rtl8169.c revision 1.14.2.6 1 /* $NetBSD: rtl8169.c,v 1.14.2.6 2007/03/03 23:30:24 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/ic/rtl81x9reg.h>
147 #include <dev/ic/rtl81x9var.h>
148
149 #include <dev/ic/rtl8169var.h>
150
151 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
152
153 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
154 static int re_rx_list_init(struct rtk_softc *);
155 static int re_tx_list_init(struct rtk_softc *);
156 static void re_rxeof(struct rtk_softc *);
157 static void re_txeof(struct rtk_softc *);
158 static void re_tick(void *);
159 static void re_start(struct ifnet *);
160 static int re_ioctl(struct ifnet *, u_long, caddr_t);
161 static int re_init(struct ifnet *);
162 static void re_stop(struct ifnet *, int);
163 static void re_watchdog(struct ifnet *);
164
165 static void re_shutdown(void *);
166 static int re_enable(struct rtk_softc *);
167 static void re_disable(struct rtk_softc *);
168 static void re_power(int, void *);
169
170 static int re_ifmedia_upd(struct ifnet *);
171 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
172
173 static int re_gmii_readreg(struct device *, int, int);
174 static void re_gmii_writereg(struct device *, int, int, int);
175
176 static int re_miibus_readreg(struct device *, int, int);
177 static void re_miibus_writereg(struct device *, int, int, int);
178 static void re_miibus_statchg(struct device *);
179
180 static void re_reset(struct rtk_softc *);
181
182 static inline void
183 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
184 {
185
186 d->re_bufaddr_lo = htole32((uint32_t)addr);
187 if (sizeof(bus_addr_t) == sizeof(uint64_t))
188 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
189 else
190 d->re_bufaddr_hi = 0;
191 }
192
193 static int
194 re_gmii_readreg(struct device *self, int phy, int reg)
195 {
196 struct rtk_softc *sc = (void *)self;
197 uint32_t rval;
198 int i;
199
200 if (phy != 7)
201 return 0;
202
203 /* Let the rgephy driver read the GMEDIASTAT register */
204
205 if (reg == RTK_GMEDIASTAT) {
206 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
207 return rval;
208 }
209
210 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
211 DELAY(1000);
212
213 for (i = 0; i < RTK_TIMEOUT; i++) {
214 rval = CSR_READ_4(sc, RTK_PHYAR);
215 if (rval & RTK_PHYAR_BUSY)
216 break;
217 DELAY(100);
218 }
219
220 if (i == RTK_TIMEOUT) {
221 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
222 return 0;
223 }
224
225 return rval & RTK_PHYAR_PHYDATA;
226 }
227
228 static void
229 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
230 {
231 struct rtk_softc *sc = (void *)dev;
232 uint32_t rval;
233 int i;
234
235 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
236 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
237 DELAY(1000);
238
239 for (i = 0; i < RTK_TIMEOUT; i++) {
240 rval = CSR_READ_4(sc, RTK_PHYAR);
241 if (!(rval & RTK_PHYAR_BUSY))
242 break;
243 DELAY(100);
244 }
245
246 if (i == RTK_TIMEOUT) {
247 aprint_error("%s: PHY write reg %x <- %x failed\n",
248 sc->sc_dev.dv_xname, reg, data);
249 }
250 }
251
252 static int
253 re_miibus_readreg(struct device *dev, int phy, int reg)
254 {
255 struct rtk_softc *sc = (void *)dev;
256 uint16_t rval = 0;
257 uint16_t re8139_reg = 0;
258 int s;
259
260 s = splnet();
261
262 if (sc->rtk_type == RTK_8169) {
263 rval = re_gmii_readreg(dev, phy, reg);
264 splx(s);
265 return rval;
266 }
267
268 /* Pretend the internal PHY is only at address 0 */
269 if (phy) {
270 splx(s);
271 return 0;
272 }
273 switch (reg) {
274 case MII_BMCR:
275 re8139_reg = RTK_BMCR;
276 break;
277 case MII_BMSR:
278 re8139_reg = RTK_BMSR;
279 break;
280 case MII_ANAR:
281 re8139_reg = RTK_ANAR;
282 break;
283 case MII_ANER:
284 re8139_reg = RTK_ANER;
285 break;
286 case MII_ANLPAR:
287 re8139_reg = RTK_LPAR;
288 break;
289 case MII_PHYIDR1:
290 case MII_PHYIDR2:
291 splx(s);
292 return 0;
293 /*
294 * Allow the rlphy driver to read the media status
295 * register. If we have a link partner which does not
296 * support NWAY, this is the register which will tell
297 * us the results of parallel detection.
298 */
299 case RTK_MEDIASTAT:
300 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
301 splx(s);
302 return rval;
303 default:
304 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
305 splx(s);
306 return 0;
307 }
308 rval = CSR_READ_2(sc, re8139_reg);
309 if (sc->rtk_type == RTK_8139CPLUS && re8139_reg == RTK_BMCR) {
310 /* 8139C+ has different bit layout. */
311 rval &= ~(BMCR_LOOP | BMCR_ISO);
312 }
313 splx(s);
314 return rval;
315 }
316
317 static void
318 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
319 {
320 struct rtk_softc *sc = (void *)dev;
321 uint16_t re8139_reg = 0;
322 int s;
323
324 s = splnet();
325
326 if (sc->rtk_type == RTK_8169) {
327 re_gmii_writereg(dev, phy, reg, data);
328 splx(s);
329 return;
330 }
331
332 /* Pretend the internal PHY is only at address 0 */
333 if (phy) {
334 splx(s);
335 return;
336 }
337 switch (reg) {
338 case MII_BMCR:
339 re8139_reg = RTK_BMCR;
340 if (sc->rtk_type == RTK_8139CPLUS) {
341 /* 8139C+ has different bit layout. */
342 data &= ~(BMCR_LOOP | BMCR_ISO);
343 }
344 break;
345 case MII_BMSR:
346 re8139_reg = RTK_BMSR;
347 break;
348 case MII_ANAR:
349 re8139_reg = RTK_ANAR;
350 break;
351 case MII_ANER:
352 re8139_reg = RTK_ANER;
353 break;
354 case MII_ANLPAR:
355 re8139_reg = RTK_LPAR;
356 break;
357 case MII_PHYIDR1:
358 case MII_PHYIDR2:
359 splx(s);
360 return;
361 break;
362 default:
363 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
364 splx(s);
365 return;
366 }
367 CSR_WRITE_2(sc, re8139_reg, data);
368 splx(s);
369 return;
370 }
371
372 static void
373 re_miibus_statchg(struct device *dev)
374 {
375
376 return;
377 }
378
379 static void
380 re_reset(struct rtk_softc *sc)
381 {
382 int i;
383
384 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
385
386 for (i = 0; i < RTK_TIMEOUT; i++) {
387 DELAY(10);
388 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
389 break;
390 }
391 if (i == RTK_TIMEOUT)
392 aprint_error("%s: reset never completed!\n",
393 sc->sc_dev.dv_xname);
394
395 /*
396 * NB: Realtek-supplied Linux driver does this only for
397 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
398 */
399 if (1) /* XXX check softc flag for 8169s version */
400 CSR_WRITE_1(sc, RTK_LDPS, 1);
401
402 return;
403 }
404
405 /*
406 * The following routine is designed to test for a defect on some
407 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
408 * lines connected to the bus, however for a 32-bit only card, they
409 * should be pulled high. The result of this defect is that the
410 * NIC will not work right if you plug it into a 64-bit slot: DMA
411 * operations will be done with 64-bit transfers, which will fail
412 * because the 64-bit data lines aren't connected.
413 *
414 * There's no way to work around this (short of talking a soldering
415 * iron to the board), however we can detect it. The method we use
416 * here is to put the NIC into digital loopback mode, set the receiver
417 * to promiscuous mode, and then try to send a frame. We then compare
418 * the frame data we sent to what was received. If the data matches,
419 * then the NIC is working correctly, otherwise we know the user has
420 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
421 * slot. In the latter case, there's no way the NIC can work correctly,
422 * so we print out a message on the console and abort the device attach.
423 */
424
425 int
426 re_diag(struct rtk_softc *sc)
427 {
428 struct ifnet *ifp = &sc->ethercom.ec_if;
429 struct mbuf *m0;
430 struct ether_header *eh;
431 struct re_rxsoft *rxs;
432 struct re_desc *cur_rx;
433 bus_dmamap_t dmamap;
434 uint16_t status;
435 uint32_t rxstat;
436 int total_len, i, s, error = 0;
437 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
438 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
439
440 /* Allocate a single mbuf */
441
442 MGETHDR(m0, M_DONTWAIT, MT_DATA);
443 if (m0 == NULL)
444 return ENOBUFS;
445
446 /*
447 * Initialize the NIC in test mode. This sets the chip up
448 * so that it can send and receive frames, but performs the
449 * following special functions:
450 * - Puts receiver in promiscuous mode
451 * - Enables digital loopback mode
452 * - Leaves interrupts turned off
453 */
454
455 ifp->if_flags |= IFF_PROMISC;
456 sc->re_testmode = 1;
457 re_init(ifp);
458 re_stop(ifp, 0);
459 DELAY(100000);
460 re_init(ifp);
461
462 /* Put some data in the mbuf */
463
464 eh = mtod(m0, struct ether_header *);
465 memcpy(eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN);
466 memcpy(eh->ether_shost, (char *)&src, ETHER_ADDR_LEN);
467 eh->ether_type = htons(ETHERTYPE_IP);
468 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
469
470 /*
471 * Queue the packet, start transmission.
472 */
473
474 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
475 s = splnet();
476 IF_ENQUEUE(&ifp->if_snd, m0);
477 re_start(ifp);
478 splx(s);
479 m0 = NULL;
480
481 /* Wait for it to propagate through the chip */
482
483 DELAY(100000);
484 for (i = 0; i < RTK_TIMEOUT; i++) {
485 status = CSR_READ_2(sc, RTK_ISR);
486 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
487 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
488 break;
489 DELAY(10);
490 }
491 if (i == RTK_TIMEOUT) {
492 aprint_error("%s: diagnostic failed, failed to receive packet "
493 "in loopback mode\n", sc->sc_dev.dv_xname);
494 error = EIO;
495 goto done;
496 }
497
498 /*
499 * The packet should have been dumped into the first
500 * entry in the RX DMA ring. Grab it from there.
501 */
502
503 rxs = &sc->re_ldata.re_rxsoft[0];
504 dmamap = rxs->rxs_dmamap;
505 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
506 BUS_DMASYNC_POSTREAD);
507 bus_dmamap_unload(sc->sc_dmat, dmamap);
508
509 m0 = rxs->rxs_mbuf;
510 rxs->rxs_mbuf = NULL;
511 eh = mtod(m0, struct ether_header *);
512
513 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
514 cur_rx = &sc->re_ldata.re_rx_list[0];
515 rxstat = le32toh(cur_rx->re_cmdstat);
516 total_len = rxstat & sc->re_rxlenmask;
517
518 if (total_len != ETHER_MIN_LEN) {
519 aprint_error("%s: diagnostic failed, received short packet\n",
520 sc->sc_dev.dv_xname);
521 error = EIO;
522 goto done;
523 }
524
525 /* Test that the received packet data matches what we sent. */
526
527 if (memcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
528 memcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
529 ntohs(eh->ether_type) != ETHERTYPE_IP) {
530 aprint_error("%s: WARNING, DMA FAILURE!\n",
531 sc->sc_dev.dv_xname);
532 aprint_error("%s: expected TX data: %s",
533 sc->sc_dev.dv_xname, ether_sprintf(dst));
534 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
535 aprint_error("%s: received RX data: %s",
536 sc->sc_dev.dv_xname,
537 ether_sprintf(eh->ether_dhost));
538 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
539 ntohs(eh->ether_type));
540 aprint_error("%s: You may have a defective 32-bit NIC plugged "
541 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
542 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
543 "for proper operation.\n", sc->sc_dev.dv_xname);
544 aprint_error("%s: Read the re(4) man page for more details.\n",
545 sc->sc_dev.dv_xname);
546 error = EIO;
547 }
548
549 done:
550 /* Turn interface off, release resources */
551
552 sc->re_testmode = 0;
553 ifp->if_flags &= ~IFF_PROMISC;
554 re_stop(ifp, 0);
555 if (m0 != NULL)
556 m_freem(m0);
557
558 return error;
559 }
560
561
562 /*
563 * Attach the interface. Allocate softc structures, do ifmedia
564 * setup and ethernet/BPF attach.
565 */
566 void
567 re_attach(struct rtk_softc *sc)
568 {
569 u_char eaddr[ETHER_ADDR_LEN];
570 uint16_t val;
571 struct ifnet *ifp;
572 int error = 0, i, addr_len;
573
574 /* Reset the adapter. */
575 re_reset(sc);
576
577 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
578 addr_len = RTK_EEADDR_LEN1;
579 else
580 addr_len = RTK_EEADDR_LEN0;
581
582 /*
583 * Get station address from the EEPROM.
584 */
585 for (i = 0; i < 3; i++) {
586 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
587 eaddr[(i * 2) + 0] = val & 0xff;
588 eaddr[(i * 2) + 1] = val >> 8;
589 }
590
591 if (sc->rtk_type == RTK_8169) {
592 uint32_t hwrev;
593
594 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
595 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
596 /* These rev numbers are taken from Realtek's driver */
597 if ( hwrev == RTK_HWREV_8100E_SPIN2) {
598 sc->sc_rev = 15;
599 } else if (hwrev == RTK_HWREV_8100E) {
600 sc->sc_rev = 14;
601 } else if (hwrev == RTK_HWREV_8101E) {
602 sc->sc_rev = 13;
603 } else if (hwrev == RTK_HWREV_8168_SPIN2) {
604 sc->sc_rev = 12;
605 } else if (hwrev == RTK_HWREV_8168_SPIN1) {
606 sc->sc_rev = 11;
607 } else if (hwrev == RTK_HWREV_8169_8110SC) {
608 sc->sc_rev = 5;
609 } else if (hwrev == RTK_HWREV_8169_8110SB) {
610 sc->sc_rev = 4;
611 } else if (hwrev == RTK_HWREV_8169S) {
612 sc->sc_rev = 3;
613 } else if (hwrev == RTK_HWREV_8110S) {
614 sc->sc_rev = 2;
615 } else /* RTK_HWREV_8169 */
616 sc->sc_rev = 1;
617
618 /* Set RX length mask */
619 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
620 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
621 } else {
622 /* Set RX length mask */
623 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
624 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
625 }
626
627 aprint_normal("%s: Ethernet address %s\n",
628 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629
630 if (sc->re_ldata.re_tx_desc_cnt >
631 PAGE_SIZE / sizeof(struct re_desc)) {
632 sc->re_ldata.re_tx_desc_cnt =
633 PAGE_SIZE / sizeof(struct re_desc);
634 }
635
636 aprint_verbose("%s: using %d tx descriptors\n",
637 sc->sc_dev.dv_xname, sc->re_ldata.re_tx_desc_cnt);
638 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
639
640 /* Allocate DMA'able memory for the TX ring */
641 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
642 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
643 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
644 aprint_error("%s: can't allocate tx listseg, error = %d\n",
645 sc->sc_dev.dv_xname, error);
646 goto fail_0;
647 }
648
649 /* Load the map for the TX ring. */
650 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
651 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
652 (caddr_t *)&sc->re_ldata.re_tx_list,
653 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
654 aprint_error("%s: can't map tx list, error = %d\n",
655 sc->sc_dev.dv_xname, error);
656 goto fail_1;
657 }
658 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
659
660 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
661 RE_TX_LIST_SZ(sc), 0, 0,
662 &sc->re_ldata.re_tx_list_map)) != 0) {
663 aprint_error("%s: can't create tx list map, error = %d\n",
664 sc->sc_dev.dv_xname, error);
665 goto fail_2;
666 }
667
668
669 if ((error = bus_dmamap_load(sc->sc_dmat,
670 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
671 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
672 aprint_error("%s: can't load tx list, error = %d\n",
673 sc->sc_dev.dv_xname, error);
674 goto fail_3;
675 }
676
677 /* Create DMA maps for TX buffers */
678 for (i = 0; i < RE_TX_QLEN; i++) {
679 error = bus_dmamap_create(sc->sc_dmat,
680 round_page(IP_MAXPACKET),
681 RE_TX_DESC_CNT(sc) - RE_NTXDESC_RSVD, RE_TDESC_CMD_FRAGLEN,
682 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
683 if (error) {
684 aprint_error("%s: can't create DMA map for TX\n",
685 sc->sc_dev.dv_xname);
686 goto fail_4;
687 }
688 }
689
690 /* Allocate DMA'able memory for the RX ring */
691 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
692 if ((error = bus_dmamem_alloc(sc->sc_dmat,
693 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
694 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
695 aprint_error("%s: can't allocate rx listseg, error = %d\n",
696 sc->sc_dev.dv_xname, error);
697 goto fail_4;
698 }
699
700 /* Load the map for the RX ring. */
701 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
702 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
703 (caddr_t *)&sc->re_ldata.re_rx_list,
704 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
705 aprint_error("%s: can't map rx list, error = %d\n",
706 sc->sc_dev.dv_xname, error);
707 goto fail_5;
708 }
709 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
710
711 if ((error = bus_dmamap_create(sc->sc_dmat,
712 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
713 &sc->re_ldata.re_rx_list_map)) != 0) {
714 aprint_error("%s: can't create rx list map, error = %d\n",
715 sc->sc_dev.dv_xname, error);
716 goto fail_6;
717 }
718
719 if ((error = bus_dmamap_load(sc->sc_dmat,
720 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
721 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
722 aprint_error("%s: can't load rx list, error = %d\n",
723 sc->sc_dev.dv_xname, error);
724 goto fail_7;
725 }
726
727 /* Create DMA maps for RX buffers */
728 for (i = 0; i < RE_RX_DESC_CNT; i++) {
729 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
730 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
731 if (error) {
732 aprint_error("%s: can't create DMA map for RX\n",
733 sc->sc_dev.dv_xname);
734 goto fail_8;
735 }
736 }
737
738 /*
739 * Record interface as attached. From here, we should not fail.
740 */
741 sc->sc_flags |= RTK_ATTACHED;
742
743 ifp = &sc->ethercom.ec_if;
744 ifp->if_softc = sc;
745 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
746 ifp->if_mtu = ETHERMTU;
747 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
748 ifp->if_ioctl = re_ioctl;
749 sc->ethercom.ec_capabilities |=
750 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
751 ifp->if_start = re_start;
752 ifp->if_stop = re_stop;
753
754 /*
755 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
756 * so we have a workaround to handle the bug by padding
757 * such packets manually.
758 */
759 ifp->if_capabilities |=
760 IFCAP_CSUM_IPv4 |
761 IFCAP_CSUM_TCPv4 |
762 IFCAP_CSUM_UDPv4 |
763 IFCAP_TSOv4;
764 ifp->if_watchdog = re_watchdog;
765 ifp->if_init = re_init;
766 if (sc->rtk_type == RTK_8169)
767 ifp->if_baudrate = 1000000000;
768 else
769 ifp->if_baudrate = 100000000;
770 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
771 ifp->if_capenable = ifp->if_capabilities;
772 IFQ_SET_READY(&ifp->if_snd);
773
774 callout_init(&sc->rtk_tick_ch);
775
776 /* Do MII setup */
777 sc->mii.mii_ifp = ifp;
778 sc->mii.mii_readreg = re_miibus_readreg;
779 sc->mii.mii_writereg = re_miibus_writereg;
780 sc->mii.mii_statchg = re_miibus_statchg;
781 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
782 re_ifmedia_sts);
783 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
784 MII_OFFSET_ANY, 0);
785 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
786
787 /*
788 * Call MI attach routine.
789 */
790 if_attach(ifp);
791 ether_ifattach(ifp, eaddr);
792
793
794 /*
795 * Make sure the interface is shutdown during reboot.
796 */
797 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
798 if (sc->sc_sdhook == NULL)
799 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
800 sc->sc_dev.dv_xname);
801 /*
802 * Add a suspend hook to make sure we come back up after a
803 * resume.
804 */
805 sc->sc_powerhook = powerhook_establish(re_power, sc);
806 if (sc->sc_powerhook == NULL)
807 aprint_error("%s: WARNING: unable to establish power hook\n",
808 sc->sc_dev.dv_xname);
809
810
811 return;
812
813 fail_8:
814 /* Destroy DMA maps for RX buffers. */
815 for (i = 0; i < RE_RX_DESC_CNT; i++)
816 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
817 bus_dmamap_destroy(sc->sc_dmat,
818 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
819
820 /* Free DMA'able memory for the RX ring. */
821 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
822 fail_7:
823 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
824 fail_6:
825 bus_dmamem_unmap(sc->sc_dmat,
826 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
827 fail_5:
828 bus_dmamem_free(sc->sc_dmat,
829 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
830
831 fail_4:
832 /* Destroy DMA maps for TX buffers. */
833 for (i = 0; i < RE_TX_QLEN; i++)
834 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
835 bus_dmamap_destroy(sc->sc_dmat,
836 sc->re_ldata.re_txq[i].txq_dmamap);
837
838 /* Free DMA'able memory for the TX ring. */
839 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
840 fail_3:
841 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
842 fail_2:
843 bus_dmamem_unmap(sc->sc_dmat,
844 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
845 fail_1:
846 bus_dmamem_free(sc->sc_dmat,
847 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
848 fail_0:
849 return;
850 }
851
852
853 /*
854 * re_activate:
855 * Handle device activation/deactivation requests.
856 */
857 int
858 re_activate(struct device *self, enum devact act)
859 {
860 struct rtk_softc *sc = (void *)self;
861 int s, error = 0;
862
863 s = splnet();
864 switch (act) {
865 case DVACT_ACTIVATE:
866 error = EOPNOTSUPP;
867 break;
868 case DVACT_DEACTIVATE:
869 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
870 if_deactivate(&sc->ethercom.ec_if);
871 break;
872 }
873 splx(s);
874
875 return error;
876 }
877
878 /*
879 * re_detach:
880 * Detach a rtk interface.
881 */
882 int
883 re_detach(struct rtk_softc *sc)
884 {
885 struct ifnet *ifp = &sc->ethercom.ec_if;
886 int i;
887
888 /*
889 * Succeed now if there isn't any work to do.
890 */
891 if ((sc->sc_flags & RTK_ATTACHED) == 0)
892 return 0;
893
894 /* Unhook our tick handler. */
895 callout_stop(&sc->rtk_tick_ch);
896
897 /* Detach all PHYs. */
898 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
899
900 /* Delete all remaining media. */
901 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
902
903 ether_ifdetach(ifp);
904 if_detach(ifp);
905
906 /* Destroy DMA maps for RX buffers. */
907 for (i = 0; i < RE_RX_DESC_CNT; i++)
908 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
909 bus_dmamap_destroy(sc->sc_dmat,
910 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
911
912 /* Free DMA'able memory for the RX ring. */
913 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
914 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
915 bus_dmamem_unmap(sc->sc_dmat,
916 (caddr_t)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
917 bus_dmamem_free(sc->sc_dmat,
918 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
919
920 /* Destroy DMA maps for TX buffers. */
921 for (i = 0; i < RE_TX_QLEN; i++)
922 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
923 bus_dmamap_destroy(sc->sc_dmat,
924 sc->re_ldata.re_txq[i].txq_dmamap);
925
926 /* Free DMA'able memory for the TX ring. */
927 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
928 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
929 bus_dmamem_unmap(sc->sc_dmat,
930 (caddr_t)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
931 bus_dmamem_free(sc->sc_dmat,
932 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
933
934
935 shutdownhook_disestablish(sc->sc_sdhook);
936 powerhook_disestablish(sc->sc_powerhook);
937
938 return 0;
939 }
940
941 /*
942 * re_enable:
943 * Enable the RTL81X9 chip.
944 */
945 static int
946 re_enable(struct rtk_softc *sc)
947 {
948
949 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
950 if ((*sc->sc_enable)(sc) != 0) {
951 aprint_error("%s: device enable failed\n",
952 sc->sc_dev.dv_xname);
953 return EIO;
954 }
955 sc->sc_flags |= RTK_ENABLED;
956 }
957 return 0;
958 }
959
960 /*
961 * re_disable:
962 * Disable the RTL81X9 chip.
963 */
964 static void
965 re_disable(struct rtk_softc *sc)
966 {
967
968 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
969 (*sc->sc_disable)(sc);
970 sc->sc_flags &= ~RTK_ENABLED;
971 }
972 }
973
974 /*
975 * re_power:
976 * Power management (suspend/resume) hook.
977 */
978 void
979 re_power(int why, void *arg)
980 {
981 struct rtk_softc *sc = (void *)arg;
982 struct ifnet *ifp = &sc->ethercom.ec_if;
983 int s;
984
985 s = splnet();
986 switch (why) {
987 case PWR_SUSPEND:
988 case PWR_STANDBY:
989 re_stop(ifp, 0);
990 if (sc->sc_power != NULL)
991 (*sc->sc_power)(sc, why);
992 break;
993 case PWR_RESUME:
994 if (ifp->if_flags & IFF_UP) {
995 if (sc->sc_power != NULL)
996 (*sc->sc_power)(sc, why);
997 re_init(ifp);
998 }
999 break;
1000 case PWR_SOFTSUSPEND:
1001 case PWR_SOFTSTANDBY:
1002 case PWR_SOFTRESUME:
1003 break;
1004 }
1005 splx(s);
1006 }
1007
1008
1009 static int
1010 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1011 {
1012 struct mbuf *n = NULL;
1013 bus_dmamap_t map;
1014 struct re_desc *d;
1015 struct re_rxsoft *rxs;
1016 uint32_t cmdstat;
1017 int error;
1018
1019 if (m == NULL) {
1020 MGETHDR(n, M_DONTWAIT, MT_DATA);
1021 if (n == NULL)
1022 return ENOBUFS;
1023
1024 MCLGET(n, M_DONTWAIT);
1025 if ((n->m_flags & M_EXT) == 0) {
1026 m_freem(n);
1027 return ENOBUFS;
1028 }
1029 m = n;
1030 } else
1031 m->m_data = m->m_ext.ext_buf;
1032
1033 /*
1034 * Initialize mbuf length fields and fixup
1035 * alignment so that the frame payload is
1036 * longword aligned.
1037 */
1038 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1039 m->m_data += RE_ETHER_ALIGN;
1040
1041 rxs = &sc->re_ldata.re_rxsoft[idx];
1042 map = rxs->rxs_dmamap;
1043 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1044 BUS_DMA_READ|BUS_DMA_NOWAIT);
1045
1046 if (error)
1047 goto out;
1048
1049 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1050 BUS_DMASYNC_PREREAD);
1051
1052 d = &sc->re_ldata.re_rx_list[idx];
1053 #ifdef DIAGNOSTIC
1054 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1055 cmdstat = le32toh(d->re_cmdstat);
1056 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1057 if (cmdstat & RE_RDESC_STAT_OWN) {
1058 panic("%s: tried to map busy RX descriptor",
1059 sc->sc_dev.dv_xname);
1060 }
1061 #endif
1062
1063 rxs->rxs_mbuf = m;
1064
1065 d->re_vlanctl = 0;
1066 cmdstat = map->dm_segs[0].ds_len;
1067 if (idx == (RE_RX_DESC_CNT - 1))
1068 cmdstat |= RE_RDESC_CMD_EOR;
1069 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1070 d->re_cmdstat = htole32(cmdstat);
1071 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1072 cmdstat |= RE_RDESC_CMD_OWN;
1073 d->re_cmdstat = htole32(cmdstat);
1074 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1075
1076 return 0;
1077 out:
1078 if (n != NULL)
1079 m_freem(n);
1080 return ENOMEM;
1081 }
1082
1083 static int
1084 re_tx_list_init(struct rtk_softc *sc)
1085 {
1086 int i;
1087
1088 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1089 for (i = 0; i < RE_TX_QLEN; i++) {
1090 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1091 }
1092
1093 bus_dmamap_sync(sc->sc_dmat,
1094 sc->re_ldata.re_tx_list_map, 0,
1095 sc->re_ldata.re_tx_list_map->dm_mapsize,
1096 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1097 sc->re_ldata.re_txq_prodidx = 0;
1098 sc->re_ldata.re_txq_considx = 0;
1099 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1100 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1101 sc->re_ldata.re_tx_nextfree = 0;
1102
1103 return 0;
1104 }
1105
1106 static int
1107 re_rx_list_init(struct rtk_softc *sc)
1108 {
1109 int i;
1110
1111 memset((char *)sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1112
1113 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1114 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1115 return ENOBUFS;
1116 }
1117
1118 sc->re_ldata.re_rx_prodidx = 0;
1119 sc->re_head = sc->re_tail = NULL;
1120
1121 return 0;
1122 }
1123
1124 /*
1125 * RX handler for C+ and 8169. For the gigE chips, we support
1126 * the reception of jumbo frames that have been fragmented
1127 * across multiple 2K mbuf cluster buffers.
1128 */
1129 static void
1130 re_rxeof(struct rtk_softc *sc)
1131 {
1132 struct mbuf *m;
1133 struct ifnet *ifp;
1134 int i, total_len;
1135 struct re_desc *cur_rx;
1136 struct re_rxsoft *rxs;
1137 uint32_t rxstat, rxvlan;
1138
1139 ifp = &sc->ethercom.ec_if;
1140
1141 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1142 cur_rx = &sc->re_ldata.re_rx_list[i];
1143 RE_RXDESCSYNC(sc, i,
1144 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1145 rxstat = le32toh(cur_rx->re_cmdstat);
1146 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1147 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1148 break;
1149 }
1150 total_len = rxstat & sc->re_rxlenmask;
1151 rxvlan = le32toh(cur_rx->re_vlanctl);
1152 rxs = &sc->re_ldata.re_rxsoft[i];
1153 m = rxs->rxs_mbuf;
1154
1155 /* Invalidate the RX mbuf and unload its map */
1156
1157 bus_dmamap_sync(sc->sc_dmat,
1158 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1159 BUS_DMASYNC_POSTREAD);
1160 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1161
1162 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1163 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1164 if (sc->re_head == NULL)
1165 sc->re_head = sc->re_tail = m;
1166 else {
1167 m->m_flags &= ~M_PKTHDR;
1168 sc->re_tail->m_next = m;
1169 sc->re_tail = m;
1170 }
1171 re_newbuf(sc, i, NULL);
1172 continue;
1173 }
1174
1175 /*
1176 * NOTE: for the 8139C+, the frame length field
1177 * is always 12 bits in size, but for the gigE chips,
1178 * it is 13 bits (since the max RX frame length is 16K).
1179 * Unfortunately, all 32 bits in the status word
1180 * were already used, so to make room for the extra
1181 * length bit, RealTek took out the 'frame alignment
1182 * error' bit and shifted the other status bits
1183 * over one slot. The OWN, EOR, FS and LS bits are
1184 * still in the same places. We have already extracted
1185 * the frame length and checked the OWN bit, so rather
1186 * than using an alternate bit mapping, we shift the
1187 * status bits one space to the right so we can evaluate
1188 * them using the 8169 status as though it was in the
1189 * same format as that of the 8139C+.
1190 */
1191 if (sc->rtk_type == RTK_8169)
1192 rxstat >>= 1;
1193
1194 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1195 #ifdef RE_DEBUG
1196 aprint_error("%s: RX error (rxstat = 0x%08x)",
1197 sc->sc_dev.dv_xname, rxstat);
1198 if (rxstat & RE_RDESC_STAT_FRALIGN)
1199 aprint_error(", frame alignment error");
1200 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1201 aprint_error(", out of buffer space");
1202 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1203 aprint_error(", FIFO overrun");
1204 if (rxstat & RE_RDESC_STAT_GIANT)
1205 aprint_error(", giant packet");
1206 if (rxstat & RE_RDESC_STAT_RUNT)
1207 aprint_error(", runt packet");
1208 if (rxstat & RE_RDESC_STAT_CRCERR)
1209 aprint_error(", CRC error");
1210 aprint_error("\n");
1211 #endif
1212 ifp->if_ierrors++;
1213 /*
1214 * If this is part of a multi-fragment packet,
1215 * discard all the pieces.
1216 */
1217 if (sc->re_head != NULL) {
1218 m_freem(sc->re_head);
1219 sc->re_head = sc->re_tail = NULL;
1220 }
1221 re_newbuf(sc, i, m);
1222 continue;
1223 }
1224
1225 /*
1226 * If allocating a replacement mbuf fails,
1227 * reload the current one.
1228 */
1229
1230 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1231 ifp->if_ierrors++;
1232 if (sc->re_head != NULL) {
1233 m_freem(sc->re_head);
1234 sc->re_head = sc->re_tail = NULL;
1235 }
1236 re_newbuf(sc, i, m);
1237 continue;
1238 }
1239
1240 if (sc->re_head != NULL) {
1241 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1242 /*
1243 * Special case: if there's 4 bytes or less
1244 * in this buffer, the mbuf can be discarded:
1245 * the last 4 bytes is the CRC, which we don't
1246 * care about anyway.
1247 */
1248 if (m->m_len <= ETHER_CRC_LEN) {
1249 sc->re_tail->m_len -=
1250 (ETHER_CRC_LEN - m->m_len);
1251 m_freem(m);
1252 } else {
1253 m->m_len -= ETHER_CRC_LEN;
1254 m->m_flags &= ~M_PKTHDR;
1255 sc->re_tail->m_next = m;
1256 }
1257 m = sc->re_head;
1258 sc->re_head = sc->re_tail = NULL;
1259 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1260 } else
1261 m->m_pkthdr.len = m->m_len =
1262 (total_len - ETHER_CRC_LEN);
1263
1264 ifp->if_ipackets++;
1265 m->m_pkthdr.rcvif = ifp;
1266
1267 /* Do RX checksumming */
1268
1269 /* Check IP header checksum */
1270 if (rxstat & RE_RDESC_STAT_PROTOID) {
1271 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1272 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1273 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1274 }
1275
1276 /* Check TCP/UDP checksum */
1277 if (RE_TCPPKT(rxstat)) {
1278 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1279 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1280 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1281 } else if (RE_UDPPKT(rxstat)) {
1282 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1283 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1284 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1285 }
1286
1287 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1288 VLAN_INPUT_TAG(ifp, m,
1289 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1290 continue);
1291 }
1292 #if NBPFILTER > 0
1293 if (ifp->if_bpf)
1294 bpf_mtap(ifp->if_bpf, m);
1295 #endif
1296 (*ifp->if_input)(ifp, m);
1297 }
1298
1299 sc->re_ldata.re_rx_prodidx = i;
1300 }
1301
1302 static void
1303 re_txeof(struct rtk_softc *sc)
1304 {
1305 struct ifnet *ifp;
1306 struct re_txq *txq;
1307 uint32_t txstat;
1308 int idx, descidx;
1309
1310 ifp = &sc->ethercom.ec_if;
1311
1312 for (idx = sc->re_ldata.re_txq_considx;
1313 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1314 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1315 txq = &sc->re_ldata.re_txq[idx];
1316 KASSERT(txq->txq_mbuf != NULL);
1317
1318 descidx = txq->txq_descidx;
1319 RE_TXDESCSYNC(sc, descidx,
1320 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1321 txstat =
1322 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1323 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1324 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1325 if (txstat & RE_TDESC_CMD_OWN) {
1326 break;
1327 }
1328
1329 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1330 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1331 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1332 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1333 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1334 m_freem(txq->txq_mbuf);
1335 txq->txq_mbuf = NULL;
1336
1337 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1338 ifp->if_collisions++;
1339 if (txstat & RE_TDESC_STAT_TXERRSUM)
1340 ifp->if_oerrors++;
1341 else
1342 ifp->if_opackets++;
1343 }
1344
1345 sc->re_ldata.re_txq_considx = idx;
1346
1347 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1348 ifp->if_flags &= ~IFF_OACTIVE;
1349
1350 /*
1351 * If not all descriptors have been released reaped yet,
1352 * reload the timer so that we will eventually get another
1353 * interrupt that will cause us to re-enter this routine.
1354 * This is done in case the transmitter has gone idle.
1355 */
1356 if (sc->re_ldata.re_txq_free < RE_TX_QLEN)
1357 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1358 else
1359 ifp->if_timer = 0;
1360 }
1361
1362 /*
1363 * Stop all chip I/O so that the kernel's probe routines don't
1364 * get confused by errant DMAs when rebooting.
1365 */
1366 static void
1367 re_shutdown(void *vsc)
1368
1369 {
1370 struct rtk_softc *sc = vsc;
1371
1372 re_stop(&sc->ethercom.ec_if, 0);
1373 }
1374
1375
1376 static void
1377 re_tick(void *xsc)
1378 {
1379 struct rtk_softc *sc = xsc;
1380 int s;
1381
1382 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1383 s = splnet();
1384
1385 mii_tick(&sc->mii);
1386 splx(s);
1387
1388 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1389 }
1390
1391 #ifdef DEVICE_POLLING
1392 static void
1393 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1394 {
1395 struct rtk_softc *sc = ifp->if_softc;
1396
1397 RTK_LOCK(sc);
1398 if ((ifp->if_capenable & IFCAP_POLLING) == 0) {
1399 ether_poll_deregister(ifp);
1400 cmd = POLL_DEREGISTER;
1401 }
1402 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1403 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1404 goto done;
1405 }
1406
1407 sc->rxcycles = count;
1408 re_rxeof(sc);
1409 re_txeof(sc);
1410
1411 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1412 (*ifp->if_start)(ifp);
1413
1414 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1415 uint16_t status;
1416
1417 status = CSR_READ_2(sc, RTK_ISR);
1418 if (status == 0xffff)
1419 goto done;
1420 if (status)
1421 CSR_WRITE_2(sc, RTK_ISR, status);
1422
1423 /*
1424 * XXX check behaviour on receiver stalls.
1425 */
1426
1427 if (status & RTK_ISR_SYSTEM_ERR) {
1428 re_init(sc);
1429 }
1430 }
1431 done:
1432 RTK_UNLOCK(sc);
1433 }
1434 #endif /* DEVICE_POLLING */
1435
1436 int
1437 re_intr(void *arg)
1438 {
1439 struct rtk_softc *sc = arg;
1440 struct ifnet *ifp;
1441 uint16_t status;
1442 int handled = 0;
1443
1444 ifp = &sc->ethercom.ec_if;
1445
1446 if ((ifp->if_flags & IFF_UP) == 0)
1447 return 0;
1448
1449 #ifdef DEVICE_POLLING
1450 if (ifp->if_flags & IFF_POLLING)
1451 goto done;
1452 if ((ifp->if_capenable & IFCAP_POLLING) &&
1453 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1454 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1455 re_poll(ifp, 0, 1);
1456 goto done;
1457 }
1458 #endif /* DEVICE_POLLING */
1459
1460 for (;;) {
1461
1462 status = CSR_READ_2(sc, RTK_ISR);
1463 /* If the card has gone away the read returns 0xffff. */
1464 if (status == 0xffff)
1465 break;
1466 if (status) {
1467 handled = 1;
1468 CSR_WRITE_2(sc, RTK_ISR, status);
1469 }
1470
1471 if ((status & RTK_INTRS_CPLUS) == 0)
1472 break;
1473
1474 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1475 re_rxeof(sc);
1476
1477 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1478 RTK_ISR_TX_DESC_UNAVAIL))
1479 re_txeof(sc);
1480
1481 if (status & RTK_ISR_SYSTEM_ERR) {
1482 re_init(ifp);
1483 }
1484
1485 if (status & RTK_ISR_LINKCHG) {
1486 callout_stop(&sc->rtk_tick_ch);
1487 re_tick(sc);
1488 }
1489 }
1490
1491 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1492 re_start(ifp);
1493
1494 #ifdef DEVICE_POLLING
1495 done:
1496 #endif
1497
1498 return handled;
1499 }
1500
1501
1502
1503 /*
1504 * Main transmit routine for C+ and gigE NICs.
1505 */
1506
1507 static void
1508 re_start(struct ifnet *ifp)
1509 {
1510 struct rtk_softc *sc;
1511 struct mbuf *m;
1512 bus_dmamap_t map;
1513 struct re_txq *txq;
1514 struct re_desc *d;
1515 struct m_tag *mtag;
1516 uint32_t cmdstat, re_flags;
1517 int ofree, idx, error, nsegs, seg;
1518 int startdesc, curdesc, lastdesc;
1519 boolean_t pad;
1520
1521 sc = ifp->if_softc;
1522 ofree = sc->re_ldata.re_txq_free;
1523
1524 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1525
1526 IFQ_POLL(&ifp->if_snd, m);
1527 if (m == NULL)
1528 break;
1529
1530 if (sc->re_ldata.re_txq_free == 0 ||
1531 sc->re_ldata.re_tx_free <= RE_NTXDESC_RSVD) {
1532 /* no more free slots left */
1533 ifp->if_flags |= IFF_OACTIVE;
1534 break;
1535 }
1536
1537 /*
1538 * Set up checksum offload. Note: checksum offload bits must
1539 * appear in all descriptors of a multi-descriptor transmit
1540 * attempt. (This is according to testing done with an 8169
1541 * chip. I'm not sure if this is a requirement or a bug.)
1542 */
1543
1544 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1545 uint32_t segsz = m->m_pkthdr.segsz;
1546
1547 re_flags = RE_TDESC_CMD_LGSEND |
1548 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1549 } else {
1550 /*
1551 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1552 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1553 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1554 */
1555 re_flags = 0;
1556 if ((m->m_pkthdr.csum_flags &
1557 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1558 != 0) {
1559 re_flags |= RE_TDESC_CMD_IPCSUM;
1560 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1561 re_flags |= RE_TDESC_CMD_TCPCSUM;
1562 } else if (m->m_pkthdr.csum_flags &
1563 M_CSUM_UDPv4) {
1564 re_flags |= RE_TDESC_CMD_UDPCSUM;
1565 }
1566 }
1567 }
1568
1569 txq = &sc->re_ldata.re_txq[idx];
1570 map = txq->txq_dmamap;
1571 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1572 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1573
1574 if (__predict_false(error)) {
1575 /* XXX try to defrag if EFBIG? */
1576 aprint_error("%s: can't map mbuf (error %d)\n",
1577 sc->sc_dev.dv_xname, error);
1578
1579 IFQ_DEQUEUE(&ifp->if_snd, m);
1580 m_freem(m);
1581 ifp->if_oerrors++;
1582 continue;
1583 }
1584
1585 nsegs = map->dm_nsegs;
1586 pad = FALSE;
1587 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1588 (re_flags & RE_TDESC_CMD_IPCSUM) != 0)) {
1589 pad = TRUE;
1590 nsegs++;
1591 }
1592
1593 if (nsegs > sc->re_ldata.re_tx_free - RE_NTXDESC_RSVD) {
1594 /*
1595 * Not enough free descriptors to transmit this packet.
1596 */
1597 ifp->if_flags |= IFF_OACTIVE;
1598 bus_dmamap_unload(sc->sc_dmat, map);
1599 break;
1600 }
1601
1602 IFQ_DEQUEUE(&ifp->if_snd, m);
1603
1604 /*
1605 * Make sure that the caches are synchronized before we
1606 * ask the chip to start DMA for the packet data.
1607 */
1608 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1609 BUS_DMASYNC_PREWRITE);
1610
1611 /*
1612 * Map the segment array into descriptors.
1613 * Note that we set the start-of-frame and
1614 * end-of-frame markers for either TX or RX,
1615 * but they really only have meaning in the TX case.
1616 * (In the RX case, it's the chip that tells us
1617 * where packets begin and end.)
1618 * We also keep track of the end of the ring
1619 * and set the end-of-ring bits as needed,
1620 * and we set the ownership bits in all except
1621 * the very first descriptor. (The caller will
1622 * set this descriptor later when it start
1623 * transmission or reception.)
1624 */
1625 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1626 lastdesc = -1;
1627 for (seg = 0; seg < map->dm_nsegs;
1628 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1629 d = &sc->re_ldata.re_tx_list[curdesc];
1630 #ifdef DIAGNOSTIC
1631 RE_TXDESCSYNC(sc, curdesc,
1632 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1633 cmdstat = le32toh(d->re_cmdstat);
1634 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1635 if (cmdstat & RE_TDESC_STAT_OWN) {
1636 panic("%s: tried to map busy TX descriptor",
1637 sc->sc_dev.dv_xname);
1638 }
1639 #endif
1640
1641 d->re_vlanctl = 0;
1642 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1643 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1644 if (seg == 0)
1645 cmdstat |= RE_TDESC_CMD_SOF;
1646 else
1647 cmdstat |= RE_TDESC_CMD_OWN;
1648 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1649 cmdstat |= RE_TDESC_CMD_EOR;
1650 if (seg == nsegs - 1) {
1651 cmdstat |= RE_TDESC_CMD_EOF;
1652 lastdesc = curdesc;
1653 }
1654 d->re_cmdstat = htole32(cmdstat);
1655 RE_TXDESCSYNC(sc, curdesc,
1656 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1657 }
1658 if (__predict_false(pad)) {
1659 bus_addr_t paddaddr;
1660
1661 d = &sc->re_ldata.re_tx_list[curdesc];
1662 d->re_vlanctl = 0;
1663 paddaddr = RE_TXPADDADDR(sc);
1664 re_set_bufaddr(d, paddaddr);
1665 cmdstat = re_flags |
1666 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1667 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1668 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1669 cmdstat |= RE_TDESC_CMD_EOR;
1670 d->re_cmdstat = htole32(cmdstat);
1671 RE_TXDESCSYNC(sc, curdesc,
1672 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1673 lastdesc = curdesc;
1674 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1675 }
1676 KASSERT(lastdesc != -1);
1677
1678 /*
1679 * Set up hardware VLAN tagging. Note: vlan tag info must
1680 * appear in the first descriptor of a multi-descriptor
1681 * transmission attempt.
1682 */
1683 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1684 sc->re_ldata.re_tx_list[startdesc].re_vlanctl =
1685 htole32(bswap16(VLAN_TAG_VALUE(mtag)) |
1686 RE_TDESC_VLANCTL_TAG);
1687 }
1688
1689 /* Transfer ownership of packet to the chip. */
1690
1691 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1692 htole32(RE_TDESC_CMD_OWN);
1693 RE_TXDESCSYNC(sc, startdesc,
1694 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1695
1696 /* update info of TX queue and descriptors */
1697 txq->txq_mbuf = m;
1698 txq->txq_descidx = lastdesc;
1699 txq->txq_nsegs = nsegs;
1700
1701 sc->re_ldata.re_txq_free--;
1702 sc->re_ldata.re_tx_free -= nsegs;
1703 sc->re_ldata.re_tx_nextfree = curdesc;
1704
1705 #if NBPFILTER > 0
1706 /*
1707 * If there's a BPF listener, bounce a copy of this frame
1708 * to him.
1709 */
1710 if (ifp->if_bpf)
1711 bpf_mtap(ifp->if_bpf, m);
1712 #endif
1713 }
1714
1715 if (sc->re_ldata.re_txq_free < ofree) {
1716 /*
1717 * TX packets are enqueued.
1718 */
1719 sc->re_ldata.re_txq_prodidx = idx;
1720
1721 /*
1722 * Start the transmitter to poll.
1723 *
1724 * RealTek put the TX poll request register in a different
1725 * location on the 8169 gigE chip. I don't know why.
1726 */
1727 if (sc->rtk_type == RTK_8169)
1728 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1729 else
1730 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1731
1732 /*
1733 * Use the countdown timer for interrupt moderation.
1734 * 'TX done' interrupts are disabled. Instead, we reset the
1735 * countdown timer, which will begin counting until it hits
1736 * the value in the TIMERINT register, and then trigger an
1737 * interrupt. Each time we write to the TIMERCNT register,
1738 * the timer count is reset to 0.
1739 */
1740 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1741
1742 /*
1743 * Set a timeout in case the chip goes out to lunch.
1744 */
1745 ifp->if_timer = 5;
1746 }
1747 }
1748
1749 static int
1750 re_init(struct ifnet *ifp)
1751 {
1752 struct rtk_softc *sc = ifp->if_softc;
1753 uint8_t *enaddr;
1754 uint32_t rxcfg = 0;
1755 uint32_t reg;
1756 int error;
1757
1758 if ((error = re_enable(sc)) != 0)
1759 goto out;
1760
1761 /*
1762 * Cancel pending I/O and free all RX/TX buffers.
1763 */
1764 re_stop(ifp, 0);
1765
1766 re_reset(sc);
1767
1768 /*
1769 * Enable C+ RX and TX mode, as well as VLAN stripping and
1770 * RX checksum offload. We must configure the C+ register
1771 * before all others.
1772 */
1773 reg = 0;
1774
1775 /*
1776 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1777 * FreeBSD drivers set these bits anyway (for 8139C+?).
1778 * So far, it works.
1779 */
1780
1781 /*
1782 * XXX: For 8169 and 8169S revs below 2, set bit 14.
1783 * For 8169S/8110S rev 2 and above, do not set bit 14.
1784 */
1785 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1786 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1787
1788 if (1) {/* not for 8169S ? */
1789 reg |=
1790 RTK_CPLUSCMD_VLANSTRIP |
1791 (ifp->if_capenable &
1792 (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
1793 IFCAP_CSUM_UDPv4) ?
1794 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1795 }
1796
1797 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1798 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1799
1800 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1801 if (sc->rtk_type == RTK_8169)
1802 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1803
1804 DELAY(10000);
1805
1806 /*
1807 * Init our MAC address. Even though the chipset
1808 * documentation doesn't mention it, we need to enter "Config
1809 * register write enable" mode to modify the ID registers.
1810 */
1811 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1812 enaddr = LLADDR(ifp->if_sadl);
1813 reg = enaddr[0] | (enaddr[1] << 8) |
1814 (enaddr[2] << 16) | (enaddr[3] << 24);
1815 CSR_WRITE_4(sc, RTK_IDR0, reg);
1816 reg = enaddr[4] | (enaddr[5] << 8);
1817 CSR_WRITE_4(sc, RTK_IDR4, reg);
1818 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1819
1820 /*
1821 * For C+ mode, initialize the RX descriptors and mbufs.
1822 */
1823 re_rx_list_init(sc);
1824 re_tx_list_init(sc);
1825
1826 /*
1827 * Load the addresses of the RX and TX lists into the chip.
1828 */
1829 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1830 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1831 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1832 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1833
1834 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1835 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1836 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1837 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1838
1839 /*
1840 * Enable transmit and receive.
1841 */
1842 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1843
1844 /*
1845 * Set the initial TX and RX configuration.
1846 */
1847 if (sc->re_testmode) {
1848 if (sc->rtk_type == RTK_8169)
1849 CSR_WRITE_4(sc, RTK_TXCFG,
1850 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1851 else
1852 CSR_WRITE_4(sc, RTK_TXCFG,
1853 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1854 } else
1855 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1856
1857 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1858
1859 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1860
1861 /* Set the individual bit to receive frames for this host only. */
1862 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1863 rxcfg |= RTK_RXCFG_RX_INDIV;
1864
1865 /* If we want promiscuous mode, set the allframes bit. */
1866 if (ifp->if_flags & IFF_PROMISC)
1867 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1868 else
1869 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1870 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1871
1872 /*
1873 * Set capture broadcast bit to capture broadcast frames.
1874 */
1875 if (ifp->if_flags & IFF_BROADCAST)
1876 rxcfg |= RTK_RXCFG_RX_BROAD;
1877 else
1878 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1879 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1880
1881 /*
1882 * Program the multicast filter, if necessary.
1883 */
1884 rtk_setmulti(sc);
1885
1886 #ifdef DEVICE_POLLING
1887 /*
1888 * Disable interrupts if we are polling.
1889 */
1890 if (ifp->if_flags & IFF_POLLING)
1891 CSR_WRITE_2(sc, RTK_IMR, 0);
1892 else /* otherwise ... */
1893 #endif /* DEVICE_POLLING */
1894 /*
1895 * Enable interrupts.
1896 */
1897 if (sc->re_testmode)
1898 CSR_WRITE_2(sc, RTK_IMR, 0);
1899 else
1900 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1901
1902 /* Start RX/TX process. */
1903 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1904 #ifdef notdef
1905 /* Enable receiver and transmitter. */
1906 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1907 #endif
1908
1909 /*
1910 * Initialize the timer interrupt register so that
1911 * a timer interrupt will be generated once the timer
1912 * reaches a certain number of ticks. The timer is
1913 * reloaded on each transmit. This gives us TX interrupt
1914 * moderation, which dramatically improves TX frame rate.
1915 */
1916
1917 if (sc->rtk_type == RTK_8169)
1918 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1919 else
1920 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1921
1922 /*
1923 * For 8169 gigE NICs, set the max allowed RX packet
1924 * size so we can receive jumbo frames.
1925 */
1926 if (sc->rtk_type == RTK_8169)
1927 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1928
1929 if (sc->re_testmode)
1930 return 0;
1931
1932 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1933
1934 ifp->if_flags |= IFF_RUNNING;
1935 ifp->if_flags &= ~IFF_OACTIVE;
1936
1937 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1938
1939 out:
1940 if (error) {
1941 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1942 ifp->if_timer = 0;
1943 aprint_error("%s: interface not running\n",
1944 sc->sc_dev.dv_xname);
1945 }
1946
1947 return error;
1948 }
1949
1950 /*
1951 * Set media options.
1952 */
1953 static int
1954 re_ifmedia_upd(struct ifnet *ifp)
1955 {
1956 struct rtk_softc *sc;
1957
1958 sc = ifp->if_softc;
1959
1960 return mii_mediachg(&sc->mii);
1961 }
1962
1963 /*
1964 * Report current media status.
1965 */
1966 static void
1967 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1968 {
1969 struct rtk_softc *sc;
1970
1971 sc = ifp->if_softc;
1972
1973 mii_pollstat(&sc->mii);
1974 ifmr->ifm_active = sc->mii.mii_media_active;
1975 ifmr->ifm_status = sc->mii.mii_media_status;
1976 }
1977
1978 static int
1979 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1980 {
1981 struct rtk_softc *sc = ifp->if_softc;
1982 struct ifreq *ifr = (struct ifreq *) data;
1983 int s, error = 0;
1984
1985 s = splnet();
1986
1987 switch (command) {
1988 case SIOCSIFMTU:
1989 if (ifr->ifr_mtu > RE_JUMBO_MTU)
1990 error = EINVAL;
1991 ifp->if_mtu = ifr->ifr_mtu;
1992 break;
1993 case SIOCGIFMEDIA:
1994 case SIOCSIFMEDIA:
1995 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1996 break;
1997 default:
1998 error = ether_ioctl(ifp, command, data);
1999 if (error == ENETRESET) {
2000 if (ifp->if_flags & IFF_RUNNING)
2001 rtk_setmulti(sc);
2002 error = 0;
2003 }
2004 break;
2005 }
2006
2007 splx(s);
2008
2009 return error;
2010 }
2011
2012 static void
2013 re_watchdog(struct ifnet *ifp)
2014 {
2015 struct rtk_softc *sc;
2016 int s;
2017
2018 sc = ifp->if_softc;
2019 s = splnet();
2020 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2021 ifp->if_oerrors++;
2022
2023 re_txeof(sc);
2024 re_rxeof(sc);
2025
2026 re_init(ifp);
2027
2028 splx(s);
2029 }
2030
2031 /*
2032 * Stop the adapter and free any mbufs allocated to the
2033 * RX and TX lists.
2034 */
2035 static void
2036 re_stop(struct ifnet *ifp, int disable)
2037 {
2038 int i;
2039 struct rtk_softc *sc = ifp->if_softc;
2040
2041 callout_stop(&sc->rtk_tick_ch);
2042
2043 #ifdef DEVICE_POLLING
2044 ether_poll_deregister(ifp);
2045 #endif /* DEVICE_POLLING */
2046
2047 mii_down(&sc->mii);
2048
2049 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2050 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2051
2052 if (sc->re_head != NULL) {
2053 m_freem(sc->re_head);
2054 sc->re_head = sc->re_tail = NULL;
2055 }
2056
2057 /* Free the TX list buffers. */
2058 for (i = 0; i < RE_TX_QLEN; i++) {
2059 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2060 bus_dmamap_unload(sc->sc_dmat,
2061 sc->re_ldata.re_txq[i].txq_dmamap);
2062 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2063 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2064 }
2065 }
2066
2067 /* Free the RX list buffers. */
2068 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2069 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2070 bus_dmamap_unload(sc->sc_dmat,
2071 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2072 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2073 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2074 }
2075 }
2076
2077 if (disable)
2078 re_disable(sc);
2079
2080 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2081 ifp->if_timer = 0;
2082 }
2083