rtl8169.c revision 1.132 1 /* $NetBSD: rtl8169.c,v 1.132 2010/07/27 21:02:00 jakllsch Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.132 2010/07/27 21:02:00 jakllsch Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137
138 #include <sys/bus.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142
143 #include <dev/ic/rtl81x9reg.h>
144 #include <dev/ic/rtl81x9var.h>
145
146 #include <dev/ic/rtl8169var.h>
147
148 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
149
150 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
151 static int re_rx_list_init(struct rtk_softc *);
152 static int re_tx_list_init(struct rtk_softc *);
153 static void re_rxeof(struct rtk_softc *);
154 static void re_txeof(struct rtk_softc *);
155 static void re_tick(void *);
156 static void re_start(struct ifnet *);
157 static int re_ioctl(struct ifnet *, u_long, void *);
158 static int re_init(struct ifnet *);
159 static void re_stop(struct ifnet *, int);
160 static void re_watchdog(struct ifnet *);
161
162 static int re_enable(struct rtk_softc *);
163 static void re_disable(struct rtk_softc *);
164
165 static int re_gmii_readreg(device_t, int, int);
166 static void re_gmii_writereg(device_t, int, int, int);
167
168 static int re_miibus_readreg(device_t, int, int);
169 static void re_miibus_writereg(device_t, int, int, int);
170 static void re_miibus_statchg(device_t);
171
172 static void re_reset(struct rtk_softc *);
173
174 static inline void
175 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
176 {
177
178 d->re_bufaddr_lo = htole32((uint32_t)addr);
179 if (sizeof(bus_addr_t) == sizeof(uint64_t))
180 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
181 else
182 d->re_bufaddr_hi = 0;
183 }
184
185 static int
186 re_gmii_readreg(device_t dev, int phy, int reg)
187 {
188 struct rtk_softc *sc = device_private(dev);
189 uint32_t rval;
190 int i;
191
192 if (phy != 7)
193 return 0;
194
195 /* Let the rgephy driver read the GMEDIASTAT register */
196
197 if (reg == RTK_GMEDIASTAT) {
198 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
199 return rval;
200 }
201
202 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
203 DELAY(1000);
204
205 for (i = 0; i < RTK_TIMEOUT; i++) {
206 rval = CSR_READ_4(sc, RTK_PHYAR);
207 if (rval & RTK_PHYAR_BUSY)
208 break;
209 DELAY(100);
210 }
211
212 if (i == RTK_TIMEOUT) {
213 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
214 return 0;
215 }
216
217 return rval & RTK_PHYAR_PHYDATA;
218 }
219
220 static void
221 re_gmii_writereg(device_t dev, int phy, int reg, int data)
222 {
223 struct rtk_softc *sc = device_private(dev);
224 uint32_t rval;
225 int i;
226
227 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
228 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
229 DELAY(1000);
230
231 for (i = 0; i < RTK_TIMEOUT; i++) {
232 rval = CSR_READ_4(sc, RTK_PHYAR);
233 if (!(rval & RTK_PHYAR_BUSY))
234 break;
235 DELAY(100);
236 }
237
238 if (i == RTK_TIMEOUT) {
239 printf("%s: PHY write reg %x <- %x failed\n",
240 device_xname(sc->sc_dev), reg, data);
241 }
242 }
243
244 static int
245 re_miibus_readreg(device_t dev, int phy, int reg)
246 {
247 struct rtk_softc *sc = device_private(dev);
248 uint16_t rval = 0;
249 uint16_t re8139_reg = 0;
250 int s;
251
252 s = splnet();
253
254 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
255 rval = re_gmii_readreg(dev, phy, reg);
256 splx(s);
257 return rval;
258 }
259
260 /* Pretend the internal PHY is only at address 0 */
261 if (phy) {
262 splx(s);
263 return 0;
264 }
265 switch (reg) {
266 case MII_BMCR:
267 re8139_reg = RTK_BMCR;
268 break;
269 case MII_BMSR:
270 re8139_reg = RTK_BMSR;
271 break;
272 case MII_ANAR:
273 re8139_reg = RTK_ANAR;
274 break;
275 case MII_ANER:
276 re8139_reg = RTK_ANER;
277 break;
278 case MII_ANLPAR:
279 re8139_reg = RTK_LPAR;
280 break;
281 case MII_PHYIDR1:
282 case MII_PHYIDR2:
283 splx(s);
284 return 0;
285 /*
286 * Allow the rlphy driver to read the media status
287 * register. If we have a link partner which does not
288 * support NWAY, this is the register which will tell
289 * us the results of parallel detection.
290 */
291 case RTK_MEDIASTAT:
292 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
293 splx(s);
294 return rval;
295 default:
296 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
297 splx(s);
298 return 0;
299 }
300 rval = CSR_READ_2(sc, re8139_reg);
301 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
302 /* 8139C+ has different bit layout. */
303 rval &= ~(BMCR_LOOP | BMCR_ISO);
304 }
305 splx(s);
306 return rval;
307 }
308
309 static void
310 re_miibus_writereg(device_t dev, int phy, int reg, int data)
311 {
312 struct rtk_softc *sc = device_private(dev);
313 uint16_t re8139_reg = 0;
314 int s;
315
316 s = splnet();
317
318 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
319 re_gmii_writereg(dev, phy, reg, data);
320 splx(s);
321 return;
322 }
323
324 /* Pretend the internal PHY is only at address 0 */
325 if (phy) {
326 splx(s);
327 return;
328 }
329 switch (reg) {
330 case MII_BMCR:
331 re8139_reg = RTK_BMCR;
332 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
333 /* 8139C+ has different bit layout. */
334 data &= ~(BMCR_LOOP | BMCR_ISO);
335 }
336 break;
337 case MII_BMSR:
338 re8139_reg = RTK_BMSR;
339 break;
340 case MII_ANAR:
341 re8139_reg = RTK_ANAR;
342 break;
343 case MII_ANER:
344 re8139_reg = RTK_ANER;
345 break;
346 case MII_ANLPAR:
347 re8139_reg = RTK_LPAR;
348 break;
349 case MII_PHYIDR1:
350 case MII_PHYIDR2:
351 splx(s);
352 return;
353 break;
354 default:
355 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
356 splx(s);
357 return;
358 }
359 CSR_WRITE_2(sc, re8139_reg, data);
360 splx(s);
361 return;
362 }
363
364 static void
365 re_miibus_statchg(device_t dev)
366 {
367
368 return;
369 }
370
371 static void
372 re_reset(struct rtk_softc *sc)
373 {
374 int i;
375
376 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
377
378 for (i = 0; i < RTK_TIMEOUT; i++) {
379 DELAY(10);
380 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
381 break;
382 }
383 if (i == RTK_TIMEOUT)
384 printf("%s: reset never completed!\n",
385 device_xname(sc->sc_dev));
386
387 /*
388 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
389 * but also says "Rtl8169s sigle chip detected".
390 */
391 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
392 CSR_WRITE_1(sc, RTK_LDPS, 1);
393
394 }
395
396 /*
397 * The following routine is designed to test for a defect on some
398 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
399 * lines connected to the bus, however for a 32-bit only card, they
400 * should be pulled high. The result of this defect is that the
401 * NIC will not work right if you plug it into a 64-bit slot: DMA
402 * operations will be done with 64-bit transfers, which will fail
403 * because the 64-bit data lines aren't connected.
404 *
405 * There's no way to work around this (short of talking a soldering
406 * iron to the board), however we can detect it. The method we use
407 * here is to put the NIC into digital loopback mode, set the receiver
408 * to promiscuous mode, and then try to send a frame. We then compare
409 * the frame data we sent to what was received. If the data matches,
410 * then the NIC is working correctly, otherwise we know the user has
411 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
412 * slot. In the latter case, there's no way the NIC can work correctly,
413 * so we print out a message on the console and abort the device attach.
414 */
415
416 int
417 re_diag(struct rtk_softc *sc)
418 {
419 struct ifnet *ifp = &sc->ethercom.ec_if;
420 struct mbuf *m0;
421 struct ether_header *eh;
422 struct re_rxsoft *rxs;
423 struct re_desc *cur_rx;
424 bus_dmamap_t dmamap;
425 uint16_t status;
426 uint32_t rxstat;
427 int total_len, i, s, error = 0;
428 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
429 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
430
431 /* Allocate a single mbuf */
432
433 MGETHDR(m0, M_DONTWAIT, MT_DATA);
434 if (m0 == NULL)
435 return ENOBUFS;
436
437 /*
438 * Initialize the NIC in test mode. This sets the chip up
439 * so that it can send and receive frames, but performs the
440 * following special functions:
441 * - Puts receiver in promiscuous mode
442 * - Enables digital loopback mode
443 * - Leaves interrupts turned off
444 */
445
446 ifp->if_flags |= IFF_PROMISC;
447 sc->re_testmode = 1;
448 re_init(ifp);
449 re_stop(ifp, 0);
450 DELAY(100000);
451 re_init(ifp);
452
453 /* Put some data in the mbuf */
454
455 eh = mtod(m0, struct ether_header *);
456 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
457 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
458 eh->ether_type = htons(ETHERTYPE_IP);
459 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
460
461 /*
462 * Queue the packet, start transmission.
463 */
464
465 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
466 s = splnet();
467 IF_ENQUEUE(&ifp->if_snd, m0);
468 re_start(ifp);
469 splx(s);
470 m0 = NULL;
471
472 /* Wait for it to propagate through the chip */
473
474 DELAY(100000);
475 for (i = 0; i < RTK_TIMEOUT; i++) {
476 status = CSR_READ_2(sc, RTK_ISR);
477 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
478 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
479 break;
480 DELAY(10);
481 }
482 if (i == RTK_TIMEOUT) {
483 aprint_error_dev(sc->sc_dev,
484 "diagnostic failed, failed to receive packet "
485 "in loopback mode\n");
486 error = EIO;
487 goto done;
488 }
489
490 /*
491 * The packet should have been dumped into the first
492 * entry in the RX DMA ring. Grab it from there.
493 */
494
495 rxs = &sc->re_ldata.re_rxsoft[0];
496 dmamap = rxs->rxs_dmamap;
497 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
498 BUS_DMASYNC_POSTREAD);
499 bus_dmamap_unload(sc->sc_dmat, dmamap);
500
501 m0 = rxs->rxs_mbuf;
502 rxs->rxs_mbuf = NULL;
503 eh = mtod(m0, struct ether_header *);
504
505 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
506 cur_rx = &sc->re_ldata.re_rx_list[0];
507 rxstat = le32toh(cur_rx->re_cmdstat);
508 total_len = rxstat & sc->re_rxlenmask;
509
510 if (total_len != ETHER_MIN_LEN) {
511 aprint_error_dev(sc->sc_dev,
512 "diagnostic failed, received short packet\n");
513 error = EIO;
514 goto done;
515 }
516
517 /* Test that the received packet data matches what we sent. */
518
519 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
520 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
521 ntohs(eh->ether_type) != ETHERTYPE_IP) {
522 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
523 "expected TX data: %s/%s/0x%x\n"
524 "received RX data: %s/%s/0x%x\n"
525 "You may have a defective 32-bit NIC plugged "
526 "into a 64-bit PCI slot.\n"
527 "Please re-install the NIC in a 32-bit slot "
528 "for proper operation.\n"
529 "Read the re(4) man page for more details.\n" ,
530 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
531 ether_sprintf(eh->ether_dhost),
532 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
533 error = EIO;
534 }
535
536 done:
537 /* Turn interface off, release resources */
538
539 sc->re_testmode = 0;
540 ifp->if_flags &= ~IFF_PROMISC;
541 re_stop(ifp, 0);
542 if (m0 != NULL)
543 m_freem(m0);
544
545 return error;
546 }
547
548
549 /*
550 * Attach the interface. Allocate softc structures, do ifmedia
551 * setup and ethernet/BPF attach.
552 */
553 void
554 re_attach(struct rtk_softc *sc)
555 {
556 uint8_t eaddr[ETHER_ADDR_LEN];
557 uint16_t val;
558 struct ifnet *ifp;
559 int error = 0, i, addr_len;
560
561 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
562 uint32_t hwrev;
563
564 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
565 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
566 switch (hwrev) {
567 case RTK_HWREV_8169:
568 sc->sc_quirk |= RTKQ_8169NONS;
569 break;
570 case RTK_HWREV_8169S:
571 case RTK_HWREV_8110S:
572 case RTK_HWREV_8169_8110SB:
573 case RTK_HWREV_8169_8110SBL:
574 case RTK_HWREV_8169_8110SC:
575 sc->sc_quirk |= RTKQ_MACLDPS;
576 break;
577 case RTK_HWREV_8168_SPIN1:
578 case RTK_HWREV_8168_SPIN2:
579 case RTK_HWREV_8168_SPIN3:
580 sc->sc_quirk |= RTKQ_MACSTAT;
581 break;
582 case RTK_HWREV_8168C:
583 case RTK_HWREV_8168C_SPIN2:
584 case RTK_HWREV_8168CP:
585 case RTK_HWREV_8168D:
586 case RTK_HWREV_8168DP:
587 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
588 RTKQ_MACSTAT | RTKQ_CMDSTOP;
589 /*
590 * From FreeBSD driver:
591 *
592 * These (8168/8111) controllers support jumbo frame
593 * but it seems that enabling it requires touching
594 * additional magic registers. Depending on MAC
595 * revisions some controllers need to disable
596 * checksum offload. So disable jumbo frame until
597 * I have better idea what it really requires to
598 * make it support.
599 * RTL8168C/CP : supports up to 6KB jumbo frame.
600 * RTL8111C/CP : supports up to 9KB jumbo frame.
601 */
602 sc->sc_quirk |= RTKQ_NOJUMBO;
603 break;
604 case RTK_HWREV_8100E:
605 case RTK_HWREV_8100E_SPIN2:
606 case RTK_HWREV_8101E:
607 sc->sc_quirk |= RTKQ_NOJUMBO;
608 break;
609 case RTK_HWREV_8102E:
610 case RTK_HWREV_8102EL:
611 case RTK_HWREV_8103E:
612 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
613 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
614 break;
615 default:
616 aprint_normal_dev(sc->sc_dev,
617 "Unknown revision (0x%08x)\n", hwrev);
618 /* assume the latest features */
619 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
620 sc->sc_quirk |= RTKQ_NOJUMBO;
621 }
622
623 /* Set RX length mask */
624 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
625 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
626 } else {
627 sc->sc_quirk |= RTKQ_NOJUMBO;
628
629 /* Set RX length mask */
630 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
631 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
632 }
633
634 /* Reset the adapter. */
635 re_reset(sc);
636
637 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
638 /*
639 * Get station address from ID registers.
640 */
641 for (i = 0; i < ETHER_ADDR_LEN; i++)
642 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
643 } else {
644 /*
645 * Get station address from the EEPROM.
646 */
647 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
648 addr_len = RTK_EEADDR_LEN1;
649 else
650 addr_len = RTK_EEADDR_LEN0;
651
652 /*
653 * Get station address from the EEPROM.
654 */
655 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
656 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
657 eaddr[(i * 2) + 0] = val & 0xff;
658 eaddr[(i * 2) + 1] = val >> 8;
659 }
660 }
661
662 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
663 ether_sprintf(eaddr));
664
665 if (sc->re_ldata.re_tx_desc_cnt >
666 PAGE_SIZE / sizeof(struct re_desc)) {
667 sc->re_ldata.re_tx_desc_cnt =
668 PAGE_SIZE / sizeof(struct re_desc);
669 }
670
671 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
672 sc->re_ldata.re_tx_desc_cnt);
673 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
674
675 /* Allocate DMA'able memory for the TX ring */
676 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
677 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
678 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
679 aprint_error_dev(sc->sc_dev,
680 "can't allocate tx listseg, error = %d\n", error);
681 goto fail_0;
682 }
683
684 /* Load the map for the TX ring. */
685 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
686 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
687 (void **)&sc->re_ldata.re_tx_list,
688 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
689 aprint_error_dev(sc->sc_dev,
690 "can't map tx list, error = %d\n", error);
691 goto fail_1;
692 }
693 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
694
695 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
696 RE_TX_LIST_SZ(sc), 0, 0,
697 &sc->re_ldata.re_tx_list_map)) != 0) {
698 aprint_error_dev(sc->sc_dev,
699 "can't create tx list map, error = %d\n", error);
700 goto fail_2;
701 }
702
703
704 if ((error = bus_dmamap_load(sc->sc_dmat,
705 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
706 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
707 aprint_error_dev(sc->sc_dev,
708 "can't load tx list, error = %d\n", error);
709 goto fail_3;
710 }
711
712 /* Create DMA maps for TX buffers */
713 for (i = 0; i < RE_TX_QLEN; i++) {
714 error = bus_dmamap_create(sc->sc_dmat,
715 round_page(IP_MAXPACKET),
716 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
717 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
718 if (error) {
719 aprint_error_dev(sc->sc_dev,
720 "can't create DMA map for TX\n");
721 goto fail_4;
722 }
723 }
724
725 /* Allocate DMA'able memory for the RX ring */
726 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
727 if ((error = bus_dmamem_alloc(sc->sc_dmat,
728 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
729 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
730 aprint_error_dev(sc->sc_dev,
731 "can't allocate rx listseg, error = %d\n", error);
732 goto fail_4;
733 }
734
735 /* Load the map for the RX ring. */
736 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
737 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
738 (void **)&sc->re_ldata.re_rx_list,
739 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
740 aprint_error_dev(sc->sc_dev,
741 "can't map rx list, error = %d\n", error);
742 goto fail_5;
743 }
744 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
745
746 if ((error = bus_dmamap_create(sc->sc_dmat,
747 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
748 &sc->re_ldata.re_rx_list_map)) != 0) {
749 aprint_error_dev(sc->sc_dev,
750 "can't create rx list map, error = %d\n", error);
751 goto fail_6;
752 }
753
754 if ((error = bus_dmamap_load(sc->sc_dmat,
755 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
756 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
757 aprint_error_dev(sc->sc_dev,
758 "can't load rx list, error = %d\n", error);
759 goto fail_7;
760 }
761
762 /* Create DMA maps for RX buffers */
763 for (i = 0; i < RE_RX_DESC_CNT; i++) {
764 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
765 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
766 if (error) {
767 aprint_error_dev(sc->sc_dev,
768 "can't create DMA map for RX\n");
769 goto fail_8;
770 }
771 }
772
773 /*
774 * Record interface as attached. From here, we should not fail.
775 */
776 sc->sc_flags |= RTK_ATTACHED;
777
778 ifp = &sc->ethercom.ec_if;
779 ifp->if_softc = sc;
780 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
781 ifp->if_mtu = ETHERMTU;
782 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
783 ifp->if_ioctl = re_ioctl;
784 sc->ethercom.ec_capabilities |=
785 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
786 ifp->if_start = re_start;
787 ifp->if_stop = re_stop;
788
789 /*
790 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
791 * so we have a workaround to handle the bug by padding
792 * such packets manually.
793 */
794 ifp->if_capabilities |=
795 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
796 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
797 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
798 IFCAP_TSOv4;
799
800 /*
801 * XXX
802 * Still have no idea how to make TSO work on 8168C, 8168CP,
803 * 8102E, 8111C and 8111CP.
804 */
805 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
806 ifp->if_capabilities &= ~IFCAP_TSOv4;
807
808 ifp->if_watchdog = re_watchdog;
809 ifp->if_init = re_init;
810 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
811 ifp->if_capenable = ifp->if_capabilities;
812 IFQ_SET_READY(&ifp->if_snd);
813
814 callout_init(&sc->rtk_tick_ch, 0);
815
816 /* Do MII setup */
817 sc->mii.mii_ifp = ifp;
818 sc->mii.mii_readreg = re_miibus_readreg;
819 sc->mii.mii_writereg = re_miibus_writereg;
820 sc->mii.mii_statchg = re_miibus_statchg;
821 sc->ethercom.ec_mii = &sc->mii;
822 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
823 ether_mediastatus);
824 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
825 MII_OFFSET_ANY, 0);
826 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
827
828 /*
829 * Call MI attach routine.
830 */
831 if_attach(ifp);
832 ether_ifattach(ifp, eaddr);
833
834 if (pmf_device_register(sc->sc_dev, NULL, NULL))
835 pmf_class_network_register(sc->sc_dev, ifp);
836 else
837 aprint_error_dev(sc->sc_dev,
838 "couldn't establish power handler\n");
839
840 return;
841
842 fail_8:
843 /* Destroy DMA maps for RX buffers. */
844 for (i = 0; i < RE_RX_DESC_CNT; i++)
845 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
846 bus_dmamap_destroy(sc->sc_dmat,
847 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
848
849 /* Free DMA'able memory for the RX ring. */
850 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
851 fail_7:
852 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
853 fail_6:
854 bus_dmamem_unmap(sc->sc_dmat,
855 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
856 fail_5:
857 bus_dmamem_free(sc->sc_dmat,
858 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
859
860 fail_4:
861 /* Destroy DMA maps for TX buffers. */
862 for (i = 0; i < RE_TX_QLEN; i++)
863 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
864 bus_dmamap_destroy(sc->sc_dmat,
865 sc->re_ldata.re_txq[i].txq_dmamap);
866
867 /* Free DMA'able memory for the TX ring. */
868 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
869 fail_3:
870 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
871 fail_2:
872 bus_dmamem_unmap(sc->sc_dmat,
873 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
874 fail_1:
875 bus_dmamem_free(sc->sc_dmat,
876 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
877 fail_0:
878 return;
879 }
880
881
882 /*
883 * re_activate:
884 * Handle device activation/deactivation requests.
885 */
886 int
887 re_activate(device_t self, enum devact act)
888 {
889 struct rtk_softc *sc = device_private(self);
890
891 switch (act) {
892 case DVACT_DEACTIVATE:
893 if_deactivate(&sc->ethercom.ec_if);
894 return 0;
895 default:
896 return EOPNOTSUPP;
897 }
898 }
899
900 /*
901 * re_detach:
902 * Detach a rtk interface.
903 */
904 int
905 re_detach(struct rtk_softc *sc)
906 {
907 struct ifnet *ifp = &sc->ethercom.ec_if;
908 int i;
909
910 /*
911 * Succeed now if there isn't any work to do.
912 */
913 if ((sc->sc_flags & RTK_ATTACHED) == 0)
914 return 0;
915
916 /* Unhook our tick handler. */
917 callout_stop(&sc->rtk_tick_ch);
918
919 /* Detach all PHYs. */
920 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
921
922 /* Delete all remaining media. */
923 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
924
925 ether_ifdetach(ifp);
926 if_detach(ifp);
927
928 /* Destroy DMA maps for RX buffers. */
929 for (i = 0; i < RE_RX_DESC_CNT; i++)
930 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
931 bus_dmamap_destroy(sc->sc_dmat,
932 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
933
934 /* Free DMA'able memory for the RX ring. */
935 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
936 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
937 bus_dmamem_unmap(sc->sc_dmat,
938 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
939 bus_dmamem_free(sc->sc_dmat,
940 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
941
942 /* Destroy DMA maps for TX buffers. */
943 for (i = 0; i < RE_TX_QLEN; i++)
944 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
945 bus_dmamap_destroy(sc->sc_dmat,
946 sc->re_ldata.re_txq[i].txq_dmamap);
947
948 /* Free DMA'able memory for the TX ring. */
949 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
950 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
951 bus_dmamem_unmap(sc->sc_dmat,
952 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
953 bus_dmamem_free(sc->sc_dmat,
954 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
955
956 pmf_device_deregister(sc->sc_dev);
957
958 /* we don't want to run again */
959 sc->sc_flags &= ~RTK_ATTACHED;
960
961 return 0;
962 }
963
964 /*
965 * re_enable:
966 * Enable the RTL81X9 chip.
967 */
968 static int
969 re_enable(struct rtk_softc *sc)
970 {
971
972 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
973 if ((*sc->sc_enable)(sc) != 0) {
974 printf("%s: device enable failed\n",
975 device_xname(sc->sc_dev));
976 return EIO;
977 }
978 sc->sc_flags |= RTK_ENABLED;
979 }
980 return 0;
981 }
982
983 /*
984 * re_disable:
985 * Disable the RTL81X9 chip.
986 */
987 static void
988 re_disable(struct rtk_softc *sc)
989 {
990
991 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
992 (*sc->sc_disable)(sc);
993 sc->sc_flags &= ~RTK_ENABLED;
994 }
995 }
996
997 static int
998 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
999 {
1000 struct mbuf *n = NULL;
1001 bus_dmamap_t map;
1002 struct re_desc *d;
1003 struct re_rxsoft *rxs;
1004 uint32_t cmdstat;
1005 int error;
1006
1007 if (m == NULL) {
1008 MGETHDR(n, M_DONTWAIT, MT_DATA);
1009 if (n == NULL)
1010 return ENOBUFS;
1011
1012 MCLGET(n, M_DONTWAIT);
1013 if ((n->m_flags & M_EXT) == 0) {
1014 m_freem(n);
1015 return ENOBUFS;
1016 }
1017 m = n;
1018 } else
1019 m->m_data = m->m_ext.ext_buf;
1020
1021 /*
1022 * Initialize mbuf length fields and fixup
1023 * alignment so that the frame payload is
1024 * longword aligned.
1025 */
1026 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1027 m->m_data += RE_ETHER_ALIGN;
1028
1029 rxs = &sc->re_ldata.re_rxsoft[idx];
1030 map = rxs->rxs_dmamap;
1031 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1032 BUS_DMA_READ|BUS_DMA_NOWAIT);
1033
1034 if (error)
1035 goto out;
1036
1037 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1038 BUS_DMASYNC_PREREAD);
1039
1040 d = &sc->re_ldata.re_rx_list[idx];
1041 #ifdef DIAGNOSTIC
1042 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1043 cmdstat = le32toh(d->re_cmdstat);
1044 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1045 if (cmdstat & RE_RDESC_STAT_OWN) {
1046 panic("%s: tried to map busy RX descriptor",
1047 device_xname(sc->sc_dev));
1048 }
1049 #endif
1050
1051 rxs->rxs_mbuf = m;
1052
1053 d->re_vlanctl = 0;
1054 cmdstat = map->dm_segs[0].ds_len;
1055 if (idx == (RE_RX_DESC_CNT - 1))
1056 cmdstat |= RE_RDESC_CMD_EOR;
1057 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1058 d->re_cmdstat = htole32(cmdstat);
1059 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1060 cmdstat |= RE_RDESC_CMD_OWN;
1061 d->re_cmdstat = htole32(cmdstat);
1062 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1063
1064 return 0;
1065 out:
1066 if (n != NULL)
1067 m_freem(n);
1068 return ENOMEM;
1069 }
1070
1071 static int
1072 re_tx_list_init(struct rtk_softc *sc)
1073 {
1074 int i;
1075
1076 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1077 for (i = 0; i < RE_TX_QLEN; i++) {
1078 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1079 }
1080
1081 bus_dmamap_sync(sc->sc_dmat,
1082 sc->re_ldata.re_tx_list_map, 0,
1083 sc->re_ldata.re_tx_list_map->dm_mapsize,
1084 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1085 sc->re_ldata.re_txq_prodidx = 0;
1086 sc->re_ldata.re_txq_considx = 0;
1087 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1088 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1089 sc->re_ldata.re_tx_nextfree = 0;
1090
1091 return 0;
1092 }
1093
1094 static int
1095 re_rx_list_init(struct rtk_softc *sc)
1096 {
1097 int i;
1098
1099 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1100
1101 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1102 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1103 return ENOBUFS;
1104 }
1105
1106 sc->re_ldata.re_rx_prodidx = 0;
1107 sc->re_head = sc->re_tail = NULL;
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * RX handler for C+ and 8169. For the gigE chips, we support
1114 * the reception of jumbo frames that have been fragmented
1115 * across multiple 2K mbuf cluster buffers.
1116 */
1117 static void
1118 re_rxeof(struct rtk_softc *sc)
1119 {
1120 struct mbuf *m;
1121 struct ifnet *ifp;
1122 int i, total_len;
1123 struct re_desc *cur_rx;
1124 struct re_rxsoft *rxs;
1125 uint32_t rxstat, rxvlan;
1126
1127 ifp = &sc->ethercom.ec_if;
1128
1129 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1130 cur_rx = &sc->re_ldata.re_rx_list[i];
1131 RE_RXDESCSYNC(sc, i,
1132 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1133 rxstat = le32toh(cur_rx->re_cmdstat);
1134 rxvlan = le32toh(cur_rx->re_vlanctl);
1135 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1136 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1137 break;
1138 }
1139 total_len = rxstat & sc->re_rxlenmask;
1140 rxs = &sc->re_ldata.re_rxsoft[i];
1141 m = rxs->rxs_mbuf;
1142
1143 /* Invalidate the RX mbuf and unload its map */
1144
1145 bus_dmamap_sync(sc->sc_dmat,
1146 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1147 BUS_DMASYNC_POSTREAD);
1148 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1149
1150 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1151 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1152 if (sc->re_head == NULL)
1153 sc->re_head = sc->re_tail = m;
1154 else {
1155 m->m_flags &= ~M_PKTHDR;
1156 sc->re_tail->m_next = m;
1157 sc->re_tail = m;
1158 }
1159 re_newbuf(sc, i, NULL);
1160 continue;
1161 }
1162
1163 /*
1164 * NOTE: for the 8139C+, the frame length field
1165 * is always 12 bits in size, but for the gigE chips,
1166 * it is 13 bits (since the max RX frame length is 16K).
1167 * Unfortunately, all 32 bits in the status word
1168 * were already used, so to make room for the extra
1169 * length bit, RealTek took out the 'frame alignment
1170 * error' bit and shifted the other status bits
1171 * over one slot. The OWN, EOR, FS and LS bits are
1172 * still in the same places. We have already extracted
1173 * the frame length and checked the OWN bit, so rather
1174 * than using an alternate bit mapping, we shift the
1175 * status bits one space to the right so we can evaluate
1176 * them using the 8169 status as though it was in the
1177 * same format as that of the 8139C+.
1178 */
1179 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1180 rxstat >>= 1;
1181
1182 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1183 #ifdef RE_DEBUG
1184 printf("%s: RX error (rxstat = 0x%08x)",
1185 device_xname(sc->sc_dev), rxstat);
1186 if (rxstat & RE_RDESC_STAT_FRALIGN)
1187 printf(", frame alignment error");
1188 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1189 printf(", out of buffer space");
1190 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1191 printf(", FIFO overrun");
1192 if (rxstat & RE_RDESC_STAT_GIANT)
1193 printf(", giant packet");
1194 if (rxstat & RE_RDESC_STAT_RUNT)
1195 printf(", runt packet");
1196 if (rxstat & RE_RDESC_STAT_CRCERR)
1197 printf(", CRC error");
1198 printf("\n");
1199 #endif
1200 ifp->if_ierrors++;
1201 /*
1202 * If this is part of a multi-fragment packet,
1203 * discard all the pieces.
1204 */
1205 if (sc->re_head != NULL) {
1206 m_freem(sc->re_head);
1207 sc->re_head = sc->re_tail = NULL;
1208 }
1209 re_newbuf(sc, i, m);
1210 continue;
1211 }
1212
1213 /*
1214 * If allocating a replacement mbuf fails,
1215 * reload the current one.
1216 */
1217
1218 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1219 ifp->if_ierrors++;
1220 if (sc->re_head != NULL) {
1221 m_freem(sc->re_head);
1222 sc->re_head = sc->re_tail = NULL;
1223 }
1224 re_newbuf(sc, i, m);
1225 continue;
1226 }
1227
1228 if (sc->re_head != NULL) {
1229 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1230 /*
1231 * Special case: if there's 4 bytes or less
1232 * in this buffer, the mbuf can be discarded:
1233 * the last 4 bytes is the CRC, which we don't
1234 * care about anyway.
1235 */
1236 if (m->m_len <= ETHER_CRC_LEN) {
1237 sc->re_tail->m_len -=
1238 (ETHER_CRC_LEN - m->m_len);
1239 m_freem(m);
1240 } else {
1241 m->m_len -= ETHER_CRC_LEN;
1242 m->m_flags &= ~M_PKTHDR;
1243 sc->re_tail->m_next = m;
1244 }
1245 m = sc->re_head;
1246 sc->re_head = sc->re_tail = NULL;
1247 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1248 } else
1249 m->m_pkthdr.len = m->m_len =
1250 (total_len - ETHER_CRC_LEN);
1251
1252 ifp->if_ipackets++;
1253 m->m_pkthdr.rcvif = ifp;
1254
1255 /* Do RX checksumming */
1256 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1257 /* Check IP header checksum */
1258 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1259 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1260 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1261 m->m_pkthdr.csum_flags |=
1262 M_CSUM_IPv4_BAD;
1263
1264 /* Check TCP/UDP checksum */
1265 if (RE_TCPPKT(rxstat)) {
1266 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1267 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1268 m->m_pkthdr.csum_flags |=
1269 M_CSUM_TCP_UDP_BAD;
1270 } else if (RE_UDPPKT(rxstat)) {
1271 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1272 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1273 m->m_pkthdr.csum_flags |=
1274 M_CSUM_TCP_UDP_BAD;
1275 }
1276 }
1277 } else {
1278 /* Check IPv4 header checksum */
1279 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1280 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1281 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1282 m->m_pkthdr.csum_flags |=
1283 M_CSUM_IPv4_BAD;
1284
1285 /* Check TCPv4/UDPv4 checksum */
1286 if (RE_TCPPKT(rxstat)) {
1287 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1288 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1289 m->m_pkthdr.csum_flags |=
1290 M_CSUM_TCP_UDP_BAD;
1291 } else if (RE_UDPPKT(rxstat)) {
1292 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1293 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1294 m->m_pkthdr.csum_flags |=
1295 M_CSUM_TCP_UDP_BAD;
1296 }
1297 }
1298 /* XXX Check TCPv6/UDPv6 checksum? */
1299 }
1300
1301 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1302 VLAN_INPUT_TAG(ifp, m,
1303 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1304 continue);
1305 }
1306 bpf_mtap(ifp, m);
1307 (*ifp->if_input)(ifp, m);
1308 }
1309
1310 sc->re_ldata.re_rx_prodidx = i;
1311 }
1312
1313 static void
1314 re_txeof(struct rtk_softc *sc)
1315 {
1316 struct ifnet *ifp;
1317 struct re_txq *txq;
1318 uint32_t txstat;
1319 int idx, descidx;
1320
1321 ifp = &sc->ethercom.ec_if;
1322
1323 for (idx = sc->re_ldata.re_txq_considx;
1324 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1325 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1326 txq = &sc->re_ldata.re_txq[idx];
1327 KASSERT(txq->txq_mbuf != NULL);
1328
1329 descidx = txq->txq_descidx;
1330 RE_TXDESCSYNC(sc, descidx,
1331 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1332 txstat =
1333 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1334 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1335 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1336 if (txstat & RE_TDESC_CMD_OWN) {
1337 break;
1338 }
1339
1340 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1341 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1342 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1343 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1344 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1345 m_freem(txq->txq_mbuf);
1346 txq->txq_mbuf = NULL;
1347
1348 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1349 ifp->if_collisions++;
1350 if (txstat & RE_TDESC_STAT_TXERRSUM)
1351 ifp->if_oerrors++;
1352 else
1353 ifp->if_opackets++;
1354 }
1355
1356 sc->re_ldata.re_txq_considx = idx;
1357
1358 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1359 ifp->if_flags &= ~IFF_OACTIVE;
1360
1361 /*
1362 * If not all descriptors have been released reaped yet,
1363 * reload the timer so that we will eventually get another
1364 * interrupt that will cause us to re-enter this routine.
1365 * This is done in case the transmitter has gone idle.
1366 */
1367 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1368 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1369 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1370 /*
1371 * Some chips will ignore a second TX request
1372 * issued while an existing transmission is in
1373 * progress. If the transmitter goes idle but
1374 * there are still packets waiting to be sent,
1375 * we need to restart the channel here to flush
1376 * them out. This only seems to be required with
1377 * the PCIe devices.
1378 */
1379 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1380 }
1381 } else
1382 ifp->if_timer = 0;
1383 }
1384
1385 static void
1386 re_tick(void *arg)
1387 {
1388 struct rtk_softc *sc = arg;
1389 int s;
1390
1391 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1392 s = splnet();
1393
1394 mii_tick(&sc->mii);
1395 splx(s);
1396
1397 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1398 }
1399
1400 int
1401 re_intr(void *arg)
1402 {
1403 struct rtk_softc *sc = arg;
1404 struct ifnet *ifp;
1405 uint16_t status;
1406 int handled = 0;
1407
1408 if (!device_has_power(sc->sc_dev))
1409 return 0;
1410
1411 ifp = &sc->ethercom.ec_if;
1412
1413 if ((ifp->if_flags & IFF_UP) == 0)
1414 return 0;
1415
1416 for (;;) {
1417
1418 status = CSR_READ_2(sc, RTK_ISR);
1419 /* If the card has gone away the read returns 0xffff. */
1420 if (status == 0xffff)
1421 break;
1422 if (status) {
1423 handled = 1;
1424 CSR_WRITE_2(sc, RTK_ISR, status);
1425 }
1426
1427 if ((status & RTK_INTRS_CPLUS) == 0)
1428 break;
1429
1430 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1431 re_rxeof(sc);
1432
1433 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1434 RTK_ISR_TX_DESC_UNAVAIL))
1435 re_txeof(sc);
1436
1437 if (status & RTK_ISR_SYSTEM_ERR) {
1438 re_init(ifp);
1439 }
1440
1441 if (status & RTK_ISR_LINKCHG) {
1442 callout_stop(&sc->rtk_tick_ch);
1443 re_tick(sc);
1444 }
1445 }
1446
1447 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1448 re_start(ifp);
1449
1450 return handled;
1451 }
1452
1453
1454
1455 /*
1456 * Main transmit routine for C+ and gigE NICs.
1457 */
1458
1459 static void
1460 re_start(struct ifnet *ifp)
1461 {
1462 struct rtk_softc *sc;
1463 struct mbuf *m;
1464 bus_dmamap_t map;
1465 struct re_txq *txq;
1466 struct re_desc *d;
1467 struct m_tag *mtag;
1468 uint32_t cmdstat, re_flags, vlanctl;
1469 int ofree, idx, error, nsegs, seg;
1470 int startdesc, curdesc, lastdesc;
1471 bool pad;
1472
1473 sc = ifp->if_softc;
1474 ofree = sc->re_ldata.re_txq_free;
1475
1476 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1477
1478 IFQ_POLL(&ifp->if_snd, m);
1479 if (m == NULL)
1480 break;
1481
1482 if (sc->re_ldata.re_txq_free == 0 ||
1483 sc->re_ldata.re_tx_free == 0) {
1484 /* no more free slots left */
1485 ifp->if_flags |= IFF_OACTIVE;
1486 break;
1487 }
1488
1489 /*
1490 * Set up checksum offload. Note: checksum offload bits must
1491 * appear in all descriptors of a multi-descriptor transmit
1492 * attempt. (This is according to testing done with an 8169
1493 * chip. I'm not sure if this is a requirement or a bug.)
1494 */
1495
1496 vlanctl = 0;
1497 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1498 uint32_t segsz = m->m_pkthdr.segsz;
1499
1500 re_flags = RE_TDESC_CMD_LGSEND |
1501 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1502 } else {
1503 /*
1504 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1505 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1506 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1507 */
1508 re_flags = 0;
1509 if ((m->m_pkthdr.csum_flags &
1510 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1511 != 0) {
1512 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1513 re_flags |= RE_TDESC_CMD_IPCSUM;
1514 if (m->m_pkthdr.csum_flags &
1515 M_CSUM_TCPv4) {
1516 re_flags |=
1517 RE_TDESC_CMD_TCPCSUM;
1518 } else if (m->m_pkthdr.csum_flags &
1519 M_CSUM_UDPv4) {
1520 re_flags |=
1521 RE_TDESC_CMD_UDPCSUM;
1522 }
1523 } else {
1524 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1525 if (m->m_pkthdr.csum_flags &
1526 M_CSUM_TCPv4) {
1527 vlanctl |=
1528 RE_TDESC_VLANCTL_TCPCSUM;
1529 } else if (m->m_pkthdr.csum_flags &
1530 M_CSUM_UDPv4) {
1531 vlanctl |=
1532 RE_TDESC_VLANCTL_UDPCSUM;
1533 }
1534 }
1535 }
1536 }
1537
1538 txq = &sc->re_ldata.re_txq[idx];
1539 map = txq->txq_dmamap;
1540 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1541 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1542
1543 if (__predict_false(error)) {
1544 /* XXX try to defrag if EFBIG? */
1545 printf("%s: can't map mbuf (error %d)\n",
1546 device_xname(sc->sc_dev), error);
1547
1548 IFQ_DEQUEUE(&ifp->if_snd, m);
1549 m_freem(m);
1550 ifp->if_oerrors++;
1551 continue;
1552 }
1553
1554 nsegs = map->dm_nsegs;
1555 pad = false;
1556 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1557 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1558 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1559 pad = true;
1560 nsegs++;
1561 }
1562
1563 if (nsegs > sc->re_ldata.re_tx_free) {
1564 /*
1565 * Not enough free descriptors to transmit this packet.
1566 */
1567 ifp->if_flags |= IFF_OACTIVE;
1568 bus_dmamap_unload(sc->sc_dmat, map);
1569 break;
1570 }
1571
1572 IFQ_DEQUEUE(&ifp->if_snd, m);
1573
1574 /*
1575 * Make sure that the caches are synchronized before we
1576 * ask the chip to start DMA for the packet data.
1577 */
1578 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1579 BUS_DMASYNC_PREWRITE);
1580
1581 /*
1582 * Set up hardware VLAN tagging. Note: vlan tag info must
1583 * appear in all descriptors of a multi-descriptor
1584 * transmission attempt.
1585 */
1586 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1587 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1588 RE_TDESC_VLANCTL_TAG;
1589
1590 /*
1591 * Map the segment array into descriptors.
1592 * Note that we set the start-of-frame and
1593 * end-of-frame markers for either TX or RX,
1594 * but they really only have meaning in the TX case.
1595 * (In the RX case, it's the chip that tells us
1596 * where packets begin and end.)
1597 * We also keep track of the end of the ring
1598 * and set the end-of-ring bits as needed,
1599 * and we set the ownership bits in all except
1600 * the very first descriptor. (The caller will
1601 * set this descriptor later when it start
1602 * transmission or reception.)
1603 */
1604 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1605 lastdesc = -1;
1606 for (seg = 0; seg < map->dm_nsegs;
1607 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1608 d = &sc->re_ldata.re_tx_list[curdesc];
1609 #ifdef DIAGNOSTIC
1610 RE_TXDESCSYNC(sc, curdesc,
1611 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1612 cmdstat = le32toh(d->re_cmdstat);
1613 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1614 if (cmdstat & RE_TDESC_STAT_OWN) {
1615 panic("%s: tried to map busy TX descriptor",
1616 device_xname(sc->sc_dev));
1617 }
1618 #endif
1619
1620 d->re_vlanctl = htole32(vlanctl);
1621 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1622 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1623 if (seg == 0)
1624 cmdstat |= RE_TDESC_CMD_SOF;
1625 else
1626 cmdstat |= RE_TDESC_CMD_OWN;
1627 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1628 cmdstat |= RE_TDESC_CMD_EOR;
1629 if (seg == nsegs - 1) {
1630 cmdstat |= RE_TDESC_CMD_EOF;
1631 lastdesc = curdesc;
1632 }
1633 d->re_cmdstat = htole32(cmdstat);
1634 RE_TXDESCSYNC(sc, curdesc,
1635 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1636 }
1637 if (__predict_false(pad)) {
1638 d = &sc->re_ldata.re_tx_list[curdesc];
1639 d->re_vlanctl = htole32(vlanctl);
1640 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1641 cmdstat = re_flags |
1642 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1643 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1644 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1645 cmdstat |= RE_TDESC_CMD_EOR;
1646 d->re_cmdstat = htole32(cmdstat);
1647 RE_TXDESCSYNC(sc, curdesc,
1648 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1649 lastdesc = curdesc;
1650 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1651 }
1652 KASSERT(lastdesc != -1);
1653
1654 /* Transfer ownership of packet to the chip. */
1655
1656 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1657 htole32(RE_TDESC_CMD_OWN);
1658 RE_TXDESCSYNC(sc, startdesc,
1659 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1660
1661 /* update info of TX queue and descriptors */
1662 txq->txq_mbuf = m;
1663 txq->txq_descidx = lastdesc;
1664 txq->txq_nsegs = nsegs;
1665
1666 sc->re_ldata.re_txq_free--;
1667 sc->re_ldata.re_tx_free -= nsegs;
1668 sc->re_ldata.re_tx_nextfree = curdesc;
1669
1670 /*
1671 * If there's a BPF listener, bounce a copy of this frame
1672 * to him.
1673 */
1674 bpf_mtap(ifp, m);
1675 }
1676
1677 if (sc->re_ldata.re_txq_free < ofree) {
1678 /*
1679 * TX packets are enqueued.
1680 */
1681 sc->re_ldata.re_txq_prodidx = idx;
1682
1683 /*
1684 * Start the transmitter to poll.
1685 *
1686 * RealTek put the TX poll request register in a different
1687 * location on the 8169 gigE chip. I don't know why.
1688 */
1689 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1690 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1691 else
1692 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1693
1694 /*
1695 * Use the countdown timer for interrupt moderation.
1696 * 'TX done' interrupts are disabled. Instead, we reset the
1697 * countdown timer, which will begin counting until it hits
1698 * the value in the TIMERINT register, and then trigger an
1699 * interrupt. Each time we write to the TIMERCNT register,
1700 * the timer count is reset to 0.
1701 */
1702 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1703
1704 /*
1705 * Set a timeout in case the chip goes out to lunch.
1706 */
1707 ifp->if_timer = 5;
1708 }
1709 }
1710
1711 static int
1712 re_init(struct ifnet *ifp)
1713 {
1714 struct rtk_softc *sc = ifp->if_softc;
1715 const uint8_t *enaddr;
1716 uint32_t rxcfg = 0;
1717 uint32_t reg;
1718 uint16_t cfg;
1719 int error;
1720
1721 if ((error = re_enable(sc)) != 0)
1722 goto out;
1723
1724 /*
1725 * Cancel pending I/O and free all RX/TX buffers.
1726 */
1727 re_stop(ifp, 0);
1728
1729 re_reset(sc);
1730
1731 /*
1732 * Enable C+ RX and TX mode, as well as VLAN stripping and
1733 * RX checksum offload. We must configure the C+ register
1734 * before all others.
1735 */
1736 cfg = RE_CPLUSCMD_PCI_MRW;
1737
1738 /*
1739 * XXX: For old 8169 set bit 14.
1740 * For 8169S/8110S and above, do not set bit 14.
1741 */
1742 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1743 cfg |= (0x1 << 14);
1744
1745 if ((ifp->if_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1746 cfg |= RE_CPLUSCMD_VLANSTRIP;
1747 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1748 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1749 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1750 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1751 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1752 cfg |= RE_CPLUSCMD_TXENB;
1753 } else
1754 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1755
1756 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1757
1758 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1759 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1760 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1761
1762 DELAY(10000);
1763
1764 /*
1765 * Init our MAC address. Even though the chipset
1766 * documentation doesn't mention it, we need to enter "Config
1767 * register write enable" mode to modify the ID registers.
1768 */
1769 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1770 enaddr = CLLADDR(ifp->if_sadl);
1771 reg = enaddr[0] | (enaddr[1] << 8) |
1772 (enaddr[2] << 16) | (enaddr[3] << 24);
1773 CSR_WRITE_4(sc, RTK_IDR0, reg);
1774 reg = enaddr[4] | (enaddr[5] << 8);
1775 CSR_WRITE_4(sc, RTK_IDR4, reg);
1776 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1777
1778 /*
1779 * For C+ mode, initialize the RX descriptors and mbufs.
1780 */
1781 re_rx_list_init(sc);
1782 re_tx_list_init(sc);
1783
1784 /*
1785 * Load the addresses of the RX and TX lists into the chip.
1786 */
1787 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1788 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1789 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1790 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1791
1792 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1793 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1794 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1795 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1796
1797 /*
1798 * Enable transmit and receive.
1799 */
1800 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1801
1802 /*
1803 * Set the initial TX and RX configuration.
1804 */
1805 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1806 /* test mode is needed only for old 8169 */
1807 CSR_WRITE_4(sc, RTK_TXCFG,
1808 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1809 } else
1810 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1811
1812 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1813
1814 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1815
1816 /* Set the individual bit to receive frames for this host only. */
1817 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1818 rxcfg |= RTK_RXCFG_RX_INDIV;
1819
1820 /* If we want promiscuous mode, set the allframes bit. */
1821 if (ifp->if_flags & IFF_PROMISC)
1822 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1823 else
1824 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1825 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1826
1827 /*
1828 * Set capture broadcast bit to capture broadcast frames.
1829 */
1830 if (ifp->if_flags & IFF_BROADCAST)
1831 rxcfg |= RTK_RXCFG_RX_BROAD;
1832 else
1833 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1834 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1835
1836 /*
1837 * Program the multicast filter, if necessary.
1838 */
1839 rtk_setmulti(sc);
1840
1841 /*
1842 * Enable interrupts.
1843 */
1844 if (sc->re_testmode)
1845 CSR_WRITE_2(sc, RTK_IMR, 0);
1846 else
1847 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1848
1849 /* Start RX/TX process. */
1850 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1851 #ifdef notdef
1852 /* Enable receiver and transmitter. */
1853 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1854 #endif
1855
1856 /*
1857 * Initialize the timer interrupt register so that
1858 * a timer interrupt will be generated once the timer
1859 * reaches a certain number of ticks. The timer is
1860 * reloaded on each transmit. This gives us TX interrupt
1861 * moderation, which dramatically improves TX frame rate.
1862 */
1863
1864 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1865 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1866 else {
1867 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1868
1869 /*
1870 * For 8169 gigE NICs, set the max allowed RX packet
1871 * size so we can receive jumbo frames.
1872 */
1873 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1874 }
1875
1876 if (sc->re_testmode)
1877 return 0;
1878
1879 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1880
1881 ifp->if_flags |= IFF_RUNNING;
1882 ifp->if_flags &= ~IFF_OACTIVE;
1883
1884 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1885
1886 out:
1887 if (error) {
1888 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1889 ifp->if_timer = 0;
1890 printf("%s: interface not running\n",
1891 device_xname(sc->sc_dev));
1892 }
1893
1894 return error;
1895 }
1896
1897 static int
1898 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1899 {
1900 struct rtk_softc *sc = ifp->if_softc;
1901 struct ifreq *ifr = data;
1902 int s, error = 0;
1903
1904 s = splnet();
1905
1906 switch (command) {
1907 case SIOCSIFMTU:
1908 /*
1909 * Disable jumbo frames if it's not supported.
1910 */
1911 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1912 ifr->ifr_mtu > ETHERMTU) {
1913 error = EINVAL;
1914 break;
1915 }
1916
1917 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1918 error = EINVAL;
1919 else if ((error = ifioctl_common(ifp, command, data)) ==
1920 ENETRESET)
1921 error = 0;
1922 break;
1923 default:
1924 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1925 break;
1926
1927 error = 0;
1928
1929 if (command == SIOCSIFCAP)
1930 error = (*ifp->if_init)(ifp);
1931 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1932 ;
1933 else if (ifp->if_flags & IFF_RUNNING)
1934 rtk_setmulti(sc);
1935 break;
1936 }
1937
1938 splx(s);
1939
1940 return error;
1941 }
1942
1943 static void
1944 re_watchdog(struct ifnet *ifp)
1945 {
1946 struct rtk_softc *sc;
1947 int s;
1948
1949 sc = ifp->if_softc;
1950 s = splnet();
1951 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1952 ifp->if_oerrors++;
1953
1954 re_txeof(sc);
1955 re_rxeof(sc);
1956
1957 re_init(ifp);
1958
1959 splx(s);
1960 }
1961
1962 /*
1963 * Stop the adapter and free any mbufs allocated to the
1964 * RX and TX lists.
1965 */
1966 static void
1967 re_stop(struct ifnet *ifp, int disable)
1968 {
1969 int i;
1970 struct rtk_softc *sc = ifp->if_softc;
1971
1972 callout_stop(&sc->rtk_tick_ch);
1973
1974 mii_down(&sc->mii);
1975
1976 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
1977 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
1978 RTK_CMD_RX_ENB);
1979 else
1980 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1981 DELAY(1000);
1982 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1983 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
1984
1985 if (sc->re_head != NULL) {
1986 m_freem(sc->re_head);
1987 sc->re_head = sc->re_tail = NULL;
1988 }
1989
1990 /* Free the TX list buffers. */
1991 for (i = 0; i < RE_TX_QLEN; i++) {
1992 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
1993 bus_dmamap_unload(sc->sc_dmat,
1994 sc->re_ldata.re_txq[i].txq_dmamap);
1995 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
1996 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1997 }
1998 }
1999
2000 /* Free the RX list buffers. */
2001 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2002 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2003 bus_dmamap_unload(sc->sc_dmat,
2004 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2005 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2006 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2007 }
2008 }
2009
2010 if (disable)
2011 re_disable(sc);
2012
2013 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2014 ifp->if_timer = 0;
2015 }
2016