rtl8169.c revision 1.134 1 /* $NetBSD: rtl8169.c,v 1.134 2011/11/22 18:42:56 garbled Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.134 2011/11/22 18:42:56 garbled Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137
138 #include <sys/bus.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142
143 #include <dev/ic/rtl81x9reg.h>
144 #include <dev/ic/rtl81x9var.h>
145
146 #include <dev/ic/rtl8169var.h>
147
148 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
149
150 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
151 static int re_rx_list_init(struct rtk_softc *);
152 static int re_tx_list_init(struct rtk_softc *);
153 static void re_rxeof(struct rtk_softc *);
154 static void re_txeof(struct rtk_softc *);
155 static void re_tick(void *);
156 static void re_start(struct ifnet *);
157 static int re_ioctl(struct ifnet *, u_long, void *);
158 static int re_init(struct ifnet *);
159 static void re_stop(struct ifnet *, int);
160 static void re_watchdog(struct ifnet *);
161
162 static int re_enable(struct rtk_softc *);
163 static void re_disable(struct rtk_softc *);
164
165 static int re_gmii_readreg(device_t, int, int);
166 static void re_gmii_writereg(device_t, int, int, int);
167
168 static int re_miibus_readreg(device_t, int, int);
169 static void re_miibus_writereg(device_t, int, int, int);
170 static void re_miibus_statchg(device_t);
171
172 static void re_reset(struct rtk_softc *);
173
174 static inline void
175 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
176 {
177
178 d->re_bufaddr_lo = htole32((uint32_t)addr);
179 if (sizeof(bus_addr_t) == sizeof(uint64_t))
180 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
181 else
182 d->re_bufaddr_hi = 0;
183 }
184
185 static int
186 re_gmii_readreg(device_t dev, int phy, int reg)
187 {
188 struct rtk_softc *sc = device_private(dev);
189 uint32_t rval;
190 int i;
191
192 if (phy != 7)
193 return 0;
194
195 /* Let the rgephy driver read the GMEDIASTAT register */
196
197 if (reg == RTK_GMEDIASTAT) {
198 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
199 return rval;
200 }
201
202 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
203 DELAY(1000);
204
205 for (i = 0; i < RTK_TIMEOUT; i++) {
206 rval = CSR_READ_4(sc, RTK_PHYAR);
207 if (rval & RTK_PHYAR_BUSY)
208 break;
209 DELAY(100);
210 }
211
212 if (i == RTK_TIMEOUT) {
213 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
214 return 0;
215 }
216
217 return rval & RTK_PHYAR_PHYDATA;
218 }
219
220 static void
221 re_gmii_writereg(device_t dev, int phy, int reg, int data)
222 {
223 struct rtk_softc *sc = device_private(dev);
224 uint32_t rval;
225 int i;
226
227 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
228 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
229 DELAY(1000);
230
231 for (i = 0; i < RTK_TIMEOUT; i++) {
232 rval = CSR_READ_4(sc, RTK_PHYAR);
233 if (!(rval & RTK_PHYAR_BUSY))
234 break;
235 DELAY(100);
236 }
237
238 if (i == RTK_TIMEOUT) {
239 printf("%s: PHY write reg %x <- %x failed\n",
240 device_xname(sc->sc_dev), reg, data);
241 }
242 }
243
244 static int
245 re_miibus_readreg(device_t dev, int phy, int reg)
246 {
247 struct rtk_softc *sc = device_private(dev);
248 uint16_t rval = 0;
249 uint16_t re8139_reg = 0;
250 int s;
251
252 s = splnet();
253
254 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
255 rval = re_gmii_readreg(dev, phy, reg);
256 splx(s);
257 return rval;
258 }
259
260 /* Pretend the internal PHY is only at address 0 */
261 if (phy) {
262 splx(s);
263 return 0;
264 }
265 switch (reg) {
266 case MII_BMCR:
267 re8139_reg = RTK_BMCR;
268 break;
269 case MII_BMSR:
270 re8139_reg = RTK_BMSR;
271 break;
272 case MII_ANAR:
273 re8139_reg = RTK_ANAR;
274 break;
275 case MII_ANER:
276 re8139_reg = RTK_ANER;
277 break;
278 case MII_ANLPAR:
279 re8139_reg = RTK_LPAR;
280 break;
281 case MII_PHYIDR1:
282 case MII_PHYIDR2:
283 splx(s);
284 return 0;
285 /*
286 * Allow the rlphy driver to read the media status
287 * register. If we have a link partner which does not
288 * support NWAY, this is the register which will tell
289 * us the results of parallel detection.
290 */
291 case RTK_MEDIASTAT:
292 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
293 splx(s);
294 return rval;
295 default:
296 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
297 splx(s);
298 return 0;
299 }
300 rval = CSR_READ_2(sc, re8139_reg);
301 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
302 /* 8139C+ has different bit layout. */
303 rval &= ~(BMCR_LOOP | BMCR_ISO);
304 }
305 splx(s);
306 return rval;
307 }
308
309 static void
310 re_miibus_writereg(device_t dev, int phy, int reg, int data)
311 {
312 struct rtk_softc *sc = device_private(dev);
313 uint16_t re8139_reg = 0;
314 int s;
315
316 s = splnet();
317
318 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
319 re_gmii_writereg(dev, phy, reg, data);
320 splx(s);
321 return;
322 }
323
324 /* Pretend the internal PHY is only at address 0 */
325 if (phy) {
326 splx(s);
327 return;
328 }
329 switch (reg) {
330 case MII_BMCR:
331 re8139_reg = RTK_BMCR;
332 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
333 /* 8139C+ has different bit layout. */
334 data &= ~(BMCR_LOOP | BMCR_ISO);
335 }
336 break;
337 case MII_BMSR:
338 re8139_reg = RTK_BMSR;
339 break;
340 case MII_ANAR:
341 re8139_reg = RTK_ANAR;
342 break;
343 case MII_ANER:
344 re8139_reg = RTK_ANER;
345 break;
346 case MII_ANLPAR:
347 re8139_reg = RTK_LPAR;
348 break;
349 case MII_PHYIDR1:
350 case MII_PHYIDR2:
351 splx(s);
352 return;
353 break;
354 default:
355 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
356 splx(s);
357 return;
358 }
359 CSR_WRITE_2(sc, re8139_reg, data);
360 splx(s);
361 return;
362 }
363
364 static void
365 re_miibus_statchg(device_t dev)
366 {
367
368 return;
369 }
370
371 static void
372 re_reset(struct rtk_softc *sc)
373 {
374 int i;
375
376 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
377
378 for (i = 0; i < RTK_TIMEOUT; i++) {
379 DELAY(10);
380 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
381 break;
382 }
383 if (i == RTK_TIMEOUT)
384 printf("%s: reset never completed!\n",
385 device_xname(sc->sc_dev));
386
387 /*
388 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
389 * but also says "Rtl8169s sigle chip detected".
390 */
391 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
392 CSR_WRITE_1(sc, RTK_LDPS, 1);
393
394 }
395
396 /*
397 * The following routine is designed to test for a defect on some
398 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
399 * lines connected to the bus, however for a 32-bit only card, they
400 * should be pulled high. The result of this defect is that the
401 * NIC will not work right if you plug it into a 64-bit slot: DMA
402 * operations will be done with 64-bit transfers, which will fail
403 * because the 64-bit data lines aren't connected.
404 *
405 * There's no way to work around this (short of talking a soldering
406 * iron to the board), however we can detect it. The method we use
407 * here is to put the NIC into digital loopback mode, set the receiver
408 * to promiscuous mode, and then try to send a frame. We then compare
409 * the frame data we sent to what was received. If the data matches,
410 * then the NIC is working correctly, otherwise we know the user has
411 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
412 * slot. In the latter case, there's no way the NIC can work correctly,
413 * so we print out a message on the console and abort the device attach.
414 */
415
416 int
417 re_diag(struct rtk_softc *sc)
418 {
419 struct ifnet *ifp = &sc->ethercom.ec_if;
420 struct mbuf *m0;
421 struct ether_header *eh;
422 struct re_rxsoft *rxs;
423 struct re_desc *cur_rx;
424 bus_dmamap_t dmamap;
425 uint16_t status;
426 uint32_t rxstat;
427 int total_len, i, s, error = 0;
428 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
429 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
430
431 /* Allocate a single mbuf */
432
433 MGETHDR(m0, M_DONTWAIT, MT_DATA);
434 if (m0 == NULL)
435 return ENOBUFS;
436
437 /*
438 * Initialize the NIC in test mode. This sets the chip up
439 * so that it can send and receive frames, but performs the
440 * following special functions:
441 * - Puts receiver in promiscuous mode
442 * - Enables digital loopback mode
443 * - Leaves interrupts turned off
444 */
445
446 ifp->if_flags |= IFF_PROMISC;
447 sc->re_testmode = 1;
448 re_init(ifp);
449 re_stop(ifp, 0);
450 DELAY(100000);
451 re_init(ifp);
452
453 /* Put some data in the mbuf */
454
455 eh = mtod(m0, struct ether_header *);
456 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
457 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
458 eh->ether_type = htons(ETHERTYPE_IP);
459 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
460
461 /*
462 * Queue the packet, start transmission.
463 */
464
465 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
466 s = splnet();
467 IF_ENQUEUE(&ifp->if_snd, m0);
468 re_start(ifp);
469 splx(s);
470 m0 = NULL;
471
472 /* Wait for it to propagate through the chip */
473
474 DELAY(100000);
475 for (i = 0; i < RTK_TIMEOUT; i++) {
476 status = CSR_READ_2(sc, RTK_ISR);
477 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
478 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
479 break;
480 DELAY(10);
481 }
482 if (i == RTK_TIMEOUT) {
483 aprint_error_dev(sc->sc_dev,
484 "diagnostic failed, failed to receive packet "
485 "in loopback mode\n");
486 error = EIO;
487 goto done;
488 }
489
490 /*
491 * The packet should have been dumped into the first
492 * entry in the RX DMA ring. Grab it from there.
493 */
494
495 rxs = &sc->re_ldata.re_rxsoft[0];
496 dmamap = rxs->rxs_dmamap;
497 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
498 BUS_DMASYNC_POSTREAD);
499 bus_dmamap_unload(sc->sc_dmat, dmamap);
500
501 m0 = rxs->rxs_mbuf;
502 rxs->rxs_mbuf = NULL;
503 eh = mtod(m0, struct ether_header *);
504
505 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
506 cur_rx = &sc->re_ldata.re_rx_list[0];
507 rxstat = le32toh(cur_rx->re_cmdstat);
508 total_len = rxstat & sc->re_rxlenmask;
509
510 if (total_len != ETHER_MIN_LEN) {
511 aprint_error_dev(sc->sc_dev,
512 "diagnostic failed, received short packet\n");
513 error = EIO;
514 goto done;
515 }
516
517 /* Test that the received packet data matches what we sent. */
518
519 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
520 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
521 ntohs(eh->ether_type) != ETHERTYPE_IP) {
522 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
523 "expected TX data: %s/%s/0x%x\n"
524 "received RX data: %s/%s/0x%x\n"
525 "You may have a defective 32-bit NIC plugged "
526 "into a 64-bit PCI slot.\n"
527 "Please re-install the NIC in a 32-bit slot "
528 "for proper operation.\n"
529 "Read the re(4) man page for more details.\n" ,
530 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
531 ether_sprintf(eh->ether_dhost),
532 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
533 error = EIO;
534 }
535
536 done:
537 /* Turn interface off, release resources */
538
539 sc->re_testmode = 0;
540 ifp->if_flags &= ~IFF_PROMISC;
541 re_stop(ifp, 0);
542 if (m0 != NULL)
543 m_freem(m0);
544
545 return error;
546 }
547
548
549 /*
550 * Attach the interface. Allocate softc structures, do ifmedia
551 * setup and ethernet/BPF attach.
552 */
553 void
554 re_attach(struct rtk_softc *sc)
555 {
556 uint8_t eaddr[ETHER_ADDR_LEN];
557 uint16_t val;
558 struct ifnet *ifp;
559 int error = 0, i, addr_len;
560
561 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
562 uint32_t hwrev;
563
564 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
565 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
566 switch (hwrev) {
567 case RTK_HWREV_8169:
568 sc->sc_quirk |= RTKQ_8169NONS;
569 break;
570 case RTK_HWREV_8169S:
571 case RTK_HWREV_8110S:
572 case RTK_HWREV_8169_8110SB:
573 case RTK_HWREV_8169_8110SBL:
574 case RTK_HWREV_8169_8110SC:
575 sc->sc_quirk |= RTKQ_MACLDPS;
576 break;
577 case RTK_HWREV_8168_SPIN1:
578 case RTK_HWREV_8168_SPIN2:
579 case RTK_HWREV_8168_SPIN3:
580 sc->sc_quirk |= RTKQ_MACSTAT;
581 break;
582 case RTK_HWREV_8168C:
583 case RTK_HWREV_8168C_SPIN2:
584 case RTK_HWREV_8168CP:
585 case RTK_HWREV_8168D:
586 case RTK_HWREV_8168DP:
587 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
588 RTKQ_MACSTAT | RTKQ_CMDSTOP;
589 /*
590 * From FreeBSD driver:
591 *
592 * These (8168/8111) controllers support jumbo frame
593 * but it seems that enabling it requires touching
594 * additional magic registers. Depending on MAC
595 * revisions some controllers need to disable
596 * checksum offload. So disable jumbo frame until
597 * I have better idea what it really requires to
598 * make it support.
599 * RTL8168C/CP : supports up to 6KB jumbo frame.
600 * RTL8111C/CP : supports up to 9KB jumbo frame.
601 */
602 sc->sc_quirk |= RTKQ_NOJUMBO;
603 break;
604 case RTK_HWREV_8168E:
605 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
606 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
607 RTKQ_NOJUMBO;
608 break;
609 case RTK_HWREV_8100E:
610 case RTK_HWREV_8100E_SPIN2:
611 case RTK_HWREV_8101E:
612 sc->sc_quirk |= RTKQ_NOJUMBO;
613 break;
614 case RTK_HWREV_8102E:
615 case RTK_HWREV_8102EL:
616 case RTK_HWREV_8103E:
617 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
618 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
619 break;
620 default:
621 aprint_normal_dev(sc->sc_dev,
622 "Unknown revision (0x%08x)\n", hwrev);
623 /* assume the latest features */
624 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
625 sc->sc_quirk |= RTKQ_NOJUMBO;
626 }
627
628 /* Set RX length mask */
629 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
630 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
631 } else {
632 sc->sc_quirk |= RTKQ_NOJUMBO;
633
634 /* Set RX length mask */
635 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
636 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
637 }
638
639 /* Reset the adapter. */
640 re_reset(sc);
641
642 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
643 /*
644 * Get station address from ID registers.
645 */
646 for (i = 0; i < ETHER_ADDR_LEN; i++)
647 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
648 } else {
649 /*
650 * Get station address from the EEPROM.
651 */
652 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
653 addr_len = RTK_EEADDR_LEN1;
654 else
655 addr_len = RTK_EEADDR_LEN0;
656
657 /*
658 * Get station address from the EEPROM.
659 */
660 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
661 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
662 eaddr[(i * 2) + 0] = val & 0xff;
663 eaddr[(i * 2) + 1] = val >> 8;
664 }
665 }
666
667 /* Take PHY out of power down mode. */
668 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
669 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
670
671 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
672 ether_sprintf(eaddr));
673
674 if (sc->re_ldata.re_tx_desc_cnt >
675 PAGE_SIZE / sizeof(struct re_desc)) {
676 sc->re_ldata.re_tx_desc_cnt =
677 PAGE_SIZE / sizeof(struct re_desc);
678 }
679
680 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
681 sc->re_ldata.re_tx_desc_cnt);
682 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
683
684 /* Allocate DMA'able memory for the TX ring */
685 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
686 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
687 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
688 aprint_error_dev(sc->sc_dev,
689 "can't allocate tx listseg, error = %d\n", error);
690 goto fail_0;
691 }
692
693 /* Load the map for the TX ring. */
694 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
695 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
696 (void **)&sc->re_ldata.re_tx_list,
697 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
698 aprint_error_dev(sc->sc_dev,
699 "can't map tx list, error = %d\n", error);
700 goto fail_1;
701 }
702 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
703
704 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
705 RE_TX_LIST_SZ(sc), 0, 0,
706 &sc->re_ldata.re_tx_list_map)) != 0) {
707 aprint_error_dev(sc->sc_dev,
708 "can't create tx list map, error = %d\n", error);
709 goto fail_2;
710 }
711
712
713 if ((error = bus_dmamap_load(sc->sc_dmat,
714 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
715 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
716 aprint_error_dev(sc->sc_dev,
717 "can't load tx list, error = %d\n", error);
718 goto fail_3;
719 }
720
721 /* Create DMA maps for TX buffers */
722 for (i = 0; i < RE_TX_QLEN; i++) {
723 error = bus_dmamap_create(sc->sc_dmat,
724 round_page(IP_MAXPACKET),
725 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
726 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
727 if (error) {
728 aprint_error_dev(sc->sc_dev,
729 "can't create DMA map for TX\n");
730 goto fail_4;
731 }
732 }
733
734 /* Allocate DMA'able memory for the RX ring */
735 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
736 if ((error = bus_dmamem_alloc(sc->sc_dmat,
737 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
738 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
739 aprint_error_dev(sc->sc_dev,
740 "can't allocate rx listseg, error = %d\n", error);
741 goto fail_4;
742 }
743
744 /* Load the map for the RX ring. */
745 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
746 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
747 (void **)&sc->re_ldata.re_rx_list,
748 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
749 aprint_error_dev(sc->sc_dev,
750 "can't map rx list, error = %d\n", error);
751 goto fail_5;
752 }
753 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
754
755 if ((error = bus_dmamap_create(sc->sc_dmat,
756 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
757 &sc->re_ldata.re_rx_list_map)) != 0) {
758 aprint_error_dev(sc->sc_dev,
759 "can't create rx list map, error = %d\n", error);
760 goto fail_6;
761 }
762
763 if ((error = bus_dmamap_load(sc->sc_dmat,
764 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
765 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
766 aprint_error_dev(sc->sc_dev,
767 "can't load rx list, error = %d\n", error);
768 goto fail_7;
769 }
770
771 /* Create DMA maps for RX buffers */
772 for (i = 0; i < RE_RX_DESC_CNT; i++) {
773 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
774 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
775 if (error) {
776 aprint_error_dev(sc->sc_dev,
777 "can't create DMA map for RX\n");
778 goto fail_8;
779 }
780 }
781
782 /*
783 * Record interface as attached. From here, we should not fail.
784 */
785 sc->sc_flags |= RTK_ATTACHED;
786
787 ifp = &sc->ethercom.ec_if;
788 ifp->if_softc = sc;
789 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
790 ifp->if_mtu = ETHERMTU;
791 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
792 ifp->if_ioctl = re_ioctl;
793 sc->ethercom.ec_capabilities |=
794 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
795 ifp->if_start = re_start;
796 ifp->if_stop = re_stop;
797
798 /*
799 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
800 * so we have a workaround to handle the bug by padding
801 * such packets manually.
802 */
803 ifp->if_capabilities |=
804 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
805 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
806 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
807 IFCAP_TSOv4;
808
809 /*
810 * XXX
811 * Still have no idea how to make TSO work on 8168C, 8168CP,
812 * 8102E, 8111C and 8111CP.
813 */
814 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
815 ifp->if_capabilities &= ~IFCAP_TSOv4;
816
817 ifp->if_watchdog = re_watchdog;
818 ifp->if_init = re_init;
819 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
820 ifp->if_capenable = ifp->if_capabilities;
821 IFQ_SET_READY(&ifp->if_snd);
822
823 callout_init(&sc->rtk_tick_ch, 0);
824
825 /* Do MII setup */
826 sc->mii.mii_ifp = ifp;
827 sc->mii.mii_readreg = re_miibus_readreg;
828 sc->mii.mii_writereg = re_miibus_writereg;
829 sc->mii.mii_statchg = re_miibus_statchg;
830 sc->ethercom.ec_mii = &sc->mii;
831 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
832 ether_mediastatus);
833 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
834 MII_OFFSET_ANY, 0);
835 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
836
837 /*
838 * Call MI attach routine.
839 */
840 if_attach(ifp);
841 ether_ifattach(ifp, eaddr);
842
843 if (pmf_device_register(sc->sc_dev, NULL, NULL))
844 pmf_class_network_register(sc->sc_dev, ifp);
845 else
846 aprint_error_dev(sc->sc_dev,
847 "couldn't establish power handler\n");
848
849 return;
850
851 fail_8:
852 /* Destroy DMA maps for RX buffers. */
853 for (i = 0; i < RE_RX_DESC_CNT; i++)
854 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
855 bus_dmamap_destroy(sc->sc_dmat,
856 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
857
858 /* Free DMA'able memory for the RX ring. */
859 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
860 fail_7:
861 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
862 fail_6:
863 bus_dmamem_unmap(sc->sc_dmat,
864 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
865 fail_5:
866 bus_dmamem_free(sc->sc_dmat,
867 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
868
869 fail_4:
870 /* Destroy DMA maps for TX buffers. */
871 for (i = 0; i < RE_TX_QLEN; i++)
872 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
873 bus_dmamap_destroy(sc->sc_dmat,
874 sc->re_ldata.re_txq[i].txq_dmamap);
875
876 /* Free DMA'able memory for the TX ring. */
877 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
878 fail_3:
879 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
880 fail_2:
881 bus_dmamem_unmap(sc->sc_dmat,
882 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
883 fail_1:
884 bus_dmamem_free(sc->sc_dmat,
885 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
886 fail_0:
887 return;
888 }
889
890
891 /*
892 * re_activate:
893 * Handle device activation/deactivation requests.
894 */
895 int
896 re_activate(device_t self, enum devact act)
897 {
898 struct rtk_softc *sc = device_private(self);
899
900 switch (act) {
901 case DVACT_DEACTIVATE:
902 if_deactivate(&sc->ethercom.ec_if);
903 return 0;
904 default:
905 return EOPNOTSUPP;
906 }
907 }
908
909 /*
910 * re_detach:
911 * Detach a rtk interface.
912 */
913 int
914 re_detach(struct rtk_softc *sc)
915 {
916 struct ifnet *ifp = &sc->ethercom.ec_if;
917 int i;
918
919 /*
920 * Succeed now if there isn't any work to do.
921 */
922 if ((sc->sc_flags & RTK_ATTACHED) == 0)
923 return 0;
924
925 /* Unhook our tick handler. */
926 callout_stop(&sc->rtk_tick_ch);
927
928 /* Detach all PHYs. */
929 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
930
931 /* Delete all remaining media. */
932 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
933
934 ether_ifdetach(ifp);
935 if_detach(ifp);
936
937 /* Destroy DMA maps for RX buffers. */
938 for (i = 0; i < RE_RX_DESC_CNT; i++)
939 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
940 bus_dmamap_destroy(sc->sc_dmat,
941 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
942
943 /* Free DMA'able memory for the RX ring. */
944 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
945 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
946 bus_dmamem_unmap(sc->sc_dmat,
947 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
948 bus_dmamem_free(sc->sc_dmat,
949 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
950
951 /* Destroy DMA maps for TX buffers. */
952 for (i = 0; i < RE_TX_QLEN; i++)
953 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
954 bus_dmamap_destroy(sc->sc_dmat,
955 sc->re_ldata.re_txq[i].txq_dmamap);
956
957 /* Free DMA'able memory for the TX ring. */
958 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
959 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
960 bus_dmamem_unmap(sc->sc_dmat,
961 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
962 bus_dmamem_free(sc->sc_dmat,
963 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
964
965 pmf_device_deregister(sc->sc_dev);
966
967 /* we don't want to run again */
968 sc->sc_flags &= ~RTK_ATTACHED;
969
970 return 0;
971 }
972
973 /*
974 * re_enable:
975 * Enable the RTL81X9 chip.
976 */
977 static int
978 re_enable(struct rtk_softc *sc)
979 {
980
981 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
982 if ((*sc->sc_enable)(sc) != 0) {
983 printf("%s: device enable failed\n",
984 device_xname(sc->sc_dev));
985 return EIO;
986 }
987 sc->sc_flags |= RTK_ENABLED;
988 }
989 return 0;
990 }
991
992 /*
993 * re_disable:
994 * Disable the RTL81X9 chip.
995 */
996 static void
997 re_disable(struct rtk_softc *sc)
998 {
999
1000 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1001 (*sc->sc_disable)(sc);
1002 sc->sc_flags &= ~RTK_ENABLED;
1003 }
1004 }
1005
1006 static int
1007 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1008 {
1009 struct mbuf *n = NULL;
1010 bus_dmamap_t map;
1011 struct re_desc *d;
1012 struct re_rxsoft *rxs;
1013 uint32_t cmdstat;
1014 int error;
1015
1016 if (m == NULL) {
1017 MGETHDR(n, M_DONTWAIT, MT_DATA);
1018 if (n == NULL)
1019 return ENOBUFS;
1020
1021 MCLGET(n, M_DONTWAIT);
1022 if ((n->m_flags & M_EXT) == 0) {
1023 m_freem(n);
1024 return ENOBUFS;
1025 }
1026 m = n;
1027 } else
1028 m->m_data = m->m_ext.ext_buf;
1029
1030 /*
1031 * Initialize mbuf length fields and fixup
1032 * alignment so that the frame payload is
1033 * longword aligned.
1034 */
1035 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1036 m->m_data += RE_ETHER_ALIGN;
1037
1038 rxs = &sc->re_ldata.re_rxsoft[idx];
1039 map = rxs->rxs_dmamap;
1040 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1041 BUS_DMA_READ|BUS_DMA_NOWAIT);
1042
1043 if (error)
1044 goto out;
1045
1046 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1047 BUS_DMASYNC_PREREAD);
1048
1049 d = &sc->re_ldata.re_rx_list[idx];
1050 #ifdef DIAGNOSTIC
1051 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1052 cmdstat = le32toh(d->re_cmdstat);
1053 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1054 if (cmdstat & RE_RDESC_STAT_OWN) {
1055 panic("%s: tried to map busy RX descriptor",
1056 device_xname(sc->sc_dev));
1057 }
1058 #endif
1059
1060 rxs->rxs_mbuf = m;
1061
1062 d->re_vlanctl = 0;
1063 cmdstat = map->dm_segs[0].ds_len;
1064 if (idx == (RE_RX_DESC_CNT - 1))
1065 cmdstat |= RE_RDESC_CMD_EOR;
1066 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1067 d->re_cmdstat = htole32(cmdstat);
1068 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1069 cmdstat |= RE_RDESC_CMD_OWN;
1070 d->re_cmdstat = htole32(cmdstat);
1071 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1072
1073 return 0;
1074 out:
1075 if (n != NULL)
1076 m_freem(n);
1077 return ENOMEM;
1078 }
1079
1080 static int
1081 re_tx_list_init(struct rtk_softc *sc)
1082 {
1083 int i;
1084
1085 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1086 for (i = 0; i < RE_TX_QLEN; i++) {
1087 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1088 }
1089
1090 bus_dmamap_sync(sc->sc_dmat,
1091 sc->re_ldata.re_tx_list_map, 0,
1092 sc->re_ldata.re_tx_list_map->dm_mapsize,
1093 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1094 sc->re_ldata.re_txq_prodidx = 0;
1095 sc->re_ldata.re_txq_considx = 0;
1096 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1097 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1098 sc->re_ldata.re_tx_nextfree = 0;
1099
1100 return 0;
1101 }
1102
1103 static int
1104 re_rx_list_init(struct rtk_softc *sc)
1105 {
1106 int i;
1107
1108 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1109
1110 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1111 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1112 return ENOBUFS;
1113 }
1114
1115 sc->re_ldata.re_rx_prodidx = 0;
1116 sc->re_head = sc->re_tail = NULL;
1117
1118 return 0;
1119 }
1120
1121 /*
1122 * RX handler for C+ and 8169. For the gigE chips, we support
1123 * the reception of jumbo frames that have been fragmented
1124 * across multiple 2K mbuf cluster buffers.
1125 */
1126 static void
1127 re_rxeof(struct rtk_softc *sc)
1128 {
1129 struct mbuf *m;
1130 struct ifnet *ifp;
1131 int i, total_len;
1132 struct re_desc *cur_rx;
1133 struct re_rxsoft *rxs;
1134 uint32_t rxstat, rxvlan;
1135
1136 ifp = &sc->ethercom.ec_if;
1137
1138 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1139 cur_rx = &sc->re_ldata.re_rx_list[i];
1140 RE_RXDESCSYNC(sc, i,
1141 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1142 rxstat = le32toh(cur_rx->re_cmdstat);
1143 rxvlan = le32toh(cur_rx->re_vlanctl);
1144 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1145 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1146 break;
1147 }
1148 total_len = rxstat & sc->re_rxlenmask;
1149 rxs = &sc->re_ldata.re_rxsoft[i];
1150 m = rxs->rxs_mbuf;
1151
1152 /* Invalidate the RX mbuf and unload its map */
1153
1154 bus_dmamap_sync(sc->sc_dmat,
1155 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1156 BUS_DMASYNC_POSTREAD);
1157 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1158
1159 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1160 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1161 if (sc->re_head == NULL)
1162 sc->re_head = sc->re_tail = m;
1163 else {
1164 m->m_flags &= ~M_PKTHDR;
1165 sc->re_tail->m_next = m;
1166 sc->re_tail = m;
1167 }
1168 re_newbuf(sc, i, NULL);
1169 continue;
1170 }
1171
1172 /*
1173 * NOTE: for the 8139C+, the frame length field
1174 * is always 12 bits in size, but for the gigE chips,
1175 * it is 13 bits (since the max RX frame length is 16K).
1176 * Unfortunately, all 32 bits in the status word
1177 * were already used, so to make room for the extra
1178 * length bit, RealTek took out the 'frame alignment
1179 * error' bit and shifted the other status bits
1180 * over one slot. The OWN, EOR, FS and LS bits are
1181 * still in the same places. We have already extracted
1182 * the frame length and checked the OWN bit, so rather
1183 * than using an alternate bit mapping, we shift the
1184 * status bits one space to the right so we can evaluate
1185 * them using the 8169 status as though it was in the
1186 * same format as that of the 8139C+.
1187 */
1188 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1189 rxstat >>= 1;
1190
1191 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1192 #ifdef RE_DEBUG
1193 printf("%s: RX error (rxstat = 0x%08x)",
1194 device_xname(sc->sc_dev), rxstat);
1195 if (rxstat & RE_RDESC_STAT_FRALIGN)
1196 printf(", frame alignment error");
1197 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1198 printf(", out of buffer space");
1199 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1200 printf(", FIFO overrun");
1201 if (rxstat & RE_RDESC_STAT_GIANT)
1202 printf(", giant packet");
1203 if (rxstat & RE_RDESC_STAT_RUNT)
1204 printf(", runt packet");
1205 if (rxstat & RE_RDESC_STAT_CRCERR)
1206 printf(", CRC error");
1207 printf("\n");
1208 #endif
1209 ifp->if_ierrors++;
1210 /*
1211 * If this is part of a multi-fragment packet,
1212 * discard all the pieces.
1213 */
1214 if (sc->re_head != NULL) {
1215 m_freem(sc->re_head);
1216 sc->re_head = sc->re_tail = NULL;
1217 }
1218 re_newbuf(sc, i, m);
1219 continue;
1220 }
1221
1222 /*
1223 * If allocating a replacement mbuf fails,
1224 * reload the current one.
1225 */
1226
1227 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1228 ifp->if_ierrors++;
1229 if (sc->re_head != NULL) {
1230 m_freem(sc->re_head);
1231 sc->re_head = sc->re_tail = NULL;
1232 }
1233 re_newbuf(sc, i, m);
1234 continue;
1235 }
1236
1237 if (sc->re_head != NULL) {
1238 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1239 /*
1240 * Special case: if there's 4 bytes or less
1241 * in this buffer, the mbuf can be discarded:
1242 * the last 4 bytes is the CRC, which we don't
1243 * care about anyway.
1244 */
1245 if (m->m_len <= ETHER_CRC_LEN) {
1246 sc->re_tail->m_len -=
1247 (ETHER_CRC_LEN - m->m_len);
1248 m_freem(m);
1249 } else {
1250 m->m_len -= ETHER_CRC_LEN;
1251 m->m_flags &= ~M_PKTHDR;
1252 sc->re_tail->m_next = m;
1253 }
1254 m = sc->re_head;
1255 sc->re_head = sc->re_tail = NULL;
1256 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1257 } else
1258 m->m_pkthdr.len = m->m_len =
1259 (total_len - ETHER_CRC_LEN);
1260
1261 ifp->if_ipackets++;
1262 m->m_pkthdr.rcvif = ifp;
1263
1264 /* Do RX checksumming */
1265 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1266 /* Check IP header checksum */
1267 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1268 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1269 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1270 m->m_pkthdr.csum_flags |=
1271 M_CSUM_IPv4_BAD;
1272
1273 /* Check TCP/UDP checksum */
1274 if (RE_TCPPKT(rxstat)) {
1275 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1276 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1277 m->m_pkthdr.csum_flags |=
1278 M_CSUM_TCP_UDP_BAD;
1279 } else if (RE_UDPPKT(rxstat)) {
1280 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1281 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1282 m->m_pkthdr.csum_flags |=
1283 M_CSUM_TCP_UDP_BAD;
1284 }
1285 }
1286 } else {
1287 /* Check IPv4 header checksum */
1288 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1289 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1290 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1291 m->m_pkthdr.csum_flags |=
1292 M_CSUM_IPv4_BAD;
1293
1294 /* Check TCPv4/UDPv4 checksum */
1295 if (RE_TCPPKT(rxstat)) {
1296 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1297 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1298 m->m_pkthdr.csum_flags |=
1299 M_CSUM_TCP_UDP_BAD;
1300 } else if (RE_UDPPKT(rxstat)) {
1301 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1302 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1303 m->m_pkthdr.csum_flags |=
1304 M_CSUM_TCP_UDP_BAD;
1305 }
1306 }
1307 /* XXX Check TCPv6/UDPv6 checksum? */
1308 }
1309
1310 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1311 VLAN_INPUT_TAG(ifp, m,
1312 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1313 continue);
1314 }
1315 bpf_mtap(ifp, m);
1316 (*ifp->if_input)(ifp, m);
1317 }
1318
1319 sc->re_ldata.re_rx_prodidx = i;
1320 }
1321
1322 static void
1323 re_txeof(struct rtk_softc *sc)
1324 {
1325 struct ifnet *ifp;
1326 struct re_txq *txq;
1327 uint32_t txstat;
1328 int idx, descidx;
1329
1330 ifp = &sc->ethercom.ec_if;
1331
1332 for (idx = sc->re_ldata.re_txq_considx;
1333 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1334 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1335 txq = &sc->re_ldata.re_txq[idx];
1336 KASSERT(txq->txq_mbuf != NULL);
1337
1338 descidx = txq->txq_descidx;
1339 RE_TXDESCSYNC(sc, descidx,
1340 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1341 txstat =
1342 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1343 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1344 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1345 if (txstat & RE_TDESC_CMD_OWN) {
1346 break;
1347 }
1348
1349 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1350 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1351 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1352 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1353 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1354 m_freem(txq->txq_mbuf);
1355 txq->txq_mbuf = NULL;
1356
1357 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1358 ifp->if_collisions++;
1359 if (txstat & RE_TDESC_STAT_TXERRSUM)
1360 ifp->if_oerrors++;
1361 else
1362 ifp->if_opackets++;
1363 }
1364
1365 sc->re_ldata.re_txq_considx = idx;
1366
1367 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1368 ifp->if_flags &= ~IFF_OACTIVE;
1369
1370 /*
1371 * If not all descriptors have been released reaped yet,
1372 * reload the timer so that we will eventually get another
1373 * interrupt that will cause us to re-enter this routine.
1374 * This is done in case the transmitter has gone idle.
1375 */
1376 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1377 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1378 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1379 /*
1380 * Some chips will ignore a second TX request
1381 * issued while an existing transmission is in
1382 * progress. If the transmitter goes idle but
1383 * there are still packets waiting to be sent,
1384 * we need to restart the channel here to flush
1385 * them out. This only seems to be required with
1386 * the PCIe devices.
1387 */
1388 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1389 }
1390 } else
1391 ifp->if_timer = 0;
1392 }
1393
1394 static void
1395 re_tick(void *arg)
1396 {
1397 struct rtk_softc *sc = arg;
1398 int s;
1399
1400 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1401 s = splnet();
1402
1403 mii_tick(&sc->mii);
1404 splx(s);
1405
1406 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1407 }
1408
1409 int
1410 re_intr(void *arg)
1411 {
1412 struct rtk_softc *sc = arg;
1413 struct ifnet *ifp;
1414 uint16_t status;
1415 int handled = 0;
1416
1417 if (!device_has_power(sc->sc_dev))
1418 return 0;
1419
1420 ifp = &sc->ethercom.ec_if;
1421
1422 if ((ifp->if_flags & IFF_UP) == 0)
1423 return 0;
1424
1425 for (;;) {
1426
1427 status = CSR_READ_2(sc, RTK_ISR);
1428 /* If the card has gone away the read returns 0xffff. */
1429 if (status == 0xffff)
1430 break;
1431 if (status) {
1432 handled = 1;
1433 CSR_WRITE_2(sc, RTK_ISR, status);
1434 }
1435
1436 if ((status & RTK_INTRS_CPLUS) == 0)
1437 break;
1438
1439 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1440 re_rxeof(sc);
1441
1442 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1443 RTK_ISR_TX_DESC_UNAVAIL))
1444 re_txeof(sc);
1445
1446 if (status & RTK_ISR_SYSTEM_ERR) {
1447 re_init(ifp);
1448 }
1449
1450 if (status & RTK_ISR_LINKCHG) {
1451 callout_stop(&sc->rtk_tick_ch);
1452 re_tick(sc);
1453 }
1454 }
1455
1456 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1457 re_start(ifp);
1458
1459 return handled;
1460 }
1461
1462
1463
1464 /*
1465 * Main transmit routine for C+ and gigE NICs.
1466 */
1467
1468 static void
1469 re_start(struct ifnet *ifp)
1470 {
1471 struct rtk_softc *sc;
1472 struct mbuf *m;
1473 bus_dmamap_t map;
1474 struct re_txq *txq;
1475 struct re_desc *d;
1476 struct m_tag *mtag;
1477 uint32_t cmdstat, re_flags, vlanctl;
1478 int ofree, idx, error, nsegs, seg;
1479 int startdesc, curdesc, lastdesc;
1480 bool pad;
1481
1482 sc = ifp->if_softc;
1483 ofree = sc->re_ldata.re_txq_free;
1484
1485 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1486
1487 IFQ_POLL(&ifp->if_snd, m);
1488 if (m == NULL)
1489 break;
1490
1491 if (sc->re_ldata.re_txq_free == 0 ||
1492 sc->re_ldata.re_tx_free == 0) {
1493 /* no more free slots left */
1494 ifp->if_flags |= IFF_OACTIVE;
1495 break;
1496 }
1497
1498 /*
1499 * Set up checksum offload. Note: checksum offload bits must
1500 * appear in all descriptors of a multi-descriptor transmit
1501 * attempt. (This is according to testing done with an 8169
1502 * chip. I'm not sure if this is a requirement or a bug.)
1503 */
1504
1505 vlanctl = 0;
1506 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1507 uint32_t segsz = m->m_pkthdr.segsz;
1508
1509 re_flags = RE_TDESC_CMD_LGSEND |
1510 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1511 } else {
1512 /*
1513 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1514 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1515 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1516 */
1517 re_flags = 0;
1518 if ((m->m_pkthdr.csum_flags &
1519 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1520 != 0) {
1521 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1522 re_flags |= RE_TDESC_CMD_IPCSUM;
1523 if (m->m_pkthdr.csum_flags &
1524 M_CSUM_TCPv4) {
1525 re_flags |=
1526 RE_TDESC_CMD_TCPCSUM;
1527 } else if (m->m_pkthdr.csum_flags &
1528 M_CSUM_UDPv4) {
1529 re_flags |=
1530 RE_TDESC_CMD_UDPCSUM;
1531 }
1532 } else {
1533 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1534 if (m->m_pkthdr.csum_flags &
1535 M_CSUM_TCPv4) {
1536 vlanctl |=
1537 RE_TDESC_VLANCTL_TCPCSUM;
1538 } else if (m->m_pkthdr.csum_flags &
1539 M_CSUM_UDPv4) {
1540 vlanctl |=
1541 RE_TDESC_VLANCTL_UDPCSUM;
1542 }
1543 }
1544 }
1545 }
1546
1547 txq = &sc->re_ldata.re_txq[idx];
1548 map = txq->txq_dmamap;
1549 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1550 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1551
1552 if (__predict_false(error)) {
1553 /* XXX try to defrag if EFBIG? */
1554 printf("%s: can't map mbuf (error %d)\n",
1555 device_xname(sc->sc_dev), error);
1556
1557 IFQ_DEQUEUE(&ifp->if_snd, m);
1558 m_freem(m);
1559 ifp->if_oerrors++;
1560 continue;
1561 }
1562
1563 nsegs = map->dm_nsegs;
1564 pad = false;
1565 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1566 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1567 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1568 pad = true;
1569 nsegs++;
1570 }
1571
1572 if (nsegs > sc->re_ldata.re_tx_free) {
1573 /*
1574 * Not enough free descriptors to transmit this packet.
1575 */
1576 ifp->if_flags |= IFF_OACTIVE;
1577 bus_dmamap_unload(sc->sc_dmat, map);
1578 break;
1579 }
1580
1581 IFQ_DEQUEUE(&ifp->if_snd, m);
1582
1583 /*
1584 * Make sure that the caches are synchronized before we
1585 * ask the chip to start DMA for the packet data.
1586 */
1587 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1588 BUS_DMASYNC_PREWRITE);
1589
1590 /*
1591 * Set up hardware VLAN tagging. Note: vlan tag info must
1592 * appear in all descriptors of a multi-descriptor
1593 * transmission attempt.
1594 */
1595 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1596 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1597 RE_TDESC_VLANCTL_TAG;
1598
1599 /*
1600 * Map the segment array into descriptors.
1601 * Note that we set the start-of-frame and
1602 * end-of-frame markers for either TX or RX,
1603 * but they really only have meaning in the TX case.
1604 * (In the RX case, it's the chip that tells us
1605 * where packets begin and end.)
1606 * We also keep track of the end of the ring
1607 * and set the end-of-ring bits as needed,
1608 * and we set the ownership bits in all except
1609 * the very first descriptor. (The caller will
1610 * set this descriptor later when it start
1611 * transmission or reception.)
1612 */
1613 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1614 lastdesc = -1;
1615 for (seg = 0; seg < map->dm_nsegs;
1616 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1617 d = &sc->re_ldata.re_tx_list[curdesc];
1618 #ifdef DIAGNOSTIC
1619 RE_TXDESCSYNC(sc, curdesc,
1620 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1621 cmdstat = le32toh(d->re_cmdstat);
1622 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1623 if (cmdstat & RE_TDESC_STAT_OWN) {
1624 panic("%s: tried to map busy TX descriptor",
1625 device_xname(sc->sc_dev));
1626 }
1627 #endif
1628
1629 d->re_vlanctl = htole32(vlanctl);
1630 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1631 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1632 if (seg == 0)
1633 cmdstat |= RE_TDESC_CMD_SOF;
1634 else
1635 cmdstat |= RE_TDESC_CMD_OWN;
1636 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1637 cmdstat |= RE_TDESC_CMD_EOR;
1638 if (seg == nsegs - 1) {
1639 cmdstat |= RE_TDESC_CMD_EOF;
1640 lastdesc = curdesc;
1641 }
1642 d->re_cmdstat = htole32(cmdstat);
1643 RE_TXDESCSYNC(sc, curdesc,
1644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1645 }
1646 if (__predict_false(pad)) {
1647 d = &sc->re_ldata.re_tx_list[curdesc];
1648 d->re_vlanctl = htole32(vlanctl);
1649 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1650 cmdstat = re_flags |
1651 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1652 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1653 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1654 cmdstat |= RE_TDESC_CMD_EOR;
1655 d->re_cmdstat = htole32(cmdstat);
1656 RE_TXDESCSYNC(sc, curdesc,
1657 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1658 lastdesc = curdesc;
1659 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1660 }
1661 KASSERT(lastdesc != -1);
1662
1663 /* Transfer ownership of packet to the chip. */
1664
1665 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1666 htole32(RE_TDESC_CMD_OWN);
1667 RE_TXDESCSYNC(sc, startdesc,
1668 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1669
1670 /* update info of TX queue and descriptors */
1671 txq->txq_mbuf = m;
1672 txq->txq_descidx = lastdesc;
1673 txq->txq_nsegs = nsegs;
1674
1675 sc->re_ldata.re_txq_free--;
1676 sc->re_ldata.re_tx_free -= nsegs;
1677 sc->re_ldata.re_tx_nextfree = curdesc;
1678
1679 /*
1680 * If there's a BPF listener, bounce a copy of this frame
1681 * to him.
1682 */
1683 bpf_mtap(ifp, m);
1684 }
1685
1686 if (sc->re_ldata.re_txq_free < ofree) {
1687 /*
1688 * TX packets are enqueued.
1689 */
1690 sc->re_ldata.re_txq_prodidx = idx;
1691
1692 /*
1693 * Start the transmitter to poll.
1694 *
1695 * RealTek put the TX poll request register in a different
1696 * location on the 8169 gigE chip. I don't know why.
1697 */
1698 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1699 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1700 else
1701 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1702
1703 /*
1704 * Use the countdown timer for interrupt moderation.
1705 * 'TX done' interrupts are disabled. Instead, we reset the
1706 * countdown timer, which will begin counting until it hits
1707 * the value in the TIMERINT register, and then trigger an
1708 * interrupt. Each time we write to the TIMERCNT register,
1709 * the timer count is reset to 0.
1710 */
1711 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1712
1713 /*
1714 * Set a timeout in case the chip goes out to lunch.
1715 */
1716 ifp->if_timer = 5;
1717 }
1718 }
1719
1720 static int
1721 re_init(struct ifnet *ifp)
1722 {
1723 struct rtk_softc *sc = ifp->if_softc;
1724 const uint8_t *enaddr;
1725 uint32_t rxcfg = 0;
1726 uint32_t reg;
1727 uint16_t cfg;
1728 int error;
1729
1730 if ((error = re_enable(sc)) != 0)
1731 goto out;
1732
1733 /*
1734 * Cancel pending I/O and free all RX/TX buffers.
1735 */
1736 re_stop(ifp, 0);
1737
1738 re_reset(sc);
1739
1740 /*
1741 * Enable C+ RX and TX mode, as well as VLAN stripping and
1742 * RX checksum offload. We must configure the C+ register
1743 * before all others.
1744 */
1745 cfg = RE_CPLUSCMD_PCI_MRW;
1746
1747 /*
1748 * XXX: For old 8169 set bit 14.
1749 * For 8169S/8110S and above, do not set bit 14.
1750 */
1751 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1752 cfg |= (0x1 << 14);
1753
1754 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1755 cfg |= RE_CPLUSCMD_VLANSTRIP;
1756 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1757 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1758 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1759 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1760 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1761 cfg |= RE_CPLUSCMD_TXENB;
1762 } else
1763 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1764
1765 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1766
1767 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1768 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1769 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1770
1771 DELAY(10000);
1772
1773 /*
1774 * Init our MAC address. Even though the chipset
1775 * documentation doesn't mention it, we need to enter "Config
1776 * register write enable" mode to modify the ID registers.
1777 */
1778 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1779 enaddr = CLLADDR(ifp->if_sadl);
1780 reg = enaddr[0] | (enaddr[1] << 8) |
1781 (enaddr[2] << 16) | (enaddr[3] << 24);
1782 CSR_WRITE_4(sc, RTK_IDR0, reg);
1783 reg = enaddr[4] | (enaddr[5] << 8);
1784 CSR_WRITE_4(sc, RTK_IDR4, reg);
1785 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1786
1787 /*
1788 * For C+ mode, initialize the RX descriptors and mbufs.
1789 */
1790 re_rx_list_init(sc);
1791 re_tx_list_init(sc);
1792
1793 /*
1794 * Load the addresses of the RX and TX lists into the chip.
1795 */
1796 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1797 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1798 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1799 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1800
1801 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1802 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1803 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1804 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1805
1806 /*
1807 * Enable transmit and receive.
1808 */
1809 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1810
1811 /*
1812 * Set the initial TX and RX configuration.
1813 */
1814 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1815 /* test mode is needed only for old 8169 */
1816 CSR_WRITE_4(sc, RTK_TXCFG,
1817 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1818 } else
1819 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1820
1821 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1822
1823 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1824
1825 /* Set the individual bit to receive frames for this host only. */
1826 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1827 rxcfg |= RTK_RXCFG_RX_INDIV;
1828
1829 /* If we want promiscuous mode, set the allframes bit. */
1830 if (ifp->if_flags & IFF_PROMISC)
1831 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1832 else
1833 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1834 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1835
1836 /*
1837 * Set capture broadcast bit to capture broadcast frames.
1838 */
1839 if (ifp->if_flags & IFF_BROADCAST)
1840 rxcfg |= RTK_RXCFG_RX_BROAD;
1841 else
1842 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1843 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1844
1845 /*
1846 * Program the multicast filter, if necessary.
1847 */
1848 rtk_setmulti(sc);
1849
1850 /*
1851 * Enable interrupts.
1852 */
1853 if (sc->re_testmode)
1854 CSR_WRITE_2(sc, RTK_IMR, 0);
1855 else
1856 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1857
1858 /* Start RX/TX process. */
1859 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1860 #ifdef notdef
1861 /* Enable receiver and transmitter. */
1862 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1863 #endif
1864
1865 /*
1866 * Initialize the timer interrupt register so that
1867 * a timer interrupt will be generated once the timer
1868 * reaches a certain number of ticks. The timer is
1869 * reloaded on each transmit. This gives us TX interrupt
1870 * moderation, which dramatically improves TX frame rate.
1871 */
1872
1873 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1874 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1875 else {
1876 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1877
1878 /*
1879 * For 8169 gigE NICs, set the max allowed RX packet
1880 * size so we can receive jumbo frames.
1881 */
1882 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1883 }
1884
1885 if (sc->re_testmode)
1886 return 0;
1887
1888 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1889
1890 ifp->if_flags |= IFF_RUNNING;
1891 ifp->if_flags &= ~IFF_OACTIVE;
1892
1893 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1894
1895 out:
1896 if (error) {
1897 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1898 ifp->if_timer = 0;
1899 printf("%s: interface not running\n",
1900 device_xname(sc->sc_dev));
1901 }
1902
1903 return error;
1904 }
1905
1906 static int
1907 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1908 {
1909 struct rtk_softc *sc = ifp->if_softc;
1910 struct ifreq *ifr = data;
1911 int s, error = 0;
1912
1913 s = splnet();
1914
1915 switch (command) {
1916 case SIOCSIFMTU:
1917 /*
1918 * Disable jumbo frames if it's not supported.
1919 */
1920 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1921 ifr->ifr_mtu > ETHERMTU) {
1922 error = EINVAL;
1923 break;
1924 }
1925
1926 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1927 error = EINVAL;
1928 else if ((error = ifioctl_common(ifp, command, data)) ==
1929 ENETRESET)
1930 error = 0;
1931 break;
1932 default:
1933 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1934 break;
1935
1936 error = 0;
1937
1938 if (command == SIOCSIFCAP)
1939 error = (*ifp->if_init)(ifp);
1940 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1941 ;
1942 else if (ifp->if_flags & IFF_RUNNING)
1943 rtk_setmulti(sc);
1944 break;
1945 }
1946
1947 splx(s);
1948
1949 return error;
1950 }
1951
1952 static void
1953 re_watchdog(struct ifnet *ifp)
1954 {
1955 struct rtk_softc *sc;
1956 int s;
1957
1958 sc = ifp->if_softc;
1959 s = splnet();
1960 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1961 ifp->if_oerrors++;
1962
1963 re_txeof(sc);
1964 re_rxeof(sc);
1965
1966 re_init(ifp);
1967
1968 splx(s);
1969 }
1970
1971 /*
1972 * Stop the adapter and free any mbufs allocated to the
1973 * RX and TX lists.
1974 */
1975 static void
1976 re_stop(struct ifnet *ifp, int disable)
1977 {
1978 int i;
1979 struct rtk_softc *sc = ifp->if_softc;
1980
1981 callout_stop(&sc->rtk_tick_ch);
1982
1983 mii_down(&sc->mii);
1984
1985 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
1986 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
1987 RTK_CMD_RX_ENB);
1988 else
1989 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1990 DELAY(1000);
1991 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1992 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
1993
1994 if (sc->re_head != NULL) {
1995 m_freem(sc->re_head);
1996 sc->re_head = sc->re_tail = NULL;
1997 }
1998
1999 /* Free the TX list buffers. */
2000 for (i = 0; i < RE_TX_QLEN; i++) {
2001 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2002 bus_dmamap_unload(sc->sc_dmat,
2003 sc->re_ldata.re_txq[i].txq_dmamap);
2004 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2005 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2006 }
2007 }
2008
2009 /* Free the RX list buffers. */
2010 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2011 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2012 bus_dmamap_unload(sc->sc_dmat,
2013 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2014 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2015 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2016 }
2017 }
2018
2019 if (disable)
2020 re_disable(sc);
2021
2022 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2023 ifp->if_timer = 0;
2024 }
2025