rtl8169.c revision 1.131 1 /* $NetBSD: rtl8169.c,v 1.131 2010/04/09 10:40:59 nonaka Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.131 2010/04/09 10:40:59 nonaka Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137
138 #include <sys/bus.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142
143 #include <dev/ic/rtl81x9reg.h>
144 #include <dev/ic/rtl81x9var.h>
145
146 #include <dev/ic/rtl8169var.h>
147
148 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
149
150 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
151 static int re_rx_list_init(struct rtk_softc *);
152 static int re_tx_list_init(struct rtk_softc *);
153 static void re_rxeof(struct rtk_softc *);
154 static void re_txeof(struct rtk_softc *);
155 static void re_tick(void *);
156 static void re_start(struct ifnet *);
157 static int re_ioctl(struct ifnet *, u_long, void *);
158 static int re_init(struct ifnet *);
159 static void re_stop(struct ifnet *, int);
160 static void re_watchdog(struct ifnet *);
161
162 static int re_enable(struct rtk_softc *);
163 static void re_disable(struct rtk_softc *);
164
165 static int re_gmii_readreg(device_t, int, int);
166 static void re_gmii_writereg(device_t, int, int, int);
167
168 static int re_miibus_readreg(device_t, int, int);
169 static void re_miibus_writereg(device_t, int, int, int);
170 static void re_miibus_statchg(device_t);
171
172 static void re_reset(struct rtk_softc *);
173
174 static inline void
175 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
176 {
177
178 d->re_bufaddr_lo = htole32((uint32_t)addr);
179 if (sizeof(bus_addr_t) == sizeof(uint64_t))
180 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
181 else
182 d->re_bufaddr_hi = 0;
183 }
184
185 static int
186 re_gmii_readreg(device_t dev, int phy, int reg)
187 {
188 struct rtk_softc *sc = device_private(dev);
189 uint32_t rval;
190 int i;
191
192 if (phy != 7)
193 return 0;
194
195 /* Let the rgephy driver read the GMEDIASTAT register */
196
197 if (reg == RTK_GMEDIASTAT) {
198 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
199 return rval;
200 }
201
202 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
203 DELAY(1000);
204
205 for (i = 0; i < RTK_TIMEOUT; i++) {
206 rval = CSR_READ_4(sc, RTK_PHYAR);
207 if (rval & RTK_PHYAR_BUSY)
208 break;
209 DELAY(100);
210 }
211
212 if (i == RTK_TIMEOUT) {
213 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
214 return 0;
215 }
216
217 return rval & RTK_PHYAR_PHYDATA;
218 }
219
220 static void
221 re_gmii_writereg(device_t dev, int phy, int reg, int data)
222 {
223 struct rtk_softc *sc = device_private(dev);
224 uint32_t rval;
225 int i;
226
227 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
228 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
229 DELAY(1000);
230
231 for (i = 0; i < RTK_TIMEOUT; i++) {
232 rval = CSR_READ_4(sc, RTK_PHYAR);
233 if (!(rval & RTK_PHYAR_BUSY))
234 break;
235 DELAY(100);
236 }
237
238 if (i == RTK_TIMEOUT) {
239 printf("%s: PHY write reg %x <- %x failed\n",
240 device_xname(sc->sc_dev), reg, data);
241 }
242 }
243
244 static int
245 re_miibus_readreg(device_t dev, int phy, int reg)
246 {
247 struct rtk_softc *sc = device_private(dev);
248 uint16_t rval = 0;
249 uint16_t re8139_reg = 0;
250 int s;
251
252 s = splnet();
253
254 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
255 rval = re_gmii_readreg(dev, phy, reg);
256 splx(s);
257 return rval;
258 }
259
260 /* Pretend the internal PHY is only at address 0 */
261 if (phy) {
262 splx(s);
263 return 0;
264 }
265 switch (reg) {
266 case MII_BMCR:
267 re8139_reg = RTK_BMCR;
268 break;
269 case MII_BMSR:
270 re8139_reg = RTK_BMSR;
271 break;
272 case MII_ANAR:
273 re8139_reg = RTK_ANAR;
274 break;
275 case MII_ANER:
276 re8139_reg = RTK_ANER;
277 break;
278 case MII_ANLPAR:
279 re8139_reg = RTK_LPAR;
280 break;
281 case MII_PHYIDR1:
282 case MII_PHYIDR2:
283 splx(s);
284 return 0;
285 /*
286 * Allow the rlphy driver to read the media status
287 * register. If we have a link partner which does not
288 * support NWAY, this is the register which will tell
289 * us the results of parallel detection.
290 */
291 case RTK_MEDIASTAT:
292 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
293 splx(s);
294 return rval;
295 default:
296 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
297 splx(s);
298 return 0;
299 }
300 rval = CSR_READ_2(sc, re8139_reg);
301 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
302 /* 8139C+ has different bit layout. */
303 rval &= ~(BMCR_LOOP | BMCR_ISO);
304 }
305 splx(s);
306 return rval;
307 }
308
309 static void
310 re_miibus_writereg(device_t dev, int phy, int reg, int data)
311 {
312 struct rtk_softc *sc = device_private(dev);
313 uint16_t re8139_reg = 0;
314 int s;
315
316 s = splnet();
317
318 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
319 re_gmii_writereg(dev, phy, reg, data);
320 splx(s);
321 return;
322 }
323
324 /* Pretend the internal PHY is only at address 0 */
325 if (phy) {
326 splx(s);
327 return;
328 }
329 switch (reg) {
330 case MII_BMCR:
331 re8139_reg = RTK_BMCR;
332 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
333 /* 8139C+ has different bit layout. */
334 data &= ~(BMCR_LOOP | BMCR_ISO);
335 }
336 break;
337 case MII_BMSR:
338 re8139_reg = RTK_BMSR;
339 break;
340 case MII_ANAR:
341 re8139_reg = RTK_ANAR;
342 break;
343 case MII_ANER:
344 re8139_reg = RTK_ANER;
345 break;
346 case MII_ANLPAR:
347 re8139_reg = RTK_LPAR;
348 break;
349 case MII_PHYIDR1:
350 case MII_PHYIDR2:
351 splx(s);
352 return;
353 break;
354 default:
355 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
356 splx(s);
357 return;
358 }
359 CSR_WRITE_2(sc, re8139_reg, data);
360 splx(s);
361 return;
362 }
363
364 static void
365 re_miibus_statchg(device_t dev)
366 {
367
368 return;
369 }
370
371 static void
372 re_reset(struct rtk_softc *sc)
373 {
374 int i;
375
376 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
377
378 for (i = 0; i < RTK_TIMEOUT; i++) {
379 DELAY(10);
380 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
381 break;
382 }
383 if (i == RTK_TIMEOUT)
384 printf("%s: reset never completed!\n",
385 device_xname(sc->sc_dev));
386
387 /*
388 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
389 * but also says "Rtl8169s sigle chip detected".
390 */
391 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
392 CSR_WRITE_1(sc, RTK_LDPS, 1);
393
394 }
395
396 /*
397 * The following routine is designed to test for a defect on some
398 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
399 * lines connected to the bus, however for a 32-bit only card, they
400 * should be pulled high. The result of this defect is that the
401 * NIC will not work right if you plug it into a 64-bit slot: DMA
402 * operations will be done with 64-bit transfers, which will fail
403 * because the 64-bit data lines aren't connected.
404 *
405 * There's no way to work around this (short of talking a soldering
406 * iron to the board), however we can detect it. The method we use
407 * here is to put the NIC into digital loopback mode, set the receiver
408 * to promiscuous mode, and then try to send a frame. We then compare
409 * the frame data we sent to what was received. If the data matches,
410 * then the NIC is working correctly, otherwise we know the user has
411 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
412 * slot. In the latter case, there's no way the NIC can work correctly,
413 * so we print out a message on the console and abort the device attach.
414 */
415
416 int
417 re_diag(struct rtk_softc *sc)
418 {
419 struct ifnet *ifp = &sc->ethercom.ec_if;
420 struct mbuf *m0;
421 struct ether_header *eh;
422 struct re_rxsoft *rxs;
423 struct re_desc *cur_rx;
424 bus_dmamap_t dmamap;
425 uint16_t status;
426 uint32_t rxstat;
427 int total_len, i, s, error = 0;
428 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
429 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
430
431 /* Allocate a single mbuf */
432
433 MGETHDR(m0, M_DONTWAIT, MT_DATA);
434 if (m0 == NULL)
435 return ENOBUFS;
436
437 /*
438 * Initialize the NIC in test mode. This sets the chip up
439 * so that it can send and receive frames, but performs the
440 * following special functions:
441 * - Puts receiver in promiscuous mode
442 * - Enables digital loopback mode
443 * - Leaves interrupts turned off
444 */
445
446 ifp->if_flags |= IFF_PROMISC;
447 sc->re_testmode = 1;
448 re_init(ifp);
449 re_stop(ifp, 0);
450 DELAY(100000);
451 re_init(ifp);
452
453 /* Put some data in the mbuf */
454
455 eh = mtod(m0, struct ether_header *);
456 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
457 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
458 eh->ether_type = htons(ETHERTYPE_IP);
459 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
460
461 /*
462 * Queue the packet, start transmission.
463 */
464
465 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
466 s = splnet();
467 IF_ENQUEUE(&ifp->if_snd, m0);
468 re_start(ifp);
469 splx(s);
470 m0 = NULL;
471
472 /* Wait for it to propagate through the chip */
473
474 DELAY(100000);
475 for (i = 0; i < RTK_TIMEOUT; i++) {
476 status = CSR_READ_2(sc, RTK_ISR);
477 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
478 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
479 break;
480 DELAY(10);
481 }
482 if (i == RTK_TIMEOUT) {
483 aprint_error_dev(sc->sc_dev,
484 "diagnostic failed, failed to receive packet "
485 "in loopback mode\n");
486 error = EIO;
487 goto done;
488 }
489
490 /*
491 * The packet should have been dumped into the first
492 * entry in the RX DMA ring. Grab it from there.
493 */
494
495 rxs = &sc->re_ldata.re_rxsoft[0];
496 dmamap = rxs->rxs_dmamap;
497 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
498 BUS_DMASYNC_POSTREAD);
499 bus_dmamap_unload(sc->sc_dmat, dmamap);
500
501 m0 = rxs->rxs_mbuf;
502 rxs->rxs_mbuf = NULL;
503 eh = mtod(m0, struct ether_header *);
504
505 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
506 cur_rx = &sc->re_ldata.re_rx_list[0];
507 rxstat = le32toh(cur_rx->re_cmdstat);
508 total_len = rxstat & sc->re_rxlenmask;
509
510 if (total_len != ETHER_MIN_LEN) {
511 aprint_error_dev(sc->sc_dev,
512 "diagnostic failed, received short packet\n");
513 error = EIO;
514 goto done;
515 }
516
517 /* Test that the received packet data matches what we sent. */
518
519 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
520 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
521 ntohs(eh->ether_type) != ETHERTYPE_IP) {
522 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
523 "expected TX data: %s/%s/0x%x\n"
524 "received RX data: %s/%s/0x%x\n"
525 "You may have a defective 32-bit NIC plugged "
526 "into a 64-bit PCI slot.\n"
527 "Please re-install the NIC in a 32-bit slot "
528 "for proper operation.\n"
529 "Read the re(4) man page for more details.\n" ,
530 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
531 ether_sprintf(eh->ether_dhost),
532 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
533 error = EIO;
534 }
535
536 done:
537 /* Turn interface off, release resources */
538
539 sc->re_testmode = 0;
540 ifp->if_flags &= ~IFF_PROMISC;
541 re_stop(ifp, 0);
542 if (m0 != NULL)
543 m_freem(m0);
544
545 return error;
546 }
547
548
549 /*
550 * Attach the interface. Allocate softc structures, do ifmedia
551 * setup and ethernet/BPF attach.
552 */
553 void
554 re_attach(struct rtk_softc *sc)
555 {
556 uint8_t eaddr[ETHER_ADDR_LEN];
557 uint16_t val;
558 struct ifnet *ifp;
559 int error = 0, i, addr_len;
560
561 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
562 uint32_t hwrev;
563
564 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
565 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
566 switch (hwrev) {
567 case RTK_HWREV_8169:
568 sc->sc_quirk |= RTKQ_8169NONS;
569 break;
570 case RTK_HWREV_8169S:
571 case RTK_HWREV_8110S:
572 case RTK_HWREV_8169_8110SB:
573 case RTK_HWREV_8169_8110SBL:
574 case RTK_HWREV_8169_8110SC:
575 sc->sc_quirk |= RTKQ_MACLDPS;
576 break;
577 case RTK_HWREV_8168_SPIN1:
578 case RTK_HWREV_8168_SPIN2:
579 case RTK_HWREV_8168_SPIN3:
580 sc->sc_quirk |= RTKQ_MACSTAT;
581 break;
582 case RTK_HWREV_8168C:
583 case RTK_HWREV_8168C_SPIN2:
584 case RTK_HWREV_8168CP:
585 case RTK_HWREV_8168D:
586 case RTK_HWREV_8168DP:
587 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
588 RTKQ_MACSTAT | RTKQ_CMDSTOP;
589 /*
590 * From FreeBSD driver:
591 *
592 * These (8168/8111) controllers support jumbo frame
593 * but it seems that enabling it requires touching
594 * additional magic registers. Depending on MAC
595 * revisions some controllers need to disable
596 * checksum offload. So disable jumbo frame until
597 * I have better idea what it really requires to
598 * make it support.
599 * RTL8168C/CP : supports up to 6KB jumbo frame.
600 * RTL8111C/CP : supports up to 9KB jumbo frame.
601 */
602 sc->sc_quirk |= RTKQ_NOJUMBO;
603 break;
604 case RTK_HWREV_8100E:
605 case RTK_HWREV_8100E_SPIN2:
606 case RTK_HWREV_8101E:
607 sc->sc_quirk |= RTKQ_NOJUMBO;
608 break;
609 case RTK_HWREV_8102E:
610 case RTK_HWREV_8102EL:
611 case RTK_HWREV_8103E:
612 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
613 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
614 break;
615 default:
616 aprint_normal_dev(sc->sc_dev,
617 "Unknown revision (0x%08x)\n", hwrev);
618 /* assume the latest features */
619 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
620 sc->sc_quirk |= RTKQ_NOJUMBO;
621 }
622
623 /* Set RX length mask */
624 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
625 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
626 } else {
627 sc->sc_quirk |= RTKQ_NOJUMBO;
628
629 /* Set RX length mask */
630 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
631 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
632 }
633
634 /* Reset the adapter. */
635 re_reset(sc);
636
637 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
638 /*
639 * Get station address from ID registers.
640 */
641 for (i = 0; i < ETHER_ADDR_LEN; i++)
642 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
643 } else {
644 /*
645 * Get station address from the EEPROM.
646 */
647 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
648 addr_len = RTK_EEADDR_LEN1;
649 else
650 addr_len = RTK_EEADDR_LEN0;
651
652 /*
653 * Get station address from the EEPROM.
654 */
655 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
656 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
657 eaddr[(i * 2) + 0] = val & 0xff;
658 eaddr[(i * 2) + 1] = val >> 8;
659 }
660 }
661
662 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
663 ether_sprintf(eaddr));
664
665 if (sc->re_ldata.re_tx_desc_cnt >
666 PAGE_SIZE / sizeof(struct re_desc)) {
667 sc->re_ldata.re_tx_desc_cnt =
668 PAGE_SIZE / sizeof(struct re_desc);
669 }
670
671 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
672 sc->re_ldata.re_tx_desc_cnt);
673 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
674
675 /* Allocate DMA'able memory for the TX ring */
676 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
677 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
678 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
679 aprint_error_dev(sc->sc_dev,
680 "can't allocate tx listseg, error = %d\n", error);
681 goto fail_0;
682 }
683
684 /* Load the map for the TX ring. */
685 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
686 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
687 (void **)&sc->re_ldata.re_tx_list,
688 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
689 aprint_error_dev(sc->sc_dev,
690 "can't map tx list, error = %d\n", error);
691 goto fail_1;
692 }
693 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
694
695 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
696 RE_TX_LIST_SZ(sc), 0, 0,
697 &sc->re_ldata.re_tx_list_map)) != 0) {
698 aprint_error_dev(sc->sc_dev,
699 "can't create tx list map, error = %d\n", error);
700 goto fail_2;
701 }
702
703
704 if ((error = bus_dmamap_load(sc->sc_dmat,
705 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
706 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
707 aprint_error_dev(sc->sc_dev,
708 "can't load tx list, error = %d\n", error);
709 goto fail_3;
710 }
711
712 /* Create DMA maps for TX buffers */
713 for (i = 0; i < RE_TX_QLEN; i++) {
714 error = bus_dmamap_create(sc->sc_dmat,
715 round_page(IP_MAXPACKET),
716 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
717 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
718 if (error) {
719 aprint_error_dev(sc->sc_dev,
720 "can't create DMA map for TX\n");
721 goto fail_4;
722 }
723 }
724
725 /* Allocate DMA'able memory for the RX ring */
726 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
727 if ((error = bus_dmamem_alloc(sc->sc_dmat,
728 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
729 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
730 aprint_error_dev(sc->sc_dev,
731 "can't allocate rx listseg, error = %d\n", error);
732 goto fail_4;
733 }
734
735 /* Load the map for the RX ring. */
736 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
737 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
738 (void **)&sc->re_ldata.re_rx_list,
739 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
740 aprint_error_dev(sc->sc_dev,
741 "can't map rx list, error = %d\n", error);
742 goto fail_5;
743 }
744 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
745
746 if ((error = bus_dmamap_create(sc->sc_dmat,
747 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
748 &sc->re_ldata.re_rx_list_map)) != 0) {
749 aprint_error_dev(sc->sc_dev,
750 "can't create rx list map, error = %d\n", error);
751 goto fail_6;
752 }
753
754 if ((error = bus_dmamap_load(sc->sc_dmat,
755 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
756 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
757 aprint_error_dev(sc->sc_dev,
758 "can't load rx list, error = %d\n", error);
759 goto fail_7;
760 }
761
762 /* Create DMA maps for RX buffers */
763 for (i = 0; i < RE_RX_DESC_CNT; i++) {
764 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
765 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
766 if (error) {
767 aprint_error_dev(sc->sc_dev,
768 "can't create DMA map for RX\n");
769 goto fail_8;
770 }
771 }
772
773 /*
774 * Record interface as attached. From here, we should not fail.
775 */
776 sc->sc_flags |= RTK_ATTACHED;
777
778 ifp = &sc->ethercom.ec_if;
779 ifp->if_softc = sc;
780 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
781 ifp->if_mtu = ETHERMTU;
782 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
783 ifp->if_ioctl = re_ioctl;
784 sc->ethercom.ec_capabilities |=
785 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
786 ifp->if_start = re_start;
787 ifp->if_stop = re_stop;
788
789 /*
790 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
791 * so we have a workaround to handle the bug by padding
792 * such packets manually.
793 */
794 ifp->if_capabilities |=
795 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
796 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
797 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
798 IFCAP_TSOv4;
799
800 /*
801 * XXX
802 * Still have no idea how to make TSO work on 8168C, 8168CP,
803 * 8102E, 8111C and 8111CP.
804 */
805 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
806 ifp->if_capabilities &= ~IFCAP_TSOv4;
807
808 ifp->if_watchdog = re_watchdog;
809 ifp->if_init = re_init;
810 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
811 ifp->if_capenable = ifp->if_capabilities;
812 IFQ_SET_READY(&ifp->if_snd);
813
814 callout_init(&sc->rtk_tick_ch, 0);
815
816 /* Do MII setup */
817 sc->mii.mii_ifp = ifp;
818 sc->mii.mii_readreg = re_miibus_readreg;
819 sc->mii.mii_writereg = re_miibus_writereg;
820 sc->mii.mii_statchg = re_miibus_statchg;
821 sc->ethercom.ec_mii = &sc->mii;
822 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
823 ether_mediastatus);
824 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
825 MII_OFFSET_ANY, 0);
826 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
827
828 /*
829 * Call MI attach routine.
830 */
831 if_attach(ifp);
832 ether_ifattach(ifp, eaddr);
833
834 if (pmf_device_register(sc->sc_dev, NULL, NULL))
835 pmf_class_network_register(sc->sc_dev, ifp);
836 else
837 aprint_error_dev(sc->sc_dev,
838 "couldn't establish power handler\n");
839
840 return;
841
842 fail_8:
843 /* Destroy DMA maps for RX buffers. */
844 for (i = 0; i < RE_RX_DESC_CNT; i++)
845 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
846 bus_dmamap_destroy(sc->sc_dmat,
847 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
848
849 /* Free DMA'able memory for the RX ring. */
850 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
851 fail_7:
852 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
853 fail_6:
854 bus_dmamem_unmap(sc->sc_dmat,
855 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
856 fail_5:
857 bus_dmamem_free(sc->sc_dmat,
858 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
859
860 fail_4:
861 /* Destroy DMA maps for TX buffers. */
862 for (i = 0; i < RE_TX_QLEN; i++)
863 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
864 bus_dmamap_destroy(sc->sc_dmat,
865 sc->re_ldata.re_txq[i].txq_dmamap);
866
867 /* Free DMA'able memory for the TX ring. */
868 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
869 fail_3:
870 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
871 fail_2:
872 bus_dmamem_unmap(sc->sc_dmat,
873 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
874 fail_1:
875 bus_dmamem_free(sc->sc_dmat,
876 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
877 fail_0:
878 return;
879 }
880
881
882 /*
883 * re_activate:
884 * Handle device activation/deactivation requests.
885 */
886 int
887 re_activate(device_t self, enum devact act)
888 {
889 struct rtk_softc *sc = device_private(self);
890
891 switch (act) {
892 case DVACT_DEACTIVATE:
893 if_deactivate(&sc->ethercom.ec_if);
894 return 0;
895 default:
896 return EOPNOTSUPP;
897 }
898 }
899
900 /*
901 * re_detach:
902 * Detach a rtk interface.
903 */
904 int
905 re_detach(struct rtk_softc *sc)
906 {
907 struct ifnet *ifp = &sc->ethercom.ec_if;
908 int i;
909
910 /*
911 * Succeed now if there isn't any work to do.
912 */
913 if ((sc->sc_flags & RTK_ATTACHED) == 0)
914 return 0;
915
916 /* Unhook our tick handler. */
917 callout_stop(&sc->rtk_tick_ch);
918
919 /* Detach all PHYs. */
920 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
921
922 /* Delete all remaining media. */
923 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
924
925 ether_ifdetach(ifp);
926 if_detach(ifp);
927
928 /* Destroy DMA maps for RX buffers. */
929 for (i = 0; i < RE_RX_DESC_CNT; i++)
930 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
931 bus_dmamap_destroy(sc->sc_dmat,
932 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
933
934 /* Free DMA'able memory for the RX ring. */
935 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
936 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
937 bus_dmamem_unmap(sc->sc_dmat,
938 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
939 bus_dmamem_free(sc->sc_dmat,
940 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
941
942 /* Destroy DMA maps for TX buffers. */
943 for (i = 0; i < RE_TX_QLEN; i++)
944 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
945 bus_dmamap_destroy(sc->sc_dmat,
946 sc->re_ldata.re_txq[i].txq_dmamap);
947
948 /* Free DMA'able memory for the TX ring. */
949 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
950 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
951 bus_dmamem_unmap(sc->sc_dmat,
952 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
953 bus_dmamem_free(sc->sc_dmat,
954 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
955
956 pmf_device_deregister(sc->sc_dev);
957
958 return 0;
959 }
960
961 /*
962 * re_enable:
963 * Enable the RTL81X9 chip.
964 */
965 static int
966 re_enable(struct rtk_softc *sc)
967 {
968
969 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
970 if ((*sc->sc_enable)(sc) != 0) {
971 printf("%s: device enable failed\n",
972 device_xname(sc->sc_dev));
973 return EIO;
974 }
975 sc->sc_flags |= RTK_ENABLED;
976 }
977 return 0;
978 }
979
980 /*
981 * re_disable:
982 * Disable the RTL81X9 chip.
983 */
984 static void
985 re_disable(struct rtk_softc *sc)
986 {
987
988 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
989 (*sc->sc_disable)(sc);
990 sc->sc_flags &= ~RTK_ENABLED;
991 }
992 }
993
994 static int
995 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
996 {
997 struct mbuf *n = NULL;
998 bus_dmamap_t map;
999 struct re_desc *d;
1000 struct re_rxsoft *rxs;
1001 uint32_t cmdstat;
1002 int error;
1003
1004 if (m == NULL) {
1005 MGETHDR(n, M_DONTWAIT, MT_DATA);
1006 if (n == NULL)
1007 return ENOBUFS;
1008
1009 MCLGET(n, M_DONTWAIT);
1010 if ((n->m_flags & M_EXT) == 0) {
1011 m_freem(n);
1012 return ENOBUFS;
1013 }
1014 m = n;
1015 } else
1016 m->m_data = m->m_ext.ext_buf;
1017
1018 /*
1019 * Initialize mbuf length fields and fixup
1020 * alignment so that the frame payload is
1021 * longword aligned.
1022 */
1023 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1024 m->m_data += RE_ETHER_ALIGN;
1025
1026 rxs = &sc->re_ldata.re_rxsoft[idx];
1027 map = rxs->rxs_dmamap;
1028 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1029 BUS_DMA_READ|BUS_DMA_NOWAIT);
1030
1031 if (error)
1032 goto out;
1033
1034 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1035 BUS_DMASYNC_PREREAD);
1036
1037 d = &sc->re_ldata.re_rx_list[idx];
1038 #ifdef DIAGNOSTIC
1039 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1040 cmdstat = le32toh(d->re_cmdstat);
1041 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1042 if (cmdstat & RE_RDESC_STAT_OWN) {
1043 panic("%s: tried to map busy RX descriptor",
1044 device_xname(sc->sc_dev));
1045 }
1046 #endif
1047
1048 rxs->rxs_mbuf = m;
1049
1050 d->re_vlanctl = 0;
1051 cmdstat = map->dm_segs[0].ds_len;
1052 if (idx == (RE_RX_DESC_CNT - 1))
1053 cmdstat |= RE_RDESC_CMD_EOR;
1054 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1055 d->re_cmdstat = htole32(cmdstat);
1056 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1057 cmdstat |= RE_RDESC_CMD_OWN;
1058 d->re_cmdstat = htole32(cmdstat);
1059 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1060
1061 return 0;
1062 out:
1063 if (n != NULL)
1064 m_freem(n);
1065 return ENOMEM;
1066 }
1067
1068 static int
1069 re_tx_list_init(struct rtk_softc *sc)
1070 {
1071 int i;
1072
1073 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1074 for (i = 0; i < RE_TX_QLEN; i++) {
1075 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1076 }
1077
1078 bus_dmamap_sync(sc->sc_dmat,
1079 sc->re_ldata.re_tx_list_map, 0,
1080 sc->re_ldata.re_tx_list_map->dm_mapsize,
1081 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1082 sc->re_ldata.re_txq_prodidx = 0;
1083 sc->re_ldata.re_txq_considx = 0;
1084 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1085 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1086 sc->re_ldata.re_tx_nextfree = 0;
1087
1088 return 0;
1089 }
1090
1091 static int
1092 re_rx_list_init(struct rtk_softc *sc)
1093 {
1094 int i;
1095
1096 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1097
1098 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1099 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1100 return ENOBUFS;
1101 }
1102
1103 sc->re_ldata.re_rx_prodidx = 0;
1104 sc->re_head = sc->re_tail = NULL;
1105
1106 return 0;
1107 }
1108
1109 /*
1110 * RX handler for C+ and 8169. For the gigE chips, we support
1111 * the reception of jumbo frames that have been fragmented
1112 * across multiple 2K mbuf cluster buffers.
1113 */
1114 static void
1115 re_rxeof(struct rtk_softc *sc)
1116 {
1117 struct mbuf *m;
1118 struct ifnet *ifp;
1119 int i, total_len;
1120 struct re_desc *cur_rx;
1121 struct re_rxsoft *rxs;
1122 uint32_t rxstat, rxvlan;
1123
1124 ifp = &sc->ethercom.ec_if;
1125
1126 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1127 cur_rx = &sc->re_ldata.re_rx_list[i];
1128 RE_RXDESCSYNC(sc, i,
1129 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1130 rxstat = le32toh(cur_rx->re_cmdstat);
1131 rxvlan = le32toh(cur_rx->re_vlanctl);
1132 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1133 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1134 break;
1135 }
1136 total_len = rxstat & sc->re_rxlenmask;
1137 rxs = &sc->re_ldata.re_rxsoft[i];
1138 m = rxs->rxs_mbuf;
1139
1140 /* Invalidate the RX mbuf and unload its map */
1141
1142 bus_dmamap_sync(sc->sc_dmat,
1143 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1144 BUS_DMASYNC_POSTREAD);
1145 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1146
1147 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1148 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1149 if (sc->re_head == NULL)
1150 sc->re_head = sc->re_tail = m;
1151 else {
1152 m->m_flags &= ~M_PKTHDR;
1153 sc->re_tail->m_next = m;
1154 sc->re_tail = m;
1155 }
1156 re_newbuf(sc, i, NULL);
1157 continue;
1158 }
1159
1160 /*
1161 * NOTE: for the 8139C+, the frame length field
1162 * is always 12 bits in size, but for the gigE chips,
1163 * it is 13 bits (since the max RX frame length is 16K).
1164 * Unfortunately, all 32 bits in the status word
1165 * were already used, so to make room for the extra
1166 * length bit, RealTek took out the 'frame alignment
1167 * error' bit and shifted the other status bits
1168 * over one slot. The OWN, EOR, FS and LS bits are
1169 * still in the same places. We have already extracted
1170 * the frame length and checked the OWN bit, so rather
1171 * than using an alternate bit mapping, we shift the
1172 * status bits one space to the right so we can evaluate
1173 * them using the 8169 status as though it was in the
1174 * same format as that of the 8139C+.
1175 */
1176 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1177 rxstat >>= 1;
1178
1179 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1180 #ifdef RE_DEBUG
1181 printf("%s: RX error (rxstat = 0x%08x)",
1182 device_xname(sc->sc_dev), rxstat);
1183 if (rxstat & RE_RDESC_STAT_FRALIGN)
1184 printf(", frame alignment error");
1185 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1186 printf(", out of buffer space");
1187 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1188 printf(", FIFO overrun");
1189 if (rxstat & RE_RDESC_STAT_GIANT)
1190 printf(", giant packet");
1191 if (rxstat & RE_RDESC_STAT_RUNT)
1192 printf(", runt packet");
1193 if (rxstat & RE_RDESC_STAT_CRCERR)
1194 printf(", CRC error");
1195 printf("\n");
1196 #endif
1197 ifp->if_ierrors++;
1198 /*
1199 * If this is part of a multi-fragment packet,
1200 * discard all the pieces.
1201 */
1202 if (sc->re_head != NULL) {
1203 m_freem(sc->re_head);
1204 sc->re_head = sc->re_tail = NULL;
1205 }
1206 re_newbuf(sc, i, m);
1207 continue;
1208 }
1209
1210 /*
1211 * If allocating a replacement mbuf fails,
1212 * reload the current one.
1213 */
1214
1215 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1216 ifp->if_ierrors++;
1217 if (sc->re_head != NULL) {
1218 m_freem(sc->re_head);
1219 sc->re_head = sc->re_tail = NULL;
1220 }
1221 re_newbuf(sc, i, m);
1222 continue;
1223 }
1224
1225 if (sc->re_head != NULL) {
1226 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1227 /*
1228 * Special case: if there's 4 bytes or less
1229 * in this buffer, the mbuf can be discarded:
1230 * the last 4 bytes is the CRC, which we don't
1231 * care about anyway.
1232 */
1233 if (m->m_len <= ETHER_CRC_LEN) {
1234 sc->re_tail->m_len -=
1235 (ETHER_CRC_LEN - m->m_len);
1236 m_freem(m);
1237 } else {
1238 m->m_len -= ETHER_CRC_LEN;
1239 m->m_flags &= ~M_PKTHDR;
1240 sc->re_tail->m_next = m;
1241 }
1242 m = sc->re_head;
1243 sc->re_head = sc->re_tail = NULL;
1244 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1245 } else
1246 m->m_pkthdr.len = m->m_len =
1247 (total_len - ETHER_CRC_LEN);
1248
1249 ifp->if_ipackets++;
1250 m->m_pkthdr.rcvif = ifp;
1251
1252 /* Do RX checksumming */
1253 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1254 /* Check IP header checksum */
1255 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1256 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1257 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1258 m->m_pkthdr.csum_flags |=
1259 M_CSUM_IPv4_BAD;
1260
1261 /* Check TCP/UDP checksum */
1262 if (RE_TCPPKT(rxstat)) {
1263 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1264 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1265 m->m_pkthdr.csum_flags |=
1266 M_CSUM_TCP_UDP_BAD;
1267 } else if (RE_UDPPKT(rxstat)) {
1268 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1269 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1270 m->m_pkthdr.csum_flags |=
1271 M_CSUM_TCP_UDP_BAD;
1272 }
1273 }
1274 } else {
1275 /* Check IPv4 header checksum */
1276 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1277 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1278 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1279 m->m_pkthdr.csum_flags |=
1280 M_CSUM_IPv4_BAD;
1281
1282 /* Check TCPv4/UDPv4 checksum */
1283 if (RE_TCPPKT(rxstat)) {
1284 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1285 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1286 m->m_pkthdr.csum_flags |=
1287 M_CSUM_TCP_UDP_BAD;
1288 } else if (RE_UDPPKT(rxstat)) {
1289 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1290 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1291 m->m_pkthdr.csum_flags |=
1292 M_CSUM_TCP_UDP_BAD;
1293 }
1294 }
1295 /* XXX Check TCPv6/UDPv6 checksum? */
1296 }
1297
1298 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1299 VLAN_INPUT_TAG(ifp, m,
1300 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1301 continue);
1302 }
1303 bpf_mtap(ifp, m);
1304 (*ifp->if_input)(ifp, m);
1305 }
1306
1307 sc->re_ldata.re_rx_prodidx = i;
1308 }
1309
1310 static void
1311 re_txeof(struct rtk_softc *sc)
1312 {
1313 struct ifnet *ifp;
1314 struct re_txq *txq;
1315 uint32_t txstat;
1316 int idx, descidx;
1317
1318 ifp = &sc->ethercom.ec_if;
1319
1320 for (idx = sc->re_ldata.re_txq_considx;
1321 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1322 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1323 txq = &sc->re_ldata.re_txq[idx];
1324 KASSERT(txq->txq_mbuf != NULL);
1325
1326 descidx = txq->txq_descidx;
1327 RE_TXDESCSYNC(sc, descidx,
1328 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1329 txstat =
1330 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1331 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1332 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1333 if (txstat & RE_TDESC_CMD_OWN) {
1334 break;
1335 }
1336
1337 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1338 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1339 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1340 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1341 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1342 m_freem(txq->txq_mbuf);
1343 txq->txq_mbuf = NULL;
1344
1345 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1346 ifp->if_collisions++;
1347 if (txstat & RE_TDESC_STAT_TXERRSUM)
1348 ifp->if_oerrors++;
1349 else
1350 ifp->if_opackets++;
1351 }
1352
1353 sc->re_ldata.re_txq_considx = idx;
1354
1355 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1356 ifp->if_flags &= ~IFF_OACTIVE;
1357
1358 /*
1359 * If not all descriptors have been released reaped yet,
1360 * reload the timer so that we will eventually get another
1361 * interrupt that will cause us to re-enter this routine.
1362 * This is done in case the transmitter has gone idle.
1363 */
1364 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1365 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1366 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1367 /*
1368 * Some chips will ignore a second TX request
1369 * issued while an existing transmission is in
1370 * progress. If the transmitter goes idle but
1371 * there are still packets waiting to be sent,
1372 * we need to restart the channel here to flush
1373 * them out. This only seems to be required with
1374 * the PCIe devices.
1375 */
1376 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1377 }
1378 } else
1379 ifp->if_timer = 0;
1380 }
1381
1382 static void
1383 re_tick(void *arg)
1384 {
1385 struct rtk_softc *sc = arg;
1386 int s;
1387
1388 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1389 s = splnet();
1390
1391 mii_tick(&sc->mii);
1392 splx(s);
1393
1394 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1395 }
1396
1397 int
1398 re_intr(void *arg)
1399 {
1400 struct rtk_softc *sc = arg;
1401 struct ifnet *ifp;
1402 uint16_t status;
1403 int handled = 0;
1404
1405 if (!device_has_power(sc->sc_dev))
1406 return 0;
1407
1408 ifp = &sc->ethercom.ec_if;
1409
1410 if ((ifp->if_flags & IFF_UP) == 0)
1411 return 0;
1412
1413 for (;;) {
1414
1415 status = CSR_READ_2(sc, RTK_ISR);
1416 /* If the card has gone away the read returns 0xffff. */
1417 if (status == 0xffff)
1418 break;
1419 if (status) {
1420 handled = 1;
1421 CSR_WRITE_2(sc, RTK_ISR, status);
1422 }
1423
1424 if ((status & RTK_INTRS_CPLUS) == 0)
1425 break;
1426
1427 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1428 re_rxeof(sc);
1429
1430 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1431 RTK_ISR_TX_DESC_UNAVAIL))
1432 re_txeof(sc);
1433
1434 if (status & RTK_ISR_SYSTEM_ERR) {
1435 re_init(ifp);
1436 }
1437
1438 if (status & RTK_ISR_LINKCHG) {
1439 callout_stop(&sc->rtk_tick_ch);
1440 re_tick(sc);
1441 }
1442 }
1443
1444 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1445 re_start(ifp);
1446
1447 return handled;
1448 }
1449
1450
1451
1452 /*
1453 * Main transmit routine for C+ and gigE NICs.
1454 */
1455
1456 static void
1457 re_start(struct ifnet *ifp)
1458 {
1459 struct rtk_softc *sc;
1460 struct mbuf *m;
1461 bus_dmamap_t map;
1462 struct re_txq *txq;
1463 struct re_desc *d;
1464 struct m_tag *mtag;
1465 uint32_t cmdstat, re_flags, vlanctl;
1466 int ofree, idx, error, nsegs, seg;
1467 int startdesc, curdesc, lastdesc;
1468 bool pad;
1469
1470 sc = ifp->if_softc;
1471 ofree = sc->re_ldata.re_txq_free;
1472
1473 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1474
1475 IFQ_POLL(&ifp->if_snd, m);
1476 if (m == NULL)
1477 break;
1478
1479 if (sc->re_ldata.re_txq_free == 0 ||
1480 sc->re_ldata.re_tx_free == 0) {
1481 /* no more free slots left */
1482 ifp->if_flags |= IFF_OACTIVE;
1483 break;
1484 }
1485
1486 /*
1487 * Set up checksum offload. Note: checksum offload bits must
1488 * appear in all descriptors of a multi-descriptor transmit
1489 * attempt. (This is according to testing done with an 8169
1490 * chip. I'm not sure if this is a requirement or a bug.)
1491 */
1492
1493 vlanctl = 0;
1494 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1495 uint32_t segsz = m->m_pkthdr.segsz;
1496
1497 re_flags = RE_TDESC_CMD_LGSEND |
1498 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1499 } else {
1500 /*
1501 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1502 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1503 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1504 */
1505 re_flags = 0;
1506 if ((m->m_pkthdr.csum_flags &
1507 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1508 != 0) {
1509 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1510 re_flags |= RE_TDESC_CMD_IPCSUM;
1511 if (m->m_pkthdr.csum_flags &
1512 M_CSUM_TCPv4) {
1513 re_flags |=
1514 RE_TDESC_CMD_TCPCSUM;
1515 } else if (m->m_pkthdr.csum_flags &
1516 M_CSUM_UDPv4) {
1517 re_flags |=
1518 RE_TDESC_CMD_UDPCSUM;
1519 }
1520 } else {
1521 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1522 if (m->m_pkthdr.csum_flags &
1523 M_CSUM_TCPv4) {
1524 vlanctl |=
1525 RE_TDESC_VLANCTL_TCPCSUM;
1526 } else if (m->m_pkthdr.csum_flags &
1527 M_CSUM_UDPv4) {
1528 vlanctl |=
1529 RE_TDESC_VLANCTL_UDPCSUM;
1530 }
1531 }
1532 }
1533 }
1534
1535 txq = &sc->re_ldata.re_txq[idx];
1536 map = txq->txq_dmamap;
1537 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1538 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1539
1540 if (__predict_false(error)) {
1541 /* XXX try to defrag if EFBIG? */
1542 printf("%s: can't map mbuf (error %d)\n",
1543 device_xname(sc->sc_dev), error);
1544
1545 IFQ_DEQUEUE(&ifp->if_snd, m);
1546 m_freem(m);
1547 ifp->if_oerrors++;
1548 continue;
1549 }
1550
1551 nsegs = map->dm_nsegs;
1552 pad = false;
1553 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1554 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1555 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1556 pad = true;
1557 nsegs++;
1558 }
1559
1560 if (nsegs > sc->re_ldata.re_tx_free) {
1561 /*
1562 * Not enough free descriptors to transmit this packet.
1563 */
1564 ifp->if_flags |= IFF_OACTIVE;
1565 bus_dmamap_unload(sc->sc_dmat, map);
1566 break;
1567 }
1568
1569 IFQ_DEQUEUE(&ifp->if_snd, m);
1570
1571 /*
1572 * Make sure that the caches are synchronized before we
1573 * ask the chip to start DMA for the packet data.
1574 */
1575 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1576 BUS_DMASYNC_PREWRITE);
1577
1578 /*
1579 * Set up hardware VLAN tagging. Note: vlan tag info must
1580 * appear in all descriptors of a multi-descriptor
1581 * transmission attempt.
1582 */
1583 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1584 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1585 RE_TDESC_VLANCTL_TAG;
1586
1587 /*
1588 * Map the segment array into descriptors.
1589 * Note that we set the start-of-frame and
1590 * end-of-frame markers for either TX or RX,
1591 * but they really only have meaning in the TX case.
1592 * (In the RX case, it's the chip that tells us
1593 * where packets begin and end.)
1594 * We also keep track of the end of the ring
1595 * and set the end-of-ring bits as needed,
1596 * and we set the ownership bits in all except
1597 * the very first descriptor. (The caller will
1598 * set this descriptor later when it start
1599 * transmission or reception.)
1600 */
1601 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1602 lastdesc = -1;
1603 for (seg = 0; seg < map->dm_nsegs;
1604 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1605 d = &sc->re_ldata.re_tx_list[curdesc];
1606 #ifdef DIAGNOSTIC
1607 RE_TXDESCSYNC(sc, curdesc,
1608 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1609 cmdstat = le32toh(d->re_cmdstat);
1610 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1611 if (cmdstat & RE_TDESC_STAT_OWN) {
1612 panic("%s: tried to map busy TX descriptor",
1613 device_xname(sc->sc_dev));
1614 }
1615 #endif
1616
1617 d->re_vlanctl = htole32(vlanctl);
1618 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1619 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1620 if (seg == 0)
1621 cmdstat |= RE_TDESC_CMD_SOF;
1622 else
1623 cmdstat |= RE_TDESC_CMD_OWN;
1624 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1625 cmdstat |= RE_TDESC_CMD_EOR;
1626 if (seg == nsegs - 1) {
1627 cmdstat |= RE_TDESC_CMD_EOF;
1628 lastdesc = curdesc;
1629 }
1630 d->re_cmdstat = htole32(cmdstat);
1631 RE_TXDESCSYNC(sc, curdesc,
1632 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1633 }
1634 if (__predict_false(pad)) {
1635 d = &sc->re_ldata.re_tx_list[curdesc];
1636 d->re_vlanctl = htole32(vlanctl);
1637 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1638 cmdstat = re_flags |
1639 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1640 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1641 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1642 cmdstat |= RE_TDESC_CMD_EOR;
1643 d->re_cmdstat = htole32(cmdstat);
1644 RE_TXDESCSYNC(sc, curdesc,
1645 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1646 lastdesc = curdesc;
1647 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1648 }
1649 KASSERT(lastdesc != -1);
1650
1651 /* Transfer ownership of packet to the chip. */
1652
1653 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1654 htole32(RE_TDESC_CMD_OWN);
1655 RE_TXDESCSYNC(sc, startdesc,
1656 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1657
1658 /* update info of TX queue and descriptors */
1659 txq->txq_mbuf = m;
1660 txq->txq_descidx = lastdesc;
1661 txq->txq_nsegs = nsegs;
1662
1663 sc->re_ldata.re_txq_free--;
1664 sc->re_ldata.re_tx_free -= nsegs;
1665 sc->re_ldata.re_tx_nextfree = curdesc;
1666
1667 /*
1668 * If there's a BPF listener, bounce a copy of this frame
1669 * to him.
1670 */
1671 bpf_mtap(ifp, m);
1672 }
1673
1674 if (sc->re_ldata.re_txq_free < ofree) {
1675 /*
1676 * TX packets are enqueued.
1677 */
1678 sc->re_ldata.re_txq_prodidx = idx;
1679
1680 /*
1681 * Start the transmitter to poll.
1682 *
1683 * RealTek put the TX poll request register in a different
1684 * location on the 8169 gigE chip. I don't know why.
1685 */
1686 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1687 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1688 else
1689 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1690
1691 /*
1692 * Use the countdown timer for interrupt moderation.
1693 * 'TX done' interrupts are disabled. Instead, we reset the
1694 * countdown timer, which will begin counting until it hits
1695 * the value in the TIMERINT register, and then trigger an
1696 * interrupt. Each time we write to the TIMERCNT register,
1697 * the timer count is reset to 0.
1698 */
1699 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1700
1701 /*
1702 * Set a timeout in case the chip goes out to lunch.
1703 */
1704 ifp->if_timer = 5;
1705 }
1706 }
1707
1708 static int
1709 re_init(struct ifnet *ifp)
1710 {
1711 struct rtk_softc *sc = ifp->if_softc;
1712 const uint8_t *enaddr;
1713 uint32_t rxcfg = 0;
1714 uint32_t reg;
1715 uint16_t cfg;
1716 int error;
1717
1718 if ((error = re_enable(sc)) != 0)
1719 goto out;
1720
1721 /*
1722 * Cancel pending I/O and free all RX/TX buffers.
1723 */
1724 re_stop(ifp, 0);
1725
1726 re_reset(sc);
1727
1728 /*
1729 * Enable C+ RX and TX mode, as well as VLAN stripping and
1730 * RX checksum offload. We must configure the C+ register
1731 * before all others.
1732 */
1733 cfg = RE_CPLUSCMD_PCI_MRW;
1734
1735 /*
1736 * XXX: For old 8169 set bit 14.
1737 * For 8169S/8110S and above, do not set bit 14.
1738 */
1739 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1740 cfg |= (0x1 << 14);
1741
1742 if ((ifp->if_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1743 cfg |= RE_CPLUSCMD_VLANSTRIP;
1744 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1745 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1746 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1747 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1748 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1749 cfg |= RE_CPLUSCMD_TXENB;
1750 } else
1751 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1752
1753 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1754
1755 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1756 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1757 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1758
1759 DELAY(10000);
1760
1761 /*
1762 * Init our MAC address. Even though the chipset
1763 * documentation doesn't mention it, we need to enter "Config
1764 * register write enable" mode to modify the ID registers.
1765 */
1766 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1767 enaddr = CLLADDR(ifp->if_sadl);
1768 reg = enaddr[0] | (enaddr[1] << 8) |
1769 (enaddr[2] << 16) | (enaddr[3] << 24);
1770 CSR_WRITE_4(sc, RTK_IDR0, reg);
1771 reg = enaddr[4] | (enaddr[5] << 8);
1772 CSR_WRITE_4(sc, RTK_IDR4, reg);
1773 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1774
1775 /*
1776 * For C+ mode, initialize the RX descriptors and mbufs.
1777 */
1778 re_rx_list_init(sc);
1779 re_tx_list_init(sc);
1780
1781 /*
1782 * Load the addresses of the RX and TX lists into the chip.
1783 */
1784 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1785 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1786 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1787 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1788
1789 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1790 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1791 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1792 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1793
1794 /*
1795 * Enable transmit and receive.
1796 */
1797 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1798
1799 /*
1800 * Set the initial TX and RX configuration.
1801 */
1802 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1803 /* test mode is needed only for old 8169 */
1804 CSR_WRITE_4(sc, RTK_TXCFG,
1805 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1806 } else
1807 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1808
1809 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1810
1811 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1812
1813 /* Set the individual bit to receive frames for this host only. */
1814 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1815 rxcfg |= RTK_RXCFG_RX_INDIV;
1816
1817 /* If we want promiscuous mode, set the allframes bit. */
1818 if (ifp->if_flags & IFF_PROMISC)
1819 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1820 else
1821 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1822 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1823
1824 /*
1825 * Set capture broadcast bit to capture broadcast frames.
1826 */
1827 if (ifp->if_flags & IFF_BROADCAST)
1828 rxcfg |= RTK_RXCFG_RX_BROAD;
1829 else
1830 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1831 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1832
1833 /*
1834 * Program the multicast filter, if necessary.
1835 */
1836 rtk_setmulti(sc);
1837
1838 /*
1839 * Enable interrupts.
1840 */
1841 if (sc->re_testmode)
1842 CSR_WRITE_2(sc, RTK_IMR, 0);
1843 else
1844 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1845
1846 /* Start RX/TX process. */
1847 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1848 #ifdef notdef
1849 /* Enable receiver and transmitter. */
1850 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1851 #endif
1852
1853 /*
1854 * Initialize the timer interrupt register so that
1855 * a timer interrupt will be generated once the timer
1856 * reaches a certain number of ticks. The timer is
1857 * reloaded on each transmit. This gives us TX interrupt
1858 * moderation, which dramatically improves TX frame rate.
1859 */
1860
1861 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1862 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1863 else {
1864 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1865
1866 /*
1867 * For 8169 gigE NICs, set the max allowed RX packet
1868 * size so we can receive jumbo frames.
1869 */
1870 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1871 }
1872
1873 if (sc->re_testmode)
1874 return 0;
1875
1876 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1877
1878 ifp->if_flags |= IFF_RUNNING;
1879 ifp->if_flags &= ~IFF_OACTIVE;
1880
1881 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1882
1883 out:
1884 if (error) {
1885 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1886 ifp->if_timer = 0;
1887 printf("%s: interface not running\n",
1888 device_xname(sc->sc_dev));
1889 }
1890
1891 return error;
1892 }
1893
1894 static int
1895 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1896 {
1897 struct rtk_softc *sc = ifp->if_softc;
1898 struct ifreq *ifr = data;
1899 int s, error = 0;
1900
1901 s = splnet();
1902
1903 switch (command) {
1904 case SIOCSIFMTU:
1905 /*
1906 * Disable jumbo frames if it's not supported.
1907 */
1908 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1909 ifr->ifr_mtu > ETHERMTU) {
1910 error = EINVAL;
1911 break;
1912 }
1913
1914 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1915 error = EINVAL;
1916 else if ((error = ifioctl_common(ifp, command, data)) ==
1917 ENETRESET)
1918 error = 0;
1919 break;
1920 default:
1921 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1922 break;
1923
1924 error = 0;
1925
1926 if (command == SIOCSIFCAP)
1927 error = (*ifp->if_init)(ifp);
1928 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1929 ;
1930 else if (ifp->if_flags & IFF_RUNNING)
1931 rtk_setmulti(sc);
1932 break;
1933 }
1934
1935 splx(s);
1936
1937 return error;
1938 }
1939
1940 static void
1941 re_watchdog(struct ifnet *ifp)
1942 {
1943 struct rtk_softc *sc;
1944 int s;
1945
1946 sc = ifp->if_softc;
1947 s = splnet();
1948 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1949 ifp->if_oerrors++;
1950
1951 re_txeof(sc);
1952 re_rxeof(sc);
1953
1954 re_init(ifp);
1955
1956 splx(s);
1957 }
1958
1959 /*
1960 * Stop the adapter and free any mbufs allocated to the
1961 * RX and TX lists.
1962 */
1963 static void
1964 re_stop(struct ifnet *ifp, int disable)
1965 {
1966 int i;
1967 struct rtk_softc *sc = ifp->if_softc;
1968
1969 callout_stop(&sc->rtk_tick_ch);
1970
1971 mii_down(&sc->mii);
1972
1973 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
1974 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
1975 RTK_CMD_RX_ENB);
1976 else
1977 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1978 DELAY(1000);
1979 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1980 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
1981
1982 if (sc->re_head != NULL) {
1983 m_freem(sc->re_head);
1984 sc->re_head = sc->re_tail = NULL;
1985 }
1986
1987 /* Free the TX list buffers. */
1988 for (i = 0; i < RE_TX_QLEN; i++) {
1989 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1990 bus_dmamap_unload(sc->sc_dmat,
1991 sc->re_ldata.re_txq[i].txq_dmamap);
1992 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1993 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1994 }
1995 }
1996
1997 /* Free the RX list buffers. */
1998 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1999 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2000 bus_dmamap_unload(sc->sc_dmat,
2001 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2002 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2003 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2004 }
2005 }
2006
2007 if (disable)
2008 re_disable(sc);
2009
2010 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2011 ifp->if_timer = 0;
2012 }
2013