rtl8169.c revision 1.130 1 /* $NetBSD: rtl8169.c,v 1.130 2010/04/05 07:19:36 joerg Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.130 2010/04/05 07:19:36 joerg Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137
138 #include <sys/bus.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142
143 #include <dev/ic/rtl81x9reg.h>
144 #include <dev/ic/rtl81x9var.h>
145
146 #include <dev/ic/rtl8169var.h>
147
148 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
149
150 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
151 static int re_rx_list_init(struct rtk_softc *);
152 static int re_tx_list_init(struct rtk_softc *);
153 static void re_rxeof(struct rtk_softc *);
154 static void re_txeof(struct rtk_softc *);
155 static void re_tick(void *);
156 static void re_start(struct ifnet *);
157 static int re_ioctl(struct ifnet *, u_long, void *);
158 static int re_init(struct ifnet *);
159 static void re_stop(struct ifnet *, int);
160 static void re_watchdog(struct ifnet *);
161
162 static int re_enable(struct rtk_softc *);
163 static void re_disable(struct rtk_softc *);
164
165 static int re_gmii_readreg(device_t, int, int);
166 static void re_gmii_writereg(device_t, int, int, int);
167
168 static int re_miibus_readreg(device_t, int, int);
169 static void re_miibus_writereg(device_t, int, int, int);
170 static void re_miibus_statchg(device_t);
171
172 static void re_reset(struct rtk_softc *);
173
174 static inline void
175 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
176 {
177
178 d->re_bufaddr_lo = htole32((uint32_t)addr);
179 if (sizeof(bus_addr_t) == sizeof(uint64_t))
180 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
181 else
182 d->re_bufaddr_hi = 0;
183 }
184
185 static int
186 re_gmii_readreg(device_t dev, int phy, int reg)
187 {
188 struct rtk_softc *sc = device_private(dev);
189 uint32_t rval;
190 int i;
191
192 if (phy != 7)
193 return 0;
194
195 /* Let the rgephy driver read the GMEDIASTAT register */
196
197 if (reg == RTK_GMEDIASTAT) {
198 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
199 return rval;
200 }
201
202 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
203 DELAY(1000);
204
205 for (i = 0; i < RTK_TIMEOUT; i++) {
206 rval = CSR_READ_4(sc, RTK_PHYAR);
207 if (rval & RTK_PHYAR_BUSY)
208 break;
209 DELAY(100);
210 }
211
212 if (i == RTK_TIMEOUT) {
213 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
214 return 0;
215 }
216
217 return rval & RTK_PHYAR_PHYDATA;
218 }
219
220 static void
221 re_gmii_writereg(device_t dev, int phy, int reg, int data)
222 {
223 struct rtk_softc *sc = device_private(dev);
224 uint32_t rval;
225 int i;
226
227 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
228 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
229 DELAY(1000);
230
231 for (i = 0; i < RTK_TIMEOUT; i++) {
232 rval = CSR_READ_4(sc, RTK_PHYAR);
233 if (!(rval & RTK_PHYAR_BUSY))
234 break;
235 DELAY(100);
236 }
237
238 if (i == RTK_TIMEOUT) {
239 printf("%s: PHY write reg %x <- %x failed\n",
240 device_xname(sc->sc_dev), reg, data);
241 }
242 }
243
244 static int
245 re_miibus_readreg(device_t dev, int phy, int reg)
246 {
247 struct rtk_softc *sc = device_private(dev);
248 uint16_t rval = 0;
249 uint16_t re8139_reg = 0;
250 int s;
251
252 s = splnet();
253
254 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
255 rval = re_gmii_readreg(dev, phy, reg);
256 splx(s);
257 return rval;
258 }
259
260 /* Pretend the internal PHY is only at address 0 */
261 if (phy) {
262 splx(s);
263 return 0;
264 }
265 switch (reg) {
266 case MII_BMCR:
267 re8139_reg = RTK_BMCR;
268 break;
269 case MII_BMSR:
270 re8139_reg = RTK_BMSR;
271 break;
272 case MII_ANAR:
273 re8139_reg = RTK_ANAR;
274 break;
275 case MII_ANER:
276 re8139_reg = RTK_ANER;
277 break;
278 case MII_ANLPAR:
279 re8139_reg = RTK_LPAR;
280 break;
281 case MII_PHYIDR1:
282 case MII_PHYIDR2:
283 splx(s);
284 return 0;
285 /*
286 * Allow the rlphy driver to read the media status
287 * register. If we have a link partner which does not
288 * support NWAY, this is the register which will tell
289 * us the results of parallel detection.
290 */
291 case RTK_MEDIASTAT:
292 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
293 splx(s);
294 return rval;
295 default:
296 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
297 splx(s);
298 return 0;
299 }
300 rval = CSR_READ_2(sc, re8139_reg);
301 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
302 /* 8139C+ has different bit layout. */
303 rval &= ~(BMCR_LOOP | BMCR_ISO);
304 }
305 splx(s);
306 return rval;
307 }
308
309 static void
310 re_miibus_writereg(device_t dev, int phy, int reg, int data)
311 {
312 struct rtk_softc *sc = device_private(dev);
313 uint16_t re8139_reg = 0;
314 int s;
315
316 s = splnet();
317
318 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
319 re_gmii_writereg(dev, phy, reg, data);
320 splx(s);
321 return;
322 }
323
324 /* Pretend the internal PHY is only at address 0 */
325 if (phy) {
326 splx(s);
327 return;
328 }
329 switch (reg) {
330 case MII_BMCR:
331 re8139_reg = RTK_BMCR;
332 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
333 /* 8139C+ has different bit layout. */
334 data &= ~(BMCR_LOOP | BMCR_ISO);
335 }
336 break;
337 case MII_BMSR:
338 re8139_reg = RTK_BMSR;
339 break;
340 case MII_ANAR:
341 re8139_reg = RTK_ANAR;
342 break;
343 case MII_ANER:
344 re8139_reg = RTK_ANER;
345 break;
346 case MII_ANLPAR:
347 re8139_reg = RTK_LPAR;
348 break;
349 case MII_PHYIDR1:
350 case MII_PHYIDR2:
351 splx(s);
352 return;
353 break;
354 default:
355 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
356 splx(s);
357 return;
358 }
359 CSR_WRITE_2(sc, re8139_reg, data);
360 splx(s);
361 return;
362 }
363
364 static void
365 re_miibus_statchg(device_t dev)
366 {
367
368 return;
369 }
370
371 static void
372 re_reset(struct rtk_softc *sc)
373 {
374 int i;
375
376 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
377
378 for (i = 0; i < RTK_TIMEOUT; i++) {
379 DELAY(10);
380 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
381 break;
382 }
383 if (i == RTK_TIMEOUT)
384 printf("%s: reset never completed!\n",
385 device_xname(sc->sc_dev));
386
387 /*
388 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
389 * but also says "Rtl8169s sigle chip detected".
390 */
391 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
392 CSR_WRITE_1(sc, RTK_LDPS, 1);
393
394 }
395
396 /*
397 * The following routine is designed to test for a defect on some
398 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
399 * lines connected to the bus, however for a 32-bit only card, they
400 * should be pulled high. The result of this defect is that the
401 * NIC will not work right if you plug it into a 64-bit slot: DMA
402 * operations will be done with 64-bit transfers, which will fail
403 * because the 64-bit data lines aren't connected.
404 *
405 * There's no way to work around this (short of talking a soldering
406 * iron to the board), however we can detect it. The method we use
407 * here is to put the NIC into digital loopback mode, set the receiver
408 * to promiscuous mode, and then try to send a frame. We then compare
409 * the frame data we sent to what was received. If the data matches,
410 * then the NIC is working correctly, otherwise we know the user has
411 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
412 * slot. In the latter case, there's no way the NIC can work correctly,
413 * so we print out a message on the console and abort the device attach.
414 */
415
416 int
417 re_diag(struct rtk_softc *sc)
418 {
419 struct ifnet *ifp = &sc->ethercom.ec_if;
420 struct mbuf *m0;
421 struct ether_header *eh;
422 struct re_rxsoft *rxs;
423 struct re_desc *cur_rx;
424 bus_dmamap_t dmamap;
425 uint16_t status;
426 uint32_t rxstat;
427 int total_len, i, s, error = 0;
428 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
429 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
430
431 /* Allocate a single mbuf */
432
433 MGETHDR(m0, M_DONTWAIT, MT_DATA);
434 if (m0 == NULL)
435 return ENOBUFS;
436
437 /*
438 * Initialize the NIC in test mode. This sets the chip up
439 * so that it can send and receive frames, but performs the
440 * following special functions:
441 * - Puts receiver in promiscuous mode
442 * - Enables digital loopback mode
443 * - Leaves interrupts turned off
444 */
445
446 ifp->if_flags |= IFF_PROMISC;
447 sc->re_testmode = 1;
448 re_init(ifp);
449 re_stop(ifp, 0);
450 DELAY(100000);
451 re_init(ifp);
452
453 /* Put some data in the mbuf */
454
455 eh = mtod(m0, struct ether_header *);
456 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
457 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
458 eh->ether_type = htons(ETHERTYPE_IP);
459 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
460
461 /*
462 * Queue the packet, start transmission.
463 */
464
465 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
466 s = splnet();
467 IF_ENQUEUE(&ifp->if_snd, m0);
468 re_start(ifp);
469 splx(s);
470 m0 = NULL;
471
472 /* Wait for it to propagate through the chip */
473
474 DELAY(100000);
475 for (i = 0; i < RTK_TIMEOUT; i++) {
476 status = CSR_READ_2(sc, RTK_ISR);
477 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
478 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
479 break;
480 DELAY(10);
481 }
482 if (i == RTK_TIMEOUT) {
483 aprint_error_dev(sc->sc_dev,
484 "diagnostic failed, failed to receive packet "
485 "in loopback mode\n");
486 error = EIO;
487 goto done;
488 }
489
490 /*
491 * The packet should have been dumped into the first
492 * entry in the RX DMA ring. Grab it from there.
493 */
494
495 rxs = &sc->re_ldata.re_rxsoft[0];
496 dmamap = rxs->rxs_dmamap;
497 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
498 BUS_DMASYNC_POSTREAD);
499 bus_dmamap_unload(sc->sc_dmat, dmamap);
500
501 m0 = rxs->rxs_mbuf;
502 rxs->rxs_mbuf = NULL;
503 eh = mtod(m0, struct ether_header *);
504
505 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
506 cur_rx = &sc->re_ldata.re_rx_list[0];
507 rxstat = le32toh(cur_rx->re_cmdstat);
508 total_len = rxstat & sc->re_rxlenmask;
509
510 if (total_len != ETHER_MIN_LEN) {
511 aprint_error_dev(sc->sc_dev,
512 "diagnostic failed, received short packet\n");
513 error = EIO;
514 goto done;
515 }
516
517 /* Test that the received packet data matches what we sent. */
518
519 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
520 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
521 ntohs(eh->ether_type) != ETHERTYPE_IP) {
522 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
523 "expected TX data: %s/%s/0x%x\n"
524 "received RX data: %s/%s/0x%x\n"
525 "You may have a defective 32-bit NIC plugged "
526 "into a 64-bit PCI slot.\n"
527 "Please re-install the NIC in a 32-bit slot "
528 "for proper operation.\n"
529 "Read the re(4) man page for more details.\n" ,
530 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
531 ether_sprintf(eh->ether_dhost),
532 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
533 error = EIO;
534 }
535
536 done:
537 /* Turn interface off, release resources */
538
539 sc->re_testmode = 0;
540 ifp->if_flags &= ~IFF_PROMISC;
541 re_stop(ifp, 0);
542 if (m0 != NULL)
543 m_freem(m0);
544
545 return error;
546 }
547
548
549 /*
550 * Attach the interface. Allocate softc structures, do ifmedia
551 * setup and ethernet/BPF attach.
552 */
553 void
554 re_attach(struct rtk_softc *sc)
555 {
556 uint8_t eaddr[ETHER_ADDR_LEN];
557 uint16_t val;
558 struct ifnet *ifp;
559 int error = 0, i, addr_len;
560
561 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
562 uint32_t hwrev;
563
564 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
565 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
566 switch (hwrev) {
567 case RTK_HWREV_8169:
568 sc->sc_quirk |= RTKQ_8169NONS;
569 break;
570 case RTK_HWREV_8169S:
571 case RTK_HWREV_8110S:
572 case RTK_HWREV_8169_8110SB:
573 case RTK_HWREV_8169_8110SC:
574 sc->sc_quirk |= RTKQ_MACLDPS;
575 break;
576 case RTK_HWREV_8168_SPIN1:
577 case RTK_HWREV_8168_SPIN2:
578 case RTK_HWREV_8168_SPIN3:
579 sc->sc_quirk |= RTKQ_MACSTAT;
580 break;
581 case RTK_HWREV_8168C:
582 case RTK_HWREV_8168C_SPIN2:
583 case RTK_HWREV_8168CP:
584 case RTK_HWREV_8168D:
585 case RTK_HWREV_8168DP:
586 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
587 RTKQ_MACSTAT | RTKQ_CMDSTOP;
588 /*
589 * From FreeBSD driver:
590 *
591 * These (8168/8111) controllers support jumbo frame
592 * but it seems that enabling it requires touching
593 * additional magic registers. Depending on MAC
594 * revisions some controllers need to disable
595 * checksum offload. So disable jumbo frame until
596 * I have better idea what it really requires to
597 * make it support.
598 * RTL8168C/CP : supports up to 6KB jumbo frame.
599 * RTL8111C/CP : supports up to 9KB jumbo frame.
600 */
601 sc->sc_quirk |= RTKQ_NOJUMBO;
602 break;
603 case RTK_HWREV_8100E:
604 case RTK_HWREV_8100E_SPIN2:
605 case RTK_HWREV_8101E:
606 sc->sc_quirk |= RTKQ_NOJUMBO;
607 break;
608 case RTK_HWREV_8102E:
609 case RTK_HWREV_8102EL:
610 case RTK_HWREV_8103E:
611 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
612 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
613 break;
614 default:
615 aprint_normal_dev(sc->sc_dev,
616 "Unknown revision (0x%08x)\n", hwrev);
617 /* assume the latest features */
618 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
619 sc->sc_quirk |= RTKQ_NOJUMBO;
620 }
621
622 /* Set RX length mask */
623 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
624 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
625 } else {
626 sc->sc_quirk |= RTKQ_NOJUMBO;
627
628 /* Set RX length mask */
629 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
630 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
631 }
632
633 /* Reset the adapter. */
634 re_reset(sc);
635
636 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
637 /*
638 * Get station address from ID registers.
639 */
640 for (i = 0; i < ETHER_ADDR_LEN; i++)
641 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
642 } else {
643 /*
644 * Get station address from the EEPROM.
645 */
646 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
647 addr_len = RTK_EEADDR_LEN1;
648 else
649 addr_len = RTK_EEADDR_LEN0;
650
651 /*
652 * Get station address from the EEPROM.
653 */
654 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
655 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
656 eaddr[(i * 2) + 0] = val & 0xff;
657 eaddr[(i * 2) + 1] = val >> 8;
658 }
659 }
660
661 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
662 ether_sprintf(eaddr));
663
664 if (sc->re_ldata.re_tx_desc_cnt >
665 PAGE_SIZE / sizeof(struct re_desc)) {
666 sc->re_ldata.re_tx_desc_cnt =
667 PAGE_SIZE / sizeof(struct re_desc);
668 }
669
670 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
671 sc->re_ldata.re_tx_desc_cnt);
672 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
673
674 /* Allocate DMA'able memory for the TX ring */
675 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
676 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
677 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
678 aprint_error_dev(sc->sc_dev,
679 "can't allocate tx listseg, error = %d\n", error);
680 goto fail_0;
681 }
682
683 /* Load the map for the TX ring. */
684 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
685 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
686 (void **)&sc->re_ldata.re_tx_list,
687 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
688 aprint_error_dev(sc->sc_dev,
689 "can't map tx list, error = %d\n", error);
690 goto fail_1;
691 }
692 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
693
694 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
695 RE_TX_LIST_SZ(sc), 0, 0,
696 &sc->re_ldata.re_tx_list_map)) != 0) {
697 aprint_error_dev(sc->sc_dev,
698 "can't create tx list map, error = %d\n", error);
699 goto fail_2;
700 }
701
702
703 if ((error = bus_dmamap_load(sc->sc_dmat,
704 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
705 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
706 aprint_error_dev(sc->sc_dev,
707 "can't load tx list, error = %d\n", error);
708 goto fail_3;
709 }
710
711 /* Create DMA maps for TX buffers */
712 for (i = 0; i < RE_TX_QLEN; i++) {
713 error = bus_dmamap_create(sc->sc_dmat,
714 round_page(IP_MAXPACKET),
715 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
716 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
717 if (error) {
718 aprint_error_dev(sc->sc_dev,
719 "can't create DMA map for TX\n");
720 goto fail_4;
721 }
722 }
723
724 /* Allocate DMA'able memory for the RX ring */
725 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
726 if ((error = bus_dmamem_alloc(sc->sc_dmat,
727 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
728 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
729 aprint_error_dev(sc->sc_dev,
730 "can't allocate rx listseg, error = %d\n", error);
731 goto fail_4;
732 }
733
734 /* Load the map for the RX ring. */
735 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
736 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
737 (void **)&sc->re_ldata.re_rx_list,
738 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
739 aprint_error_dev(sc->sc_dev,
740 "can't map rx list, error = %d\n", error);
741 goto fail_5;
742 }
743 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
744
745 if ((error = bus_dmamap_create(sc->sc_dmat,
746 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
747 &sc->re_ldata.re_rx_list_map)) != 0) {
748 aprint_error_dev(sc->sc_dev,
749 "can't create rx list map, error = %d\n", error);
750 goto fail_6;
751 }
752
753 if ((error = bus_dmamap_load(sc->sc_dmat,
754 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
755 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
756 aprint_error_dev(sc->sc_dev,
757 "can't load rx list, error = %d\n", error);
758 goto fail_7;
759 }
760
761 /* Create DMA maps for RX buffers */
762 for (i = 0; i < RE_RX_DESC_CNT; i++) {
763 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
764 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
765 if (error) {
766 aprint_error_dev(sc->sc_dev,
767 "can't create DMA map for RX\n");
768 goto fail_8;
769 }
770 }
771
772 /*
773 * Record interface as attached. From here, we should not fail.
774 */
775 sc->sc_flags |= RTK_ATTACHED;
776
777 ifp = &sc->ethercom.ec_if;
778 ifp->if_softc = sc;
779 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
780 ifp->if_mtu = ETHERMTU;
781 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
782 ifp->if_ioctl = re_ioctl;
783 sc->ethercom.ec_capabilities |=
784 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
785 ifp->if_start = re_start;
786 ifp->if_stop = re_stop;
787
788 /*
789 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
790 * so we have a workaround to handle the bug by padding
791 * such packets manually.
792 */
793 ifp->if_capabilities |=
794 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
795 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
796 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
797 IFCAP_TSOv4;
798
799 /*
800 * XXX
801 * Still have no idea how to make TSO work on 8168C, 8168CP,
802 * 8102E, 8111C and 8111CP.
803 */
804 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
805 ifp->if_capabilities &= ~IFCAP_TSOv4;
806
807 ifp->if_watchdog = re_watchdog;
808 ifp->if_init = re_init;
809 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
810 ifp->if_capenable = ifp->if_capabilities;
811 IFQ_SET_READY(&ifp->if_snd);
812
813 callout_init(&sc->rtk_tick_ch, 0);
814
815 /* Do MII setup */
816 sc->mii.mii_ifp = ifp;
817 sc->mii.mii_readreg = re_miibus_readreg;
818 sc->mii.mii_writereg = re_miibus_writereg;
819 sc->mii.mii_statchg = re_miibus_statchg;
820 sc->ethercom.ec_mii = &sc->mii;
821 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
822 ether_mediastatus);
823 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
824 MII_OFFSET_ANY, 0);
825 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
826
827 /*
828 * Call MI attach routine.
829 */
830 if_attach(ifp);
831 ether_ifattach(ifp, eaddr);
832
833 if (pmf_device_register(sc->sc_dev, NULL, NULL))
834 pmf_class_network_register(sc->sc_dev, ifp);
835 else
836 aprint_error_dev(sc->sc_dev,
837 "couldn't establish power handler\n");
838
839 return;
840
841 fail_8:
842 /* Destroy DMA maps for RX buffers. */
843 for (i = 0; i < RE_RX_DESC_CNT; i++)
844 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
845 bus_dmamap_destroy(sc->sc_dmat,
846 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
847
848 /* Free DMA'able memory for the RX ring. */
849 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
850 fail_7:
851 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
852 fail_6:
853 bus_dmamem_unmap(sc->sc_dmat,
854 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
855 fail_5:
856 bus_dmamem_free(sc->sc_dmat,
857 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
858
859 fail_4:
860 /* Destroy DMA maps for TX buffers. */
861 for (i = 0; i < RE_TX_QLEN; i++)
862 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
863 bus_dmamap_destroy(sc->sc_dmat,
864 sc->re_ldata.re_txq[i].txq_dmamap);
865
866 /* Free DMA'able memory for the TX ring. */
867 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
868 fail_3:
869 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
870 fail_2:
871 bus_dmamem_unmap(sc->sc_dmat,
872 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
873 fail_1:
874 bus_dmamem_free(sc->sc_dmat,
875 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
876 fail_0:
877 return;
878 }
879
880
881 /*
882 * re_activate:
883 * Handle device activation/deactivation requests.
884 */
885 int
886 re_activate(device_t self, enum devact act)
887 {
888 struct rtk_softc *sc = device_private(self);
889
890 switch (act) {
891 case DVACT_DEACTIVATE:
892 if_deactivate(&sc->ethercom.ec_if);
893 return 0;
894 default:
895 return EOPNOTSUPP;
896 }
897 }
898
899 /*
900 * re_detach:
901 * Detach a rtk interface.
902 */
903 int
904 re_detach(struct rtk_softc *sc)
905 {
906 struct ifnet *ifp = &sc->ethercom.ec_if;
907 int i;
908
909 /*
910 * Succeed now if there isn't any work to do.
911 */
912 if ((sc->sc_flags & RTK_ATTACHED) == 0)
913 return 0;
914
915 /* Unhook our tick handler. */
916 callout_stop(&sc->rtk_tick_ch);
917
918 /* Detach all PHYs. */
919 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
920
921 /* Delete all remaining media. */
922 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
923
924 ether_ifdetach(ifp);
925 if_detach(ifp);
926
927 /* Destroy DMA maps for RX buffers. */
928 for (i = 0; i < RE_RX_DESC_CNT; i++)
929 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
930 bus_dmamap_destroy(sc->sc_dmat,
931 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
932
933 /* Free DMA'able memory for the RX ring. */
934 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
935 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
936 bus_dmamem_unmap(sc->sc_dmat,
937 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
938 bus_dmamem_free(sc->sc_dmat,
939 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
940
941 /* Destroy DMA maps for TX buffers. */
942 for (i = 0; i < RE_TX_QLEN; i++)
943 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
944 bus_dmamap_destroy(sc->sc_dmat,
945 sc->re_ldata.re_txq[i].txq_dmamap);
946
947 /* Free DMA'able memory for the TX ring. */
948 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
949 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
950 bus_dmamem_unmap(sc->sc_dmat,
951 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
952 bus_dmamem_free(sc->sc_dmat,
953 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
954
955 pmf_device_deregister(sc->sc_dev);
956
957 return 0;
958 }
959
960 /*
961 * re_enable:
962 * Enable the RTL81X9 chip.
963 */
964 static int
965 re_enable(struct rtk_softc *sc)
966 {
967
968 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
969 if ((*sc->sc_enable)(sc) != 0) {
970 printf("%s: device enable failed\n",
971 device_xname(sc->sc_dev));
972 return EIO;
973 }
974 sc->sc_flags |= RTK_ENABLED;
975 }
976 return 0;
977 }
978
979 /*
980 * re_disable:
981 * Disable the RTL81X9 chip.
982 */
983 static void
984 re_disable(struct rtk_softc *sc)
985 {
986
987 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
988 (*sc->sc_disable)(sc);
989 sc->sc_flags &= ~RTK_ENABLED;
990 }
991 }
992
993 static int
994 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
995 {
996 struct mbuf *n = NULL;
997 bus_dmamap_t map;
998 struct re_desc *d;
999 struct re_rxsoft *rxs;
1000 uint32_t cmdstat;
1001 int error;
1002
1003 if (m == NULL) {
1004 MGETHDR(n, M_DONTWAIT, MT_DATA);
1005 if (n == NULL)
1006 return ENOBUFS;
1007
1008 MCLGET(n, M_DONTWAIT);
1009 if ((n->m_flags & M_EXT) == 0) {
1010 m_freem(n);
1011 return ENOBUFS;
1012 }
1013 m = n;
1014 } else
1015 m->m_data = m->m_ext.ext_buf;
1016
1017 /*
1018 * Initialize mbuf length fields and fixup
1019 * alignment so that the frame payload is
1020 * longword aligned.
1021 */
1022 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1023 m->m_data += RE_ETHER_ALIGN;
1024
1025 rxs = &sc->re_ldata.re_rxsoft[idx];
1026 map = rxs->rxs_dmamap;
1027 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1028 BUS_DMA_READ|BUS_DMA_NOWAIT);
1029
1030 if (error)
1031 goto out;
1032
1033 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1034 BUS_DMASYNC_PREREAD);
1035
1036 d = &sc->re_ldata.re_rx_list[idx];
1037 #ifdef DIAGNOSTIC
1038 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1039 cmdstat = le32toh(d->re_cmdstat);
1040 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1041 if (cmdstat & RE_RDESC_STAT_OWN) {
1042 panic("%s: tried to map busy RX descriptor",
1043 device_xname(sc->sc_dev));
1044 }
1045 #endif
1046
1047 rxs->rxs_mbuf = m;
1048
1049 d->re_vlanctl = 0;
1050 cmdstat = map->dm_segs[0].ds_len;
1051 if (idx == (RE_RX_DESC_CNT - 1))
1052 cmdstat |= RE_RDESC_CMD_EOR;
1053 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1054 d->re_cmdstat = htole32(cmdstat);
1055 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1056 cmdstat |= RE_RDESC_CMD_OWN;
1057 d->re_cmdstat = htole32(cmdstat);
1058 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1059
1060 return 0;
1061 out:
1062 if (n != NULL)
1063 m_freem(n);
1064 return ENOMEM;
1065 }
1066
1067 static int
1068 re_tx_list_init(struct rtk_softc *sc)
1069 {
1070 int i;
1071
1072 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1073 for (i = 0; i < RE_TX_QLEN; i++) {
1074 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1075 }
1076
1077 bus_dmamap_sync(sc->sc_dmat,
1078 sc->re_ldata.re_tx_list_map, 0,
1079 sc->re_ldata.re_tx_list_map->dm_mapsize,
1080 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1081 sc->re_ldata.re_txq_prodidx = 0;
1082 sc->re_ldata.re_txq_considx = 0;
1083 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1084 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1085 sc->re_ldata.re_tx_nextfree = 0;
1086
1087 return 0;
1088 }
1089
1090 static int
1091 re_rx_list_init(struct rtk_softc *sc)
1092 {
1093 int i;
1094
1095 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1096
1097 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1098 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1099 return ENOBUFS;
1100 }
1101
1102 sc->re_ldata.re_rx_prodidx = 0;
1103 sc->re_head = sc->re_tail = NULL;
1104
1105 return 0;
1106 }
1107
1108 /*
1109 * RX handler for C+ and 8169. For the gigE chips, we support
1110 * the reception of jumbo frames that have been fragmented
1111 * across multiple 2K mbuf cluster buffers.
1112 */
1113 static void
1114 re_rxeof(struct rtk_softc *sc)
1115 {
1116 struct mbuf *m;
1117 struct ifnet *ifp;
1118 int i, total_len;
1119 struct re_desc *cur_rx;
1120 struct re_rxsoft *rxs;
1121 uint32_t rxstat, rxvlan;
1122
1123 ifp = &sc->ethercom.ec_if;
1124
1125 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1126 cur_rx = &sc->re_ldata.re_rx_list[i];
1127 RE_RXDESCSYNC(sc, i,
1128 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1129 rxstat = le32toh(cur_rx->re_cmdstat);
1130 rxvlan = le32toh(cur_rx->re_vlanctl);
1131 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1132 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1133 break;
1134 }
1135 total_len = rxstat & sc->re_rxlenmask;
1136 rxs = &sc->re_ldata.re_rxsoft[i];
1137 m = rxs->rxs_mbuf;
1138
1139 /* Invalidate the RX mbuf and unload its map */
1140
1141 bus_dmamap_sync(sc->sc_dmat,
1142 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1143 BUS_DMASYNC_POSTREAD);
1144 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1145
1146 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1147 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1148 if (sc->re_head == NULL)
1149 sc->re_head = sc->re_tail = m;
1150 else {
1151 m->m_flags &= ~M_PKTHDR;
1152 sc->re_tail->m_next = m;
1153 sc->re_tail = m;
1154 }
1155 re_newbuf(sc, i, NULL);
1156 continue;
1157 }
1158
1159 /*
1160 * NOTE: for the 8139C+, the frame length field
1161 * is always 12 bits in size, but for the gigE chips,
1162 * it is 13 bits (since the max RX frame length is 16K).
1163 * Unfortunately, all 32 bits in the status word
1164 * were already used, so to make room for the extra
1165 * length bit, RealTek took out the 'frame alignment
1166 * error' bit and shifted the other status bits
1167 * over one slot. The OWN, EOR, FS and LS bits are
1168 * still in the same places. We have already extracted
1169 * the frame length and checked the OWN bit, so rather
1170 * than using an alternate bit mapping, we shift the
1171 * status bits one space to the right so we can evaluate
1172 * them using the 8169 status as though it was in the
1173 * same format as that of the 8139C+.
1174 */
1175 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1176 rxstat >>= 1;
1177
1178 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1179 #ifdef RE_DEBUG
1180 printf("%s: RX error (rxstat = 0x%08x)",
1181 device_xname(sc->sc_dev), rxstat);
1182 if (rxstat & RE_RDESC_STAT_FRALIGN)
1183 printf(", frame alignment error");
1184 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1185 printf(", out of buffer space");
1186 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1187 printf(", FIFO overrun");
1188 if (rxstat & RE_RDESC_STAT_GIANT)
1189 printf(", giant packet");
1190 if (rxstat & RE_RDESC_STAT_RUNT)
1191 printf(", runt packet");
1192 if (rxstat & RE_RDESC_STAT_CRCERR)
1193 printf(", CRC error");
1194 printf("\n");
1195 #endif
1196 ifp->if_ierrors++;
1197 /*
1198 * If this is part of a multi-fragment packet,
1199 * discard all the pieces.
1200 */
1201 if (sc->re_head != NULL) {
1202 m_freem(sc->re_head);
1203 sc->re_head = sc->re_tail = NULL;
1204 }
1205 re_newbuf(sc, i, m);
1206 continue;
1207 }
1208
1209 /*
1210 * If allocating a replacement mbuf fails,
1211 * reload the current one.
1212 */
1213
1214 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1215 ifp->if_ierrors++;
1216 if (sc->re_head != NULL) {
1217 m_freem(sc->re_head);
1218 sc->re_head = sc->re_tail = NULL;
1219 }
1220 re_newbuf(sc, i, m);
1221 continue;
1222 }
1223
1224 if (sc->re_head != NULL) {
1225 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1226 /*
1227 * Special case: if there's 4 bytes or less
1228 * in this buffer, the mbuf can be discarded:
1229 * the last 4 bytes is the CRC, which we don't
1230 * care about anyway.
1231 */
1232 if (m->m_len <= ETHER_CRC_LEN) {
1233 sc->re_tail->m_len -=
1234 (ETHER_CRC_LEN - m->m_len);
1235 m_freem(m);
1236 } else {
1237 m->m_len -= ETHER_CRC_LEN;
1238 m->m_flags &= ~M_PKTHDR;
1239 sc->re_tail->m_next = m;
1240 }
1241 m = sc->re_head;
1242 sc->re_head = sc->re_tail = NULL;
1243 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1244 } else
1245 m->m_pkthdr.len = m->m_len =
1246 (total_len - ETHER_CRC_LEN);
1247
1248 ifp->if_ipackets++;
1249 m->m_pkthdr.rcvif = ifp;
1250
1251 /* Do RX checksumming */
1252 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1253 /* Check IP header checksum */
1254 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1255 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1256 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1257 m->m_pkthdr.csum_flags |=
1258 M_CSUM_IPv4_BAD;
1259
1260 /* Check TCP/UDP checksum */
1261 if (RE_TCPPKT(rxstat)) {
1262 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1263 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1264 m->m_pkthdr.csum_flags |=
1265 M_CSUM_TCP_UDP_BAD;
1266 } else if (RE_UDPPKT(rxstat)) {
1267 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1268 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1269 m->m_pkthdr.csum_flags |=
1270 M_CSUM_TCP_UDP_BAD;
1271 }
1272 }
1273 } else {
1274 /* Check IPv4 header checksum */
1275 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1276 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1277 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1278 m->m_pkthdr.csum_flags |=
1279 M_CSUM_IPv4_BAD;
1280
1281 /* Check TCPv4/UDPv4 checksum */
1282 if (RE_TCPPKT(rxstat)) {
1283 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1284 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1285 m->m_pkthdr.csum_flags |=
1286 M_CSUM_TCP_UDP_BAD;
1287 } else if (RE_UDPPKT(rxstat)) {
1288 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1289 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1290 m->m_pkthdr.csum_flags |=
1291 M_CSUM_TCP_UDP_BAD;
1292 }
1293 }
1294 /* XXX Check TCPv6/UDPv6 checksum? */
1295 }
1296
1297 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1298 VLAN_INPUT_TAG(ifp, m,
1299 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1300 continue);
1301 }
1302 bpf_mtap(ifp, m);
1303 (*ifp->if_input)(ifp, m);
1304 }
1305
1306 sc->re_ldata.re_rx_prodidx = i;
1307 }
1308
1309 static void
1310 re_txeof(struct rtk_softc *sc)
1311 {
1312 struct ifnet *ifp;
1313 struct re_txq *txq;
1314 uint32_t txstat;
1315 int idx, descidx;
1316
1317 ifp = &sc->ethercom.ec_if;
1318
1319 for (idx = sc->re_ldata.re_txq_considx;
1320 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1321 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1322 txq = &sc->re_ldata.re_txq[idx];
1323 KASSERT(txq->txq_mbuf != NULL);
1324
1325 descidx = txq->txq_descidx;
1326 RE_TXDESCSYNC(sc, descidx,
1327 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1328 txstat =
1329 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1330 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1331 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1332 if (txstat & RE_TDESC_CMD_OWN) {
1333 break;
1334 }
1335
1336 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1337 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1338 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1339 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1340 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1341 m_freem(txq->txq_mbuf);
1342 txq->txq_mbuf = NULL;
1343
1344 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1345 ifp->if_collisions++;
1346 if (txstat & RE_TDESC_STAT_TXERRSUM)
1347 ifp->if_oerrors++;
1348 else
1349 ifp->if_opackets++;
1350 }
1351
1352 sc->re_ldata.re_txq_considx = idx;
1353
1354 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1355 ifp->if_flags &= ~IFF_OACTIVE;
1356
1357 /*
1358 * If not all descriptors have been released reaped yet,
1359 * reload the timer so that we will eventually get another
1360 * interrupt that will cause us to re-enter this routine.
1361 * This is done in case the transmitter has gone idle.
1362 */
1363 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1364 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1365 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1366 /*
1367 * Some chips will ignore a second TX request
1368 * issued while an existing transmission is in
1369 * progress. If the transmitter goes idle but
1370 * there are still packets waiting to be sent,
1371 * we need to restart the channel here to flush
1372 * them out. This only seems to be required with
1373 * the PCIe devices.
1374 */
1375 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1376 }
1377 } else
1378 ifp->if_timer = 0;
1379 }
1380
1381 static void
1382 re_tick(void *arg)
1383 {
1384 struct rtk_softc *sc = arg;
1385 int s;
1386
1387 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1388 s = splnet();
1389
1390 mii_tick(&sc->mii);
1391 splx(s);
1392
1393 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1394 }
1395
1396 int
1397 re_intr(void *arg)
1398 {
1399 struct rtk_softc *sc = arg;
1400 struct ifnet *ifp;
1401 uint16_t status;
1402 int handled = 0;
1403
1404 if (!device_has_power(sc->sc_dev))
1405 return 0;
1406
1407 ifp = &sc->ethercom.ec_if;
1408
1409 if ((ifp->if_flags & IFF_UP) == 0)
1410 return 0;
1411
1412 for (;;) {
1413
1414 status = CSR_READ_2(sc, RTK_ISR);
1415 /* If the card has gone away the read returns 0xffff. */
1416 if (status == 0xffff)
1417 break;
1418 if (status) {
1419 handled = 1;
1420 CSR_WRITE_2(sc, RTK_ISR, status);
1421 }
1422
1423 if ((status & RTK_INTRS_CPLUS) == 0)
1424 break;
1425
1426 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1427 re_rxeof(sc);
1428
1429 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1430 RTK_ISR_TX_DESC_UNAVAIL))
1431 re_txeof(sc);
1432
1433 if (status & RTK_ISR_SYSTEM_ERR) {
1434 re_init(ifp);
1435 }
1436
1437 if (status & RTK_ISR_LINKCHG) {
1438 callout_stop(&sc->rtk_tick_ch);
1439 re_tick(sc);
1440 }
1441 }
1442
1443 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1444 re_start(ifp);
1445
1446 return handled;
1447 }
1448
1449
1450
1451 /*
1452 * Main transmit routine for C+ and gigE NICs.
1453 */
1454
1455 static void
1456 re_start(struct ifnet *ifp)
1457 {
1458 struct rtk_softc *sc;
1459 struct mbuf *m;
1460 bus_dmamap_t map;
1461 struct re_txq *txq;
1462 struct re_desc *d;
1463 struct m_tag *mtag;
1464 uint32_t cmdstat, re_flags, vlanctl;
1465 int ofree, idx, error, nsegs, seg;
1466 int startdesc, curdesc, lastdesc;
1467 bool pad;
1468
1469 sc = ifp->if_softc;
1470 ofree = sc->re_ldata.re_txq_free;
1471
1472 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1473
1474 IFQ_POLL(&ifp->if_snd, m);
1475 if (m == NULL)
1476 break;
1477
1478 if (sc->re_ldata.re_txq_free == 0 ||
1479 sc->re_ldata.re_tx_free == 0) {
1480 /* no more free slots left */
1481 ifp->if_flags |= IFF_OACTIVE;
1482 break;
1483 }
1484
1485 /*
1486 * Set up checksum offload. Note: checksum offload bits must
1487 * appear in all descriptors of a multi-descriptor transmit
1488 * attempt. (This is according to testing done with an 8169
1489 * chip. I'm not sure if this is a requirement or a bug.)
1490 */
1491
1492 vlanctl = 0;
1493 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1494 uint32_t segsz = m->m_pkthdr.segsz;
1495
1496 re_flags = RE_TDESC_CMD_LGSEND |
1497 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1498 } else {
1499 /*
1500 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1501 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1502 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1503 */
1504 re_flags = 0;
1505 if ((m->m_pkthdr.csum_flags &
1506 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1507 != 0) {
1508 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1509 re_flags |= RE_TDESC_CMD_IPCSUM;
1510 if (m->m_pkthdr.csum_flags &
1511 M_CSUM_TCPv4) {
1512 re_flags |=
1513 RE_TDESC_CMD_TCPCSUM;
1514 } else if (m->m_pkthdr.csum_flags &
1515 M_CSUM_UDPv4) {
1516 re_flags |=
1517 RE_TDESC_CMD_UDPCSUM;
1518 }
1519 } else {
1520 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1521 if (m->m_pkthdr.csum_flags &
1522 M_CSUM_TCPv4) {
1523 vlanctl |=
1524 RE_TDESC_VLANCTL_TCPCSUM;
1525 } else if (m->m_pkthdr.csum_flags &
1526 M_CSUM_UDPv4) {
1527 vlanctl |=
1528 RE_TDESC_VLANCTL_UDPCSUM;
1529 }
1530 }
1531 }
1532 }
1533
1534 txq = &sc->re_ldata.re_txq[idx];
1535 map = txq->txq_dmamap;
1536 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1537 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1538
1539 if (__predict_false(error)) {
1540 /* XXX try to defrag if EFBIG? */
1541 printf("%s: can't map mbuf (error %d)\n",
1542 device_xname(sc->sc_dev), error);
1543
1544 IFQ_DEQUEUE(&ifp->if_snd, m);
1545 m_freem(m);
1546 ifp->if_oerrors++;
1547 continue;
1548 }
1549
1550 nsegs = map->dm_nsegs;
1551 pad = false;
1552 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1553 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1554 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1555 pad = true;
1556 nsegs++;
1557 }
1558
1559 if (nsegs > sc->re_ldata.re_tx_free) {
1560 /*
1561 * Not enough free descriptors to transmit this packet.
1562 */
1563 ifp->if_flags |= IFF_OACTIVE;
1564 bus_dmamap_unload(sc->sc_dmat, map);
1565 break;
1566 }
1567
1568 IFQ_DEQUEUE(&ifp->if_snd, m);
1569
1570 /*
1571 * Make sure that the caches are synchronized before we
1572 * ask the chip to start DMA for the packet data.
1573 */
1574 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1575 BUS_DMASYNC_PREWRITE);
1576
1577 /*
1578 * Set up hardware VLAN tagging. Note: vlan tag info must
1579 * appear in all descriptors of a multi-descriptor
1580 * transmission attempt.
1581 */
1582 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1583 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1584 RE_TDESC_VLANCTL_TAG;
1585
1586 /*
1587 * Map the segment array into descriptors.
1588 * Note that we set the start-of-frame and
1589 * end-of-frame markers for either TX or RX,
1590 * but they really only have meaning in the TX case.
1591 * (In the RX case, it's the chip that tells us
1592 * where packets begin and end.)
1593 * We also keep track of the end of the ring
1594 * and set the end-of-ring bits as needed,
1595 * and we set the ownership bits in all except
1596 * the very first descriptor. (The caller will
1597 * set this descriptor later when it start
1598 * transmission or reception.)
1599 */
1600 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1601 lastdesc = -1;
1602 for (seg = 0; seg < map->dm_nsegs;
1603 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1604 d = &sc->re_ldata.re_tx_list[curdesc];
1605 #ifdef DIAGNOSTIC
1606 RE_TXDESCSYNC(sc, curdesc,
1607 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1608 cmdstat = le32toh(d->re_cmdstat);
1609 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1610 if (cmdstat & RE_TDESC_STAT_OWN) {
1611 panic("%s: tried to map busy TX descriptor",
1612 device_xname(sc->sc_dev));
1613 }
1614 #endif
1615
1616 d->re_vlanctl = htole32(vlanctl);
1617 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1618 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1619 if (seg == 0)
1620 cmdstat |= RE_TDESC_CMD_SOF;
1621 else
1622 cmdstat |= RE_TDESC_CMD_OWN;
1623 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1624 cmdstat |= RE_TDESC_CMD_EOR;
1625 if (seg == nsegs - 1) {
1626 cmdstat |= RE_TDESC_CMD_EOF;
1627 lastdesc = curdesc;
1628 }
1629 d->re_cmdstat = htole32(cmdstat);
1630 RE_TXDESCSYNC(sc, curdesc,
1631 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1632 }
1633 if (__predict_false(pad)) {
1634 d = &sc->re_ldata.re_tx_list[curdesc];
1635 d->re_vlanctl = htole32(vlanctl);
1636 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1637 cmdstat = re_flags |
1638 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1639 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1640 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1641 cmdstat |= RE_TDESC_CMD_EOR;
1642 d->re_cmdstat = htole32(cmdstat);
1643 RE_TXDESCSYNC(sc, curdesc,
1644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1645 lastdesc = curdesc;
1646 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1647 }
1648 KASSERT(lastdesc != -1);
1649
1650 /* Transfer ownership of packet to the chip. */
1651
1652 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1653 htole32(RE_TDESC_CMD_OWN);
1654 RE_TXDESCSYNC(sc, startdesc,
1655 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1656
1657 /* update info of TX queue and descriptors */
1658 txq->txq_mbuf = m;
1659 txq->txq_descidx = lastdesc;
1660 txq->txq_nsegs = nsegs;
1661
1662 sc->re_ldata.re_txq_free--;
1663 sc->re_ldata.re_tx_free -= nsegs;
1664 sc->re_ldata.re_tx_nextfree = curdesc;
1665
1666 /*
1667 * If there's a BPF listener, bounce a copy of this frame
1668 * to him.
1669 */
1670 bpf_mtap(ifp, m);
1671 }
1672
1673 if (sc->re_ldata.re_txq_free < ofree) {
1674 /*
1675 * TX packets are enqueued.
1676 */
1677 sc->re_ldata.re_txq_prodidx = idx;
1678
1679 /*
1680 * Start the transmitter to poll.
1681 *
1682 * RealTek put the TX poll request register in a different
1683 * location on the 8169 gigE chip. I don't know why.
1684 */
1685 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1686 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1687 else
1688 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1689
1690 /*
1691 * Use the countdown timer for interrupt moderation.
1692 * 'TX done' interrupts are disabled. Instead, we reset the
1693 * countdown timer, which will begin counting until it hits
1694 * the value in the TIMERINT register, and then trigger an
1695 * interrupt. Each time we write to the TIMERCNT register,
1696 * the timer count is reset to 0.
1697 */
1698 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1699
1700 /*
1701 * Set a timeout in case the chip goes out to lunch.
1702 */
1703 ifp->if_timer = 5;
1704 }
1705 }
1706
1707 static int
1708 re_init(struct ifnet *ifp)
1709 {
1710 struct rtk_softc *sc = ifp->if_softc;
1711 const uint8_t *enaddr;
1712 uint32_t rxcfg = 0;
1713 uint32_t reg;
1714 uint16_t cfg;
1715 int error;
1716
1717 if ((error = re_enable(sc)) != 0)
1718 goto out;
1719
1720 /*
1721 * Cancel pending I/O and free all RX/TX buffers.
1722 */
1723 re_stop(ifp, 0);
1724
1725 re_reset(sc);
1726
1727 /*
1728 * Enable C+ RX and TX mode, as well as VLAN stripping and
1729 * RX checksum offload. We must configure the C+ register
1730 * before all others.
1731 */
1732 cfg = RE_CPLUSCMD_PCI_MRW;
1733
1734 /*
1735 * XXX: For old 8169 set bit 14.
1736 * For 8169S/8110S and above, do not set bit 14.
1737 */
1738 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1739 cfg |= (0x1 << 14);
1740
1741 if ((ifp->if_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1742 cfg |= RE_CPLUSCMD_VLANSTRIP;
1743 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1744 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1745 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1746 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1747 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1748 cfg |= RE_CPLUSCMD_TXENB;
1749 } else
1750 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1751
1752 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1753
1754 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1755 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1756 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1757
1758 DELAY(10000);
1759
1760 /*
1761 * Init our MAC address. Even though the chipset
1762 * documentation doesn't mention it, we need to enter "Config
1763 * register write enable" mode to modify the ID registers.
1764 */
1765 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1766 enaddr = CLLADDR(ifp->if_sadl);
1767 reg = enaddr[0] | (enaddr[1] << 8) |
1768 (enaddr[2] << 16) | (enaddr[3] << 24);
1769 CSR_WRITE_4(sc, RTK_IDR0, reg);
1770 reg = enaddr[4] | (enaddr[5] << 8);
1771 CSR_WRITE_4(sc, RTK_IDR4, reg);
1772 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1773
1774 /*
1775 * For C+ mode, initialize the RX descriptors and mbufs.
1776 */
1777 re_rx_list_init(sc);
1778 re_tx_list_init(sc);
1779
1780 /*
1781 * Load the addresses of the RX and TX lists into the chip.
1782 */
1783 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1784 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1785 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1786 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1787
1788 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1789 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1790 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1791 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1792
1793 /*
1794 * Enable transmit and receive.
1795 */
1796 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1797
1798 /*
1799 * Set the initial TX and RX configuration.
1800 */
1801 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1802 /* test mode is needed only for old 8169 */
1803 CSR_WRITE_4(sc, RTK_TXCFG,
1804 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1805 } else
1806 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1807
1808 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1809
1810 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1811
1812 /* Set the individual bit to receive frames for this host only. */
1813 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1814 rxcfg |= RTK_RXCFG_RX_INDIV;
1815
1816 /* If we want promiscuous mode, set the allframes bit. */
1817 if (ifp->if_flags & IFF_PROMISC)
1818 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1819 else
1820 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1821 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1822
1823 /*
1824 * Set capture broadcast bit to capture broadcast frames.
1825 */
1826 if (ifp->if_flags & IFF_BROADCAST)
1827 rxcfg |= RTK_RXCFG_RX_BROAD;
1828 else
1829 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1830 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1831
1832 /*
1833 * Program the multicast filter, if necessary.
1834 */
1835 rtk_setmulti(sc);
1836
1837 /*
1838 * Enable interrupts.
1839 */
1840 if (sc->re_testmode)
1841 CSR_WRITE_2(sc, RTK_IMR, 0);
1842 else
1843 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1844
1845 /* Start RX/TX process. */
1846 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1847 #ifdef notdef
1848 /* Enable receiver and transmitter. */
1849 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1850 #endif
1851
1852 /*
1853 * Initialize the timer interrupt register so that
1854 * a timer interrupt will be generated once the timer
1855 * reaches a certain number of ticks. The timer is
1856 * reloaded on each transmit. This gives us TX interrupt
1857 * moderation, which dramatically improves TX frame rate.
1858 */
1859
1860 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1861 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1862 else {
1863 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1864
1865 /*
1866 * For 8169 gigE NICs, set the max allowed RX packet
1867 * size so we can receive jumbo frames.
1868 */
1869 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1870 }
1871
1872 if (sc->re_testmode)
1873 return 0;
1874
1875 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1876
1877 ifp->if_flags |= IFF_RUNNING;
1878 ifp->if_flags &= ~IFF_OACTIVE;
1879
1880 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1881
1882 out:
1883 if (error) {
1884 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1885 ifp->if_timer = 0;
1886 printf("%s: interface not running\n",
1887 device_xname(sc->sc_dev));
1888 }
1889
1890 return error;
1891 }
1892
1893 static int
1894 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1895 {
1896 struct rtk_softc *sc = ifp->if_softc;
1897 struct ifreq *ifr = data;
1898 int s, error = 0;
1899
1900 s = splnet();
1901
1902 switch (command) {
1903 case SIOCSIFMTU:
1904 /*
1905 * Disable jumbo frames if it's not supported.
1906 */
1907 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1908 ifr->ifr_mtu > ETHERMTU) {
1909 error = EINVAL;
1910 break;
1911 }
1912
1913 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1914 error = EINVAL;
1915 else if ((error = ifioctl_common(ifp, command, data)) ==
1916 ENETRESET)
1917 error = 0;
1918 break;
1919 default:
1920 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1921 break;
1922
1923 error = 0;
1924
1925 if (command == SIOCSIFCAP)
1926 error = (*ifp->if_init)(ifp);
1927 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1928 ;
1929 else if (ifp->if_flags & IFF_RUNNING)
1930 rtk_setmulti(sc);
1931 break;
1932 }
1933
1934 splx(s);
1935
1936 return error;
1937 }
1938
1939 static void
1940 re_watchdog(struct ifnet *ifp)
1941 {
1942 struct rtk_softc *sc;
1943 int s;
1944
1945 sc = ifp->if_softc;
1946 s = splnet();
1947 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1948 ifp->if_oerrors++;
1949
1950 re_txeof(sc);
1951 re_rxeof(sc);
1952
1953 re_init(ifp);
1954
1955 splx(s);
1956 }
1957
1958 /*
1959 * Stop the adapter and free any mbufs allocated to the
1960 * RX and TX lists.
1961 */
1962 static void
1963 re_stop(struct ifnet *ifp, int disable)
1964 {
1965 int i;
1966 struct rtk_softc *sc = ifp->if_softc;
1967
1968 callout_stop(&sc->rtk_tick_ch);
1969
1970 mii_down(&sc->mii);
1971
1972 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
1973 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
1974 RTK_CMD_RX_ENB);
1975 else
1976 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1977 DELAY(1000);
1978 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1979 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
1980
1981 if (sc->re_head != NULL) {
1982 m_freem(sc->re_head);
1983 sc->re_head = sc->re_tail = NULL;
1984 }
1985
1986 /* Free the TX list buffers. */
1987 for (i = 0; i < RE_TX_QLEN; i++) {
1988 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1989 bus_dmamap_unload(sc->sc_dmat,
1990 sc->re_ldata.re_txq[i].txq_dmamap);
1991 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1992 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1993 }
1994 }
1995
1996 /* Free the RX list buffers. */
1997 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1998 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
1999 bus_dmamap_unload(sc->sc_dmat,
2000 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2001 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2002 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2003 }
2004 }
2005
2006 if (disable)
2007 re_disable(sc);
2008
2009 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2010 ifp->if_timer = 0;
2011 }
2012