rtl8169.c revision 1.14.2.5 1 /* $NetBSD: rtl8169.c,v 1.14.2.5 2006/05/31 21:32:56 tron Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 u_int32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 u_int32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 u_int16_t rval = 0;
254 u_int16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 u_int16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 u_int16_t status;
423 u_int32_t rxstat;
424 int total_len, i, s, error = 0;
425 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_list_map;
492 bus_dmamap_sync(sc->sc_dmat,
493 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
495 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
496 BUS_DMASYNC_POSTWRITE);
497 bus_dmamap_unload(sc->sc_dmat,
498 sc->rtk_ldata.rtk_rx_dmamap[0]);
499
500 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
501 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
502 eh = mtod(m0, struct ether_header *);
503
504 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
505 total_len = RTK_RXBYTES(cur_rx);
506 rxstat = le32toh(cur_rx->rtk_cmdstat);
507
508 if (total_len != ETHER_MIN_LEN) {
509 aprint_error("%s: diagnostic failed, received short packet\n",
510 sc->sc_dev.dv_xname);
511 error = EIO;
512 goto done;
513 }
514
515 /* Test that the received packet data matches what we sent. */
516
517 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
518 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
519 ntohs(eh->ether_type) != ETHERTYPE_IP) {
520 aprint_error("%s: WARNING, DMA FAILURE!\n",
521 sc->sc_dev.dv_xname);
522 aprint_error("%s: expected TX data: %s",
523 sc->sc_dev.dv_xname, ether_sprintf(dst));
524 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
525 aprint_error("%s: received RX data: %s",
526 sc->sc_dev.dv_xname,
527 ether_sprintf(eh->ether_dhost));
528 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
529 ntohs(eh->ether_type));
530 aprint_error("%s: You may have a defective 32-bit NIC plugged "
531 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
533 "for proper operation.\n", sc->sc_dev.dv_xname);
534 aprint_error("%s: Read the re(4) man page for more details.\n",
535 sc->sc_dev.dv_xname);
536 error = EIO;
537 }
538
539 done:
540 /* Turn interface off, release resources */
541
542 sc->rtk_testmode = 0;
543 ifp->if_flags &= ~IFF_PROMISC;
544 re_stop(ifp, 0);
545 if (m0 != NULL)
546 m_freem(m0);
547
548 return error;
549 }
550
551
552 /*
553 * Attach the interface. Allocate softc structures, do ifmedia
554 * setup and ethernet/BPF attach.
555 */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 u_char eaddr[ETHER_ADDR_LEN];
560 u_int16_t val;
561 struct ifnet *ifp;
562 int error = 0, i, addr_len;
563
564
565 /* XXX JRS: bus-attach-independent code begins approximately here */
566
567 /* Reset the adapter. */
568 re_reset(sc);
569
570 if (sc->rtk_type == RTK_8169) {
571 uint32_t hwrev;
572
573 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
575 if (hwrev == (0x1 << 28)) {
576 sc->sc_rev = 4;
577 } else if (hwrev == (0x1 << 26)) {
578 sc->sc_rev = 3;
579 } else if (hwrev == (0x1 << 23)) {
580 sc->sc_rev = 2;
581 } else
582 sc->sc_rev = 1;
583
584 /* Set RX length mask */
585
586 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
587
588 /* Force station address autoload from the EEPROM */
589
590 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
591 for (i = 0; i < RTK_TIMEOUT; i++) {
592 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
593 break;
594 DELAY(100);
595 }
596 if (i == RTK_TIMEOUT)
597 aprint_error("%s: eeprom autoload timed out\n",
598 sc->sc_dev.dv_xname);
599
600 for (i = 0; i < ETHER_ADDR_LEN; i++)
601 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
602
603 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
604 } else {
605
606 /* Set RX length mask */
607
608 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
609
610 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
611 addr_len = RTK_EEADDR_LEN1;
612 else
613 addr_len = RTK_EEADDR_LEN0;
614
615 /*
616 * Get station address from the EEPROM.
617 */
618 for (i = 0; i < 3; i++) {
619 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
620 eaddr[(i * 2) + 0] = val & 0xff;
621 eaddr[(i * 2) + 1] = val >> 8;
622 }
623
624 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
625 }
626
627 aprint_normal("%s: Ethernet address %s\n",
628 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629
630 if (sc->rtk_ldata.rtk_tx_desc_cnt >
631 PAGE_SIZE / sizeof(struct rtk_desc)) {
632 sc->rtk_ldata.rtk_tx_desc_cnt =
633 PAGE_SIZE / sizeof(struct rtk_desc);
634 }
635
636 aprint_verbose("%s: using %d tx descriptors\n",
637 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
638
639 /* Allocate DMA'able memory for the TX ring */
640 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
641 RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
642 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
643 aprint_error("%s: can't allocate tx listseg, error = %d\n",
644 sc->sc_dev.dv_xname, error);
645 goto fail_0;
646 }
647
648 /* Load the map for the TX ring. */
649 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
650 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
651 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
652 BUS_DMA_NOWAIT)) != 0) {
653 aprint_error("%s: can't map tx list, error = %d\n",
654 sc->sc_dev.dv_xname, error);
655 goto fail_1;
656 }
657 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
658
659 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
660 RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
661 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
662 aprint_error("%s: can't create tx list map, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_2;
665 }
666
667
668 if ((error = bus_dmamap_load(sc->sc_dmat,
669 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
670 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
671 aprint_error("%s: can't load tx list, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_3;
674 }
675
676 /* Create DMA maps for TX buffers */
677 for (i = 0; i < RTK_TX_QLEN; i++) {
678 error = bus_dmamap_create(sc->sc_dmat,
679 round_page(IP_MAXPACKET),
680 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
681 0, BUS_DMA_ALLOCNOW,
682 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
683 if (error) {
684 aprint_error("%s: can't create DMA map for TX\n",
685 sc->sc_dev.dv_xname);
686 goto fail_4;
687 }
688 }
689
690 /* Allocate DMA'able memory for the RX ring */
691 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
692 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
693 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
694 aprint_error("%s: can't allocate rx listseg, error = %d\n",
695 sc->sc_dev.dv_xname, error);
696 goto fail_4;
697 }
698
699 /* Load the map for the RX ring. */
700 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
701 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
702 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
703 BUS_DMA_NOWAIT)) != 0) {
704 aprint_error("%s: can't map rx list, error = %d\n",
705 sc->sc_dev.dv_xname, error);
706 goto fail_5;
707 }
708 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
709
710 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
711 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
712 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
713 aprint_error("%s: can't create rx list map, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_6;
716 }
717
718 if ((error = bus_dmamap_load(sc->sc_dmat,
719 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
720 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
721 aprint_error("%s: can't load rx list, error = %d\n",
722 sc->sc_dev.dv_xname, error);
723 goto fail_7;
724 }
725
726 /* Create DMA maps for RX buffers */
727 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
728 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
729 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
730 if (error) {
731 aprint_error("%s: can't create DMA map for RX\n",
732 sc->sc_dev.dv_xname);
733 goto fail_8;
734 }
735 }
736
737 /*
738 * Record interface as attached. From here, we should not fail.
739 */
740 sc->sc_flags |= RTK_ATTACHED;
741
742 ifp = &sc->ethercom.ec_if;
743 ifp->if_softc = sc;
744 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
745 ifp->if_mtu = ETHERMTU;
746 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747 ifp->if_ioctl = re_ioctl;
748 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
749
750 /*
751 * This is a way to disable hw VLAN tagging by default
752 * (RE_VLAN is undefined), as it is problematic. PR 32643
753 */
754
755 #ifdef RE_VLAN
756 sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
757 #endif
758 ifp->if_start = re_start;
759 ifp->if_stop = re_stop;
760 ifp->if_capabilities |=
761 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4 |
762 IFCAP_TSOv4;
763 ifp->if_watchdog = re_watchdog;
764 ifp->if_init = re_init;
765 if (sc->rtk_type == RTK_8169)
766 ifp->if_baudrate = 1000000000;
767 else
768 ifp->if_baudrate = 100000000;
769 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
770 ifp->if_capenable = ifp->if_capabilities;
771 IFQ_SET_READY(&ifp->if_snd);
772
773 callout_init(&sc->rtk_tick_ch);
774
775 /* Do MII setup */
776 sc->mii.mii_ifp = ifp;
777 sc->mii.mii_readreg = re_miibus_readreg;
778 sc->mii.mii_writereg = re_miibus_writereg;
779 sc->mii.mii_statchg = re_miibus_statchg;
780 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
781 re_ifmedia_sts);
782 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
783 MII_OFFSET_ANY, 0);
784 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
785
786 /*
787 * Call MI attach routine.
788 */
789 if_attach(ifp);
790 ether_ifattach(ifp, eaddr);
791
792
793 /*
794 * Make sure the interface is shutdown during reboot.
795 */
796 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
797 if (sc->sc_sdhook == NULL)
798 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
799 sc->sc_dev.dv_xname);
800 /*
801 * Add a suspend hook to make sure we come back up after a
802 * resume.
803 */
804 sc->sc_powerhook = powerhook_establish(re_power, sc);
805 if (sc->sc_powerhook == NULL)
806 aprint_error("%s: WARNING: unable to establish power hook\n",
807 sc->sc_dev.dv_xname);
808
809
810 return;
811
812 fail_8:
813 /* Destroy DMA maps for RX buffers. */
814 for (i = 0; i < RTK_RX_DESC_CNT; i++)
815 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
816 bus_dmamap_destroy(sc->sc_dmat,
817 sc->rtk_ldata.rtk_rx_dmamap[i]);
818
819 /* Free DMA'able memory for the RX ring. */
820 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
821 fail_7:
822 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
823 fail_6:
824 bus_dmamem_unmap(sc->sc_dmat,
825 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
826 fail_5:
827 bus_dmamem_free(sc->sc_dmat,
828 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
829
830 fail_4:
831 /* Destroy DMA maps for TX buffers. */
832 for (i = 0; i < RTK_TX_QLEN; i++)
833 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
834 bus_dmamap_destroy(sc->sc_dmat,
835 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
836
837 /* Free DMA'able memory for the TX ring. */
838 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
839 fail_3:
840 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
841 fail_2:
842 bus_dmamem_unmap(sc->sc_dmat,
843 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
844 fail_1:
845 bus_dmamem_free(sc->sc_dmat,
846 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
847 fail_0:
848 return;
849 }
850
851
852 /*
853 * re_activate:
854 * Handle device activation/deactivation requests.
855 */
856 int
857 re_activate(struct device *self, enum devact act)
858 {
859 struct rtk_softc *sc = (void *) self;
860 int s, error = 0;
861
862 s = splnet();
863 switch (act) {
864 case DVACT_ACTIVATE:
865 error = EOPNOTSUPP;
866 break;
867 case DVACT_DEACTIVATE:
868 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
869 if_deactivate(&sc->ethercom.ec_if);
870 break;
871 }
872 splx(s);
873
874 return error;
875 }
876
877 /*
878 * re_detach:
879 * Detach a rtk interface.
880 */
881 int
882 re_detach(struct rtk_softc *sc)
883 {
884 struct ifnet *ifp = &sc->ethercom.ec_if;
885 int i;
886
887 /*
888 * Succeed now if there isn't any work to do.
889 */
890 if ((sc->sc_flags & RTK_ATTACHED) == 0)
891 return 0;
892
893 /* Unhook our tick handler. */
894 callout_stop(&sc->rtk_tick_ch);
895
896 /* Detach all PHYs. */
897 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
898
899 /* Delete all remaining media. */
900 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
901
902 ether_ifdetach(ifp);
903 if_detach(ifp);
904
905 /* XXX undo re_allocmem() */
906
907 /* Destroy DMA maps for RX buffers. */
908 for (i = 0; i < RTK_RX_DESC_CNT; i++)
909 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
910 bus_dmamap_destroy(sc->sc_dmat,
911 sc->rtk_ldata.rtk_rx_dmamap[i]);
912
913 /* Free DMA'able memory for the RX ring. */
914 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
915 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
916 bus_dmamem_unmap(sc->sc_dmat,
917 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
918 bus_dmamem_free(sc->sc_dmat,
919 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
920
921 /* Destroy DMA maps for TX buffers. */
922 for (i = 0; i < RTK_TX_QLEN; i++)
923 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
924 bus_dmamap_destroy(sc->sc_dmat,
925 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
926
927 /* Free DMA'able memory for the TX ring. */
928 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
929 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
930 bus_dmamem_unmap(sc->sc_dmat,
931 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
932 bus_dmamem_free(sc->sc_dmat,
933 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
934
935
936 shutdownhook_disestablish(sc->sc_sdhook);
937 powerhook_disestablish(sc->sc_powerhook);
938
939 return 0;
940 }
941
942 /*
943 * re_enable:
944 * Enable the RTL81X9 chip.
945 */
946 static int
947 re_enable(struct rtk_softc *sc)
948 {
949 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
950 if ((*sc->sc_enable)(sc) != 0) {
951 aprint_error("%s: device enable failed\n",
952 sc->sc_dev.dv_xname);
953 return EIO;
954 }
955 sc->sc_flags |= RTK_ENABLED;
956 }
957 return 0;
958 }
959
960 /*
961 * re_disable:
962 * Disable the RTL81X9 chip.
963 */
964 static void
965 re_disable(struct rtk_softc *sc)
966 {
967
968 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
969 (*sc->sc_disable)(sc);
970 sc->sc_flags &= ~RTK_ENABLED;
971 }
972 }
973
974 /*
975 * re_power:
976 * Power management (suspend/resume) hook.
977 */
978 void
979 re_power(int why, void *arg)
980 {
981 struct rtk_softc *sc = (void *) arg;
982 struct ifnet *ifp = &sc->ethercom.ec_if;
983 int s;
984
985 s = splnet();
986 switch (why) {
987 case PWR_SUSPEND:
988 case PWR_STANDBY:
989 re_stop(ifp, 0);
990 if (sc->sc_power != NULL)
991 (*sc->sc_power)(sc, why);
992 break;
993 case PWR_RESUME:
994 if (ifp->if_flags & IFF_UP) {
995 if (sc->sc_power != NULL)
996 (*sc->sc_power)(sc, why);
997 re_init(ifp);
998 }
999 break;
1000 case PWR_SOFTSUSPEND:
1001 case PWR_SOFTSTANDBY:
1002 case PWR_SOFTRESUME:
1003 break;
1004 }
1005 splx(s);
1006 }
1007
1008
1009 static int
1010 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1011 {
1012 struct mbuf *n = NULL;
1013 bus_dmamap_t map;
1014 struct rtk_desc *d;
1015 u_int32_t cmdstat;
1016 int error;
1017
1018 if (m == NULL) {
1019 MGETHDR(n, M_DONTWAIT, MT_DATA);
1020 if (n == NULL)
1021 return ENOBUFS;
1022 m = n;
1023
1024 MCLGET(m, M_DONTWAIT);
1025 if (!(m->m_flags & M_EXT)) {
1026 m_freem(m);
1027 return ENOBUFS;
1028 }
1029 } else
1030 m->m_data = m->m_ext.ext_buf;
1031
1032 /*
1033 * Initialize mbuf length fields and fixup
1034 * alignment so that the frame payload is
1035 * longword aligned.
1036 */
1037 m->m_len = m->m_pkthdr.len = MCLBYTES;
1038 m_adj(m, RTK_ETHER_ALIGN);
1039
1040 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1041 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1042 BUS_DMA_READ|BUS_DMA_NOWAIT);
1043
1044 if (error)
1045 goto out;
1046
1047 d = &sc->rtk_ldata.rtk_rx_list[idx];
1048 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1049 goto out;
1050
1051 cmdstat = map->dm_segs[0].ds_len;
1052 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1053 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1054 if (idx == (RTK_RX_DESC_CNT - 1))
1055 cmdstat |= RTK_RDESC_CMD_EOR;
1056 d->rtk_cmdstat = htole32(cmdstat);
1057
1058 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1059 htole32(RTK_RDESC_CMD_OWN);
1060 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1061
1062 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1063 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1064 BUS_DMASYNC_PREREAD);
1065
1066 return 0;
1067 out:
1068 if (n != NULL)
1069 m_freem(n);
1070 return ENOMEM;
1071 }
1072
1073 static int
1074 re_tx_list_init(struct rtk_softc *sc)
1075 {
1076 int i;
1077
1078 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1079 for (i = 0; i < RTK_TX_QLEN; i++) {
1080 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1081 }
1082
1083 bus_dmamap_sync(sc->sc_dmat,
1084 sc->rtk_ldata.rtk_tx_list_map, 0,
1085 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1086 sc->rtk_ldata.rtk_txq_prodidx = 0;
1087 sc->rtk_ldata.rtk_txq_considx = 0;
1088 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1089 sc->rtk_ldata.rtk_tx_nextfree = 0;
1090
1091 return 0;
1092 }
1093
1094 static int
1095 re_rx_list_init(struct rtk_softc *sc)
1096 {
1097 int i;
1098
1099 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1100 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1101 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1102
1103 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1104 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1105 return ENOBUFS;
1106 }
1107
1108 /* Flush the RX descriptors */
1109
1110 bus_dmamap_sync(sc->sc_dmat,
1111 sc->rtk_ldata.rtk_rx_list_map,
1112 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1113 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1114
1115 sc->rtk_ldata.rtk_rx_prodidx = 0;
1116 sc->rtk_head = sc->rtk_tail = NULL;
1117
1118 return 0;
1119 }
1120
1121 /*
1122 * RX handler for C+ and 8169. For the gigE chips, we support
1123 * the reception of jumbo frames that have been fragmented
1124 * across multiple 2K mbuf cluster buffers.
1125 */
1126 static void
1127 re_rxeof(struct rtk_softc *sc)
1128 {
1129 struct mbuf *m;
1130 struct ifnet *ifp;
1131 int i, total_len;
1132 struct rtk_desc *cur_rx;
1133 u_int32_t rxstat, rxvlan;
1134
1135 ifp = &sc->ethercom.ec_if;
1136 i = sc->rtk_ldata.rtk_rx_prodidx;
1137
1138 /* Invalidate the descriptor memory */
1139
1140 bus_dmamap_sync(sc->sc_dmat,
1141 sc->rtk_ldata.rtk_rx_list_map,
1142 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1143 BUS_DMASYNC_POSTREAD);
1144
1145 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1146
1147 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1148 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1149 total_len = RTK_RXBYTES(cur_rx);
1150 rxstat = le32toh(cur_rx->rtk_cmdstat);
1151 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1152
1153 /* Invalidate the RX mbuf and unload its map */
1154
1155 bus_dmamap_sync(sc->sc_dmat,
1156 sc->rtk_ldata.rtk_rx_dmamap[i],
1157 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1158 BUS_DMASYNC_POSTWRITE);
1159 bus_dmamap_unload(sc->sc_dmat,
1160 sc->rtk_ldata.rtk_rx_dmamap[i]);
1161
1162 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1163 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1164 if (sc->rtk_head == NULL)
1165 sc->rtk_head = sc->rtk_tail = m;
1166 else {
1167 m->m_flags &= ~M_PKTHDR;
1168 sc->rtk_tail->m_next = m;
1169 sc->rtk_tail = m;
1170 }
1171 re_newbuf(sc, i, NULL);
1172 RTK_RX_DESC_INC(sc, i);
1173 continue;
1174 }
1175
1176 /*
1177 * NOTE: for the 8139C+, the frame length field
1178 * is always 12 bits in size, but for the gigE chips,
1179 * it is 13 bits (since the max RX frame length is 16K).
1180 * Unfortunately, all 32 bits in the status word
1181 * were already used, so to make room for the extra
1182 * length bit, RealTek took out the 'frame alignment
1183 * error' bit and shifted the other status bits
1184 * over one slot. The OWN, EOR, FS and LS bits are
1185 * still in the same places. We have already extracted
1186 * the frame length and checked the OWN bit, so rather
1187 * than using an alternate bit mapping, we shift the
1188 * status bits one space to the right so we can evaluate
1189 * them using the 8169 status as though it was in the
1190 * same format as that of the 8139C+.
1191 */
1192 if (sc->rtk_type == RTK_8169)
1193 rxstat >>= 1;
1194
1195 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1196 ifp->if_ierrors++;
1197 /*
1198 * If this is part of a multi-fragment packet,
1199 * discard all the pieces.
1200 */
1201 if (sc->rtk_head != NULL) {
1202 m_freem(sc->rtk_head);
1203 sc->rtk_head = sc->rtk_tail = NULL;
1204 }
1205 re_newbuf(sc, i, m);
1206 RTK_RX_DESC_INC(sc, i);
1207 continue;
1208 }
1209
1210 /*
1211 * If allocating a replacement mbuf fails,
1212 * reload the current one.
1213 */
1214
1215 if (re_newbuf(sc, i, NULL)) {
1216 ifp->if_ierrors++;
1217 if (sc->rtk_head != NULL) {
1218 m_freem(sc->rtk_head);
1219 sc->rtk_head = sc->rtk_tail = NULL;
1220 }
1221 re_newbuf(sc, i, m);
1222 RTK_RX_DESC_INC(sc, i);
1223 continue;
1224 }
1225
1226 RTK_RX_DESC_INC(sc, i);
1227
1228 if (sc->rtk_head != NULL) {
1229 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1230 /*
1231 * Special case: if there's 4 bytes or less
1232 * in this buffer, the mbuf can be discarded:
1233 * the last 4 bytes is the CRC, which we don't
1234 * care about anyway.
1235 */
1236 if (m->m_len <= ETHER_CRC_LEN) {
1237 sc->rtk_tail->m_len -=
1238 (ETHER_CRC_LEN - m->m_len);
1239 m_freem(m);
1240 } else {
1241 m->m_len -= ETHER_CRC_LEN;
1242 m->m_flags &= ~M_PKTHDR;
1243 sc->rtk_tail->m_next = m;
1244 }
1245 m = sc->rtk_head;
1246 sc->rtk_head = sc->rtk_tail = NULL;
1247 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1248 } else
1249 m->m_pkthdr.len = m->m_len =
1250 (total_len - ETHER_CRC_LEN);
1251
1252 ifp->if_ipackets++;
1253 m->m_pkthdr.rcvif = ifp;
1254
1255 /* Do RX checksumming if enabled */
1256
1257 if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
1258
1259 /* Check IP header checksum */
1260 if (rxstat & RTK_RDESC_STAT_PROTOID)
1261 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1262 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1263 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1264 }
1265
1266 /* Check TCP/UDP checksum */
1267 if (RTK_TCPPKT(rxstat) &&
1268 (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
1269 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1270 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1271 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1272 }
1273 if (RTK_UDPPKT(rxstat) &&
1274 (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
1275 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1276 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1277 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1278 }
1279
1280 #ifdef RE_VLAN
1281 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1282 VLAN_INPUT_TAG(ifp, m,
1283 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1284 continue);
1285 }
1286 #endif
1287 #if NBPFILTER > 0
1288 if (ifp->if_bpf)
1289 bpf_mtap(ifp->if_bpf, m);
1290 #endif
1291 (*ifp->if_input)(ifp, m);
1292 }
1293
1294 /* Flush the RX DMA ring */
1295
1296 bus_dmamap_sync(sc->sc_dmat,
1297 sc->rtk_ldata.rtk_rx_list_map,
1298 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1299 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1300
1301 sc->rtk_ldata.rtk_rx_prodidx = i;
1302
1303 return;
1304 }
1305
1306 static void
1307 re_txeof(struct rtk_softc *sc)
1308 {
1309 struct ifnet *ifp;
1310 int idx;
1311
1312 ifp = &sc->ethercom.ec_if;
1313 idx = sc->rtk_ldata.rtk_txq_considx;
1314
1315 /* Invalidate the TX descriptor list */
1316
1317 bus_dmamap_sync(sc->sc_dmat,
1318 sc->rtk_ldata.rtk_tx_list_map,
1319 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1320 BUS_DMASYNC_POSTREAD);
1321
1322 while (/* CONSTCOND */ 1) {
1323 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1324 int descidx;
1325 u_int32_t txstat;
1326
1327 if (txq->txq_mbuf == NULL) {
1328 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1329 break;
1330 }
1331
1332 descidx = txq->txq_descidx;
1333 txstat =
1334 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1335 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1336 if (txstat & RTK_TDESC_CMD_OWN)
1337 break;
1338
1339 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1340 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1341 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1342 m_freem(txq->txq_mbuf);
1343 txq->txq_mbuf = NULL;
1344
1345 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1346 ifp->if_collisions++;
1347 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1348 ifp->if_oerrors++;
1349 else
1350 ifp->if_opackets++;
1351
1352 idx = (idx + 1) % RTK_TX_QLEN;
1353 }
1354
1355 /* No changes made to the TX ring, so no flush needed */
1356
1357 if (idx != sc->rtk_ldata.rtk_txq_considx) {
1358 sc->rtk_ldata.rtk_txq_considx = idx;
1359 ifp->if_flags &= ~IFF_OACTIVE;
1360 ifp->if_timer = 0;
1361 }
1362
1363 /*
1364 * If not all descriptors have been released reaped yet,
1365 * reload the timer so that we will eventually get another
1366 * interrupt that will cause us to re-enter this routine.
1367 * This is done in case the transmitter has gone idle.
1368 */
1369 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1370 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1371
1372 return;
1373 }
1374
1375 /*
1376 * Stop all chip I/O so that the kernel's probe routines don't
1377 * get confused by errant DMAs when rebooting.
1378 */
1379 static void
1380 re_shutdown(void *vsc)
1381
1382 {
1383 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1384
1385 re_stop(&sc->ethercom.ec_if, 0);
1386 }
1387
1388
1389 static void
1390 re_tick(void *xsc)
1391 {
1392 struct rtk_softc *sc = xsc;
1393 int s;
1394
1395 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1396 s = splnet();
1397
1398 mii_tick(&sc->mii);
1399 splx(s);
1400
1401 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1402 }
1403
1404 #ifdef DEVICE_POLLING
1405 static void
1406 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1407 {
1408 struct rtk_softc *sc = ifp->if_softc;
1409
1410 RTK_LOCK(sc);
1411 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1412 ether_poll_deregister(ifp);
1413 cmd = POLL_DEREGISTER;
1414 }
1415 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1416 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1417 goto done;
1418 }
1419
1420 sc->rxcycles = count;
1421 re_rxeof(sc);
1422 re_txeof(sc);
1423
1424 if (ifp->if_snd.ifq_head != NULL)
1425 (*ifp->if_start)(ifp);
1426
1427 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1428 u_int16_t status;
1429
1430 status = CSR_READ_2(sc, RTK_ISR);
1431 if (status == 0xffff)
1432 goto done;
1433 if (status)
1434 CSR_WRITE_2(sc, RTK_ISR, status);
1435
1436 /*
1437 * XXX check behaviour on receiver stalls.
1438 */
1439
1440 if (status & RTK_ISR_SYSTEM_ERR) {
1441 re_reset(sc);
1442 re_init(sc);
1443 }
1444 }
1445 done:
1446 RTK_UNLOCK(sc);
1447 }
1448 #endif /* DEVICE_POLLING */
1449
1450 int
1451 re_intr(void *arg)
1452 {
1453 struct rtk_softc *sc = arg;
1454 struct ifnet *ifp;
1455 u_int16_t status;
1456 int handled = 0;
1457
1458 ifp = &sc->ethercom.ec_if;
1459
1460 if (!(ifp->if_flags & IFF_UP))
1461 return 0;
1462
1463 #ifdef DEVICE_POLLING
1464 if (ifp->if_flags & IFF_POLLING)
1465 goto done;
1466 if ((ifp->if_capenable & IFCAP_POLLING) &&
1467 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1468 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1469 re_poll(ifp, 0, 1);
1470 goto done;
1471 }
1472 #endif /* DEVICE_POLLING */
1473
1474 for (;;) {
1475
1476 status = CSR_READ_2(sc, RTK_ISR);
1477 /* If the card has gone away the read returns 0xffff. */
1478 if (status == 0xffff)
1479 break;
1480 if (status) {
1481 handled = 1;
1482 CSR_WRITE_2(sc, RTK_ISR, status);
1483 }
1484
1485 if ((status & RTK_INTRS_CPLUS) == 0)
1486 break;
1487
1488 if ((status & RTK_ISR_RX_OK) ||
1489 (status & RTK_ISR_RX_ERR))
1490 re_rxeof(sc);
1491
1492 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1493 (status & RTK_ISR_TX_ERR) ||
1494 (status & RTK_ISR_TX_DESC_UNAVAIL))
1495 re_txeof(sc);
1496
1497 if (status & RTK_ISR_SYSTEM_ERR) {
1498 re_reset(sc);
1499 re_init(ifp);
1500 }
1501
1502 if (status & RTK_ISR_LINKCHG) {
1503 callout_stop(&sc->rtk_tick_ch);
1504 re_tick(sc);
1505 }
1506 }
1507
1508 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1509 if (ifp->if_snd.ifq_head != NULL)
1510 (*ifp->if_start)(ifp);
1511
1512 #ifdef DEVICE_POLLING
1513 done:
1514 #endif
1515
1516 return handled;
1517 }
1518
1519 static int
1520 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1521 {
1522 bus_dmamap_t map;
1523 int error, i, startidx, curidx;
1524 #ifdef RE_VLAN
1525 struct m_tag *mtag;
1526 #endif
1527 struct rtk_desc *d;
1528 u_int32_t cmdstat, rtk_flags;
1529 struct rtk_txq *txq;
1530
1531 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1532 return EFBIG;
1533 }
1534
1535 /*
1536 * Set up checksum offload. Note: checksum offload bits must
1537 * appear in all descriptors of a multi-descriptor transmit
1538 * attempt. (This is according to testing done with an 8169
1539 * chip. I'm not sure if this is a requirement or a bug.)
1540 */
1541
1542 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1543 u_int32_t segsz = m->m_pkthdr.segsz;
1544
1545 rtk_flags = RTK_TDESC_CMD_LGSEND |
1546 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1547 } else {
1548
1549 /*
1550 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1551 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1552 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1553 */
1554
1555 rtk_flags = 0;
1556 if ((m->m_pkthdr.csum_flags &
1557 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1558 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1559 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1560 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1561 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1562 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1563 }
1564 }
1565 }
1566
1567 txq = &sc->rtk_ldata.rtk_txq[*idx];
1568 map = txq->txq_dmamap;
1569 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1570 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1571
1572 if (error) {
1573 /* XXX try to defrag if EFBIG? */
1574
1575 aprint_error("%s: can't map mbuf (error %d)\n",
1576 sc->sc_dev.dv_xname, error);
1577
1578 return error;
1579 }
1580
1581 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1582 error = EFBIG;
1583 goto fail_unload;
1584 }
1585 /*
1586 * Map the segment array into descriptors. Note that we set the
1587 * start-of-frame and end-of-frame markers for either TX or RX, but
1588 * they really only have meaning in the TX case. (In the RX case,
1589 * it's the chip that tells us where packets begin and end.)
1590 * We also keep track of the end of the ring and set the
1591 * end-of-ring bits as needed, and we set the ownership bits
1592 * in all except the very first descriptor. (The caller will
1593 * set this descriptor later when it start transmission or
1594 * reception.)
1595 */
1596 i = 0;
1597 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1598 while (1) {
1599 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1600 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1601 while (i > 0) {
1602 sc->rtk_ldata.rtk_tx_list[
1603 (curidx + RTK_TX_DESC_CNT(sc) - i) %
1604 RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
1605 i--;
1606 }
1607 error = ENOBUFS;
1608 goto fail_unload;
1609 }
1610
1611 cmdstat = map->dm_segs[i].ds_len;
1612 d->rtk_bufaddr_lo =
1613 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1614 d->rtk_bufaddr_hi =
1615 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1616 if (i == 0)
1617 cmdstat |= RTK_TDESC_CMD_SOF;
1618 else
1619 cmdstat |= RTK_TDESC_CMD_OWN;
1620 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1621 cmdstat |= RTK_TDESC_CMD_EOR;
1622 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1623 i++;
1624 if (i == map->dm_nsegs)
1625 break;
1626 RTK_TX_DESC_INC(sc, curidx);
1627 }
1628
1629 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1630
1631 txq->txq_mbuf = m;
1632 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1633
1634 /*
1635 * Set up hardware VLAN tagging. Note: vlan tag info must
1636 * appear in the first descriptor of a multi-descriptor
1637 * transmission attempt.
1638 */
1639
1640 #ifdef RE_VLAN
1641 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1642 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1643 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1644 RTK_TDESC_VLANCTL_TAG);
1645 }
1646 #endif
1647
1648 /* Transfer ownership of packet to the chip. */
1649
1650 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1651 htole32(RTK_TDESC_CMD_OWN);
1652 if (startidx != curidx)
1653 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1654 htole32(RTK_TDESC_CMD_OWN);
1655
1656 txq->txq_descidx = curidx;
1657 RTK_TX_DESC_INC(sc, curidx);
1658 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1659 *idx = (*idx + 1) % RTK_TX_QLEN;
1660
1661 return 0;
1662
1663 fail_unload:
1664 bus_dmamap_unload(sc->sc_dmat, map);
1665
1666 return error;
1667 }
1668
1669 /*
1670 * Main transmit routine for C+ and gigE NICs.
1671 */
1672
1673 static void
1674 re_start(struct ifnet *ifp)
1675 {
1676 struct rtk_softc *sc;
1677 int idx;
1678
1679 sc = ifp->if_softc;
1680
1681 idx = sc->rtk_ldata.rtk_txq_prodidx;
1682 while (/* CONSTCOND */ 1) {
1683 struct mbuf *m;
1684 int error;
1685
1686 IFQ_POLL(&ifp->if_snd, m);
1687 if (m == NULL)
1688 break;
1689
1690 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1691 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1692 ifp->if_flags |= IFF_OACTIVE;
1693 break;
1694 }
1695
1696 error = re_encap(sc, m, &idx);
1697 if (error == EFBIG &&
1698 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1699 IFQ_DEQUEUE(&ifp->if_snd, m);
1700 m_freem(m);
1701 ifp->if_oerrors++;
1702 continue;
1703 }
1704 if (error) {
1705 ifp->if_flags |= IFF_OACTIVE;
1706 break;
1707 }
1708
1709 IFQ_DEQUEUE(&ifp->if_snd, m);
1710
1711 #if NBPFILTER > 0
1712 /*
1713 * If there's a BPF listener, bounce a copy of this frame
1714 * to him.
1715 */
1716 if (ifp->if_bpf)
1717 bpf_mtap(ifp->if_bpf, m);
1718 #endif
1719 }
1720
1721 if (sc->rtk_ldata.rtk_txq_prodidx == idx) {
1722 return;
1723 }
1724 sc->rtk_ldata.rtk_txq_prodidx = idx;
1725
1726 /* Flush the TX descriptors */
1727
1728 bus_dmamap_sync(sc->sc_dmat,
1729 sc->rtk_ldata.rtk_tx_list_map,
1730 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1731 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1732
1733 /*
1734 * RealTek put the TX poll request register in a different
1735 * location on the 8169 gigE chip. I don't know why.
1736 */
1737
1738 if (sc->rtk_type == RTK_8169)
1739 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1740 else
1741 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1742
1743 /*
1744 * Use the countdown timer for interrupt moderation.
1745 * 'TX done' interrupts are disabled. Instead, we reset the
1746 * countdown timer, which will begin counting until it hits
1747 * the value in the TIMERINT register, and then trigger an
1748 * interrupt. Each time we write to the TIMERCNT register,
1749 * the timer count is reset to 0.
1750 */
1751 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1752
1753 /*
1754 * Set a timeout in case the chip goes out to lunch.
1755 */
1756 ifp->if_timer = 5;
1757
1758 return;
1759 }
1760
1761 static int
1762 re_init(struct ifnet *ifp)
1763 {
1764 struct rtk_softc *sc = ifp->if_softc;
1765 u_int32_t rxcfg = 0;
1766 u_int32_t reg;
1767 int error;
1768
1769 if ((error = re_enable(sc)) != 0)
1770 goto out;
1771
1772 /*
1773 * Cancel pending I/O and free all RX/TX buffers.
1774 */
1775 re_stop(ifp, 0);
1776
1777 /*
1778 * Enable C+ RX and TX mode, as well as VLAN stripping and
1779 * RX checksum offload. We must configure the C+ register
1780 * before all others.
1781 */
1782 reg = 0;
1783
1784 /*
1785 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1786 * FreeBSD drivers set these bits anyway (for 8139C+?).
1787 * So far, it works.
1788 */
1789
1790 /*
1791 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1792 * For 8169S/8110S rev 2 and above, do not set bit 14.
1793 */
1794 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1795 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1796
1797 if (1) {/* not for 8169S ? */
1798 reg |=
1799 #ifdef RE_VLAN
1800 RTK_CPLUSCMD_VLANSTRIP |
1801 #endif
1802 (ifp->if_capenable &
1803 (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
1804 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1805 }
1806
1807 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1808 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1809
1810 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1811 if (sc->rtk_type == RTK_8169)
1812 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1813
1814 DELAY(10000);
1815
1816 /*
1817 * Init our MAC address. Even though the chipset
1818 * documentation doesn't mention it, we need to enter "Config
1819 * register write enable" mode to modify the ID registers.
1820 */
1821 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1822 memcpy(®, LLADDR(ifp->if_sadl), 4);
1823 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1824 reg = 0;
1825 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1826 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1827 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1828
1829 /*
1830 * For C+ mode, initialize the RX descriptors and mbufs.
1831 */
1832 re_rx_list_init(sc);
1833 re_tx_list_init(sc);
1834
1835 /*
1836 * Enable transmit and receive.
1837 */
1838 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1839
1840 /*
1841 * Set the initial TX and RX configuration.
1842 */
1843 if (sc->rtk_testmode) {
1844 if (sc->rtk_type == RTK_8169)
1845 CSR_WRITE_4(sc, RTK_TXCFG,
1846 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1847 else
1848 CSR_WRITE_4(sc, RTK_TXCFG,
1849 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1850 } else
1851 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1852 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1853
1854 /* Set the individual bit to receive frames for this host only. */
1855 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1856 rxcfg |= RTK_RXCFG_RX_INDIV;
1857
1858 /* If we want promiscuous mode, set the allframes bit. */
1859 if (ifp->if_flags & IFF_PROMISC)
1860 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1861 else
1862 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1863 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1864
1865 /*
1866 * Set capture broadcast bit to capture broadcast frames.
1867 */
1868 if (ifp->if_flags & IFF_BROADCAST)
1869 rxcfg |= RTK_RXCFG_RX_BROAD;
1870 else
1871 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1872 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1873
1874 /*
1875 * Program the multicast filter, if necessary.
1876 */
1877 rtk_setmulti(sc);
1878
1879 #ifdef DEVICE_POLLING
1880 /*
1881 * Disable interrupts if we are polling.
1882 */
1883 if (ifp->if_flags & IFF_POLLING)
1884 CSR_WRITE_2(sc, RTK_IMR, 0);
1885 else /* otherwise ... */
1886 #endif /* DEVICE_POLLING */
1887 /*
1888 * Enable interrupts.
1889 */
1890 if (sc->rtk_testmode)
1891 CSR_WRITE_2(sc, RTK_IMR, 0);
1892 else
1893 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1894
1895 /* Start RX/TX process. */
1896 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1897 #ifdef notdef
1898 /* Enable receiver and transmitter. */
1899 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1900 #endif
1901 /*
1902 * Load the addresses of the RX and TX lists into the chip.
1903 */
1904
1905 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1906 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1907 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1908 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1909
1910 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1911 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1912 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1913 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1914
1915 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1916
1917 /*
1918 * Initialize the timer interrupt register so that
1919 * a timer interrupt will be generated once the timer
1920 * reaches a certain number of ticks. The timer is
1921 * reloaded on each transmit. This gives us TX interrupt
1922 * moderation, which dramatically improves TX frame rate.
1923 */
1924
1925 if (sc->rtk_type == RTK_8169)
1926 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1927 else
1928 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1929
1930 /*
1931 * For 8169 gigE NICs, set the max allowed RX packet
1932 * size so we can receive jumbo frames.
1933 */
1934 if (sc->rtk_type == RTK_8169)
1935 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1936
1937 if (sc->rtk_testmode)
1938 return 0;
1939
1940 mii_mediachg(&sc->mii);
1941
1942 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1943
1944 ifp->if_flags |= IFF_RUNNING;
1945 ifp->if_flags &= ~IFF_OACTIVE;
1946
1947 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1948
1949 out:
1950 if (error) {
1951 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1952 ifp->if_timer = 0;
1953 aprint_error("%s: interface not running\n",
1954 sc->sc_dev.dv_xname);
1955 }
1956
1957 return error;
1958
1959 }
1960
1961 /*
1962 * Set media options.
1963 */
1964 static int
1965 re_ifmedia_upd(struct ifnet *ifp)
1966 {
1967 struct rtk_softc *sc;
1968
1969 sc = ifp->if_softc;
1970
1971 return mii_mediachg(&sc->mii);
1972 }
1973
1974 /*
1975 * Report current media status.
1976 */
1977 static void
1978 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1979 {
1980 struct rtk_softc *sc;
1981
1982 sc = ifp->if_softc;
1983
1984 mii_pollstat(&sc->mii);
1985 ifmr->ifm_active = sc->mii.mii_media_active;
1986 ifmr->ifm_status = sc->mii.mii_media_status;
1987
1988 return;
1989 }
1990
1991 static int
1992 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1993 {
1994 struct rtk_softc *sc = ifp->if_softc;
1995 struct ifreq *ifr = (struct ifreq *) data;
1996 int s, error = 0;
1997
1998 s = splnet();
1999
2000 switch (command) {
2001 case SIOCSIFMTU:
2002 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
2003 error = EINVAL;
2004 ifp->if_mtu = ifr->ifr_mtu;
2005 break;
2006 case SIOCGIFMEDIA:
2007 case SIOCSIFMEDIA:
2008 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
2009 break;
2010 default:
2011 error = ether_ioctl(ifp, command, data);
2012 if (error == ENETRESET) {
2013 if (ifp->if_flags & IFF_RUNNING)
2014 rtk_setmulti(sc);
2015 error = 0;
2016 }
2017 break;
2018 }
2019
2020 splx(s);
2021
2022 return error;
2023 }
2024
2025 static void
2026 re_watchdog(struct ifnet *ifp)
2027 {
2028 struct rtk_softc *sc;
2029 int s;
2030
2031 sc = ifp->if_softc;
2032 s = splnet();
2033 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2034 ifp->if_oerrors++;
2035
2036 re_txeof(sc);
2037 re_rxeof(sc);
2038
2039 re_init(ifp);
2040
2041 splx(s);
2042 }
2043
2044 /*
2045 * Stop the adapter and free any mbufs allocated to the
2046 * RX and TX lists.
2047 */
2048 static void
2049 re_stop(struct ifnet *ifp, int disable)
2050 {
2051 register int i;
2052 struct rtk_softc *sc = ifp->if_softc;
2053
2054 callout_stop(&sc->rtk_tick_ch);
2055
2056 #ifdef DEVICE_POLLING
2057 ether_poll_deregister(ifp);
2058 #endif /* DEVICE_POLLING */
2059
2060 mii_down(&sc->mii);
2061
2062 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2063 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2064
2065 if (sc->rtk_head != NULL) {
2066 m_freem(sc->rtk_head);
2067 sc->rtk_head = sc->rtk_tail = NULL;
2068 }
2069
2070 /* Free the TX list buffers. */
2071 for (i = 0; i < RTK_TX_QLEN; i++) {
2072 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2073 bus_dmamap_unload(sc->sc_dmat,
2074 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2075 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2076 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2077 }
2078 }
2079
2080 /* Free the RX list buffers. */
2081 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2082 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2083 bus_dmamap_unload(sc->sc_dmat,
2084 sc->rtk_ldata.rtk_rx_dmamap[i]);
2085 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2086 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2087 }
2088 }
2089
2090 if (disable)
2091 re_disable(sc);
2092
2093 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2094 ifp->if_timer = 0;
2095
2096 return;
2097 }
2098