rtl8169.c revision 1.135 1 /* $NetBSD: rtl8169.c,v 1.135 2012/03/02 16:23:40 nonaka Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.135 2012/03/02 16:23:40 nonaka Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
51 * and the RTL8110S.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137
138 #include <sys/bus.h>
139
140 #include <dev/mii/mii.h>
141 #include <dev/mii/miivar.h>
142
143 #include <dev/ic/rtl81x9reg.h>
144 #include <dev/ic/rtl81x9var.h>
145
146 #include <dev/ic/rtl8169var.h>
147
148 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
149
150 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
151 static int re_rx_list_init(struct rtk_softc *);
152 static int re_tx_list_init(struct rtk_softc *);
153 static void re_rxeof(struct rtk_softc *);
154 static void re_txeof(struct rtk_softc *);
155 static void re_tick(void *);
156 static void re_start(struct ifnet *);
157 static int re_ioctl(struct ifnet *, u_long, void *);
158 static int re_init(struct ifnet *);
159 static void re_stop(struct ifnet *, int);
160 static void re_watchdog(struct ifnet *);
161
162 static int re_enable(struct rtk_softc *);
163 static void re_disable(struct rtk_softc *);
164
165 static int re_gmii_readreg(device_t, int, int);
166 static void re_gmii_writereg(device_t, int, int, int);
167
168 static int re_miibus_readreg(device_t, int, int);
169 static void re_miibus_writereg(device_t, int, int, int);
170 static void re_miibus_statchg(device_t);
171
172 static void re_reset(struct rtk_softc *);
173
174 static inline void
175 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
176 {
177
178 d->re_bufaddr_lo = htole32((uint32_t)addr);
179 if (sizeof(bus_addr_t) == sizeof(uint64_t))
180 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
181 else
182 d->re_bufaddr_hi = 0;
183 }
184
185 static int
186 re_gmii_readreg(device_t dev, int phy, int reg)
187 {
188 struct rtk_softc *sc = device_private(dev);
189 uint32_t rval;
190 int i;
191
192 if (phy != 7)
193 return 0;
194
195 /* Let the rgephy driver read the GMEDIASTAT register */
196
197 if (reg == RTK_GMEDIASTAT) {
198 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
199 return rval;
200 }
201
202 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
203 DELAY(1000);
204
205 for (i = 0; i < RTK_TIMEOUT; i++) {
206 rval = CSR_READ_4(sc, RTK_PHYAR);
207 if (rval & RTK_PHYAR_BUSY)
208 break;
209 DELAY(100);
210 }
211
212 if (i == RTK_TIMEOUT) {
213 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
214 return 0;
215 }
216
217 return rval & RTK_PHYAR_PHYDATA;
218 }
219
220 static void
221 re_gmii_writereg(device_t dev, int phy, int reg, int data)
222 {
223 struct rtk_softc *sc = device_private(dev);
224 uint32_t rval;
225 int i;
226
227 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
228 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
229 DELAY(1000);
230
231 for (i = 0; i < RTK_TIMEOUT; i++) {
232 rval = CSR_READ_4(sc, RTK_PHYAR);
233 if (!(rval & RTK_PHYAR_BUSY))
234 break;
235 DELAY(100);
236 }
237
238 if (i == RTK_TIMEOUT) {
239 printf("%s: PHY write reg %x <- %x failed\n",
240 device_xname(sc->sc_dev), reg, data);
241 }
242 }
243
244 static int
245 re_miibus_readreg(device_t dev, int phy, int reg)
246 {
247 struct rtk_softc *sc = device_private(dev);
248 uint16_t rval = 0;
249 uint16_t re8139_reg = 0;
250 int s;
251
252 s = splnet();
253
254 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
255 rval = re_gmii_readreg(dev, phy, reg);
256 splx(s);
257 return rval;
258 }
259
260 /* Pretend the internal PHY is only at address 0 */
261 if (phy) {
262 splx(s);
263 return 0;
264 }
265 switch (reg) {
266 case MII_BMCR:
267 re8139_reg = RTK_BMCR;
268 break;
269 case MII_BMSR:
270 re8139_reg = RTK_BMSR;
271 break;
272 case MII_ANAR:
273 re8139_reg = RTK_ANAR;
274 break;
275 case MII_ANER:
276 re8139_reg = RTK_ANER;
277 break;
278 case MII_ANLPAR:
279 re8139_reg = RTK_LPAR;
280 break;
281 case MII_PHYIDR1:
282 case MII_PHYIDR2:
283 splx(s);
284 return 0;
285 /*
286 * Allow the rlphy driver to read the media status
287 * register. If we have a link partner which does not
288 * support NWAY, this is the register which will tell
289 * us the results of parallel detection.
290 */
291 case RTK_MEDIASTAT:
292 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
293 splx(s);
294 return rval;
295 default:
296 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
297 splx(s);
298 return 0;
299 }
300 rval = CSR_READ_2(sc, re8139_reg);
301 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
302 /* 8139C+ has different bit layout. */
303 rval &= ~(BMCR_LOOP | BMCR_ISO);
304 }
305 splx(s);
306 return rval;
307 }
308
309 static void
310 re_miibus_writereg(device_t dev, int phy, int reg, int data)
311 {
312 struct rtk_softc *sc = device_private(dev);
313 uint16_t re8139_reg = 0;
314 int s;
315
316 s = splnet();
317
318 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
319 re_gmii_writereg(dev, phy, reg, data);
320 splx(s);
321 return;
322 }
323
324 /* Pretend the internal PHY is only at address 0 */
325 if (phy) {
326 splx(s);
327 return;
328 }
329 switch (reg) {
330 case MII_BMCR:
331 re8139_reg = RTK_BMCR;
332 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
333 /* 8139C+ has different bit layout. */
334 data &= ~(BMCR_LOOP | BMCR_ISO);
335 }
336 break;
337 case MII_BMSR:
338 re8139_reg = RTK_BMSR;
339 break;
340 case MII_ANAR:
341 re8139_reg = RTK_ANAR;
342 break;
343 case MII_ANER:
344 re8139_reg = RTK_ANER;
345 break;
346 case MII_ANLPAR:
347 re8139_reg = RTK_LPAR;
348 break;
349 case MII_PHYIDR1:
350 case MII_PHYIDR2:
351 splx(s);
352 return;
353 break;
354 default:
355 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
356 splx(s);
357 return;
358 }
359 CSR_WRITE_2(sc, re8139_reg, data);
360 splx(s);
361 return;
362 }
363
364 static void
365 re_miibus_statchg(device_t dev)
366 {
367
368 return;
369 }
370
371 static void
372 re_reset(struct rtk_softc *sc)
373 {
374 int i;
375
376 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
377
378 for (i = 0; i < RTK_TIMEOUT; i++) {
379 DELAY(10);
380 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
381 break;
382 }
383 if (i == RTK_TIMEOUT)
384 printf("%s: reset never completed!\n",
385 device_xname(sc->sc_dev));
386
387 /*
388 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
389 * but also says "Rtl8169s sigle chip detected".
390 */
391 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
392 CSR_WRITE_1(sc, RTK_LDPS, 1);
393
394 }
395
396 /*
397 * The following routine is designed to test for a defect on some
398 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
399 * lines connected to the bus, however for a 32-bit only card, they
400 * should be pulled high. The result of this defect is that the
401 * NIC will not work right if you plug it into a 64-bit slot: DMA
402 * operations will be done with 64-bit transfers, which will fail
403 * because the 64-bit data lines aren't connected.
404 *
405 * There's no way to work around this (short of talking a soldering
406 * iron to the board), however we can detect it. The method we use
407 * here is to put the NIC into digital loopback mode, set the receiver
408 * to promiscuous mode, and then try to send a frame. We then compare
409 * the frame data we sent to what was received. If the data matches,
410 * then the NIC is working correctly, otherwise we know the user has
411 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
412 * slot. In the latter case, there's no way the NIC can work correctly,
413 * so we print out a message on the console and abort the device attach.
414 */
415
416 int
417 re_diag(struct rtk_softc *sc)
418 {
419 struct ifnet *ifp = &sc->ethercom.ec_if;
420 struct mbuf *m0;
421 struct ether_header *eh;
422 struct re_rxsoft *rxs;
423 struct re_desc *cur_rx;
424 bus_dmamap_t dmamap;
425 uint16_t status;
426 uint32_t rxstat;
427 int total_len, i, s, error = 0;
428 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
429 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
430
431 /* Allocate a single mbuf */
432
433 MGETHDR(m0, M_DONTWAIT, MT_DATA);
434 if (m0 == NULL)
435 return ENOBUFS;
436
437 /*
438 * Initialize the NIC in test mode. This sets the chip up
439 * so that it can send and receive frames, but performs the
440 * following special functions:
441 * - Puts receiver in promiscuous mode
442 * - Enables digital loopback mode
443 * - Leaves interrupts turned off
444 */
445
446 ifp->if_flags |= IFF_PROMISC;
447 sc->re_testmode = 1;
448 re_init(ifp);
449 re_stop(ifp, 0);
450 DELAY(100000);
451 re_init(ifp);
452
453 /* Put some data in the mbuf */
454
455 eh = mtod(m0, struct ether_header *);
456 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
457 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
458 eh->ether_type = htons(ETHERTYPE_IP);
459 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
460
461 /*
462 * Queue the packet, start transmission.
463 */
464
465 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
466 s = splnet();
467 IF_ENQUEUE(&ifp->if_snd, m0);
468 re_start(ifp);
469 splx(s);
470 m0 = NULL;
471
472 /* Wait for it to propagate through the chip */
473
474 DELAY(100000);
475 for (i = 0; i < RTK_TIMEOUT; i++) {
476 status = CSR_READ_2(sc, RTK_ISR);
477 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
478 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
479 break;
480 DELAY(10);
481 }
482 if (i == RTK_TIMEOUT) {
483 aprint_error_dev(sc->sc_dev,
484 "diagnostic failed, failed to receive packet "
485 "in loopback mode\n");
486 error = EIO;
487 goto done;
488 }
489
490 /*
491 * The packet should have been dumped into the first
492 * entry in the RX DMA ring. Grab it from there.
493 */
494
495 rxs = &sc->re_ldata.re_rxsoft[0];
496 dmamap = rxs->rxs_dmamap;
497 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
498 BUS_DMASYNC_POSTREAD);
499 bus_dmamap_unload(sc->sc_dmat, dmamap);
500
501 m0 = rxs->rxs_mbuf;
502 rxs->rxs_mbuf = NULL;
503 eh = mtod(m0, struct ether_header *);
504
505 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
506 cur_rx = &sc->re_ldata.re_rx_list[0];
507 rxstat = le32toh(cur_rx->re_cmdstat);
508 total_len = rxstat & sc->re_rxlenmask;
509
510 if (total_len != ETHER_MIN_LEN) {
511 aprint_error_dev(sc->sc_dev,
512 "diagnostic failed, received short packet\n");
513 error = EIO;
514 goto done;
515 }
516
517 /* Test that the received packet data matches what we sent. */
518
519 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
520 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
521 ntohs(eh->ether_type) != ETHERTYPE_IP) {
522 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
523 "expected TX data: %s/%s/0x%x\n"
524 "received RX data: %s/%s/0x%x\n"
525 "You may have a defective 32-bit NIC plugged "
526 "into a 64-bit PCI slot.\n"
527 "Please re-install the NIC in a 32-bit slot "
528 "for proper operation.\n"
529 "Read the re(4) man page for more details.\n" ,
530 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
531 ether_sprintf(eh->ether_dhost),
532 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
533 error = EIO;
534 }
535
536 done:
537 /* Turn interface off, release resources */
538
539 sc->re_testmode = 0;
540 ifp->if_flags &= ~IFF_PROMISC;
541 re_stop(ifp, 0);
542 if (m0 != NULL)
543 m_freem(m0);
544
545 return error;
546 }
547
548
549 /*
550 * Attach the interface. Allocate softc structures, do ifmedia
551 * setup and ethernet/BPF attach.
552 */
553 void
554 re_attach(struct rtk_softc *sc)
555 {
556 uint8_t eaddr[ETHER_ADDR_LEN];
557 uint16_t val;
558 struct ifnet *ifp;
559 int error = 0, i, addr_len;
560
561 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
562 uint32_t hwrev;
563
564 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
565 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
566 switch (hwrev) {
567 case RTK_HWREV_8169:
568 sc->sc_quirk |= RTKQ_8169NONS;
569 break;
570 case RTK_HWREV_8169S:
571 case RTK_HWREV_8110S:
572 case RTK_HWREV_8169_8110SB:
573 case RTK_HWREV_8169_8110SBL:
574 case RTK_HWREV_8169_8110SC:
575 sc->sc_quirk |= RTKQ_MACLDPS;
576 break;
577 case RTK_HWREV_8168_SPIN1:
578 case RTK_HWREV_8168_SPIN2:
579 case RTK_HWREV_8168_SPIN3:
580 sc->sc_quirk |= RTKQ_MACSTAT;
581 break;
582 case RTK_HWREV_8168C:
583 case RTK_HWREV_8168C_SPIN2:
584 case RTK_HWREV_8168CP:
585 case RTK_HWREV_8168D:
586 case RTK_HWREV_8168DP:
587 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
588 RTKQ_MACSTAT | RTKQ_CMDSTOP;
589 /*
590 * From FreeBSD driver:
591 *
592 * These (8168/8111) controllers support jumbo frame
593 * but it seems that enabling it requires touching
594 * additional magic registers. Depending on MAC
595 * revisions some controllers need to disable
596 * checksum offload. So disable jumbo frame until
597 * I have better idea what it really requires to
598 * make it support.
599 * RTL8168C/CP : supports up to 6KB jumbo frame.
600 * RTL8111C/CP : supports up to 9KB jumbo frame.
601 */
602 sc->sc_quirk |= RTKQ_NOJUMBO;
603 break;
604 case RTK_HWREV_8168E:
605 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
606 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
607 RTKQ_NOJUMBO;
608 break;
609 case RTK_HWREV_8168E_VL:
610 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
611 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
612 break;
613 case RTK_HWREV_8100E:
614 case RTK_HWREV_8100E_SPIN2:
615 case RTK_HWREV_8101E:
616 sc->sc_quirk |= RTKQ_NOJUMBO;
617 break;
618 case RTK_HWREV_8102E:
619 case RTK_HWREV_8102EL:
620 case RTK_HWREV_8103E:
621 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
622 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
623 break;
624 default:
625 aprint_normal_dev(sc->sc_dev,
626 "Unknown revision (0x%08x)\n", hwrev);
627 /* assume the latest features */
628 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
629 sc->sc_quirk |= RTKQ_NOJUMBO;
630 }
631
632 /* Set RX length mask */
633 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
634 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
635 } else {
636 sc->sc_quirk |= RTKQ_NOJUMBO;
637
638 /* Set RX length mask */
639 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
640 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
641 }
642
643 /* Reset the adapter. */
644 re_reset(sc);
645
646 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
647 /*
648 * Get station address from ID registers.
649 */
650 for (i = 0; i < ETHER_ADDR_LEN; i++)
651 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
652 } else {
653 /*
654 * Get station address from the EEPROM.
655 */
656 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
657 addr_len = RTK_EEADDR_LEN1;
658 else
659 addr_len = RTK_EEADDR_LEN0;
660
661 /*
662 * Get station address from the EEPROM.
663 */
664 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
665 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
666 eaddr[(i * 2) + 0] = val & 0xff;
667 eaddr[(i * 2) + 1] = val >> 8;
668 }
669 }
670
671 /* Take PHY out of power down mode. */
672 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
673 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
674
675 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
676 ether_sprintf(eaddr));
677
678 if (sc->re_ldata.re_tx_desc_cnt >
679 PAGE_SIZE / sizeof(struct re_desc)) {
680 sc->re_ldata.re_tx_desc_cnt =
681 PAGE_SIZE / sizeof(struct re_desc);
682 }
683
684 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
685 sc->re_ldata.re_tx_desc_cnt);
686 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
687
688 /* Allocate DMA'able memory for the TX ring */
689 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
690 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
691 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
692 aprint_error_dev(sc->sc_dev,
693 "can't allocate tx listseg, error = %d\n", error);
694 goto fail_0;
695 }
696
697 /* Load the map for the TX ring. */
698 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
699 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
700 (void **)&sc->re_ldata.re_tx_list,
701 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
702 aprint_error_dev(sc->sc_dev,
703 "can't map tx list, error = %d\n", error);
704 goto fail_1;
705 }
706 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
707
708 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
709 RE_TX_LIST_SZ(sc), 0, 0,
710 &sc->re_ldata.re_tx_list_map)) != 0) {
711 aprint_error_dev(sc->sc_dev,
712 "can't create tx list map, error = %d\n", error);
713 goto fail_2;
714 }
715
716
717 if ((error = bus_dmamap_load(sc->sc_dmat,
718 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
719 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
720 aprint_error_dev(sc->sc_dev,
721 "can't load tx list, error = %d\n", error);
722 goto fail_3;
723 }
724
725 /* Create DMA maps for TX buffers */
726 for (i = 0; i < RE_TX_QLEN; i++) {
727 error = bus_dmamap_create(sc->sc_dmat,
728 round_page(IP_MAXPACKET),
729 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
730 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
731 if (error) {
732 aprint_error_dev(sc->sc_dev,
733 "can't create DMA map for TX\n");
734 goto fail_4;
735 }
736 }
737
738 /* Allocate DMA'able memory for the RX ring */
739 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
740 if ((error = bus_dmamem_alloc(sc->sc_dmat,
741 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
742 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
743 aprint_error_dev(sc->sc_dev,
744 "can't allocate rx listseg, error = %d\n", error);
745 goto fail_4;
746 }
747
748 /* Load the map for the RX ring. */
749 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
750 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
751 (void **)&sc->re_ldata.re_rx_list,
752 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
753 aprint_error_dev(sc->sc_dev,
754 "can't map rx list, error = %d\n", error);
755 goto fail_5;
756 }
757 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
758
759 if ((error = bus_dmamap_create(sc->sc_dmat,
760 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
761 &sc->re_ldata.re_rx_list_map)) != 0) {
762 aprint_error_dev(sc->sc_dev,
763 "can't create rx list map, error = %d\n", error);
764 goto fail_6;
765 }
766
767 if ((error = bus_dmamap_load(sc->sc_dmat,
768 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
769 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
770 aprint_error_dev(sc->sc_dev,
771 "can't load rx list, error = %d\n", error);
772 goto fail_7;
773 }
774
775 /* Create DMA maps for RX buffers */
776 for (i = 0; i < RE_RX_DESC_CNT; i++) {
777 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
778 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
779 if (error) {
780 aprint_error_dev(sc->sc_dev,
781 "can't create DMA map for RX\n");
782 goto fail_8;
783 }
784 }
785
786 /*
787 * Record interface as attached. From here, we should not fail.
788 */
789 sc->sc_flags |= RTK_ATTACHED;
790
791 ifp = &sc->ethercom.ec_if;
792 ifp->if_softc = sc;
793 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
794 ifp->if_mtu = ETHERMTU;
795 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
796 ifp->if_ioctl = re_ioctl;
797 sc->ethercom.ec_capabilities |=
798 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
799 ifp->if_start = re_start;
800 ifp->if_stop = re_stop;
801
802 /*
803 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
804 * so we have a workaround to handle the bug by padding
805 * such packets manually.
806 */
807 ifp->if_capabilities |=
808 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
809 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
810 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
811 IFCAP_TSOv4;
812
813 /*
814 * XXX
815 * Still have no idea how to make TSO work on 8168C, 8168CP,
816 * 8102E, 8111C and 8111CP.
817 */
818 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
819 ifp->if_capabilities &= ~IFCAP_TSOv4;
820
821 ifp->if_watchdog = re_watchdog;
822 ifp->if_init = re_init;
823 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
824 ifp->if_capenable = ifp->if_capabilities;
825 IFQ_SET_READY(&ifp->if_snd);
826
827 callout_init(&sc->rtk_tick_ch, 0);
828
829 /* Do MII setup */
830 sc->mii.mii_ifp = ifp;
831 sc->mii.mii_readreg = re_miibus_readreg;
832 sc->mii.mii_writereg = re_miibus_writereg;
833 sc->mii.mii_statchg = re_miibus_statchg;
834 sc->ethercom.ec_mii = &sc->mii;
835 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
836 ether_mediastatus);
837 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
838 MII_OFFSET_ANY, 0);
839 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
840
841 /*
842 * Call MI attach routine.
843 */
844 if_attach(ifp);
845 ether_ifattach(ifp, eaddr);
846
847 if (pmf_device_register(sc->sc_dev, NULL, NULL))
848 pmf_class_network_register(sc->sc_dev, ifp);
849 else
850 aprint_error_dev(sc->sc_dev,
851 "couldn't establish power handler\n");
852
853 return;
854
855 fail_8:
856 /* Destroy DMA maps for RX buffers. */
857 for (i = 0; i < RE_RX_DESC_CNT; i++)
858 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
859 bus_dmamap_destroy(sc->sc_dmat,
860 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
861
862 /* Free DMA'able memory for the RX ring. */
863 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
864 fail_7:
865 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
866 fail_6:
867 bus_dmamem_unmap(sc->sc_dmat,
868 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
869 fail_5:
870 bus_dmamem_free(sc->sc_dmat,
871 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
872
873 fail_4:
874 /* Destroy DMA maps for TX buffers. */
875 for (i = 0; i < RE_TX_QLEN; i++)
876 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
877 bus_dmamap_destroy(sc->sc_dmat,
878 sc->re_ldata.re_txq[i].txq_dmamap);
879
880 /* Free DMA'able memory for the TX ring. */
881 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
882 fail_3:
883 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
884 fail_2:
885 bus_dmamem_unmap(sc->sc_dmat,
886 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
887 fail_1:
888 bus_dmamem_free(sc->sc_dmat,
889 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
890 fail_0:
891 return;
892 }
893
894
895 /*
896 * re_activate:
897 * Handle device activation/deactivation requests.
898 */
899 int
900 re_activate(device_t self, enum devact act)
901 {
902 struct rtk_softc *sc = device_private(self);
903
904 switch (act) {
905 case DVACT_DEACTIVATE:
906 if_deactivate(&sc->ethercom.ec_if);
907 return 0;
908 default:
909 return EOPNOTSUPP;
910 }
911 }
912
913 /*
914 * re_detach:
915 * Detach a rtk interface.
916 */
917 int
918 re_detach(struct rtk_softc *sc)
919 {
920 struct ifnet *ifp = &sc->ethercom.ec_if;
921 int i;
922
923 /*
924 * Succeed now if there isn't any work to do.
925 */
926 if ((sc->sc_flags & RTK_ATTACHED) == 0)
927 return 0;
928
929 /* Unhook our tick handler. */
930 callout_stop(&sc->rtk_tick_ch);
931
932 /* Detach all PHYs. */
933 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
934
935 /* Delete all remaining media. */
936 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
937
938 ether_ifdetach(ifp);
939 if_detach(ifp);
940
941 /* Destroy DMA maps for RX buffers. */
942 for (i = 0; i < RE_RX_DESC_CNT; i++)
943 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
944 bus_dmamap_destroy(sc->sc_dmat,
945 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
946
947 /* Free DMA'able memory for the RX ring. */
948 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
949 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
950 bus_dmamem_unmap(sc->sc_dmat,
951 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
952 bus_dmamem_free(sc->sc_dmat,
953 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
954
955 /* Destroy DMA maps for TX buffers. */
956 for (i = 0; i < RE_TX_QLEN; i++)
957 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
958 bus_dmamap_destroy(sc->sc_dmat,
959 sc->re_ldata.re_txq[i].txq_dmamap);
960
961 /* Free DMA'able memory for the TX ring. */
962 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
963 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
964 bus_dmamem_unmap(sc->sc_dmat,
965 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
966 bus_dmamem_free(sc->sc_dmat,
967 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
968
969 pmf_device_deregister(sc->sc_dev);
970
971 /* we don't want to run again */
972 sc->sc_flags &= ~RTK_ATTACHED;
973
974 return 0;
975 }
976
977 /*
978 * re_enable:
979 * Enable the RTL81X9 chip.
980 */
981 static int
982 re_enable(struct rtk_softc *sc)
983 {
984
985 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
986 if ((*sc->sc_enable)(sc) != 0) {
987 printf("%s: device enable failed\n",
988 device_xname(sc->sc_dev));
989 return EIO;
990 }
991 sc->sc_flags |= RTK_ENABLED;
992 }
993 return 0;
994 }
995
996 /*
997 * re_disable:
998 * Disable the RTL81X9 chip.
999 */
1000 static void
1001 re_disable(struct rtk_softc *sc)
1002 {
1003
1004 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1005 (*sc->sc_disable)(sc);
1006 sc->sc_flags &= ~RTK_ENABLED;
1007 }
1008 }
1009
1010 static int
1011 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1012 {
1013 struct mbuf *n = NULL;
1014 bus_dmamap_t map;
1015 struct re_desc *d;
1016 struct re_rxsoft *rxs;
1017 uint32_t cmdstat;
1018 int error;
1019
1020 if (m == NULL) {
1021 MGETHDR(n, M_DONTWAIT, MT_DATA);
1022 if (n == NULL)
1023 return ENOBUFS;
1024
1025 MCLGET(n, M_DONTWAIT);
1026 if ((n->m_flags & M_EXT) == 0) {
1027 m_freem(n);
1028 return ENOBUFS;
1029 }
1030 m = n;
1031 } else
1032 m->m_data = m->m_ext.ext_buf;
1033
1034 /*
1035 * Initialize mbuf length fields and fixup
1036 * alignment so that the frame payload is
1037 * longword aligned.
1038 */
1039 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1040 m->m_data += RE_ETHER_ALIGN;
1041
1042 rxs = &sc->re_ldata.re_rxsoft[idx];
1043 map = rxs->rxs_dmamap;
1044 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1045 BUS_DMA_READ|BUS_DMA_NOWAIT);
1046
1047 if (error)
1048 goto out;
1049
1050 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1051 BUS_DMASYNC_PREREAD);
1052
1053 d = &sc->re_ldata.re_rx_list[idx];
1054 #ifdef DIAGNOSTIC
1055 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1056 cmdstat = le32toh(d->re_cmdstat);
1057 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1058 if (cmdstat & RE_RDESC_STAT_OWN) {
1059 panic("%s: tried to map busy RX descriptor",
1060 device_xname(sc->sc_dev));
1061 }
1062 #endif
1063
1064 rxs->rxs_mbuf = m;
1065
1066 d->re_vlanctl = 0;
1067 cmdstat = map->dm_segs[0].ds_len;
1068 if (idx == (RE_RX_DESC_CNT - 1))
1069 cmdstat |= RE_RDESC_CMD_EOR;
1070 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1071 d->re_cmdstat = htole32(cmdstat);
1072 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1073 cmdstat |= RE_RDESC_CMD_OWN;
1074 d->re_cmdstat = htole32(cmdstat);
1075 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1076
1077 return 0;
1078 out:
1079 if (n != NULL)
1080 m_freem(n);
1081 return ENOMEM;
1082 }
1083
1084 static int
1085 re_tx_list_init(struct rtk_softc *sc)
1086 {
1087 int i;
1088
1089 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1090 for (i = 0; i < RE_TX_QLEN; i++) {
1091 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1092 }
1093
1094 bus_dmamap_sync(sc->sc_dmat,
1095 sc->re_ldata.re_tx_list_map, 0,
1096 sc->re_ldata.re_tx_list_map->dm_mapsize,
1097 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1098 sc->re_ldata.re_txq_prodidx = 0;
1099 sc->re_ldata.re_txq_considx = 0;
1100 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1101 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1102 sc->re_ldata.re_tx_nextfree = 0;
1103
1104 return 0;
1105 }
1106
1107 static int
1108 re_rx_list_init(struct rtk_softc *sc)
1109 {
1110 int i;
1111
1112 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1113
1114 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1115 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1116 return ENOBUFS;
1117 }
1118
1119 sc->re_ldata.re_rx_prodidx = 0;
1120 sc->re_head = sc->re_tail = NULL;
1121
1122 return 0;
1123 }
1124
1125 /*
1126 * RX handler for C+ and 8169. For the gigE chips, we support
1127 * the reception of jumbo frames that have been fragmented
1128 * across multiple 2K mbuf cluster buffers.
1129 */
1130 static void
1131 re_rxeof(struct rtk_softc *sc)
1132 {
1133 struct mbuf *m;
1134 struct ifnet *ifp;
1135 int i, total_len;
1136 struct re_desc *cur_rx;
1137 struct re_rxsoft *rxs;
1138 uint32_t rxstat, rxvlan;
1139
1140 ifp = &sc->ethercom.ec_if;
1141
1142 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1143 cur_rx = &sc->re_ldata.re_rx_list[i];
1144 RE_RXDESCSYNC(sc, i,
1145 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1146 rxstat = le32toh(cur_rx->re_cmdstat);
1147 rxvlan = le32toh(cur_rx->re_vlanctl);
1148 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1149 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1150 break;
1151 }
1152 total_len = rxstat & sc->re_rxlenmask;
1153 rxs = &sc->re_ldata.re_rxsoft[i];
1154 m = rxs->rxs_mbuf;
1155
1156 /* Invalidate the RX mbuf and unload its map */
1157
1158 bus_dmamap_sync(sc->sc_dmat,
1159 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1160 BUS_DMASYNC_POSTREAD);
1161 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1162
1163 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1164 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1165 if (sc->re_head == NULL)
1166 sc->re_head = sc->re_tail = m;
1167 else {
1168 m->m_flags &= ~M_PKTHDR;
1169 sc->re_tail->m_next = m;
1170 sc->re_tail = m;
1171 }
1172 re_newbuf(sc, i, NULL);
1173 continue;
1174 }
1175
1176 /*
1177 * NOTE: for the 8139C+, the frame length field
1178 * is always 12 bits in size, but for the gigE chips,
1179 * it is 13 bits (since the max RX frame length is 16K).
1180 * Unfortunately, all 32 bits in the status word
1181 * were already used, so to make room for the extra
1182 * length bit, RealTek took out the 'frame alignment
1183 * error' bit and shifted the other status bits
1184 * over one slot. The OWN, EOR, FS and LS bits are
1185 * still in the same places. We have already extracted
1186 * the frame length and checked the OWN bit, so rather
1187 * than using an alternate bit mapping, we shift the
1188 * status bits one space to the right so we can evaluate
1189 * them using the 8169 status as though it was in the
1190 * same format as that of the 8139C+.
1191 */
1192 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1193 rxstat >>= 1;
1194
1195 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1196 #ifdef RE_DEBUG
1197 printf("%s: RX error (rxstat = 0x%08x)",
1198 device_xname(sc->sc_dev), rxstat);
1199 if (rxstat & RE_RDESC_STAT_FRALIGN)
1200 printf(", frame alignment error");
1201 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1202 printf(", out of buffer space");
1203 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1204 printf(", FIFO overrun");
1205 if (rxstat & RE_RDESC_STAT_GIANT)
1206 printf(", giant packet");
1207 if (rxstat & RE_RDESC_STAT_RUNT)
1208 printf(", runt packet");
1209 if (rxstat & RE_RDESC_STAT_CRCERR)
1210 printf(", CRC error");
1211 printf("\n");
1212 #endif
1213 ifp->if_ierrors++;
1214 /*
1215 * If this is part of a multi-fragment packet,
1216 * discard all the pieces.
1217 */
1218 if (sc->re_head != NULL) {
1219 m_freem(sc->re_head);
1220 sc->re_head = sc->re_tail = NULL;
1221 }
1222 re_newbuf(sc, i, m);
1223 continue;
1224 }
1225
1226 /*
1227 * If allocating a replacement mbuf fails,
1228 * reload the current one.
1229 */
1230
1231 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1232 ifp->if_ierrors++;
1233 if (sc->re_head != NULL) {
1234 m_freem(sc->re_head);
1235 sc->re_head = sc->re_tail = NULL;
1236 }
1237 re_newbuf(sc, i, m);
1238 continue;
1239 }
1240
1241 if (sc->re_head != NULL) {
1242 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1243 /*
1244 * Special case: if there's 4 bytes or less
1245 * in this buffer, the mbuf can be discarded:
1246 * the last 4 bytes is the CRC, which we don't
1247 * care about anyway.
1248 */
1249 if (m->m_len <= ETHER_CRC_LEN) {
1250 sc->re_tail->m_len -=
1251 (ETHER_CRC_LEN - m->m_len);
1252 m_freem(m);
1253 } else {
1254 m->m_len -= ETHER_CRC_LEN;
1255 m->m_flags &= ~M_PKTHDR;
1256 sc->re_tail->m_next = m;
1257 }
1258 m = sc->re_head;
1259 sc->re_head = sc->re_tail = NULL;
1260 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1261 } else
1262 m->m_pkthdr.len = m->m_len =
1263 (total_len - ETHER_CRC_LEN);
1264
1265 ifp->if_ipackets++;
1266 m->m_pkthdr.rcvif = ifp;
1267
1268 /* Do RX checksumming */
1269 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1270 /* Check IP header checksum */
1271 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1272 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1273 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1274 m->m_pkthdr.csum_flags |=
1275 M_CSUM_IPv4_BAD;
1276
1277 /* Check TCP/UDP checksum */
1278 if (RE_TCPPKT(rxstat)) {
1279 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1280 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1281 m->m_pkthdr.csum_flags |=
1282 M_CSUM_TCP_UDP_BAD;
1283 } else if (RE_UDPPKT(rxstat)) {
1284 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1285 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1286 m->m_pkthdr.csum_flags |=
1287 M_CSUM_TCP_UDP_BAD;
1288 }
1289 }
1290 } else {
1291 /* Check IPv4 header checksum */
1292 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1293 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1294 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1295 m->m_pkthdr.csum_flags |=
1296 M_CSUM_IPv4_BAD;
1297
1298 /* Check TCPv4/UDPv4 checksum */
1299 if (RE_TCPPKT(rxstat)) {
1300 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1301 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1302 m->m_pkthdr.csum_flags |=
1303 M_CSUM_TCP_UDP_BAD;
1304 } else if (RE_UDPPKT(rxstat)) {
1305 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1306 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1307 m->m_pkthdr.csum_flags |=
1308 M_CSUM_TCP_UDP_BAD;
1309 }
1310 }
1311 /* XXX Check TCPv6/UDPv6 checksum? */
1312 }
1313
1314 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1315 VLAN_INPUT_TAG(ifp, m,
1316 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1317 continue);
1318 }
1319 bpf_mtap(ifp, m);
1320 (*ifp->if_input)(ifp, m);
1321 }
1322
1323 sc->re_ldata.re_rx_prodidx = i;
1324 }
1325
1326 static void
1327 re_txeof(struct rtk_softc *sc)
1328 {
1329 struct ifnet *ifp;
1330 struct re_txq *txq;
1331 uint32_t txstat;
1332 int idx, descidx;
1333
1334 ifp = &sc->ethercom.ec_if;
1335
1336 for (idx = sc->re_ldata.re_txq_considx;
1337 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1338 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1339 txq = &sc->re_ldata.re_txq[idx];
1340 KASSERT(txq->txq_mbuf != NULL);
1341
1342 descidx = txq->txq_descidx;
1343 RE_TXDESCSYNC(sc, descidx,
1344 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1345 txstat =
1346 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1347 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1348 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1349 if (txstat & RE_TDESC_CMD_OWN) {
1350 break;
1351 }
1352
1353 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1354 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1355 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1356 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1357 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1358 m_freem(txq->txq_mbuf);
1359 txq->txq_mbuf = NULL;
1360
1361 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1362 ifp->if_collisions++;
1363 if (txstat & RE_TDESC_STAT_TXERRSUM)
1364 ifp->if_oerrors++;
1365 else
1366 ifp->if_opackets++;
1367 }
1368
1369 sc->re_ldata.re_txq_considx = idx;
1370
1371 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1372 ifp->if_flags &= ~IFF_OACTIVE;
1373
1374 /*
1375 * If not all descriptors have been released reaped yet,
1376 * reload the timer so that we will eventually get another
1377 * interrupt that will cause us to re-enter this routine.
1378 * This is done in case the transmitter has gone idle.
1379 */
1380 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1381 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1382 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1383 /*
1384 * Some chips will ignore a second TX request
1385 * issued while an existing transmission is in
1386 * progress. If the transmitter goes idle but
1387 * there are still packets waiting to be sent,
1388 * we need to restart the channel here to flush
1389 * them out. This only seems to be required with
1390 * the PCIe devices.
1391 */
1392 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1393 }
1394 } else
1395 ifp->if_timer = 0;
1396 }
1397
1398 static void
1399 re_tick(void *arg)
1400 {
1401 struct rtk_softc *sc = arg;
1402 int s;
1403
1404 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1405 s = splnet();
1406
1407 mii_tick(&sc->mii);
1408 splx(s);
1409
1410 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1411 }
1412
1413 int
1414 re_intr(void *arg)
1415 {
1416 struct rtk_softc *sc = arg;
1417 struct ifnet *ifp;
1418 uint16_t status;
1419 int handled = 0;
1420
1421 if (!device_has_power(sc->sc_dev))
1422 return 0;
1423
1424 ifp = &sc->ethercom.ec_if;
1425
1426 if ((ifp->if_flags & IFF_UP) == 0)
1427 return 0;
1428
1429 for (;;) {
1430
1431 status = CSR_READ_2(sc, RTK_ISR);
1432 /* If the card has gone away the read returns 0xffff. */
1433 if (status == 0xffff)
1434 break;
1435 if (status) {
1436 handled = 1;
1437 CSR_WRITE_2(sc, RTK_ISR, status);
1438 }
1439
1440 if ((status & RTK_INTRS_CPLUS) == 0)
1441 break;
1442
1443 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1444 re_rxeof(sc);
1445
1446 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1447 RTK_ISR_TX_DESC_UNAVAIL))
1448 re_txeof(sc);
1449
1450 if (status & RTK_ISR_SYSTEM_ERR) {
1451 re_init(ifp);
1452 }
1453
1454 if (status & RTK_ISR_LINKCHG) {
1455 callout_stop(&sc->rtk_tick_ch);
1456 re_tick(sc);
1457 }
1458 }
1459
1460 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1461 re_start(ifp);
1462
1463 return handled;
1464 }
1465
1466
1467
1468 /*
1469 * Main transmit routine for C+ and gigE NICs.
1470 */
1471
1472 static void
1473 re_start(struct ifnet *ifp)
1474 {
1475 struct rtk_softc *sc;
1476 struct mbuf *m;
1477 bus_dmamap_t map;
1478 struct re_txq *txq;
1479 struct re_desc *d;
1480 struct m_tag *mtag;
1481 uint32_t cmdstat, re_flags, vlanctl;
1482 int ofree, idx, error, nsegs, seg;
1483 int startdesc, curdesc, lastdesc;
1484 bool pad;
1485
1486 sc = ifp->if_softc;
1487 ofree = sc->re_ldata.re_txq_free;
1488
1489 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1490
1491 IFQ_POLL(&ifp->if_snd, m);
1492 if (m == NULL)
1493 break;
1494
1495 if (sc->re_ldata.re_txq_free == 0 ||
1496 sc->re_ldata.re_tx_free == 0) {
1497 /* no more free slots left */
1498 ifp->if_flags |= IFF_OACTIVE;
1499 break;
1500 }
1501
1502 /*
1503 * Set up checksum offload. Note: checksum offload bits must
1504 * appear in all descriptors of a multi-descriptor transmit
1505 * attempt. (This is according to testing done with an 8169
1506 * chip. I'm not sure if this is a requirement or a bug.)
1507 */
1508
1509 vlanctl = 0;
1510 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1511 uint32_t segsz = m->m_pkthdr.segsz;
1512
1513 re_flags = RE_TDESC_CMD_LGSEND |
1514 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1515 } else {
1516 /*
1517 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1518 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1519 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1520 */
1521 re_flags = 0;
1522 if ((m->m_pkthdr.csum_flags &
1523 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1524 != 0) {
1525 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1526 re_flags |= RE_TDESC_CMD_IPCSUM;
1527 if (m->m_pkthdr.csum_flags &
1528 M_CSUM_TCPv4) {
1529 re_flags |=
1530 RE_TDESC_CMD_TCPCSUM;
1531 } else if (m->m_pkthdr.csum_flags &
1532 M_CSUM_UDPv4) {
1533 re_flags |=
1534 RE_TDESC_CMD_UDPCSUM;
1535 }
1536 } else {
1537 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1538 if (m->m_pkthdr.csum_flags &
1539 M_CSUM_TCPv4) {
1540 vlanctl |=
1541 RE_TDESC_VLANCTL_TCPCSUM;
1542 } else if (m->m_pkthdr.csum_flags &
1543 M_CSUM_UDPv4) {
1544 vlanctl |=
1545 RE_TDESC_VLANCTL_UDPCSUM;
1546 }
1547 }
1548 }
1549 }
1550
1551 txq = &sc->re_ldata.re_txq[idx];
1552 map = txq->txq_dmamap;
1553 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1554 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1555
1556 if (__predict_false(error)) {
1557 /* XXX try to defrag if EFBIG? */
1558 printf("%s: can't map mbuf (error %d)\n",
1559 device_xname(sc->sc_dev), error);
1560
1561 IFQ_DEQUEUE(&ifp->if_snd, m);
1562 m_freem(m);
1563 ifp->if_oerrors++;
1564 continue;
1565 }
1566
1567 nsegs = map->dm_nsegs;
1568 pad = false;
1569 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1570 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1571 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1572 pad = true;
1573 nsegs++;
1574 }
1575
1576 if (nsegs > sc->re_ldata.re_tx_free) {
1577 /*
1578 * Not enough free descriptors to transmit this packet.
1579 */
1580 ifp->if_flags |= IFF_OACTIVE;
1581 bus_dmamap_unload(sc->sc_dmat, map);
1582 break;
1583 }
1584
1585 IFQ_DEQUEUE(&ifp->if_snd, m);
1586
1587 /*
1588 * Make sure that the caches are synchronized before we
1589 * ask the chip to start DMA for the packet data.
1590 */
1591 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1592 BUS_DMASYNC_PREWRITE);
1593
1594 /*
1595 * Set up hardware VLAN tagging. Note: vlan tag info must
1596 * appear in all descriptors of a multi-descriptor
1597 * transmission attempt.
1598 */
1599 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1600 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1601 RE_TDESC_VLANCTL_TAG;
1602
1603 /*
1604 * Map the segment array into descriptors.
1605 * Note that we set the start-of-frame and
1606 * end-of-frame markers for either TX or RX,
1607 * but they really only have meaning in the TX case.
1608 * (In the RX case, it's the chip that tells us
1609 * where packets begin and end.)
1610 * We also keep track of the end of the ring
1611 * and set the end-of-ring bits as needed,
1612 * and we set the ownership bits in all except
1613 * the very first descriptor. (The caller will
1614 * set this descriptor later when it start
1615 * transmission or reception.)
1616 */
1617 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1618 lastdesc = -1;
1619 for (seg = 0; seg < map->dm_nsegs;
1620 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1621 d = &sc->re_ldata.re_tx_list[curdesc];
1622 #ifdef DIAGNOSTIC
1623 RE_TXDESCSYNC(sc, curdesc,
1624 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1625 cmdstat = le32toh(d->re_cmdstat);
1626 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1627 if (cmdstat & RE_TDESC_STAT_OWN) {
1628 panic("%s: tried to map busy TX descriptor",
1629 device_xname(sc->sc_dev));
1630 }
1631 #endif
1632
1633 d->re_vlanctl = htole32(vlanctl);
1634 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1635 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1636 if (seg == 0)
1637 cmdstat |= RE_TDESC_CMD_SOF;
1638 else
1639 cmdstat |= RE_TDESC_CMD_OWN;
1640 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1641 cmdstat |= RE_TDESC_CMD_EOR;
1642 if (seg == nsegs - 1) {
1643 cmdstat |= RE_TDESC_CMD_EOF;
1644 lastdesc = curdesc;
1645 }
1646 d->re_cmdstat = htole32(cmdstat);
1647 RE_TXDESCSYNC(sc, curdesc,
1648 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1649 }
1650 if (__predict_false(pad)) {
1651 d = &sc->re_ldata.re_tx_list[curdesc];
1652 d->re_vlanctl = htole32(vlanctl);
1653 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1654 cmdstat = re_flags |
1655 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1656 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1657 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1658 cmdstat |= RE_TDESC_CMD_EOR;
1659 d->re_cmdstat = htole32(cmdstat);
1660 RE_TXDESCSYNC(sc, curdesc,
1661 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1662 lastdesc = curdesc;
1663 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1664 }
1665 KASSERT(lastdesc != -1);
1666
1667 /* Transfer ownership of packet to the chip. */
1668
1669 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1670 htole32(RE_TDESC_CMD_OWN);
1671 RE_TXDESCSYNC(sc, startdesc,
1672 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1673
1674 /* update info of TX queue and descriptors */
1675 txq->txq_mbuf = m;
1676 txq->txq_descidx = lastdesc;
1677 txq->txq_nsegs = nsegs;
1678
1679 sc->re_ldata.re_txq_free--;
1680 sc->re_ldata.re_tx_free -= nsegs;
1681 sc->re_ldata.re_tx_nextfree = curdesc;
1682
1683 /*
1684 * If there's a BPF listener, bounce a copy of this frame
1685 * to him.
1686 */
1687 bpf_mtap(ifp, m);
1688 }
1689
1690 if (sc->re_ldata.re_txq_free < ofree) {
1691 /*
1692 * TX packets are enqueued.
1693 */
1694 sc->re_ldata.re_txq_prodidx = idx;
1695
1696 /*
1697 * Start the transmitter to poll.
1698 *
1699 * RealTek put the TX poll request register in a different
1700 * location on the 8169 gigE chip. I don't know why.
1701 */
1702 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1703 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1704 else
1705 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1706
1707 /*
1708 * Use the countdown timer for interrupt moderation.
1709 * 'TX done' interrupts are disabled. Instead, we reset the
1710 * countdown timer, which will begin counting until it hits
1711 * the value in the TIMERINT register, and then trigger an
1712 * interrupt. Each time we write to the TIMERCNT register,
1713 * the timer count is reset to 0.
1714 */
1715 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1716
1717 /*
1718 * Set a timeout in case the chip goes out to lunch.
1719 */
1720 ifp->if_timer = 5;
1721 }
1722 }
1723
1724 static int
1725 re_init(struct ifnet *ifp)
1726 {
1727 struct rtk_softc *sc = ifp->if_softc;
1728 const uint8_t *enaddr;
1729 uint32_t rxcfg = 0;
1730 uint32_t reg;
1731 uint16_t cfg;
1732 int error;
1733
1734 if ((error = re_enable(sc)) != 0)
1735 goto out;
1736
1737 /*
1738 * Cancel pending I/O and free all RX/TX buffers.
1739 */
1740 re_stop(ifp, 0);
1741
1742 re_reset(sc);
1743
1744 /*
1745 * Enable C+ RX and TX mode, as well as VLAN stripping and
1746 * RX checksum offload. We must configure the C+ register
1747 * before all others.
1748 */
1749 cfg = RE_CPLUSCMD_PCI_MRW;
1750
1751 /*
1752 * XXX: For old 8169 set bit 14.
1753 * For 8169S/8110S and above, do not set bit 14.
1754 */
1755 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1756 cfg |= (0x1 << 14);
1757
1758 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1759 cfg |= RE_CPLUSCMD_VLANSTRIP;
1760 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1761 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1762 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1763 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1764 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1765 cfg |= RE_CPLUSCMD_TXENB;
1766 } else
1767 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1768
1769 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1770
1771 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1772 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1773 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1774
1775 DELAY(10000);
1776
1777 /*
1778 * Init our MAC address. Even though the chipset
1779 * documentation doesn't mention it, we need to enter "Config
1780 * register write enable" mode to modify the ID registers.
1781 */
1782 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1783 enaddr = CLLADDR(ifp->if_sadl);
1784 reg = enaddr[0] | (enaddr[1] << 8) |
1785 (enaddr[2] << 16) | (enaddr[3] << 24);
1786 CSR_WRITE_4(sc, RTK_IDR0, reg);
1787 reg = enaddr[4] | (enaddr[5] << 8);
1788 CSR_WRITE_4(sc, RTK_IDR4, reg);
1789 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1790
1791 /*
1792 * For C+ mode, initialize the RX descriptors and mbufs.
1793 */
1794 re_rx_list_init(sc);
1795 re_tx_list_init(sc);
1796
1797 /*
1798 * Load the addresses of the RX and TX lists into the chip.
1799 */
1800 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1801 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1802 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1803 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1804
1805 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1806 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1807 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1808 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1809
1810 /*
1811 * Enable transmit and receive.
1812 */
1813 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1814
1815 /*
1816 * Set the initial TX and RX configuration.
1817 */
1818 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1819 /* test mode is needed only for old 8169 */
1820 CSR_WRITE_4(sc, RTK_TXCFG,
1821 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1822 } else
1823 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1824
1825 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1826
1827 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1828
1829 /* Set the individual bit to receive frames for this host only. */
1830 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1831 rxcfg |= RTK_RXCFG_RX_INDIV;
1832
1833 /* If we want promiscuous mode, set the allframes bit. */
1834 if (ifp->if_flags & IFF_PROMISC)
1835 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1836 else
1837 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1838 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1839
1840 /*
1841 * Set capture broadcast bit to capture broadcast frames.
1842 */
1843 if (ifp->if_flags & IFF_BROADCAST)
1844 rxcfg |= RTK_RXCFG_RX_BROAD;
1845 else
1846 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1847 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1848
1849 /*
1850 * Program the multicast filter, if necessary.
1851 */
1852 rtk_setmulti(sc);
1853
1854 /*
1855 * Enable interrupts.
1856 */
1857 if (sc->re_testmode)
1858 CSR_WRITE_2(sc, RTK_IMR, 0);
1859 else
1860 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1861
1862 /* Start RX/TX process. */
1863 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1864 #ifdef notdef
1865 /* Enable receiver and transmitter. */
1866 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1867 #endif
1868
1869 /*
1870 * Initialize the timer interrupt register so that
1871 * a timer interrupt will be generated once the timer
1872 * reaches a certain number of ticks. The timer is
1873 * reloaded on each transmit. This gives us TX interrupt
1874 * moderation, which dramatically improves TX frame rate.
1875 */
1876
1877 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1878 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1879 else {
1880 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1881
1882 /*
1883 * For 8169 gigE NICs, set the max allowed RX packet
1884 * size so we can receive jumbo frames.
1885 */
1886 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1887 }
1888
1889 if (sc->re_testmode)
1890 return 0;
1891
1892 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1893
1894 ifp->if_flags |= IFF_RUNNING;
1895 ifp->if_flags &= ~IFF_OACTIVE;
1896
1897 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1898
1899 out:
1900 if (error) {
1901 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1902 ifp->if_timer = 0;
1903 printf("%s: interface not running\n",
1904 device_xname(sc->sc_dev));
1905 }
1906
1907 return error;
1908 }
1909
1910 static int
1911 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1912 {
1913 struct rtk_softc *sc = ifp->if_softc;
1914 struct ifreq *ifr = data;
1915 int s, error = 0;
1916
1917 s = splnet();
1918
1919 switch (command) {
1920 case SIOCSIFMTU:
1921 /*
1922 * Disable jumbo frames if it's not supported.
1923 */
1924 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1925 ifr->ifr_mtu > ETHERMTU) {
1926 error = EINVAL;
1927 break;
1928 }
1929
1930 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1931 error = EINVAL;
1932 else if ((error = ifioctl_common(ifp, command, data)) ==
1933 ENETRESET)
1934 error = 0;
1935 break;
1936 default:
1937 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1938 break;
1939
1940 error = 0;
1941
1942 if (command == SIOCSIFCAP)
1943 error = (*ifp->if_init)(ifp);
1944 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1945 ;
1946 else if (ifp->if_flags & IFF_RUNNING)
1947 rtk_setmulti(sc);
1948 break;
1949 }
1950
1951 splx(s);
1952
1953 return error;
1954 }
1955
1956 static void
1957 re_watchdog(struct ifnet *ifp)
1958 {
1959 struct rtk_softc *sc;
1960 int s;
1961
1962 sc = ifp->if_softc;
1963 s = splnet();
1964 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1965 ifp->if_oerrors++;
1966
1967 re_txeof(sc);
1968 re_rxeof(sc);
1969
1970 re_init(ifp);
1971
1972 splx(s);
1973 }
1974
1975 /*
1976 * Stop the adapter and free any mbufs allocated to the
1977 * RX and TX lists.
1978 */
1979 static void
1980 re_stop(struct ifnet *ifp, int disable)
1981 {
1982 int i;
1983 struct rtk_softc *sc = ifp->if_softc;
1984
1985 callout_stop(&sc->rtk_tick_ch);
1986
1987 mii_down(&sc->mii);
1988
1989 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
1990 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
1991 RTK_CMD_RX_ENB);
1992 else
1993 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
1994 DELAY(1000);
1995 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1996 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
1997
1998 if (sc->re_head != NULL) {
1999 m_freem(sc->re_head);
2000 sc->re_head = sc->re_tail = NULL;
2001 }
2002
2003 /* Free the TX list buffers. */
2004 for (i = 0; i < RE_TX_QLEN; i++) {
2005 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2006 bus_dmamap_unload(sc->sc_dmat,
2007 sc->re_ldata.re_txq[i].txq_dmamap);
2008 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2009 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2010 }
2011 }
2012
2013 /* Free the RX list buffers. */
2014 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2015 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2016 bus_dmamap_unload(sc->sc_dmat,
2017 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2018 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2019 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2020 }
2021 }
2022
2023 if (disable)
2024 re_disable(sc);
2025
2026 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2027 ifp->if_timer = 0;
2028 }
2029