Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.13
      1 /*	$NetBSD: rtl8169.c,v 1.13 2005/03/12 08:01:51 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37 
     38 /*
     39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  *
     41  * Written by Bill Paul <wpaul (at) windriver.com>
     42  * Senior Networking Software Engineer
     43  * Wind River Systems
     44  */
     45 
     46 /*
     47  * This driver is designed to support RealTek's next generation of
     48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  * and the RTL8110S.
     51  *
     52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  * with the older 8139 family, however it also supports a special
     54  * C+ mode of operation that provides several new performance enhancing
     55  * features. These include:
     56  *
     57  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  *	  a single packet fragment. Data buffers may be aligned on
     59  *	  any byte boundary.
     60  *
     61  *	o 64-bit DMA
     62  *
     63  *	o TCP/IP checksum offload for both RX and TX
     64  *
     65  *	o High and normal priority transmit DMA rings
     66  *
     67  *	o VLAN tag insertion and extraction
     68  *
     69  *	o TCP large send (segmentation offload)
     70  *
     71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  * access and PHY access is the same as it is on the older 8139 series
     74  * chips.
     75  *
     76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  * same programming API and feature set as the 8139C+ with the following
     78  * differences and additions:
     79  *
     80  *	o 1000Mbps mode
     81  *
     82  *	o Jumbo frames
     83  *
     84  * 	o GMII and TBI ports/registers for interfacing with copper
     85  *	  or fiber PHYs
     86  *
     87  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  *        (the 8139C+ allows a maximum of 64)
     89  *
     90  *	o Slight differences in register layout from the 8139C+
     91  *
     92  * The TX start and timer interrupt registers are at different locations
     93  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  * copper gigE PHY.
     97  *
     98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  * (the 'S' stands for 'single-chip'). These devices have the same
    100  * programming API as the older 8169, but also have some vendor-specific
    101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  *
    104  * This driver takes advantage of the RX and TX checksum offload and
    105  * VLAN tag insertion/extraction features. It also implements TX
    106  * interrupt moderation using the timer interrupt registers, which
    107  * significantly reduces TX interrupt load. There is also support
    108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  * driver is 7500 bytes.
    111  */
    112 
    113 #include "bpfilter.h"
    114 #include "vlan.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/endian.h>
    118 #include <sys/systm.h>
    119 #include <sys/sockio.h>
    120 #include <sys/mbuf.h>
    121 #include <sys/malloc.h>
    122 #include <sys/kernel.h>
    123 #include <sys/socket.h>
    124 #include <sys/device.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_arp.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net/if_vlanvar.h>
    132 
    133 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    134 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    135 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    136 
    137 #if NBPFILTER > 0
    138 #include <net/bpf.h>
    139 #endif
    140 
    141 #include <machine/bus.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 
    146 #include <dev/pci/pcireg.h>
    147 #include <dev/pci/pcivar.h>
    148 #include <dev/pci/pcidevs.h>
    149 
    150 #include <dev/ic/rtl81x9reg.h>
    151 #include <dev/ic/rtl81x9var.h>
    152 
    153 #include <dev/ic/rtl8169var.h>
    154 
    155 
    156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
    157 
    158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    159 static int re_rx_list_init(struct rtk_softc *);
    160 static int re_tx_list_init(struct rtk_softc *);
    161 static void re_rxeof(struct rtk_softc *);
    162 static void re_txeof(struct rtk_softc *);
    163 static void re_tick(void *);
    164 static void re_start(struct ifnet *);
    165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
    166 static int re_init(struct ifnet *);
    167 static void re_stop(struct ifnet *, int);
    168 static void re_watchdog(struct ifnet *);
    169 
    170 static void re_shutdown(void *);
    171 static int re_enable(struct rtk_softc *);
    172 static void re_disable(struct rtk_softc *);
    173 static void re_power(int, void *);
    174 
    175 static int re_ifmedia_upd(struct ifnet *);
    176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    177 
    178 static int re_gmii_readreg(struct device *, int, int);
    179 static void re_gmii_writereg(struct device *, int, int, int);
    180 
    181 static int re_miibus_readreg(struct device *, int, int);
    182 static void re_miibus_writereg(struct device *, int, int, int);
    183 static void re_miibus_statchg(struct device *);
    184 
    185 static void re_reset(struct rtk_softc *);
    186 
    187 static int
    188 re_gmii_readreg(struct device *self, int phy, int reg)
    189 {
    190 	struct rtk_softc	*sc = (void *)self;
    191 	u_int32_t		rval;
    192 	int			i;
    193 
    194 	if (phy != 7)
    195 		return 0;
    196 
    197 	/* Let the rgephy driver read the GMEDIASTAT register */
    198 
    199 	if (reg == RTK_GMEDIASTAT) {
    200 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    201 		return rval;
    202 	}
    203 
    204 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    205 	DELAY(1000);
    206 
    207 	for (i = 0; i < RTK_TIMEOUT; i++) {
    208 		rval = CSR_READ_4(sc, RTK_PHYAR);
    209 		if (rval & RTK_PHYAR_BUSY)
    210 			break;
    211 		DELAY(100);
    212 	}
    213 
    214 	if (i == RTK_TIMEOUT) {
    215 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    216 		return 0;
    217 	}
    218 
    219 	return rval & RTK_PHYAR_PHYDATA;
    220 }
    221 
    222 static void
    223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
    224 {
    225 	struct rtk_softc	*sc = (void *)dev;
    226 	u_int32_t		rval;
    227 	int			i;
    228 
    229 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    230 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    231 	DELAY(1000);
    232 
    233 	for (i = 0; i < RTK_TIMEOUT; i++) {
    234 		rval = CSR_READ_4(sc, RTK_PHYAR);
    235 		if (!(rval & RTK_PHYAR_BUSY))
    236 			break;
    237 		DELAY(100);
    238 	}
    239 
    240 	if (i == RTK_TIMEOUT) {
    241 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    242 		    sc->sc_dev.dv_xname, reg, data);
    243 		return;
    244 	}
    245 
    246 	return;
    247 }
    248 
    249 static int
    250 re_miibus_readreg(struct device *dev, int phy, int reg)
    251 {
    252 	struct rtk_softc	*sc = (void *)dev;
    253 	u_int16_t		rval = 0;
    254 	u_int16_t		re8139_reg = 0;
    255 	int			s;
    256 
    257 	s = splnet();
    258 
    259 	if (sc->rtk_type == RTK_8169) {
    260 		rval = re_gmii_readreg(dev, phy, reg);
    261 		splx(s);
    262 		return rval;
    263 	}
    264 
    265 	/* Pretend the internal PHY is only at address 0 */
    266 	if (phy) {
    267 		splx(s);
    268 		return 0;
    269 	}
    270 	switch (reg) {
    271 	case MII_BMCR:
    272 		re8139_reg = RTK_BMCR;
    273 		break;
    274 	case MII_BMSR:
    275 		re8139_reg = RTK_BMSR;
    276 		break;
    277 	case MII_ANAR:
    278 		re8139_reg = RTK_ANAR;
    279 		break;
    280 	case MII_ANER:
    281 		re8139_reg = RTK_ANER;
    282 		break;
    283 	case MII_ANLPAR:
    284 		re8139_reg = RTK_LPAR;
    285 		break;
    286 	case MII_PHYIDR1:
    287 	case MII_PHYIDR2:
    288 		splx(s);
    289 		return 0;
    290 	/*
    291 	 * Allow the rlphy driver to read the media status
    292 	 * register. If we have a link partner which does not
    293 	 * support NWAY, this is the register which will tell
    294 	 * us the results of parallel detection.
    295 	 */
    296 	case RTK_MEDIASTAT:
    297 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    298 		splx(s);
    299 		return rval;
    300 	default:
    301 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    302 		splx(s);
    303 		return 0;
    304 	}
    305 	rval = CSR_READ_2(sc, re8139_reg);
    306 	splx(s);
    307 	return rval;
    308 }
    309 
    310 static void
    311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    312 {
    313 	struct rtk_softc	*sc = (void *)dev;
    314 	u_int16_t		re8139_reg = 0;
    315 	int			s;
    316 
    317 	s = splnet();
    318 
    319 	if (sc->rtk_type == RTK_8169) {
    320 		re_gmii_writereg(dev, phy, reg, data);
    321 		splx(s);
    322 		return;
    323 	}
    324 
    325 	/* Pretend the internal PHY is only at address 0 */
    326 	if (phy) {
    327 		splx(s);
    328 		return;
    329 	}
    330 	switch (reg) {
    331 	case MII_BMCR:
    332 		re8139_reg = RTK_BMCR;
    333 		break;
    334 	case MII_BMSR:
    335 		re8139_reg = RTK_BMSR;
    336 		break;
    337 	case MII_ANAR:
    338 		re8139_reg = RTK_ANAR;
    339 		break;
    340 	case MII_ANER:
    341 		re8139_reg = RTK_ANER;
    342 		break;
    343 	case MII_ANLPAR:
    344 		re8139_reg = RTK_LPAR;
    345 		break;
    346 	case MII_PHYIDR1:
    347 	case MII_PHYIDR2:
    348 		splx(s);
    349 		return;
    350 		break;
    351 	default:
    352 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    353 		splx(s);
    354 		return;
    355 	}
    356 	CSR_WRITE_2(sc, re8139_reg, data);
    357 	splx(s);
    358 	return;
    359 }
    360 
    361 static void
    362 re_miibus_statchg(struct device *dev)
    363 {
    364 
    365 	return;
    366 }
    367 
    368 static void
    369 re_reset(struct rtk_softc *sc)
    370 {
    371 	register int		i;
    372 
    373 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    374 
    375 	for (i = 0; i < RTK_TIMEOUT; i++) {
    376 		DELAY(10);
    377 		if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
    378 			break;
    379 	}
    380 	if (i == RTK_TIMEOUT)
    381 		aprint_error("%s: reset never completed!\n",
    382 		    sc->sc_dev.dv_xname);
    383 
    384 	/*
    385 	 * NB: Realtek-supplied Linux driver does this only for
    386 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    387 	 */
    388 	if (1) /* XXX check softc flag for 8169s version */
    389 		CSR_WRITE_1(sc, 0x82, 1);
    390 
    391 	return;
    392 }
    393 
    394 /*
    395  * The following routine is designed to test for a defect on some
    396  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    397  * lines connected to the bus, however for a 32-bit only card, they
    398  * should be pulled high. The result of this defect is that the
    399  * NIC will not work right if you plug it into a 64-bit slot: DMA
    400  * operations will be done with 64-bit transfers, which will fail
    401  * because the 64-bit data lines aren't connected.
    402  *
    403  * There's no way to work around this (short of talking a soldering
    404  * iron to the board), however we can detect it. The method we use
    405  * here is to put the NIC into digital loopback mode, set the receiver
    406  * to promiscuous mode, and then try to send a frame. We then compare
    407  * the frame data we sent to what was received. If the data matches,
    408  * then the NIC is working correctly, otherwise we know the user has
    409  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    410  * slot. In the latter case, there's no way the NIC can work correctly,
    411  * so we print out a message on the console and abort the device attach.
    412  */
    413 
    414 int
    415 re_diag(struct rtk_softc *sc)
    416 {
    417 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    418 	struct mbuf		*m0;
    419 	struct ether_header	*eh;
    420 	struct rtk_desc		*cur_rx;
    421 	bus_dmamap_t		dmamap;
    422 	u_int16_t		status;
    423 	u_int32_t		rxstat;
    424 	int			total_len, i, s, error = 0;
    425 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    426 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    427 
    428 	/* Allocate a single mbuf */
    429 
    430 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    431 	if (m0 == NULL)
    432 		return ENOBUFS;
    433 
    434 	/*
    435 	 * Initialize the NIC in test mode. This sets the chip up
    436 	 * so that it can send and receive frames, but performs the
    437 	 * following special functions:
    438 	 * - Puts receiver in promiscuous mode
    439 	 * - Enables digital loopback mode
    440 	 * - Leaves interrupts turned off
    441 	 */
    442 
    443 	ifp->if_flags |= IFF_PROMISC;
    444 	sc->rtk_testmode = 1;
    445 	re_init(ifp);
    446 	re_stop(ifp, 0);
    447 	DELAY(100000);
    448 	re_init(ifp);
    449 
    450 	/* Put some data in the mbuf */
    451 
    452 	eh = mtod(m0, struct ether_header *);
    453 	bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
    454 	bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
    455 	eh->ether_type = htons(ETHERTYPE_IP);
    456 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    457 
    458 	/*
    459 	 * Queue the packet, start transmission.
    460 	 */
    461 
    462 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    463 	s = splnet();
    464 	IF_ENQUEUE(&ifp->if_snd, m0);
    465 	re_start(ifp);
    466 	splx(s);
    467 	m0 = NULL;
    468 
    469 	/* Wait for it to propagate through the chip */
    470 
    471 	DELAY(100000);
    472 	for (i = 0; i < RTK_TIMEOUT; i++) {
    473 		status = CSR_READ_2(sc, RTK_ISR);
    474 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    475 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    476 			break;
    477 		DELAY(10);
    478 	}
    479 	if (i == RTK_TIMEOUT) {
    480 		aprint_error("%s: diagnostic failed, failed to receive packet "
    481 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    482 		error = EIO;
    483 		goto done;
    484 	}
    485 
    486 	/*
    487 	 * The packet should have been dumped into the first
    488 	 * entry in the RX DMA ring. Grab it from there.
    489 	 */
    490 
    491 	dmamap = sc->rtk_ldata.rtk_rx_list_map;
    492 	bus_dmamap_sync(sc->sc_dmat,
    493 	    dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    494 	dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
    495 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    496 	    BUS_DMASYNC_POSTWRITE);
    497 	bus_dmamap_unload(sc->sc_dmat,
    498 	    sc->rtk_ldata.rtk_rx_dmamap[0]);
    499 
    500 	m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
    501 	sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
    502 	eh = mtod(m0, struct ether_header *);
    503 
    504 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
    505 	total_len = RTK_RXBYTES(cur_rx);
    506 	rxstat = le32toh(cur_rx->rtk_cmdstat);
    507 
    508 	if (total_len != ETHER_MIN_LEN) {
    509 		aprint_error("%s: diagnostic failed, received short packet\n",
    510 		    sc->sc_dev.dv_xname);
    511 		error = EIO;
    512 		goto done;
    513 	}
    514 
    515 	/* Test that the received packet data matches what we sent. */
    516 
    517 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    518 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    519 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    520 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    521 		    sc->sc_dev.dv_xname);
    522 		aprint_error("%s: expected TX data: %s",
    523 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    524 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    525 		aprint_error("%s: received RX data: %s",
    526 		    sc->sc_dev.dv_xname,
    527 		    ether_sprintf(eh->ether_dhost));
    528 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    529 		    ntohs(eh->ether_type));
    530 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    531 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    532 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    533 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    534 		aprint_error("%s: Read the re(4) man page for more details.\n",
    535 		    sc->sc_dev.dv_xname);
    536 		error = EIO;
    537 	}
    538 
    539 done:
    540 	/* Turn interface off, release resources */
    541 
    542 	sc->rtk_testmode = 0;
    543 	ifp->if_flags &= ~IFF_PROMISC;
    544 	re_stop(ifp, 0);
    545 	if (m0 != NULL)
    546 		m_freem(m0);
    547 
    548 	return error;
    549 }
    550 
    551 
    552 /*
    553  * Attach the interface. Allocate softc structures, do ifmedia
    554  * setup and ethernet/BPF attach.
    555  */
    556 void
    557 re_attach(struct rtk_softc *sc)
    558 {
    559 	u_char			eaddr[ETHER_ADDR_LEN];
    560 	u_int16_t		val;
    561 	struct ifnet		*ifp;
    562 	int			error = 0, i, addr_len;
    563 
    564 
    565 	/* XXX JRS: bus-attach-independent code begins approximately here */
    566 
    567 	/* Reset the adapter. */
    568 	re_reset(sc);
    569 
    570 	if (sc->rtk_type == RTK_8169) {
    571 		uint32_t hwrev;
    572 
    573 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    574 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
    575 		if (hwrev == (0x1 << 28)) {
    576 			sc->sc_rev = 4;
    577 		} else if (hwrev == (0x1 << 26)) {
    578 			sc->sc_rev = 3;
    579 		} else if (hwrev == (0x1 << 23)) {
    580 			sc->sc_rev = 2;
    581 		} else
    582 			sc->sc_rev = 1;
    583 
    584 		/* Set RX length mask */
    585 
    586 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
    587 
    588 		/* Force station address autoload from the EEPROM */
    589 
    590 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
    591 		for (i = 0; i < RTK_TIMEOUT; i++) {
    592 			if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
    593 				break;
    594 			DELAY(100);
    595 		}
    596 		if (i == RTK_TIMEOUT)
    597 			aprint_error("%s: eeprom autoload timed out\n",
    598 			    sc->sc_dev.dv_xname);
    599 
    600 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    601 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    602 	} else {
    603 
    604 		/* Set RX length mask */
    605 
    606 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
    607 
    608 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    609 			addr_len = RTK_EEADDR_LEN1;
    610 		else
    611 			addr_len = RTK_EEADDR_LEN0;
    612 
    613 		/*
    614 		 * Get station address from the EEPROM.
    615 		 */
    616 		for (i = 0; i < 3; i++) {
    617 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    618 			eaddr[(i * 2) + 0] = val & 0xff;
    619 			eaddr[(i * 2) + 1] = val >> 8;
    620 		}
    621 	}
    622 
    623 	aprint_normal("%s: Ethernet address %s\n",
    624 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    625 
    626 
    627 	/* Allocate DMA'able memory for the TX ring */
    628 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ,
    629 		    RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
    630 		    1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    631 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
    632 		    sc->sc_dev.dv_xname, error);
    633 		goto fail_0;
    634 	}
    635 
    636 	/* Load the map for the TX ring. */
    637 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
    638 		    sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ,
    639 		    (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
    640 		    BUS_DMA_NOWAIT)) != 0) {
    641 		aprint_error("%s: can't map tx list, error = %d\n",
    642 		    sc->sc_dev.dv_xname, error);
    643 	  	goto fail_1;
    644 	}
    645 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
    646 
    647 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ, 1,
    648 		    RTK_TX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    649 		    &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
    650 		aprint_error("%s: can't create tx list map, error = %d\n",
    651 		    sc->sc_dev.dv_xname, error);
    652 		goto fail_2;
    653 	}
    654 
    655 
    656 	if ((error = bus_dmamap_load(sc->sc_dmat,
    657 		    sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
    658 		    RTK_TX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    659 		aprint_error("%s: can't load tx list, error = %d\n",
    660 		    sc->sc_dev.dv_xname, error);
    661 		goto fail_3;
    662 	}
    663 
    664 	/* Create DMA maps for TX buffers */
    665 	for (i = 0; i < RTK_TX_DESC_CNT; i++) {
    666 		error = bus_dmamap_create(sc->sc_dmat,
    667 		    round_page(IP_MAXPACKET),
    668 		    RTK_TX_DESC_CNT - 4, RTK_TDESC_CMD_FRAGLEN,
    669 		    0, BUS_DMA_ALLOCNOW,
    670 		    &sc->rtk_ldata.rtk_tx_dmamap[i]);
    671 		if (error) {
    672 			aprint_error("%s: can't create DMA map for TX\n",
    673 			    sc->sc_dev.dv_xname);
    674 			goto fail_4;
    675 		}
    676 	}
    677 
    678 	/* Allocate DMA'able memory for the RX ring */
    679         if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
    680 		    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
    681 		    &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    682 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
    683 		    sc->sc_dev.dv_xname, error);
    684 		goto fail_4;
    685 	}
    686 
    687 	/* Load the map for the RX ring. */
    688 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
    689 		    sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
    690 		    (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
    691 		    BUS_DMA_NOWAIT)) != 0) {
    692 		aprint_error("%s: can't map rx list, error = %d\n",
    693 		    sc->sc_dev.dv_xname, error);
    694 		goto fail_5;
    695 	}
    696 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_TX_LIST_SZ);
    697 
    698 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
    699 		    RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    700 		    &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
    701 		aprint_error("%s: can't create rx list map, error = %d\n",
    702 		    sc->sc_dev.dv_xname, error);
    703 		goto fail_6;
    704 	}
    705 
    706 	if ((error = bus_dmamap_load(sc->sc_dmat,
    707 		    sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
    708 		    RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    709 		aprint_error("%s: can't load rx list, error = %d\n",
    710 		    sc->sc_dev.dv_xname, error);
    711 		goto fail_7;
    712 	}
    713 
    714 	/* Create DMA maps for RX buffers */
    715 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
    716 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    717 		    0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
    718 		if (error) {
    719 			aprint_error("%s: can't create DMA map for RX\n",
    720 			    sc->sc_dev.dv_xname);
    721 			goto fail_8;
    722 		}
    723 	}
    724 
    725 	/*
    726 	 * Record interface as attached. From here, we should not fail.
    727 	 */
    728 	sc->sc_flags |= RTK_ATTACHED;
    729 
    730 	ifp = &sc->ethercom.ec_if;
    731 	ifp->if_softc = sc;
    732 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    733 	ifp->if_mtu = ETHERMTU;
    734 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    735 	ifp->if_ioctl = re_ioctl;
    736 	sc->ethercom.ec_capabilities |=
    737 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    738 	ifp->if_start = re_start;
    739 	ifp->if_stop = re_stop;
    740 	ifp->if_capabilities |=
    741 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4 |
    742 	    IFCAP_TSOv4;
    743 	ifp->if_watchdog = re_watchdog;
    744 	ifp->if_init = re_init;
    745 	if (sc->rtk_type == RTK_8169)
    746 		ifp->if_baudrate = 1000000000;
    747 	else
    748 		ifp->if_baudrate = 100000000;
    749 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
    750 	ifp->if_capenable = ifp->if_capabilities;
    751 	IFQ_SET_READY(&ifp->if_snd);
    752 
    753 	callout_init(&sc->rtk_tick_ch);
    754 
    755 	/* Do MII setup */
    756 	sc->mii.mii_ifp = ifp;
    757 	sc->mii.mii_readreg = re_miibus_readreg;
    758 	sc->mii.mii_writereg = re_miibus_writereg;
    759 	sc->mii.mii_statchg = re_miibus_statchg;
    760 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    761 	    re_ifmedia_sts);
    762 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    763 	    MII_OFFSET_ANY, 0);
    764 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    765 
    766 	/*
    767 	 * Call MI attach routine.
    768 	 */
    769 	if_attach(ifp);
    770 	ether_ifattach(ifp, eaddr);
    771 
    772 
    773 	/*
    774 	 * Make sure the interface is shutdown during reboot.
    775 	 */
    776 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
    777 	if (sc->sc_sdhook == NULL)
    778 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    779 		    sc->sc_dev.dv_xname);
    780 	/*
    781 	 * Add a suspend hook to make sure we come back up after a
    782 	 * resume.
    783 	 */
    784 	sc->sc_powerhook = powerhook_establish(re_power, sc);
    785 	if (sc->sc_powerhook == NULL)
    786 		aprint_error("%s: WARNING: unable to establish power hook\n",
    787 		    sc->sc_dev.dv_xname);
    788 
    789 
    790 	return;
    791 
    792 fail_8:
    793 	/* Destroy DMA maps for RX buffers. */
    794 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    795 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    796 			bus_dmamap_destroy(sc->sc_dmat,
    797 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    798 
    799 	/* Free DMA'able memory for the RX ring. */
    800 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    801 fail_7:
    802 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    803 fail_6:
    804 	bus_dmamem_unmap(sc->sc_dmat,
    805 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    806 fail_5:
    807 	bus_dmamem_free(sc->sc_dmat,
    808 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    809 
    810 fail_4:
    811 	/* Destroy DMA maps for TX buffers. */
    812 	for (i = 0; i < RTK_TX_DESC_CNT; i++)
    813 		if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
    814 			bus_dmamap_destroy(sc->sc_dmat,
    815 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
    816 
    817 	/* Free DMA'able memory for the TX ring. */
    818 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    819 fail_3:
    820 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    821 fail_2:
    822 	bus_dmamem_unmap(sc->sc_dmat,
    823 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
    824 fail_1:
    825 	bus_dmamem_free(sc->sc_dmat,
    826 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    827 fail_0:
    828 	return;
    829 }
    830 
    831 
    832 /*
    833  * re_activate:
    834  *     Handle device activation/deactivation requests.
    835  */
    836 int
    837 re_activate(struct device *self, enum devact act)
    838 {
    839 	struct rtk_softc *sc = (void *) self;
    840 	int s, error = 0;
    841 
    842 	s = splnet();
    843 	switch (act) {
    844 	case DVACT_ACTIVATE:
    845 		error = EOPNOTSUPP;
    846 		break;
    847 	case DVACT_DEACTIVATE:
    848 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    849 		if_deactivate(&sc->ethercom.ec_if);
    850 		break;
    851 	}
    852 	splx(s);
    853 
    854 	return error;
    855 }
    856 
    857 /*
    858  * re_detach:
    859  *     Detach a rtk interface.
    860  */
    861 int
    862 re_detach(struct rtk_softc *sc)
    863 {
    864 	struct ifnet *ifp = &sc->ethercom.ec_if;
    865 	int i;
    866 
    867 	/*
    868 	 * Succeed now if there isn't any work to do.
    869 	 */
    870 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    871 		return 0;
    872 
    873 	/* Unhook our tick handler. */
    874 	callout_stop(&sc->rtk_tick_ch);
    875 
    876 	/* Detach all PHYs. */
    877 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    878 
    879 	/* Delete all remaining media. */
    880 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    881 
    882 	ether_ifdetach(ifp);
    883 	if_detach(ifp);
    884 
    885 	/* XXX undo re_allocmem() */
    886 
    887 	/* Destroy DMA maps for RX buffers. */
    888 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    889 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    890 			bus_dmamap_destroy(sc->sc_dmat,
    891 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    892 
    893 	/* Free DMA'able memory for the RX ring. */
    894 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    895 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    896 	bus_dmamem_unmap(sc->sc_dmat,
    897 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    898 	bus_dmamem_free(sc->sc_dmat,
    899 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    900 
    901 	/* Destroy DMA maps for TX buffers. */
    902 	for (i = 0; i < RTK_TX_DESC_CNT; i++)
    903 		if (sc->rtk_ldata.rtk_tx_dmamap[i] != NULL)
    904 			bus_dmamap_destroy(sc->sc_dmat,
    905 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
    906 
    907 	/* Free DMA'able memory for the TX ring. */
    908 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    909 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    910 	bus_dmamem_unmap(sc->sc_dmat,
    911 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ);
    912 	bus_dmamem_free(sc->sc_dmat,
    913 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    914 
    915 
    916 	shutdownhook_disestablish(sc->sc_sdhook);
    917 	powerhook_disestablish(sc->sc_powerhook);
    918 
    919 	return 0;
    920 }
    921 
    922 /*
    923  * re_enable:
    924  *     Enable the RTL81X9 chip.
    925  */
    926 static int
    927 re_enable(struct rtk_softc *sc)
    928 {
    929 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    930 		if ((*sc->sc_enable)(sc) != 0) {
    931 			aprint_error("%s: device enable failed\n",
    932 			    sc->sc_dev.dv_xname);
    933 			return EIO;
    934 		}
    935 		sc->sc_flags |= RTK_ENABLED;
    936 	}
    937 	return 0;
    938 }
    939 
    940 /*
    941  * re_disable:
    942  *     Disable the RTL81X9 chip.
    943  */
    944 static void
    945 re_disable(struct rtk_softc *sc)
    946 {
    947 
    948 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    949 		(*sc->sc_disable)(sc);
    950 		sc->sc_flags &= ~RTK_ENABLED;
    951 	}
    952 }
    953 
    954 /*
    955  * re_power:
    956  *     Power management (suspend/resume) hook.
    957  */
    958 void
    959 re_power(int why, void *arg)
    960 {
    961 	struct rtk_softc *sc = (void *) arg;
    962 	struct ifnet *ifp = &sc->ethercom.ec_if;
    963 	int s;
    964 
    965 	s = splnet();
    966 	switch (why) {
    967 	case PWR_SUSPEND:
    968 	case PWR_STANDBY:
    969 		re_stop(ifp, 0);
    970 		if (sc->sc_power != NULL)
    971 			(*sc->sc_power)(sc, why);
    972 		break;
    973 	case PWR_RESUME:
    974 		if (ifp->if_flags & IFF_UP) {
    975 			if (sc->sc_power != NULL)
    976 				(*sc->sc_power)(sc, why);
    977 			re_init(ifp);
    978 		}
    979 		break;
    980 	case PWR_SOFTSUSPEND:
    981 	case PWR_SOFTSTANDBY:
    982 	case PWR_SOFTRESUME:
    983 		break;
    984 	}
    985 	splx(s);
    986 }
    987 
    988 
    989 static int
    990 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
    991 {
    992 	struct mbuf		*n = NULL;
    993 	bus_dmamap_t		map;
    994 	struct rtk_desc		*d;
    995 	u_int32_t		cmdstat;
    996 	int			error;
    997 
    998 	if (m == NULL) {
    999 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1000 		if (n == NULL)
   1001 			return ENOBUFS;
   1002 		m = n;
   1003 
   1004 		MCLGET(m, M_DONTWAIT);
   1005 		if (!(m->m_flags & M_EXT)) {
   1006 			m_freem(m);
   1007 			return ENOBUFS;
   1008 		}
   1009 	} else
   1010 		m->m_data = m->m_ext.ext_buf;
   1011 
   1012 	/*
   1013 	 * Initialize mbuf length fields and fixup
   1014 	 * alignment so that the frame payload is
   1015 	 * longword aligned.
   1016 	 */
   1017 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1018 	m_adj(m, RTK_ETHER_ALIGN);
   1019 
   1020 	map = sc->rtk_ldata.rtk_rx_dmamap[idx];
   1021 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
   1022 
   1023 	if (error)
   1024 		goto out;
   1025 
   1026 	d = &sc->rtk_ldata.rtk_rx_list[idx];
   1027 	if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
   1028 		goto out;
   1029 
   1030 	cmdstat = map->dm_segs[0].ds_len;
   1031 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
   1032 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
   1033 	cmdstat |= RTK_TDESC_CMD_SOF;
   1034 	if (idx == (RTK_RX_DESC_CNT - 1))
   1035 		cmdstat |= RTK_TDESC_CMD_EOR;
   1036 	d->rtk_cmdstat = htole32(cmdstat);
   1037 
   1038 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1039 
   1040 
   1041 	sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
   1042 	    htole32(RTK_RDESC_CMD_OWN);
   1043 	sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
   1044 
   1045 	bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
   1046 	    sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
   1047 	    BUS_DMASYNC_PREREAD);
   1048 
   1049 	return 0;
   1050 out:
   1051 	if (n != NULL)
   1052 		m_freem(n);
   1053 	return ENOMEM;
   1054 }
   1055 
   1056 static int
   1057 re_tx_list_init(struct rtk_softc *sc)
   1058 {
   1059 	memset((char *)sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ);
   1060 	memset((char *)&sc->rtk_ldata.rtk_tx_mbuf, 0,
   1061 	    (RTK_TX_DESC_CNT * sizeof(struct mbuf *)));
   1062 
   1063 	bus_dmamap_sync(sc->sc_dmat,
   1064 	    sc->rtk_ldata.rtk_tx_list_map, 0,
   1065 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1066 	sc->rtk_ldata.rtk_tx_prodidx = 0;
   1067 	sc->rtk_ldata.rtk_tx_considx = 0;
   1068 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT;
   1069 
   1070 	return 0;
   1071 }
   1072 
   1073 static int
   1074 re_rx_list_init(struct rtk_softc *sc)
   1075 {
   1076 	int			i;
   1077 
   1078 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
   1079 	memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
   1080 	    (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
   1081 
   1082 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   1083 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1084 			return ENOBUFS;
   1085 	}
   1086 
   1087 	/* Flush the RX descriptors */
   1088 
   1089 	bus_dmamap_sync(sc->sc_dmat,
   1090 	    sc->rtk_ldata.rtk_rx_list_map,
   1091 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1092 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1093 
   1094 	sc->rtk_ldata.rtk_rx_prodidx = 0;
   1095 	sc->rtk_head = sc->rtk_tail = NULL;
   1096 
   1097 	return 0;
   1098 }
   1099 
   1100 /*
   1101  * RX handler for C+ and 8169. For the gigE chips, we support
   1102  * the reception of jumbo frames that have been fragmented
   1103  * across multiple 2K mbuf cluster buffers.
   1104  */
   1105 static void
   1106 re_rxeof(struct rtk_softc *sc)
   1107 {
   1108 	struct mbuf		*m;
   1109 	struct ifnet		*ifp;
   1110 	int			i, total_len;
   1111 	struct rtk_desc		*cur_rx;
   1112 	u_int32_t		rxstat, rxvlan;
   1113 
   1114 	ifp = &sc->ethercom.ec_if;
   1115 	i = sc->rtk_ldata.rtk_rx_prodidx;
   1116 
   1117 	/* Invalidate the descriptor memory */
   1118 
   1119 	bus_dmamap_sync(sc->sc_dmat,
   1120 	    sc->rtk_ldata.rtk_rx_list_map,
   1121 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1122 	    BUS_DMASYNC_POSTREAD);
   1123 
   1124 	while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
   1125 
   1126 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
   1127 		m = sc->rtk_ldata.rtk_rx_mbuf[i];
   1128 		total_len = RTK_RXBYTES(cur_rx);
   1129 		rxstat = le32toh(cur_rx->rtk_cmdstat);
   1130 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
   1131 
   1132 		/* Invalidate the RX mbuf and unload its map */
   1133 
   1134 		bus_dmamap_sync(sc->sc_dmat,
   1135 		    sc->rtk_ldata.rtk_rx_dmamap[i],
   1136 		    0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
   1137 		    BUS_DMASYNC_POSTWRITE);
   1138 		bus_dmamap_unload(sc->sc_dmat,
   1139 		    sc->rtk_ldata.rtk_rx_dmamap[i]);
   1140 
   1141 		if (!(rxstat & RTK_RDESC_STAT_EOF)) {
   1142 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
   1143 			if (sc->rtk_head == NULL)
   1144 				sc->rtk_head = sc->rtk_tail = m;
   1145 			else {
   1146 				m->m_flags &= ~M_PKTHDR;
   1147 				sc->rtk_tail->m_next = m;
   1148 				sc->rtk_tail = m;
   1149 			}
   1150 			re_newbuf(sc, i, NULL);
   1151 			RTK_DESC_INC(i);
   1152 			continue;
   1153 		}
   1154 
   1155 		/*
   1156 		 * NOTE: for the 8139C+, the frame length field
   1157 		 * is always 12 bits in size, but for the gigE chips,
   1158 		 * it is 13 bits (since the max RX frame length is 16K).
   1159 		 * Unfortunately, all 32 bits in the status word
   1160 		 * were already used, so to make room for the extra
   1161 		 * length bit, RealTek took out the 'frame alignment
   1162 		 * error' bit and shifted the other status bits
   1163 		 * over one slot. The OWN, EOR, FS and LS bits are
   1164 		 * still in the same places. We have already extracted
   1165 		 * the frame length and checked the OWN bit, so rather
   1166 		 * than using an alternate bit mapping, we shift the
   1167 		 * status bits one space to the right so we can evaluate
   1168 		 * them using the 8169 status as though it was in the
   1169 		 * same format as that of the 8139C+.
   1170 		 */
   1171 		if (sc->rtk_type == RTK_8169)
   1172 			rxstat >>= 1;
   1173 
   1174 		if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
   1175 			ifp->if_ierrors++;
   1176 			/*
   1177 			 * If this is part of a multi-fragment packet,
   1178 			 * discard all the pieces.
   1179 			 */
   1180 			if (sc->rtk_head != NULL) {
   1181 				m_freem(sc->rtk_head);
   1182 				sc->rtk_head = sc->rtk_tail = NULL;
   1183 			}
   1184 			re_newbuf(sc, i, m);
   1185 			RTK_DESC_INC(i);
   1186 			continue;
   1187 		}
   1188 
   1189 		/*
   1190 		 * If allocating a replacement mbuf fails,
   1191 		 * reload the current one.
   1192 		 */
   1193 
   1194 		if (re_newbuf(sc, i, NULL)) {
   1195 			ifp->if_ierrors++;
   1196 			if (sc->rtk_head != NULL) {
   1197 				m_freem(sc->rtk_head);
   1198 				sc->rtk_head = sc->rtk_tail = NULL;
   1199 			}
   1200 			re_newbuf(sc, i, m);
   1201 			RTK_DESC_INC(i);
   1202 			continue;
   1203 		}
   1204 
   1205 		RTK_DESC_INC(i);
   1206 
   1207 		if (sc->rtk_head != NULL) {
   1208 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
   1209 			/*
   1210 			 * Special case: if there's 4 bytes or less
   1211 			 * in this buffer, the mbuf can be discarded:
   1212 			 * the last 4 bytes is the CRC, which we don't
   1213 			 * care about anyway.
   1214 			 */
   1215 			if (m->m_len <= ETHER_CRC_LEN) {
   1216 				sc->rtk_tail->m_len -=
   1217 				    (ETHER_CRC_LEN - m->m_len);
   1218 				m_freem(m);
   1219 			} else {
   1220 				m->m_len -= ETHER_CRC_LEN;
   1221 				m->m_flags &= ~M_PKTHDR;
   1222 				sc->rtk_tail->m_next = m;
   1223 			}
   1224 			m = sc->rtk_head;
   1225 			sc->rtk_head = sc->rtk_tail = NULL;
   1226 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1227 		} else
   1228 			m->m_pkthdr.len = m->m_len =
   1229 			    (total_len - ETHER_CRC_LEN);
   1230 
   1231 		ifp->if_ipackets++;
   1232 		m->m_pkthdr.rcvif = ifp;
   1233 
   1234 		/* Do RX checksumming if enabled */
   1235 
   1236 		if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
   1237 
   1238 			/* Check IP header checksum */
   1239 			if (rxstat & RTK_RDESC_STAT_PROTOID)
   1240 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
   1241 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
   1242 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1243 		}
   1244 
   1245 		/* Check TCP/UDP checksum */
   1246 		if (RTK_TCPPKT(rxstat) &&
   1247 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
   1248 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1249 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
   1250 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1251 		}
   1252 		if (RTK_UDPPKT(rxstat) &&
   1253 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
   1254 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1255 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
   1256 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1257 		}
   1258 
   1259 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
   1260 			VLAN_INPUT_TAG(ifp, m,
   1261 			     be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
   1262 			     continue);
   1263 		}
   1264 #if NBPFILTER > 0
   1265 		if (ifp->if_bpf)
   1266 			bpf_mtap(ifp->if_bpf, m);
   1267 #endif
   1268 		(*ifp->if_input)(ifp, m);
   1269 	}
   1270 
   1271 	/* Flush the RX DMA ring */
   1272 
   1273 	bus_dmamap_sync(sc->sc_dmat,
   1274 	    sc->rtk_ldata.rtk_rx_list_map,
   1275 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1276 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1277 
   1278 	sc->rtk_ldata.rtk_rx_prodidx = i;
   1279 
   1280 	return;
   1281 }
   1282 
   1283 static void
   1284 re_txeof(struct rtk_softc *sc)
   1285 {
   1286 	struct ifnet		*ifp;
   1287 	u_int32_t		txstat;
   1288 	int			idx;
   1289 
   1290 	ifp = &sc->ethercom.ec_if;
   1291 	idx = sc->rtk_ldata.rtk_tx_considx;
   1292 
   1293 	/* Invalidate the TX descriptor list */
   1294 
   1295 	bus_dmamap_sync(sc->sc_dmat,
   1296 	    sc->rtk_ldata.rtk_tx_list_map,
   1297 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1298 	    BUS_DMASYNC_POSTREAD);
   1299 
   1300 	while (idx != sc->rtk_ldata.rtk_tx_prodidx) {
   1301 
   1302 		txstat = le32toh(sc->rtk_ldata.rtk_tx_list[idx].rtk_cmdstat);
   1303 		if (txstat & RTK_TDESC_CMD_OWN)
   1304 			break;
   1305 
   1306 		/*
   1307 		 * We only stash mbufs in the last descriptor
   1308 		 * in a fragment chain, which also happens to
   1309 		 * be the only place where the TX status bits
   1310 		 * are valid.
   1311 		 */
   1312 
   1313 		if (txstat & RTK_TDESC_CMD_EOF) {
   1314 			m_freem(sc->rtk_ldata.rtk_tx_mbuf[idx]);
   1315 			sc->rtk_ldata.rtk_tx_mbuf[idx] = NULL;
   1316 			bus_dmamap_unload(sc->sc_dmat,
   1317 			    sc->rtk_ldata.rtk_tx_dmamap[idx]);
   1318 			if (txstat & (RTK_TDESC_STAT_EXCESSCOL |
   1319 			    RTK_TDESC_STAT_COLCNT))
   1320 				ifp->if_collisions++;
   1321 			if (txstat & RTK_TDESC_STAT_TXERRSUM)
   1322 				ifp->if_oerrors++;
   1323 			else
   1324 				ifp->if_opackets++;
   1325 		}
   1326 		sc->rtk_ldata.rtk_tx_free++;
   1327 		RTK_DESC_INC(idx);
   1328 	}
   1329 
   1330 	/* No changes made to the TX ring, so no flush needed */
   1331 
   1332 	if (idx != sc->rtk_ldata.rtk_tx_considx) {
   1333 		sc->rtk_ldata.rtk_tx_considx = idx;
   1334 		ifp->if_flags &= ~IFF_OACTIVE;
   1335 		ifp->if_timer = 0;
   1336 	}
   1337 
   1338 	/*
   1339 	 * If not all descriptors have been released reaped yet,
   1340 	 * reload the timer so that we will eventually get another
   1341 	 * interrupt that will cause us to re-enter this routine.
   1342 	 * This is done in case the transmitter has gone idle.
   1343 	 */
   1344 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT)
   1345 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1346 
   1347 	return;
   1348 }
   1349 
   1350 /*
   1351  * Stop all chip I/O so that the kernel's probe routines don't
   1352  * get confused by errant DMAs when rebooting.
   1353  */
   1354 static void
   1355 re_shutdown(void *vsc)
   1356 
   1357 {
   1358 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
   1359 
   1360 	re_stop(&sc->ethercom.ec_if, 0);
   1361 }
   1362 
   1363 
   1364 static void
   1365 re_tick(void *xsc)
   1366 {
   1367 	struct rtk_softc	*sc = xsc;
   1368 	int s;
   1369 
   1370 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1371 	s = splnet();
   1372 
   1373 	mii_tick(&sc->mii);
   1374 	splx(s);
   1375 
   1376 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1377 }
   1378 
   1379 #ifdef DEVICE_POLLING
   1380 static void
   1381 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1382 {
   1383 	struct rtk_softc *sc = ifp->if_softc;
   1384 
   1385 	RTK_LOCK(sc);
   1386 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1387 		ether_poll_deregister(ifp);
   1388 		cmd = POLL_DEREGISTER;
   1389 	}
   1390 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1391 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1392 		goto done;
   1393 	}
   1394 
   1395 	sc->rxcycles = count;
   1396 	re_rxeof(sc);
   1397 	re_txeof(sc);
   1398 
   1399 	if (ifp->if_snd.ifq_head != NULL)
   1400 		(*ifp->if_start)(ifp);
   1401 
   1402 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1403 		u_int16_t       status;
   1404 
   1405 		status = CSR_READ_2(sc, RTK_ISR);
   1406 		if (status == 0xffff)
   1407 			goto done;
   1408 		if (status)
   1409 			CSR_WRITE_2(sc, RTK_ISR, status);
   1410 
   1411 		/*
   1412 		 * XXX check behaviour on receiver stalls.
   1413 		 */
   1414 
   1415 		if (status & RTK_ISR_SYSTEM_ERR) {
   1416 			re_reset(sc);
   1417 			re_init(sc);
   1418 		}
   1419 	}
   1420 done:
   1421 	RTK_UNLOCK(sc);
   1422 }
   1423 #endif /* DEVICE_POLLING */
   1424 
   1425 int
   1426 re_intr(void *arg)
   1427 {
   1428 	struct rtk_softc	*sc = arg;
   1429 	struct ifnet		*ifp;
   1430 	u_int16_t		status;
   1431 	int			handled = 0;
   1432 
   1433 	ifp = &sc->ethercom.ec_if;
   1434 
   1435 	if (!(ifp->if_flags & IFF_UP))
   1436 		return 0;
   1437 
   1438 #ifdef DEVICE_POLLING
   1439 	if (ifp->if_flags & IFF_POLLING)
   1440 		goto done;
   1441 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1442 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1443 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1444 		re_poll(ifp, 0, 1);
   1445 		goto done;
   1446 	}
   1447 #endif /* DEVICE_POLLING */
   1448 
   1449 	for (;;) {
   1450 
   1451 		status = CSR_READ_2(sc, RTK_ISR);
   1452 		/* If the card has gone away the read returns 0xffff. */
   1453 		if (status == 0xffff)
   1454 			break;
   1455 		if (status) {
   1456 			handled = 1;
   1457 			CSR_WRITE_2(sc, RTK_ISR, status);
   1458 		}
   1459 
   1460 		if ((status & RTK_INTRS_CPLUS) == 0)
   1461 			break;
   1462 
   1463 		if ((status & RTK_ISR_RX_OK) ||
   1464 		    (status & RTK_ISR_RX_ERR))
   1465 			re_rxeof(sc);
   1466 
   1467 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
   1468 		    (status & RTK_ISR_TX_ERR) ||
   1469 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
   1470 			re_txeof(sc);
   1471 
   1472 		if (status & RTK_ISR_SYSTEM_ERR) {
   1473 			re_reset(sc);
   1474 			re_init(ifp);
   1475 		}
   1476 
   1477 		if (status & RTK_ISR_LINKCHG) {
   1478 			callout_stop(&sc->rtk_tick_ch);
   1479 			re_tick(sc);
   1480 		}
   1481 	}
   1482 
   1483 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
   1484 		if (ifp->if_snd.ifq_head != NULL)
   1485 			(*ifp->if_start)(ifp);
   1486 
   1487 #ifdef DEVICE_POLLING
   1488 done:
   1489 #endif
   1490 
   1491 	return handled;
   1492 }
   1493 
   1494 static int
   1495 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
   1496 {
   1497 	bus_dmamap_t		map;
   1498 	int			error, i, curidx;
   1499 	struct m_tag		*mtag;
   1500 	struct rtk_desc		*d;
   1501 	u_int32_t		cmdstat, rtk_flags;
   1502 
   1503 	if (sc->rtk_ldata.rtk_tx_free <= 4)
   1504 		return EFBIG;
   1505 
   1506 	/*
   1507 	 * Set up checksum offload. Note: checksum offload bits must
   1508 	 * appear in all descriptors of a multi-descriptor transmit
   1509 	 * attempt. (This is according to testing done with an 8169
   1510 	 * chip. I'm not sure if this is a requirement or a bug.)
   1511 	 */
   1512 
   1513 	if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1514 		u_int32_t segsz = m->m_pkthdr.segsz;
   1515 
   1516 		rtk_flags = RTK_TDESC_CMD_LGSEND |
   1517 		    (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
   1518 	} else {
   1519 		rtk_flags = 0;
   1520 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1521 			rtk_flags |= RTK_TDESC_CMD_IPCSUM;
   1522 		if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4)
   1523 			rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
   1524 		if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4)
   1525 			rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
   1526 	}
   1527 
   1528 	map = sc->rtk_ldata.rtk_tx_dmamap[*idx];
   1529 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
   1530 
   1531 	if (error) {
   1532 		/* XXX try to defrag if EFBIG? */
   1533 
   1534 		aprint_error("%s: can't map mbuf (error %d)\n",
   1535 		    sc->sc_dev.dv_xname, error);
   1536 
   1537 		if (error == EFBIG &&
   1538 		    sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT) {
   1539 			return error;
   1540 		}
   1541 
   1542 		return ENOBUFS;
   1543 	}
   1544 
   1545 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
   1546 		error = ENOBUFS;
   1547 		goto fail_unload;
   1548 	}
   1549 	/*
   1550 	 * Map the segment array into descriptors. Note that we set the
   1551 	 * start-of-frame and end-of-frame markers for either TX or RX, but
   1552 	 * they really only have meaning in the TX case. (In the RX case,
   1553 	 * it's the chip that tells us where packets begin and end.)
   1554 	 * We also keep track of the end of the ring and set the
   1555 	 * end-of-ring bits as needed, and we set the ownership bits
   1556 	 * in all except the very first descriptor. (The caller will
   1557 	 * set this descriptor later when it start transmission or
   1558 	 * reception.)
   1559 	 */
   1560 	i = 0;
   1561 	curidx = *idx;
   1562 	while (1) {
   1563 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
   1564 		if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN) {
   1565 			while (i > 0) {
   1566 				sc->rtk_ldata.rtk_tx_list[
   1567 				    (curidx + RTK_TX_DESC_CNT - i) %
   1568 				    RTK_TX_DESC_CNT].rtk_cmdstat = 0;
   1569 				i--;
   1570 			}
   1571 			error = ENOBUFS;
   1572 			goto fail_unload;
   1573 		}
   1574 
   1575 		cmdstat = map->dm_segs[i].ds_len;
   1576 		d->rtk_bufaddr_lo =
   1577 		    htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
   1578 		d->rtk_bufaddr_hi =
   1579 		    htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
   1580 		if (i == 0)
   1581 			cmdstat |= RTK_TDESC_CMD_SOF;
   1582 		else
   1583 			cmdstat |= RTK_TDESC_CMD_OWN;
   1584 		if (curidx == (RTK_RX_DESC_CNT - 1))
   1585 			cmdstat |= RTK_TDESC_CMD_EOR;
   1586 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
   1587 		i++;
   1588 		if (i == map->dm_nsegs)
   1589 			break;
   1590 		RTK_DESC_INC(curidx);
   1591 	}
   1592 
   1593 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1594 
   1595 	/*
   1596 	 * Insure that the map for this transmission
   1597 	 * is placed at the array index of the last descriptor
   1598 	 * in this chain.
   1599 	 */
   1600 	sc->rtk_ldata.rtk_tx_dmamap[*idx] =
   1601 	    sc->rtk_ldata.rtk_tx_dmamap[curidx];
   1602 	sc->rtk_ldata.rtk_tx_dmamap[curidx] = map;
   1603 	sc->rtk_ldata.rtk_tx_mbuf[curidx] = m;
   1604 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
   1605 
   1606 	/*
   1607 	 * Set up hardware VLAN tagging. Note: vlan tag info must
   1608 	 * appear in the first descriptor of a multi-descriptor
   1609 	 * transmission attempt.
   1610 	 */
   1611 
   1612 	if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
   1613 		sc->rtk_ldata.rtk_tx_list[*idx].rtk_vlanctl =
   1614 		    htole32(htons(VLAN_TAG_VALUE(mtag)) |
   1615 		    RTK_TDESC_VLANCTL_TAG);
   1616 	}
   1617 
   1618 	/* Transfer ownership of packet to the chip. */
   1619 
   1620 	sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
   1621 	    htole32(RTK_TDESC_CMD_OWN);
   1622 	if (*idx != curidx)
   1623 		sc->rtk_ldata.rtk_tx_list[*idx].rtk_cmdstat |=
   1624 		    htole32(RTK_TDESC_CMD_OWN);
   1625 
   1626 	RTK_DESC_INC(curidx);
   1627 	*idx = curidx;
   1628 
   1629 	return 0;
   1630 
   1631 fail_unload:
   1632 	bus_dmamap_unload(sc->sc_dmat, map);
   1633 
   1634 	return error;
   1635 }
   1636 
   1637 /*
   1638  * Main transmit routine for C+ and gigE NICs.
   1639  */
   1640 
   1641 static void
   1642 re_start(struct ifnet *ifp)
   1643 {
   1644 	struct rtk_softc	*sc;
   1645 	struct mbuf		*m_head = NULL;
   1646 	int			idx;
   1647 
   1648 	sc = ifp->if_softc;
   1649 
   1650 	idx = sc->rtk_ldata.rtk_tx_prodidx;
   1651 	while (sc->rtk_ldata.rtk_tx_mbuf[idx] == NULL) {
   1652 		int error;
   1653 
   1654 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1655 		if (m_head == NULL)
   1656 			break;
   1657 
   1658 		error = re_encap(sc, m_head, &idx);
   1659 		if (error == EFBIG) {
   1660 			ifp->if_oerrors++;
   1661 			m_freem(m_head);
   1662 			continue;
   1663 		}
   1664 		if (error) {
   1665 			IF_PREPEND(&ifp->if_snd, m_head);
   1666 			ifp->if_flags |= IFF_OACTIVE;
   1667 			break;
   1668 		}
   1669 #if NBPFILTER > 0
   1670 		/*
   1671 		 * If there's a BPF listener, bounce a copy of this frame
   1672 		 * to him.
   1673 		 */
   1674 		if (ifp->if_bpf)
   1675 			bpf_mtap(ifp->if_bpf, m_head);
   1676 #endif
   1677 	}
   1678 
   1679 	/* Flush the TX descriptors */
   1680 
   1681 	bus_dmamap_sync(sc->sc_dmat,
   1682 	    sc->rtk_ldata.rtk_tx_list_map,
   1683 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1684 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1685 
   1686 	sc->rtk_ldata.rtk_tx_prodidx = idx;
   1687 
   1688 	/*
   1689 	 * RealTek put the TX poll request register in a different
   1690 	 * location on the 8169 gigE chip. I don't know why.
   1691 	 */
   1692 
   1693 	if (sc->rtk_type == RTK_8169)
   1694 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1695 	else
   1696 		CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
   1697 
   1698 	/*
   1699 	 * Use the countdown timer for interrupt moderation.
   1700 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1701 	 * countdown timer, which will begin counting until it hits
   1702 	 * the value in the TIMERINT register, and then trigger an
   1703 	 * interrupt. Each time we write to the TIMERCNT register,
   1704 	 * the timer count is reset to 0.
   1705 	 */
   1706 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1707 
   1708 	/*
   1709 	 * Set a timeout in case the chip goes out to lunch.
   1710 	 */
   1711 	ifp->if_timer = 5;
   1712 
   1713 	return;
   1714 }
   1715 
   1716 static int
   1717 re_init(struct ifnet *ifp)
   1718 {
   1719 	struct rtk_softc	*sc = ifp->if_softc;
   1720 	u_int32_t		rxcfg = 0;
   1721 	u_int32_t		reg;
   1722 	int error;
   1723 
   1724 	if ((error = re_enable(sc)) != 0)
   1725 		goto out;
   1726 
   1727 	/*
   1728 	 * Cancel pending I/O and free all RX/TX buffers.
   1729 	 */
   1730 	re_stop(ifp, 0);
   1731 
   1732 	/*
   1733 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1734 	 * RX checksum offload. We must configure the C+ register
   1735 	 * before all others.
   1736 	 */
   1737 	reg = 0;
   1738 
   1739 	/*
   1740 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1741 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1742 	 * So far, it works.
   1743 	 */
   1744 
   1745 	/*
   1746 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
   1747 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
   1748 	 */
   1749 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
   1750 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1751 
   1752 	if (1)  {/* not for 8169S ? */
   1753 		reg |= RTK_CPLUSCMD_VLANSTRIP |
   1754 		    (ifp->if_capenable &
   1755 		    (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
   1756 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1757 	}
   1758 
   1759 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1760 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1761 
   1762 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1763 	if (sc->rtk_type == RTK_8169)
   1764 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
   1765 
   1766 	DELAY(10000);
   1767 
   1768 	/*
   1769 	 * Init our MAC address.  Even though the chipset
   1770 	 * documentation doesn't mention it, we need to enter "Config
   1771 	 * register write enable" mode to modify the ID registers.
   1772 	 */
   1773 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1774 	memcpy(&reg, LLADDR(ifp->if_sadl), 4);
   1775 	CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
   1776 	reg = 0;
   1777 	memcpy(&reg, LLADDR(ifp->if_sadl) + 4, 4);
   1778 	CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
   1779 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1780 
   1781 	/*
   1782 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1783 	 */
   1784 	re_rx_list_init(sc);
   1785 	re_tx_list_init(sc);
   1786 
   1787 	/*
   1788 	 * Enable transmit and receive.
   1789 	 */
   1790 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1791 
   1792 	/*
   1793 	 * Set the initial TX and RX configuration.
   1794 	 */
   1795 	if (sc->rtk_testmode) {
   1796 		if (sc->rtk_type == RTK_8169)
   1797 			CSR_WRITE_4(sc, RTK_TXCFG,
   1798 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1799 		else
   1800 			CSR_WRITE_4(sc, RTK_TXCFG,
   1801 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
   1802 	} else
   1803 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1804 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1805 
   1806 	/* Set the individual bit to receive frames for this host only. */
   1807 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1808 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1809 
   1810 	/* If we want promiscuous mode, set the allframes bit. */
   1811 	if (ifp->if_flags & IFF_PROMISC)
   1812 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1813 	else
   1814 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1815 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1816 
   1817 	/*
   1818 	 * Set capture broadcast bit to capture broadcast frames.
   1819 	 */
   1820 	if (ifp->if_flags & IFF_BROADCAST)
   1821 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1822 	else
   1823 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1824 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1825 
   1826 	/*
   1827 	 * Program the multicast filter, if necessary.
   1828 	 */
   1829 	rtk_setmulti(sc);
   1830 
   1831 #ifdef DEVICE_POLLING
   1832 	/*
   1833 	 * Disable interrupts if we are polling.
   1834 	 */
   1835 	if (ifp->if_flags & IFF_POLLING)
   1836 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1837 	else	/* otherwise ... */
   1838 #endif /* DEVICE_POLLING */
   1839 	/*
   1840 	 * Enable interrupts.
   1841 	 */
   1842 	if (sc->rtk_testmode)
   1843 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1844 	else
   1845 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1846 
   1847 	/* Start RX/TX process. */
   1848 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1849 #ifdef notdef
   1850 	/* Enable receiver and transmitter. */
   1851 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1852 #endif
   1853 	/*
   1854 	 * Load the addresses of the RX and TX lists into the chip.
   1855 	 */
   1856 
   1857 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1858 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1859 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1860 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1861 
   1862 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1863 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1864 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1865 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1866 
   1867 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1868 
   1869 	/*
   1870 	 * Initialize the timer interrupt register so that
   1871 	 * a timer interrupt will be generated once the timer
   1872 	 * reaches a certain number of ticks. The timer is
   1873 	 * reloaded on each transmit. This gives us TX interrupt
   1874 	 * moderation, which dramatically improves TX frame rate.
   1875 	 */
   1876 
   1877 	if (sc->rtk_type == RTK_8169)
   1878 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1879 	else
   1880 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1881 
   1882 	/*
   1883 	 * For 8169 gigE NICs, set the max allowed RX packet
   1884 	 * size so we can receive jumbo frames.
   1885 	 */
   1886 	if (sc->rtk_type == RTK_8169)
   1887 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1888 
   1889 	if (sc->rtk_testmode)
   1890 		return 0;
   1891 
   1892 	mii_mediachg(&sc->mii);
   1893 
   1894 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
   1895 
   1896 	ifp->if_flags |= IFF_RUNNING;
   1897 	ifp->if_flags &= ~IFF_OACTIVE;
   1898 
   1899 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1900 
   1901 out:
   1902 	if (error) {
   1903 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1904 		ifp->if_timer = 0;
   1905 		aprint_error("%s: interface not running\n",
   1906 		    sc->sc_dev.dv_xname);
   1907 	}
   1908 
   1909 	return error;
   1910 
   1911 }
   1912 
   1913 /*
   1914  * Set media options.
   1915  */
   1916 static int
   1917 re_ifmedia_upd(struct ifnet *ifp)
   1918 {
   1919 	struct rtk_softc	*sc;
   1920 
   1921 	sc = ifp->if_softc;
   1922 
   1923 	return mii_mediachg(&sc->mii);
   1924 }
   1925 
   1926 /*
   1927  * Report current media status.
   1928  */
   1929 static void
   1930 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1931 {
   1932 	struct rtk_softc	*sc;
   1933 
   1934 	sc = ifp->if_softc;
   1935 
   1936 	mii_pollstat(&sc->mii);
   1937 	ifmr->ifm_active = sc->mii.mii_media_active;
   1938 	ifmr->ifm_status = sc->mii.mii_media_status;
   1939 
   1940 	return;
   1941 }
   1942 
   1943 static int
   1944 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1945 {
   1946 	struct rtk_softc	*sc = ifp->if_softc;
   1947 	struct ifreq		*ifr = (struct ifreq *) data;
   1948 	int			s, error = 0;
   1949 
   1950 	s = splnet();
   1951 
   1952 	switch (command) {
   1953 	case SIOCSIFMTU:
   1954 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
   1955 			error = EINVAL;
   1956 		ifp->if_mtu = ifr->ifr_mtu;
   1957 		break;
   1958 	case SIOCGIFMEDIA:
   1959 	case SIOCSIFMEDIA:
   1960 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   1961 		break;
   1962 	default:
   1963 		error = ether_ioctl(ifp, command, data);
   1964 		if (error == ENETRESET) {
   1965 			if (ifp->if_flags & IFF_RUNNING)
   1966 				rtk_setmulti(sc);
   1967 			error = 0;
   1968 		}
   1969 		break;
   1970 	}
   1971 
   1972 	splx(s);
   1973 
   1974 	return error;
   1975 }
   1976 
   1977 static void
   1978 re_watchdog(struct ifnet *ifp)
   1979 {
   1980 	struct rtk_softc	*sc;
   1981 	int			s;
   1982 
   1983 	sc = ifp->if_softc;
   1984 	s = splnet();
   1985 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   1986 	ifp->if_oerrors++;
   1987 
   1988 	re_txeof(sc);
   1989 	re_rxeof(sc);
   1990 
   1991 	re_init(ifp);
   1992 
   1993 	splx(s);
   1994 }
   1995 
   1996 /*
   1997  * Stop the adapter and free any mbufs allocated to the
   1998  * RX and TX lists.
   1999  */
   2000 static void
   2001 re_stop(struct ifnet *ifp, int disable)
   2002 {
   2003 	register int		i;
   2004 	struct rtk_softc *sc = ifp->if_softc;
   2005 
   2006 	callout_stop(&sc->rtk_tick_ch);
   2007 
   2008 #ifdef DEVICE_POLLING
   2009 	ether_poll_deregister(ifp);
   2010 #endif /* DEVICE_POLLING */
   2011 
   2012 	mii_down(&sc->mii);
   2013 
   2014 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2015 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2016 
   2017 	if (sc->rtk_head != NULL) {
   2018 		m_freem(sc->rtk_head);
   2019 		sc->rtk_head = sc->rtk_tail = NULL;
   2020 	}
   2021 
   2022 	/* Free the TX list buffers. */
   2023 	for (i = 0; i < RTK_TX_DESC_CNT; i++) {
   2024 		if (sc->rtk_ldata.rtk_tx_mbuf[i] != NULL) {
   2025 			bus_dmamap_unload(sc->sc_dmat,
   2026 			    sc->rtk_ldata.rtk_tx_dmamap[i]);
   2027 			m_freem(sc->rtk_ldata.rtk_tx_mbuf[i]);
   2028 			sc->rtk_ldata.rtk_tx_mbuf[i] = NULL;
   2029 		}
   2030 	}
   2031 
   2032 	/* Free the RX list buffers. */
   2033 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   2034 		if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
   2035 			bus_dmamap_unload(sc->sc_dmat,
   2036 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
   2037 			m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
   2038 			sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
   2039 		}
   2040 	}
   2041 
   2042 	if (disable)
   2043 		re_disable(sc);
   2044 
   2045 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2046 	ifp->if_timer = 0;
   2047 
   2048 	return;
   2049 }
   2050