc_dev,
840 "couldn't establish power handler\n");
841
842 return;
843
844 fail_8:
845 /* Destroy DMA maps for RX buffers. */
846 for (i = 0; i < RE_RX_DESC_CNT; i++)
847 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
848 bus_dmamap_destroy(sc->sc_dmat,
849 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
850
851 /* Free DMA'able memory for the RX ring. */
852 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
853 fail_7:
854 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
855 fail_6:
856 bus_dmamem_unmap(sc->sc_dmat,
857 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
858 fail_5:
859 bus_dmamem_free(sc->sc_dmat,
860 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
861
862 fail_4:
863 /* Destroy DMA maps for TX buffers. */
864 for (i = 0; i < RE_TX_QLEN; i++)
865 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
866 bus_dmamap_destroy(sc->sc_dmat,
867 sc->re_ldata.re_txq[i].txq_dmamap);
868
869 /* Free DMA'able memory for the TX ring. */
870 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
871 fail_3:
872 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
873 fail_2:
874 bus_dmamem_unmap(sc->sc_dmat,
875 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
876 fail_1:
877 bus_dmamem_free(sc->sc_dmat,
878 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
879 fail_0:
880 return;
881 }
882
883
884 /*
885 * re_activate:
886 * Handle device activation/deactivation requests.
887 */
888 int
889 re_activate(device_t self, enum devact act)
890 {
891 struct rtk_softc *sc = device_private(self);
892 int s, error = 0;
893
894 s = splnet();
895 switch (act) {
896 case DVACT_ACTIVATE:
897 error = EOPNOTSUPP;
898 break;
899 case DVACT_DEACTIVATE:
900 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
901 if_deactivate(&sc->ethercom.ec_if);
902 break;
903 }
904 splx(s);
905
906 return error;
907 }
908
909 /*
910 * re_detach:
911 * Detach a rtk interface.
912 */
913 int
914 re_detach(struct rtk_softc *sc)
915 {
916 struct ifnet *ifp = &sc->ethercom.ec_if;
917 int i;
918
919 /*
920 * Succeed now if there isn't any work to do.
921 */
922 if ((sc->sc_flags & RTK_ATTACHED) == 0)
923 return 0;
924
925 /* Unhook our tick handler. */
926 callout_stop(&sc->rtk_tick_ch);
927
928 /* Detach all PHYs. */
929 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
930
931 /* Delete all remaining media. */
932 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
933
934 ether_ifdetach(ifp);
935 if_detach(ifp);
936
937 /* Destroy DMA maps for RX buffers. */
938 for (i = 0; i < RE_RX_DESC_CNT; i++)
939 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
940 bus_dmamap_destroy(sc->sc_dmat,
941 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
942
943 /* Free DMA'able memory for the RX ring. */
944 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
945 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
946 bus_dmamem_unmap(sc->sc_dmat,
947 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
948 bus_dmamem_free(sc->sc_dmat,
949 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
950
951 /* Destroy DMA maps for TX buffers. */
952 for (i = 0; i < RE_TX_QLEN; i++)
953 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
954 bus_dmamap_destroy(sc->sc_dmat,
955 sc->re_ldata.re_txq[i].txq_dmamap);
956
957 /* Free DMA'able memory for the TX ring. */
958 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
959 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
960 bus_dmamem_unmap(sc->sc_dmat,
961 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
962 bus_dmamem_free(sc->sc_dmat,
963 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
964
965 pmf_device_deregister(sc->sc_dev);
966
967 return 0;
968 }
969
970 /*
971 * re_enable:
972 * Enable the RTL81X9 chip.
973 */
974 static int
975 re_enable(struct rtk_softc *sc)
976 {
977
978 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
979 if ((*sc->sc_enable)(sc) != 0) {
980 printf("%s: device enable failed\n",
981 device_xname(sc->sc_dev));
982 return EIO;
983 }
984 sc->sc_flags |= RTK_ENABLED;
985 }
986 return 0;
987 }
988
989 /*
990 * re_disable:
991 * Disable the RTL81X9 chip.
992 */
993 static void
994 re_disable(struct rtk_softc *sc)
995 {
996
997 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
998 (*sc->sc_disable)(sc);
999 sc->sc_flags &= ~RTK_ENABLED;
1000 }
1001 }
1002
1003 static int
1004 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1005 {
1006 struct mbuf *n = NULL;
1007 bus_dmamap_t map;
1008 struct re_desc *d;
1009 struct re_rxsoft *rxs;
1010 uint32_t cmdstat;
1011 int error;
1012
1013 if (m == NULL) {
1014 MGETHDR(n, M_DONTWAIT, MT_DATA);
1015 if (n == NULL)
1016 return ENOBUFS;
1017
1018 MCLGET(n, M_DONTWAIT);
1019 if ((n->m_flags & M_EXT) == 0) {
1020 m_freem(n);
1021 return ENOBUFS;
1022 }
1023 m = n;
1024 } else
1025 m->m_data = m->m_ext.ext_buf;
1026
1027 /*
1028 * Initialize mbuf length fields and fixup
1029 * alignment so that the frame payload is
1030 * longword aligned.
1031 */
1032 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1033 m->m_data += RE_ETHER_ALIGN;
1034
1035 rxs = &sc->re_ldata.re_rxsoft[idx];
1036 map = rxs->rxs_dmamap;
1037 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1038 BUS_DMA_READ|BUS_DMA_NOWAIT);
1039
1040 if (error)
1041 goto out;
1042
1043 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1044 BUS_DMASYNC_PREREAD);
1045
1046 d = &sc->re_ldata.re_rx_list[idx];
1047 #ifdef DIAGNOSTIC
1048 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1049 cmdstat = le32toh(d->re_cmdstat);
1050 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1051 if (cmdstat & RE_RDESC_STAT_OWN) {
1052 panic("%s: tried to map busy RX descriptor",
1053 device_xname(sc->sc_dev));
1054 }
1055 #endif
1056
1057 rxs->rxs_mbuf = m;
1058
1059 d->re_vlanctl = 0;
1060 cmdstat = map->dm_segs[0].ds_len;
1061 if (idx == (RE_RX_DESC_CNT - 1))
1062 cmdstat |= RE_RDESC_CMD_EOR;
1063 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1064 d->re_cmdstat = htole32(cmdstat);
1065 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1066 cmdstat |= RE_RDESC_CMD_OWN;
1067 d->re_cmdstat = htole32(cmdstat);
1068 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1069
1070 return 0;
1071 out:
1072 if (n != NULL)
1073 m_freem(n);
1074 return ENOMEM;
1075 }
1076
1077 static int
1078 re_tx_list_init(struct rtk_softc *sc)
1079 {
1080 int i;
1081
1082 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1083 for (i = 0; i < RE_TX_QLEN; i++) {
1084 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1085 }
1086
1087 bus_dmamap_sync(sc->sc_dmat,
1088 sc->re_ldata.re_tx_list_map, 0,
1089 sc->re_ldata.re_tx_list_map->dm_mapsize,
1090 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1091 sc->re_ldata.re_txq_prodidx = 0;
1092 sc->re_ldata.re_txq_considx = 0;
1093 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1094 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1095 sc->re_ldata.re_tx_nextfree = 0;
1096
1097 return 0;
1098 }
1099
1100 static int
1101 re_rx_list_init(struct rtk_softc *sc)
1102 {
1103 int i;
1104
1105 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1106
1107 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1108 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1109 return ENOBUFS;
1110 }
1111
1112 sc->re_ldata.re_rx_prodidx = 0;
1113 sc->re_head = sc->re_tail = NULL;
1114
1115 return 0;
1116 }
1117
1118 /*
1119 * RX handler for C+ and 8169. For the gigE chips, we support
1120 * the reception of jumbo frames that have been fragmented
1121 * across multiple 2K mbuf cluster buffers.
1122 */
1123 static void
1124 re_rxeof(struct rtk_softc *sc)
1125 {
1126 struct mbuf *m;
1127 struct ifnet *ifp;
1128 int i, total_len;
1129 struct re_desc *cur_rx;
1130 struct re_rxsoft *rxs;
1131 uint32_t rxstat, rxvlan;
1132
1133 ifp = &sc->ethercom.ec_if;
1134
1135 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1136 cur_rx = &sc->re_ldata.re_rx_list[i];
1137 RE_RXDESCSYNC(sc, i,
1138 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1139 rxstat = le32toh(cur_rx->re_cmdstat);
1140 rxvlan = le32toh(cur_rx->re_vlanctl);
1141 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1142 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1143 break;
1144 }
1145 total_len = rxstat & sc->re_rxlenmask;
1146 rxs = &sc->re_ldata.re_rxsoft[i];
1147 m = rxs->rxs_mbuf;
1148
1149 /* Invalidate the RX mbuf and unload its map */
1150
1151 bus_dmamap_sync(sc->sc_dmat,
1152 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1153 BUS_DMASYNC_POSTREAD);
1154 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1155
1156 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1157 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1158 if (sc->re_head == NULL)
1159 sc->re_head = sc->re_tail = m;
1160 else {
1161 m->m_flags &= ~M_PKTHDR;
1162 sc->re_tail->m_next = m;
1163 sc->re_tail = m;
1164 }
1165 re_newbuf(sc, i, NULL);
1166 continue;
1167 }
1168
1169 /*
1170 * NOTE: for the 8139C+, the frame length field
1171 * is always 12 bits in size, but for the gigE chips,
1172 * it is 13 bits (since the max RX frame length is 16K).
1173 * Unfortunately, all 32 bits in the status word
1174 * were already used, so to make room for the extra
1175 * length bit, RealTek took out the 'frame alignment
1176 * error' bit and shifted the other status bits
1177 * over one slot. The OWN, EOR, FS and LS bits are
1178 * still in the same places. We have already extracted
1179 * the frame length and checked the OWN bit, so rather
1180 * than using an alternate bit mapping, we shift the
1181 * status bits one space to the right so we can evaluate
1182 * them using the 8169 status as though it was in the
1183 * same format as that of the 8139C+.
1184 */
1185 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1186 rxstat >>= 1;
1187
1188 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1189 #ifdef RE_DEBUG
1190 printf("%s: RX error (rxstat = 0x%08x)",
1191 device_xname(sc->sc_dev), rxstat);
1192 if (rxstat & RE_RDESC_STAT_FRALIGN)
1193 printf(", frame alignment error");
1194 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1195 printf(", out of buffer space");
1196 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1197 printf(", FIFO overrun");
1198 if (rxstat & RE_RDESC_STAT_GIANT)
1199 printf(", giant packet");
1200 if (rxstat & RE_RDESC_STAT_RUNT)
1201 printf(", runt packet");
1202 if (rxstat & RE_RDESC_STAT_CRCERR)
1203 printf(", CRC error");
1204 printf("\n");
1205 #endif
1206 ifp->if_ierrors++;
1207 /*
1208 * If this is part of a multi-fragment packet,
1209 * discard all the pieces.
1210 */
1211 if (sc->re_head != NULL) {
1212 m_freem(sc->re_head);
1213 sc->re_head = sc->re_tail = NULL;
1214 }
1215 re_newbuf(sc, i, m);
1216 continue;
1217 }
1218
1219 /*
1220 * If allocating a replacement mbuf fails,
1221 * reload the current one.
1222 */
1223
1224 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1225 ifp->if_ierrors++;
1226 if (sc->re_head != NULL) {
1227 m_freem(sc->re_head);
1228 sc->re_head = sc->re_tail = NULL;
1229 }
1230 re_newbuf(sc, i, m);
1231 continue;
1232 }
1233
1234 if (sc->re_head != NULL) {
1235 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1236 /*
1237 * Special case: if there's 4 bytes or less
1238 * in this buffer, the mbuf can be discarded:
1239 * the last 4 bytes is the CRC, which we don't
1240 * care about anyway.
1241 */
1242 if (m->m_len <= ETHER_CRC_LEN) {
1243 sc->re_tail->m_len -=
1244 (ETHER_CRC_LEN - m->m_len);
1245 m_freem(m);
1246 } else {
1247 m->m_len -= ETHER_CRC_LEN;
1248 m->m_flags &= ~M_PKTHDR;
1249 sc->re_tail->m_next = m;
1250 }
1251 m = sc->re_head;
1252 sc->re_head = sc->re_tail = NULL;
1253 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1254 } else
1255 m->m_pkthdr.len = m->m_len =
1256 (total_len - ETHER_CRC_LEN);
1257
1258 ifp->if_ipackets++;
1259 m->m_pkthdr.rcvif = ifp;
1260
1261 /* Do RX checksumming */
1262 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1263 /* Check IP header checksum */
1264 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1265 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1266 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1267 m->m_pkthdr.csum_flags |=
1268 M_CSUM_IPv4_BAD;
1269
1270 /* Check TCP/UDP checksum */
1271 if (RE_TCPPKT(rxstat)) {
1272 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1273 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1274 m->m_pkthdr.csum_flags |=
1275 M_CSUM_TCP_UDP_BAD;
1276 } else if (RE_UDPPKT(rxstat)) {
1277 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1278 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1279 m->m_pkthdr.csum_flags |=
1280 M_CSUM_TCP_UDP_BAD;
1281 }
1282 }
1283 } else {
1284 /* Check IPv4 header checksum */
1285 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1286 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1287 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1288 m->m_pkthdr.csum_flags |=
1289 M_CSUM_IPv4_BAD;
1290
1291 /* Check TCPv4/UDPv4 checksum */
1292 if (RE_TCPPKT(rxstat)) {
1293 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1294 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1295 m->m_pkthdr.csum_flags |=
1296 M_CSUM_TCP_UDP_BAD;
1297 } else if (RE_UDPPKT(rxstat)) {
1298 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1299 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1300 m->m_pkthdr.csum_flags |=
1301 M_CSUM_TCP_UDP_BAD;
1302 }
1303 }
1304 /* XXX Check TCPv6/UDPv6 checksum? */
1305 }
1306
1307 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1308 VLAN_INPUT_TAG(ifp, m,
1309 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1310 continue);
1311 }
1312 #if NBPFILTER > 0
1313 if (ifp->if_bpf)
1314 bpf_mtap(ifp->if_bpf, m);
1315 #endif
1316 (*ifp->if_input)(ifp, m);
1317 }
1318
1319 sc->re_ldata.re_rx_prodidx = i;
1320 }
1321
1322 static void
1323 re_txeof(struct rtk_softc *sc)
1324 {
1325 struct ifnet *ifp;
1326 struct re_txq *txq;
1327 uint32_t txstat;
1328 int idx, descidx;
1329
1330 ifp = &sc->ethercom.ec_if;
1331
1332 for (idx = sc->re_ldata.re_txq_considx;
1333 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1334 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1335 txq = &sc->re_ldata.re_txq[idx];
1336 KASSERT(txq->txq_mbuf != NULL);
1337
1338 descidx = txq->txq_descidx;
1339 RE_TXDESCSYNC(sc, descidx,
1340 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1341 txstat =
1342 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1343 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1344 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1345 if (txstat & RE_TDESC_CMD_OWN) {
1346 break;
1347 }
1348
1349 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1350 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1351 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1352 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1353 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1354 m_freem(txq->txq_mbuf);
1355 txq->txq_mbuf = NULL;
1356
1357 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1358 ifp->if_collisions++;
1359 if (txstat & RE_TDESC_STAT_TXERRSUM)
1360 ifp->if_oerrors++;
1361 else
1362 ifp->if_opackets++;
1363 }
1364
1365 sc->re_ldata.re_txq_considx = idx;
1366
1367 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1368 ifp->if_flags &= ~IFF_OACTIVE;
1369
1370 /*
1371 * If not all descriptors have been released reaped yet,
1372 * reload the timer so that we will eventually get another
1373 * interrupt that will cause us to re-enter this routine.
1374 * This is done in case the transmitter has gone idle.
1375 */
1376 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1377 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1378 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1379 /*
1380 * Some chips will ignore a second TX request
1381 * issued while an existing transmission is in
1382 * progress. If the transmitter goes idle but
1383 * there are still packets waiting to be sent,
1384 * we need to restart the channel here to flush
1385 * them out. This only seems to be required with
1386 * the PCIe devices.
1387 */
1388 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1389 }
1390 } else
1391 ifp->if_timer = 0;
1392 }
1393
1394 static void
1395 re_tick(void *arg)
1396 {
1397 struct rtk_softc *sc = arg;
1398 int s;
1399
1400 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1401 s = splnet();
1402
1403 mii_tick(&sc->mii);
1404 splx(s);
1405
1406 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1407 }
1408
1409 int
1410 re_intr(void *arg)
1411 {
1412 struct rtk_softc *sc = arg;
1413 struct ifnet *ifp;
1414 uint16_t status;
1415 int handled = 0;
1416
1417 if (!device_has_power(sc->sc_dev))
1418 return 0;
1419
1420 ifp = &sc->ethercom.ec_if;
1421
1422 if ((ifp->if_flags & IFF_UP) == 0)
1423 return 0;
1424
1425 for (;;) {
1426
1427 status = CSR_READ_2(sc, RTK_ISR);
1428 /* If the card has gone away the read returns 0xffff. */
1429 if (status == 0xffff)
1430 break;
1431 if (status) {
1432 handled = 1;
1433 CSR_WRITE_2(sc, RTK_ISR, status);
1434 }
1435
1436 if ((status & RTK_INTRS_CPLUS) == 0)
1437 break;
1438
1439 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1440 re_rxeof(sc);
1441
1442 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1443 RTK_ISR_TX_DESC_UNAVAIL))
1444 re_txeof(sc);
1445
1446 if (status & RTK_ISR_SYSTEM_ERR) {
1447 re_init(ifp);
1448 }
1449
1450 if (status & RTK_ISR_LINKCHG) {
1451 callout_stop(&sc->rtk_tick_ch);
1452 re_tick(sc);
1453 }
1454 }
1455
1456 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1457 re_start(ifp);
1458
1459 return handled;
1460 }
1461
1462
1463
1464 /*
1465 * Main transmit routine for C+ and gigE NICs.
1466 */
1467
1468 static void
1469 re_start(struct ifnet *ifp)
1470 {
1471 struct rtk_softc *sc;
1472 struct mbuf *m;
1473 bus_dmamap_t map;
1474 struct re_txq *txq;
1475 struct re_desc *d;
1476 struct m_tag *mtag;
1477 uint32_t cmdstat, re_flags, vlanctl;
1478 int ofree, idx, error, nsegs, seg;
1479 int startdesc, curdesc, lastdesc;
1480 bool pad;
1481
1482 sc = ifp->if_softc;
1483 ofree = sc->re_ldata.re_txq_free;
1484
1485 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1486
1487 IFQ_POLL(&ifp->if_snd, m);
1488 if (m == NULL)
1489 break;
1490
1491 if (sc->re_ldata.re_txq_free == 0 ||
1492 sc->re_ldata.re_tx_free == 0) {
1493 /* no more free slots left */
1494 ifp->if_flags |= IFF_OACTIVE;
1495 break;
1496 }
1497
1498 /*
1499 * Set up checksum offload. Note: checksum offload bits must
1500 * appear in all descriptors of a multi-descriptor transmit
1501 * attempt. (This is according to testing done with an 8169
1502 * chip. I'm not sure if this is a requirement or a bug.)
1503 */
1504
1505 vlanctl = 0;
1506 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1507 uint32_t segsz = m->m_pkthdr.segsz;
1508
1509 re_flags = RE_TDESC_CMD_LGSEND |
1510 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1511 } else {
1512 /*
1513 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1514 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1515 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1516 */
1517 re_flags = 0;
1518 if ((m->m_pkthdr.csum_flags &
1519 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1520 != 0) {
1521 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1522 re_flags |= RE_TDESC_CMD_IPCSUM;
1523 if (m->m_pkthdr.csum_flags &
1524 M_CSUM_TCPv4) {
1525 re_flags |=
1526 RE_TDESC_CMD_TCPCSUM;
1527 } else if (m->m_pkthdr.csum_flags &
1528 M_CSUM_UDPv4) {
1529 re_flags |=
1530 RE_TDESC_CMD_UDPCSUM;
1531 }
1532 } else {
1533 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1534 if (m->m_pkthdr.csum_flags &
1535 M_CSUM_TCPv4) {
1536 vlanctl |=
1537 RE_TDESC_VLANCTL_TCPCSUM;
1538 } else if (m->m_pkthdr.csum_flags &
1539 M_CSUM_UDPv4) {
1540 vlanctl |=
1541 RE_TDESC_VLANCTL_UDPCSUM;
1542 }
1543 }
1544 }
1545 }
1546
1547 txq = &sc->re_ldata.re_txq[idx];
1548 map = txq->txq_dmamap;
1549 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1550 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1551
1552 if (__predict_false(error)) {
1553 /* XXX try to defrag if EFBIG? */
1554 printf("%s: can't map mbuf (error %d)\n",
1555 device_xname(sc->sc_dev), error);
1556
1557 IFQ_DEQUEUE(&ifp->if_snd, m);
1558 m_freem(m);
1559 ifp->if_oerrors++;
1560 continue;
1561 }
1562
1563 nsegs = map->dm_nsegs;
1564 pad = false;
1565 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1566 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1567 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1568 pad = true;
1569 nsegs++;
1570 }
1571
1572 if (nsegs > sc->re_ldata.re_tx_free) {
1573 /*
1574 * Not enough free descriptors to transmit this packet.
1575 */
1576 ifp->if_flags |= IFF_OACTIVE;
1577 bus_dmamap_unload(sc->sc_dmat, map);
1578 break;
1579 }
1580
1581 IFQ_DEQUEUE(&ifp->if_snd, m);
1582
1583 /*
1584 * Make sure that the caches are synchronized before we
1585 * ask the chip to start DMA for the packet data.
1586 */
1587 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1588 BUS_DMASYNC_PREWRITE);
1589
1590 /*
1591 * Set up hardware VLAN tagging. Note: vlan tag info must
1592 * appear in all descriptors of a multi-descriptor
1593 * transmission attempt.
1594 */
1595 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1596 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1597 RE_TDESC_VLANCTL_TAG;
1598
1599 /*
1600 * Map the segment array into descriptors.
1601 * Note that we set the start-of-frame and
1602 * end-of-frame markers for either TX or RX,
1603 * but they really only have meaning in the TX case.
1604 * (In the RX case, it's the chip that tells us
1605 * where packets begin and end.)
1606 * We also keep track of the end of the ring
1607 * and set the end-of-ring bits as needed,
1608 * and we set the ownership bits in all except
1609 * the very first descriptor. (The caller will
1610 * set this descriptor later when it start
1611 * transmission or reception.)
1612 */
1613 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1614 lastdesc = -1;
1615 for (seg = 0; seg < map->dm_nsegs;
1616 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1617 d = &sc->re_ldata.re_tx_list[curdesc];
1618 #ifdef DIAGNOSTIC
1619 RE_TXDESCSYNC(sc, curdesc,
1620 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1621 cmdstat = le32toh(d->re_cmdstat);
1622 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1623 if (cmdstat & RE_TDESC_STAT_OWN) {
1624 panic("%s: tried to map busy TX descriptor",
1625 device_xname(sc->sc_dev));
1626 }
1627 #endif
1628
1629 d->re_vlanctl = htole32(vlanctl);
1630 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1631 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1632 if (seg == 0)
1633 cmdstat |= RE_TDESC_CMD_SOF;
1634 else
1635 cmdstat |= RE_TDESC_CMD_OWN;
1636 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1637 cmdstat |= RE_TDESC_CMD_EOR;
1638 if (seg == nsegs - 1) {
1639 cmdstat |= RE_TDESC_CMD_EOF;
1640 lastdesc = curdesc;
1641 }
1642 d->re_cmdstat = htole32(cmdstat);
1643 RE_TXDESCSYNC(sc, curdesc,
1644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1645 }
1646 if (__predict_false(pad)) {
1647 d = &sc->re_ldata.re_tx_list[curdesc];
1648 d->re_vlanctl = htole32(vlanctl);
1649 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1650 cmdstat = re_flags |
1651 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1652 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1653 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1654 cmdstat |= RE_TDESC_CMD_EOR;
1655 d->re_cmdstat = htole32(cmdstat);
1656 RE_TXDESCSYNC(sc, curdesc,
1657 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1658 lastdesc = curdesc;
1659 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1660 }
1661 KASSERT(lastdesc != -1);
1662
1663 /* Transfer ownership of packet to the chip. */
1664
1665 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1666 htole32(RE_TDESC_CMD_OWN);
1667 RE_TXDESCSYNC(sc, startdesc,
1668 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1669
1670 /* update info of TX queue and descriptors */
1671 txq->txq_mbuf = m;
1672 txq->txq_descidx = lastdesc;
1673 txq->txq_nsegs = nsegs;
1674
1675 sc->re_ldata.re_txq_free--;
1676 sc->re_ldata.re_tx_free -= nsegs;
1677 sc->re_ldata.re_tx_nextfree = curdesc;
1678
1679 #if NBPFILTER > 0
1680 /*
1681 * If there's a BPF listener, bounce a copy of this frame
1682 * to him.
1683 */
1684 if (ifp->if_bpf)
1685 bpf_mtap(ifp->if_bpf, m);
1686 #endif
1687 }
1688
1689 if (sc->re_ldata.re_txq_free < ofree) {
1690 /*
1691 * TX packets are enqueued.
1692 */
1693 sc->re_ldata.re_txq_prodidx = idx;
1694
1695 /*
1696 * Start the transmitter to poll.
1697 *
1698 * RealTek put the TX poll request register in a different
1699 * location on the 8169 gigE chip. I don't know why.
1700 */
1701 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1702 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1703 else
1704 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1705
1706 /*
1707 * Use the countdown timer for interrupt moderation.
1708 * 'TX done' interrupts are disabled. Instead, we reset the
1709 * countdown timer, which will begin counting until it hits
1710 * the value in the TIMERINT register, and then trigger an
1711 * interrupt. Each time we write to the TIMERCNT register,
1712 * the timer count is reset to 0.
1713 */
1714 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1715
1716 /*
1717 * Set a timeout in case the chip goes out to lunch.
1718 */
1719 ifp->if_timer = 5;
1720 }
1721 }
1722
1723 static int
1724 re_init(struct ifnet *ifp)
1725 {
1726 struct rtk_softc *sc = ifp->if_softc;
1727 const uint8_t *enaddr;
1728 uint32_t rxcfg = 0;
1729 uint32_t reg;
1730 uint16_t cfg;
1731 int error;
1732
1733 if ((error = re_enable(sc)) != 0)
1734 goto out;
1735
1736 /*
1737 * Cancel pending I/O and free all RX/TX buffers.
1738 */
1739 re_stop(ifp, 0);
1740
1741 re_reset(sc);
1742
1743 /*
1744 * Enable C+ RX and TX mode, as well as VLAN stripping and
1745 * RX checksum offload. We must configure the C+ register
1746 * before all others.
1747 */
1748 cfg = RE_CPLUSCMD_PCI_MRW;
1749
1750 /*
1751 * XXX: For old 8169 set bit 14.
1752 * For 8169S/8110S and above, do not set bit 14.
1753 */
1754 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1755 cfg |= (0x1 << 14);
1756
1757 if ((ifp->if_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1758 cfg |= RE_CPLUSCMD_VLANSTRIP;
1759 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1760 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1761 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1762 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1763 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1764 cfg |= RE_CPLUSCMD_TXENB;
1765 } else
1766 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1767
1768 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1769
1770 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1771 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1772 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1773
1774 DELAY(10000);
1775
1776 /*
1777 * Init our MAC address. Even though the chipset
1778 * documentation doesn't mention it, we need to enter "Config
1779 * register write enable" mode to modify the ID registers.
1780 */
1781 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1782 enaddr = CLLADDR(ifp->if_sadl);
1783 reg = enaddr[0] | (enaddr[1] << 8) |
1784 (enaddr[2] << 16) | (enaddr[3] << 24);
1785 CSR_WRITE_4(sc, RTK_IDR0, reg);
1786 reg = enaddr[4] | (enaddr[5] << 8);
1787 CSR_WRITE_4(sc, RTK_IDR4, reg);
1788 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1789
1790 /*
1791 * For C+ mode, initialize the RX descriptors and mbufs.
1792 */
1793 re_rx_list_init(sc);
1794 re_tx_list_init(sc);
1795
1796 /*
1797 * Load the addresses of the RX and TX lists into the chip.
1798 */
1799 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1800 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1801 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1802 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1803
1804 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1805 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1806 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1807 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1808
1809 /*
1810 * Enable transmit and receive.
1811 */
1812 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1813
1814 /*
1815 * Set the initial TX and RX configuration.
1816 */
1817 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1818 /* test mode is needed only for old 8169 */
1819 CSR_WRITE_4(sc, RTK_TXCFG,
1820 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1821 } else
1822 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1823
1824 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1825
1826 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1827
1828 /* Set the individual bit to receive frames for this host only. */
1829 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1830 rxcfg |= RTK_RXCFG_RX_INDIV;
1831
1832 /* If we want promiscuous mode, set the allframes bit. */
1833 if (ifp->if_flags & IFF_PROMISC)
1834 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1835 else
1836 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1837 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1838
1839 /*
1840 * Set capture broadcast bit to capture broadcast frames.
1841 */
1842 if (ifp->if_flags & IFF_BROADCAST)
1843 rxcfg |= RTK_RXCFG_RX_BROAD;
1844 else
1845 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1846 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1847
1848 /*
1849 * Program the multicast filter, if necessary.
1850 */
1851 rtk_setmulti(sc);
1852
1853 /*
1854 * Enable interrupts.
1855 */
1856 if (sc->re_testmode)
1857 CSR_WRITE_2(sc, RTK_IMR, 0);
1858 else
1859 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1860
1861 /* Start RX/TX process. */
1862 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1863 #ifdef notdef
1864 /* Enable receiver and transmitter. */
1865 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1866 #endif
1867
1868 /*
1869 * Initialize the timer interrupt register so that
1870 * a timer interrupt will be generated once the timer
1871 * reaches a certain number of ticks. The timer is
1872 * reloaded on each transmit. This gives us TX interrupt
1873 * moderation, which dramatically improves TX frame rate.
1874 */
1875
1876 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1877 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1878 else {
1879 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1880
1881 /*
1882 * For 8169 gigE NICs, set the max allowed RX packet
1883 * size so we can receive jumbo frames.
1884 */
1885 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1886 }
1887
1888 if (sc->re_testmode)
1889 return 0;
1890
1891 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1892
1893 ifp->if_flags |= IFF_RUNNING;
1894 ifp->if_flags &= ~IFF_OACTIVE;
1895
1896 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1897
1898 out:
1899 if (error) {
1900 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1901 ifp->if_timer = 0;
1902 printf("%s: interface not running\n",
1903 device_xname(sc->sc_dev));
1904 }
1905
1906 return error;
1907 }
1908
1909 static int
1910 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1911 {
1912 struct rtk_softc *sc = ifp->if_softc;
1913 struct ifreq *ifr = data;
1914 int s, error = 0;
1915
1916 s = splnet();
1917
1918 switch (command) {
1919 case SIOCSIFMTU:
1920 /*
1921 * Disable jumbo frames if it's not supported.
1922 */
1923 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1924 ifr->ifr_mtu > ETHERMTU) {
1925 error = EINVAL;
1926 break;
1927 }
1928
1929 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1930 error = EINVAL;
1931 else if ((error = ifioctl_common(ifp, command, data)) ==
1932 ENETRESET)
1933 error = 0;
1934 break;
1935 default:
1936 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1937 break;
1938
1939 error = 0;
1940
1941 if (command == SIOCSIFCAP)
1942 error = (*ifp->if_init)(ifp);
1943 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1944 ;
1945 else if (ifp->if_flags & IFF_RUNNING)
1946 rtk_setmulti(sc);
1947 break;
1948 }
1949
1950 splx(s);
1951
1952 return error;
1953 }
1954
1955 static void
1956 re_watchdog(struct ifnet *ifp)
1957 {
1958 struct rtk_softc *sc;
1959 int s;
1960
1961 sc = ifp->if_softc;
1962 s = splnet();
1963 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1964 ifp->if_oerrors++;
1965
1966 re_txeof(sc);
1967 re_rxeof(sc);
1968
1969 re_init(ifp);
1970
1971 splx(s);
1972 }
1973
1974 /*
1975 * Stop the adapter and free any mbufs allocated to the
1976 * RX and TX lists.
1977 */
1978 static void
1979 re_stop(struct ifnet *ifp, int disable)
1980 {
1981 int i;
1982 struct rtk_softc *sc = ifp->if_softc;
1983
1984 callout_stop(&sc->rtk_tick_ch);
1985
1986 mii_down(&sc->mii);
1987
1988 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
1989 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
1990 RTK_CMD_RX_ENB);
1991 else
1992 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1993 DELAY(1000);
1994 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1995 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
1996
1997 if (sc->re_head != NULL) {
1998 m_freem(sc->re_head);
1999 sc->re_head = sc->re_tail = NULL;
2000 }
2001
2002 /* Free the TX list buffers. */
2003 for (i = 0; i < RE_TX_QLEN; i++) {
2004 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2005 bus_dmamap_unload(sc->sc_dmat,
2006 sc->re_ldata.re_txq[i].txq_dmamap);
2007 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2008 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2009 }
2010 }
2011
2012 /* Free the RX list buffers. */
2013 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2014 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2015 bus_dmamap_unload(sc->sc_dmat,
2016 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2017 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2018 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2019 }
2020 }
2021
2022 if (disable)
2023 re_disable(sc);
2024
2025 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2026 ifp->if_timer = 0;
2027 }
2028