rtl8169.c revision 1.140.2.2 1 /* $NetBSD: rtl8169.c,v 1.140.2.2 2015/05/15 04:12:07 snj Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.140.2.2 2015/05/15 04:12:07 snj Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51 * RTL8110S, the RTL8168 and the RTL8111.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137 #include <sys/rnd.h>
138
139 #include <sys/bus.h>
140
141 #include <dev/mii/mii.h>
142 #include <dev/mii/miivar.h>
143
144 #include <dev/ic/rtl81x9reg.h>
145 #include <dev/ic/rtl81x9var.h>
146
147 #include <dev/ic/rtl8169var.h>
148
149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
150
151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
152 static int re_rx_list_init(struct rtk_softc *);
153 static int re_tx_list_init(struct rtk_softc *);
154 static void re_rxeof(struct rtk_softc *);
155 static void re_txeof(struct rtk_softc *);
156 static void re_tick(void *);
157 static void re_start(struct ifnet *);
158 static int re_ioctl(struct ifnet *, u_long, void *);
159 static int re_init(struct ifnet *);
160 static void re_stop(struct ifnet *, int);
161 static void re_watchdog(struct ifnet *);
162
163 static int re_enable(struct rtk_softc *);
164 static void re_disable(struct rtk_softc *);
165
166 static int re_gmii_readreg(device_t, int, int);
167 static void re_gmii_writereg(device_t, int, int, int);
168
169 static int re_miibus_readreg(device_t, int, int);
170 static void re_miibus_writereg(device_t, int, int, int);
171 static void re_miibus_statchg(struct ifnet *);
172
173 static void re_reset(struct rtk_softc *);
174
175 static inline void
176 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
177 {
178
179 d->re_bufaddr_lo = htole32((uint32_t)addr);
180 if (sizeof(bus_addr_t) == sizeof(uint64_t))
181 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
182 else
183 d->re_bufaddr_hi = 0;
184 }
185
186 static int
187 re_gmii_readreg(device_t dev, int phy, int reg)
188 {
189 struct rtk_softc *sc = device_private(dev);
190 uint32_t rval;
191 int i;
192
193 if (phy != 7)
194 return 0;
195
196 /* Let the rgephy driver read the GMEDIASTAT register */
197
198 if (reg == RTK_GMEDIASTAT) {
199 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
200 return rval;
201 }
202
203 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
204 DELAY(1000);
205
206 for (i = 0; i < RTK_TIMEOUT; i++) {
207 rval = CSR_READ_4(sc, RTK_PHYAR);
208 if (rval & RTK_PHYAR_BUSY)
209 break;
210 DELAY(100);
211 }
212
213 if (i == RTK_TIMEOUT) {
214 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
215 return 0;
216 }
217
218 return rval & RTK_PHYAR_PHYDATA;
219 }
220
221 static void
222 re_gmii_writereg(device_t dev, int phy, int reg, int data)
223 {
224 struct rtk_softc *sc = device_private(dev);
225 uint32_t rval;
226 int i;
227
228 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
229 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
230 DELAY(1000);
231
232 for (i = 0; i < RTK_TIMEOUT; i++) {
233 rval = CSR_READ_4(sc, RTK_PHYAR);
234 if (!(rval & RTK_PHYAR_BUSY))
235 break;
236 DELAY(100);
237 }
238
239 if (i == RTK_TIMEOUT) {
240 printf("%s: PHY write reg %x <- %x failed\n",
241 device_xname(sc->sc_dev), reg, data);
242 }
243 }
244
245 static int
246 re_miibus_readreg(device_t dev, int phy, int reg)
247 {
248 struct rtk_softc *sc = device_private(dev);
249 uint16_t rval = 0;
250 uint16_t re8139_reg = 0;
251 int s;
252
253 s = splnet();
254
255 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
256 rval = re_gmii_readreg(dev, phy, reg);
257 splx(s);
258 return rval;
259 }
260
261 /* Pretend the internal PHY is only at address 0 */
262 if (phy) {
263 splx(s);
264 return 0;
265 }
266 switch (reg) {
267 case MII_BMCR:
268 re8139_reg = RTK_BMCR;
269 break;
270 case MII_BMSR:
271 re8139_reg = RTK_BMSR;
272 break;
273 case MII_ANAR:
274 re8139_reg = RTK_ANAR;
275 break;
276 case MII_ANER:
277 re8139_reg = RTK_ANER;
278 break;
279 case MII_ANLPAR:
280 re8139_reg = RTK_LPAR;
281 break;
282 case MII_PHYIDR1:
283 case MII_PHYIDR2:
284 splx(s);
285 return 0;
286 /*
287 * Allow the rlphy driver to read the media status
288 * register. If we have a link partner which does not
289 * support NWAY, this is the register which will tell
290 * us the results of parallel detection.
291 */
292 case RTK_MEDIASTAT:
293 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
294 splx(s);
295 return rval;
296 default:
297 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
298 splx(s);
299 return 0;
300 }
301 rval = CSR_READ_2(sc, re8139_reg);
302 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
303 /* 8139C+ has different bit layout. */
304 rval &= ~(BMCR_LOOP | BMCR_ISO);
305 }
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(device_t dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = device_private(dev);
314 uint16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
334 /* 8139C+ has different bit layout. */
335 data &= ~(BMCR_LOOP | BMCR_ISO);
336 }
337 break;
338 case MII_BMSR:
339 re8139_reg = RTK_BMSR;
340 break;
341 case MII_ANAR:
342 re8139_reg = RTK_ANAR;
343 break;
344 case MII_ANER:
345 re8139_reg = RTK_ANER;
346 break;
347 case MII_ANLPAR:
348 re8139_reg = RTK_LPAR;
349 break;
350 case MII_PHYIDR1:
351 case MII_PHYIDR2:
352 splx(s);
353 return;
354 break;
355 default:
356 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
357 splx(s);
358 return;
359 }
360 CSR_WRITE_2(sc, re8139_reg, data);
361 splx(s);
362 return;
363 }
364
365 static void
366 re_miibus_statchg(struct ifnet *ifp)
367 {
368
369 return;
370 }
371
372 static void
373 re_reset(struct rtk_softc *sc)
374 {
375 int i;
376
377 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
378
379 for (i = 0; i < RTK_TIMEOUT; i++) {
380 DELAY(10);
381 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
382 break;
383 }
384 if (i == RTK_TIMEOUT)
385 printf("%s: reset never completed!\n",
386 device_xname(sc->sc_dev));
387
388 /*
389 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
390 * but also says "Rtl8169s sigle chip detected".
391 */
392 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
393 CSR_WRITE_1(sc, RTK_LDPS, 1);
394
395 }
396
397 /*
398 * The following routine is designed to test for a defect on some
399 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
400 * lines connected to the bus, however for a 32-bit only card, they
401 * should be pulled high. The result of this defect is that the
402 * NIC will not work right if you plug it into a 64-bit slot: DMA
403 * operations will be done with 64-bit transfers, which will fail
404 * because the 64-bit data lines aren't connected.
405 *
406 * There's no way to work around this (short of talking a soldering
407 * iron to the board), however we can detect it. The method we use
408 * here is to put the NIC into digital loopback mode, set the receiver
409 * to promiscuous mode, and then try to send a frame. We then compare
410 * the frame data we sent to what was received. If the data matches,
411 * then the NIC is working correctly, otherwise we know the user has
412 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
413 * slot. In the latter case, there's no way the NIC can work correctly,
414 * so we print out a message on the console and abort the device attach.
415 */
416
417 int
418 re_diag(struct rtk_softc *sc)
419 {
420 struct ifnet *ifp = &sc->ethercom.ec_if;
421 struct mbuf *m0;
422 struct ether_header *eh;
423 struct re_rxsoft *rxs;
424 struct re_desc *cur_rx;
425 bus_dmamap_t dmamap;
426 uint16_t status;
427 uint32_t rxstat;
428 int total_len, i, s, error = 0;
429 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
430 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
431
432 /* Allocate a single mbuf */
433
434 MGETHDR(m0, M_DONTWAIT, MT_DATA);
435 if (m0 == NULL)
436 return ENOBUFS;
437
438 /*
439 * Initialize the NIC in test mode. This sets the chip up
440 * so that it can send and receive frames, but performs the
441 * following special functions:
442 * - Puts receiver in promiscuous mode
443 * - Enables digital loopback mode
444 * - Leaves interrupts turned off
445 */
446
447 ifp->if_flags |= IFF_PROMISC;
448 sc->re_testmode = 1;
449 re_init(ifp);
450 re_stop(ifp, 0);
451 DELAY(100000);
452 re_init(ifp);
453
454 /* Put some data in the mbuf */
455
456 eh = mtod(m0, struct ether_header *);
457 memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
458 memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
459 eh->ether_type = htons(ETHERTYPE_IP);
460 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
461
462 /*
463 * Queue the packet, start transmission.
464 */
465
466 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
467 s = splnet();
468 IF_ENQUEUE(&ifp->if_snd, m0);
469 re_start(ifp);
470 splx(s);
471 m0 = NULL;
472
473 /* Wait for it to propagate through the chip */
474
475 DELAY(100000);
476 for (i = 0; i < RTK_TIMEOUT; i++) {
477 status = CSR_READ_2(sc, RTK_ISR);
478 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
479 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
480 break;
481 DELAY(10);
482 }
483 if (i == RTK_TIMEOUT) {
484 aprint_error_dev(sc->sc_dev,
485 "diagnostic failed, failed to receive packet "
486 "in loopback mode\n");
487 error = EIO;
488 goto done;
489 }
490
491 /*
492 * The packet should have been dumped into the first
493 * entry in the RX DMA ring. Grab it from there.
494 */
495
496 rxs = &sc->re_ldata.re_rxsoft[0];
497 dmamap = rxs->rxs_dmamap;
498 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
499 BUS_DMASYNC_POSTREAD);
500 bus_dmamap_unload(sc->sc_dmat, dmamap);
501
502 m0 = rxs->rxs_mbuf;
503 rxs->rxs_mbuf = NULL;
504 eh = mtod(m0, struct ether_header *);
505
506 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
507 cur_rx = &sc->re_ldata.re_rx_list[0];
508 rxstat = le32toh(cur_rx->re_cmdstat);
509 total_len = rxstat & sc->re_rxlenmask;
510
511 if (total_len != ETHER_MIN_LEN) {
512 aprint_error_dev(sc->sc_dev,
513 "diagnostic failed, received short packet\n");
514 error = EIO;
515 goto done;
516 }
517
518 /* Test that the received packet data matches what we sent. */
519
520 if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
521 memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
522 ntohs(eh->ether_type) != ETHERTYPE_IP) {
523 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
524 "expected TX data: %s/%s/0x%x\n"
525 "received RX data: %s/%s/0x%x\n"
526 "You may have a defective 32-bit NIC plugged "
527 "into a 64-bit PCI slot.\n"
528 "Please re-install the NIC in a 32-bit slot "
529 "for proper operation.\n"
530 "Read the re(4) man page for more details.\n" ,
531 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
532 ether_sprintf(eh->ether_dhost),
533 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
534 error = EIO;
535 }
536
537 done:
538 /* Turn interface off, release resources */
539
540 sc->re_testmode = 0;
541 ifp->if_flags &= ~IFF_PROMISC;
542 re_stop(ifp, 0);
543 if (m0 != NULL)
544 m_freem(m0);
545
546 return error;
547 }
548
549
550 /*
551 * Attach the interface. Allocate softc structures, do ifmedia
552 * setup and ethernet/BPF attach.
553 */
554 void
555 re_attach(struct rtk_softc *sc)
556 {
557 uint8_t eaddr[ETHER_ADDR_LEN];
558 struct ifnet *ifp;
559 int error = 0, i;
560
561 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
562 uint32_t hwrev;
563
564 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
565 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
566 switch (hwrev) {
567 case RTK_HWREV_8169:
568 sc->sc_quirk |= RTKQ_8169NONS;
569 break;
570 case RTK_HWREV_8169S:
571 case RTK_HWREV_8110S:
572 case RTK_HWREV_8169_8110SB:
573 case RTK_HWREV_8169_8110SBL:
574 case RTK_HWREV_8169_8110SC:
575 sc->sc_quirk |= RTKQ_MACLDPS;
576 break;
577 case RTK_HWREV_8168_SPIN1:
578 case RTK_HWREV_8168_SPIN2:
579 case RTK_HWREV_8168_SPIN3:
580 sc->sc_quirk |= RTKQ_MACSTAT;
581 break;
582 case RTK_HWREV_8168C:
583 case RTK_HWREV_8168C_SPIN2:
584 case RTK_HWREV_8168CP:
585 case RTK_HWREV_8168D:
586 case RTK_HWREV_8168DP:
587 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
588 RTKQ_MACSTAT | RTKQ_CMDSTOP;
589 /*
590 * From FreeBSD driver:
591 *
592 * These (8168/8111) controllers support jumbo frame
593 * but it seems that enabling it requires touching
594 * additional magic registers. Depending on MAC
595 * revisions some controllers need to disable
596 * checksum offload. So disable jumbo frame until
597 * I have better idea what it really requires to
598 * make it support.
599 * RTL8168C/CP : supports up to 6KB jumbo frame.
600 * RTL8111C/CP : supports up to 9KB jumbo frame.
601 */
602 sc->sc_quirk |= RTKQ_NOJUMBO;
603 break;
604 case RTK_HWREV_8168E:
605 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
606 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
607 RTKQ_NOJUMBO;
608 break;
609 case RTK_HWREV_8168E_VL:
610 case RTK_HWREV_8168F:
611 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
612 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
613 break;
614 case RTK_HWREV_8100E:
615 case RTK_HWREV_8100E_SPIN2:
616 case RTK_HWREV_8101E:
617 sc->sc_quirk |= RTKQ_NOJUMBO;
618 break;
619 case RTK_HWREV_8102E:
620 case RTK_HWREV_8102EL:
621 case RTK_HWREV_8103E:
622 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
623 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
624 break;
625 default:
626 aprint_normal_dev(sc->sc_dev,
627 "Unknown revision (0x%08x)\n", hwrev);
628 /* assume the latest features */
629 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
630 sc->sc_quirk |= RTKQ_NOJUMBO;
631 }
632
633 /* Set RX length mask */
634 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
635 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
636 } else {
637 sc->sc_quirk |= RTKQ_NOJUMBO;
638
639 /* Set RX length mask */
640 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
641 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
642 }
643
644 /* Reset the adapter. */
645 re_reset(sc);
646
647 /*
648 * RTL81x9 chips automatically read EEPROM to init MAC address,
649 * and some NAS override its MAC address per own configuration,
650 * so no need to explicitely read EEPROM and set ID registers.
651 */
652 #ifdef RE_USE_EECMD
653 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
654 /*
655 * Get station address from ID registers.
656 */
657 for (i = 0; i < ETHER_ADDR_LEN; i++)
658 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
659 } else {
660 uint16_t val;
661 int addr_len;
662
663 /*
664 * Get station address from the EEPROM.
665 */
666 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
667 addr_len = RTK_EEADDR_LEN1;
668 else
669 addr_len = RTK_EEADDR_LEN0;
670
671 /*
672 * Get station address from the EEPROM.
673 */
674 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
675 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
676 eaddr[(i * 2) + 0] = val & 0xff;
677 eaddr[(i * 2) + 1] = val >> 8;
678 }
679 }
680 #else
681 /*
682 * Get station address from ID registers.
683 */
684 for (i = 0; i < ETHER_ADDR_LEN; i++)
685 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
686 #endif
687
688 /* Take PHY out of power down mode. */
689 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
690 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
691
692 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
693 ether_sprintf(eaddr));
694
695 if (sc->re_ldata.re_tx_desc_cnt >
696 PAGE_SIZE / sizeof(struct re_desc)) {
697 sc->re_ldata.re_tx_desc_cnt =
698 PAGE_SIZE / sizeof(struct re_desc);
699 }
700
701 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
702 sc->re_ldata.re_tx_desc_cnt);
703 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
704
705 /* Allocate DMA'able memory for the TX ring */
706 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
707 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
708 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
709 aprint_error_dev(sc->sc_dev,
710 "can't allocate tx listseg, error = %d\n", error);
711 goto fail_0;
712 }
713
714 /* Load the map for the TX ring. */
715 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
716 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
717 (void **)&sc->re_ldata.re_tx_list,
718 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
719 aprint_error_dev(sc->sc_dev,
720 "can't map tx list, error = %d\n", error);
721 goto fail_1;
722 }
723 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
724
725 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
726 RE_TX_LIST_SZ(sc), 0, 0,
727 &sc->re_ldata.re_tx_list_map)) != 0) {
728 aprint_error_dev(sc->sc_dev,
729 "can't create tx list map, error = %d\n", error);
730 goto fail_2;
731 }
732
733
734 if ((error = bus_dmamap_load(sc->sc_dmat,
735 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
736 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
737 aprint_error_dev(sc->sc_dev,
738 "can't load tx list, error = %d\n", error);
739 goto fail_3;
740 }
741
742 /* Create DMA maps for TX buffers */
743 for (i = 0; i < RE_TX_QLEN; i++) {
744 error = bus_dmamap_create(sc->sc_dmat,
745 round_page(IP_MAXPACKET),
746 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
747 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
748 if (error) {
749 aprint_error_dev(sc->sc_dev,
750 "can't create DMA map for TX\n");
751 goto fail_4;
752 }
753 }
754
755 /* Allocate DMA'able memory for the RX ring */
756 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
757 if ((error = bus_dmamem_alloc(sc->sc_dmat,
758 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
759 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
760 aprint_error_dev(sc->sc_dev,
761 "can't allocate rx listseg, error = %d\n", error);
762 goto fail_4;
763 }
764
765 /* Load the map for the RX ring. */
766 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
767 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
768 (void **)&sc->re_ldata.re_rx_list,
769 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
770 aprint_error_dev(sc->sc_dev,
771 "can't map rx list, error = %d\n", error);
772 goto fail_5;
773 }
774 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
775
776 if ((error = bus_dmamap_create(sc->sc_dmat,
777 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
778 &sc->re_ldata.re_rx_list_map)) != 0) {
779 aprint_error_dev(sc->sc_dev,
780 "can't create rx list map, error = %d\n", error);
781 goto fail_6;
782 }
783
784 if ((error = bus_dmamap_load(sc->sc_dmat,
785 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
786 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
787 aprint_error_dev(sc->sc_dev,
788 "can't load rx list, error = %d\n", error);
789 goto fail_7;
790 }
791
792 /* Create DMA maps for RX buffers */
793 for (i = 0; i < RE_RX_DESC_CNT; i++) {
794 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
795 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
796 if (error) {
797 aprint_error_dev(sc->sc_dev,
798 "can't create DMA map for RX\n");
799 goto fail_8;
800 }
801 }
802
803 /*
804 * Record interface as attached. From here, we should not fail.
805 */
806 sc->sc_flags |= RTK_ATTACHED;
807
808 ifp = &sc->ethercom.ec_if;
809 ifp->if_softc = sc;
810 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
811 ifp->if_mtu = ETHERMTU;
812 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
813 ifp->if_ioctl = re_ioctl;
814 sc->ethercom.ec_capabilities |=
815 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
816 ifp->if_start = re_start;
817 ifp->if_stop = re_stop;
818
819 /*
820 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
821 * so we have a workaround to handle the bug by padding
822 * such packets manually.
823 */
824 ifp->if_capabilities |=
825 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
826 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
827 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
828 IFCAP_TSOv4;
829
830 /*
831 * XXX
832 * Still have no idea how to make TSO work on 8168C, 8168CP,
833 * 8102E, 8111C and 8111CP.
834 */
835 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
836 ifp->if_capabilities &= ~IFCAP_TSOv4;
837
838 ifp->if_watchdog = re_watchdog;
839 ifp->if_init = re_init;
840 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
841 ifp->if_capenable = ifp->if_capabilities;
842 IFQ_SET_READY(&ifp->if_snd);
843
844 callout_init(&sc->rtk_tick_ch, 0);
845
846 /* Do MII setup */
847 sc->mii.mii_ifp = ifp;
848 sc->mii.mii_readreg = re_miibus_readreg;
849 sc->mii.mii_writereg = re_miibus_writereg;
850 sc->mii.mii_statchg = re_miibus_statchg;
851 sc->ethercom.ec_mii = &sc->mii;
852 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
853 ether_mediastatus);
854 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
855 MII_OFFSET_ANY, 0);
856 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
857
858 /*
859 * Call MI attach routine.
860 */
861 if_attach(ifp);
862 ether_ifattach(ifp, eaddr);
863
864 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
865 RND_TYPE_NET, RND_FLAG_DEFAULT);
866
867 if (pmf_device_register(sc->sc_dev, NULL, NULL))
868 pmf_class_network_register(sc->sc_dev, ifp);
869 else
870 aprint_error_dev(sc->sc_dev,
871 "couldn't establish power handler\n");
872
873 return;
874
875 fail_8:
876 /* Destroy DMA maps for RX buffers. */
877 for (i = 0; i < RE_RX_DESC_CNT; i++)
878 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
879 bus_dmamap_destroy(sc->sc_dmat,
880 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
881
882 /* Free DMA'able memory for the RX ring. */
883 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
884 fail_7:
885 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
886 fail_6:
887 bus_dmamem_unmap(sc->sc_dmat,
888 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
889 fail_5:
890 bus_dmamem_free(sc->sc_dmat,
891 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
892
893 fail_4:
894 /* Destroy DMA maps for TX buffers. */
895 for (i = 0; i < RE_TX_QLEN; i++)
896 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
897 bus_dmamap_destroy(sc->sc_dmat,
898 sc->re_ldata.re_txq[i].txq_dmamap);
899
900 /* Free DMA'able memory for the TX ring. */
901 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
902 fail_3:
903 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
904 fail_2:
905 bus_dmamem_unmap(sc->sc_dmat,
906 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
907 fail_1:
908 bus_dmamem_free(sc->sc_dmat,
909 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
910 fail_0:
911 return;
912 }
913
914
915 /*
916 * re_activate:
917 * Handle device activation/deactivation requests.
918 */
919 int
920 re_activate(device_t self, enum devact act)
921 {
922 struct rtk_softc *sc = device_private(self);
923
924 switch (act) {
925 case DVACT_DEACTIVATE:
926 if_deactivate(&sc->ethercom.ec_if);
927 return 0;
928 default:
929 return EOPNOTSUPP;
930 }
931 }
932
933 /*
934 * re_detach:
935 * Detach a rtk interface.
936 */
937 int
938 re_detach(struct rtk_softc *sc)
939 {
940 struct ifnet *ifp = &sc->ethercom.ec_if;
941 int i;
942
943 /*
944 * Succeed now if there isn't any work to do.
945 */
946 if ((sc->sc_flags & RTK_ATTACHED) == 0)
947 return 0;
948
949 /* Unhook our tick handler. */
950 callout_stop(&sc->rtk_tick_ch);
951
952 /* Detach all PHYs. */
953 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
954
955 /* Delete all remaining media. */
956 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
957
958 rnd_detach_source(&sc->rnd_source);
959 ether_ifdetach(ifp);
960 if_detach(ifp);
961
962 /* Destroy DMA maps for RX buffers. */
963 for (i = 0; i < RE_RX_DESC_CNT; i++)
964 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
965 bus_dmamap_destroy(sc->sc_dmat,
966 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
967
968 /* Free DMA'able memory for the RX ring. */
969 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
970 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
971 bus_dmamem_unmap(sc->sc_dmat,
972 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
973 bus_dmamem_free(sc->sc_dmat,
974 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
975
976 /* Destroy DMA maps for TX buffers. */
977 for (i = 0; i < RE_TX_QLEN; i++)
978 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
979 bus_dmamap_destroy(sc->sc_dmat,
980 sc->re_ldata.re_txq[i].txq_dmamap);
981
982 /* Free DMA'able memory for the TX ring. */
983 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
984 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
985 bus_dmamem_unmap(sc->sc_dmat,
986 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
987 bus_dmamem_free(sc->sc_dmat,
988 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
989
990 pmf_device_deregister(sc->sc_dev);
991
992 /* we don't want to run again */
993 sc->sc_flags &= ~RTK_ATTACHED;
994
995 return 0;
996 }
997
998 /*
999 * re_enable:
1000 * Enable the RTL81X9 chip.
1001 */
1002 static int
1003 re_enable(struct rtk_softc *sc)
1004 {
1005
1006 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
1007 if ((*sc->sc_enable)(sc) != 0) {
1008 printf("%s: device enable failed\n",
1009 device_xname(sc->sc_dev));
1010 return EIO;
1011 }
1012 sc->sc_flags |= RTK_ENABLED;
1013 }
1014 return 0;
1015 }
1016
1017 /*
1018 * re_disable:
1019 * Disable the RTL81X9 chip.
1020 */
1021 static void
1022 re_disable(struct rtk_softc *sc)
1023 {
1024
1025 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1026 (*sc->sc_disable)(sc);
1027 sc->sc_flags &= ~RTK_ENABLED;
1028 }
1029 }
1030
1031 static int
1032 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1033 {
1034 struct mbuf *n = NULL;
1035 bus_dmamap_t map;
1036 struct re_desc *d;
1037 struct re_rxsoft *rxs;
1038 uint32_t cmdstat;
1039 int error;
1040
1041 if (m == NULL) {
1042 MGETHDR(n, M_DONTWAIT, MT_DATA);
1043 if (n == NULL)
1044 return ENOBUFS;
1045
1046 MCLGET(n, M_DONTWAIT);
1047 if ((n->m_flags & M_EXT) == 0) {
1048 m_freem(n);
1049 return ENOBUFS;
1050 }
1051 m = n;
1052 } else
1053 m->m_data = m->m_ext.ext_buf;
1054
1055 /*
1056 * Initialize mbuf length fields and fixup
1057 * alignment so that the frame payload is
1058 * longword aligned.
1059 */
1060 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1061 m->m_data += RE_ETHER_ALIGN;
1062
1063 rxs = &sc->re_ldata.re_rxsoft[idx];
1064 map = rxs->rxs_dmamap;
1065 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1066 BUS_DMA_READ|BUS_DMA_NOWAIT);
1067
1068 if (error)
1069 goto out;
1070
1071 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1072 BUS_DMASYNC_PREREAD);
1073
1074 d = &sc->re_ldata.re_rx_list[idx];
1075 #ifdef DIAGNOSTIC
1076 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1077 cmdstat = le32toh(d->re_cmdstat);
1078 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1079 if (cmdstat & RE_RDESC_STAT_OWN) {
1080 panic("%s: tried to map busy RX descriptor",
1081 device_xname(sc->sc_dev));
1082 }
1083 #endif
1084
1085 rxs->rxs_mbuf = m;
1086
1087 d->re_vlanctl = 0;
1088 cmdstat = map->dm_segs[0].ds_len;
1089 if (idx == (RE_RX_DESC_CNT - 1))
1090 cmdstat |= RE_RDESC_CMD_EOR;
1091 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1092 d->re_cmdstat = htole32(cmdstat);
1093 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1094 cmdstat |= RE_RDESC_CMD_OWN;
1095 d->re_cmdstat = htole32(cmdstat);
1096 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1097
1098 return 0;
1099 out:
1100 if (n != NULL)
1101 m_freem(n);
1102 return ENOMEM;
1103 }
1104
1105 static int
1106 re_tx_list_init(struct rtk_softc *sc)
1107 {
1108 int i;
1109
1110 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1111 for (i = 0; i < RE_TX_QLEN; i++) {
1112 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1113 }
1114
1115 bus_dmamap_sync(sc->sc_dmat,
1116 sc->re_ldata.re_tx_list_map, 0,
1117 sc->re_ldata.re_tx_list_map->dm_mapsize,
1118 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1119 sc->re_ldata.re_txq_prodidx = 0;
1120 sc->re_ldata.re_txq_considx = 0;
1121 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1122 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1123 sc->re_ldata.re_tx_nextfree = 0;
1124
1125 return 0;
1126 }
1127
1128 static int
1129 re_rx_list_init(struct rtk_softc *sc)
1130 {
1131 int i;
1132
1133 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1134
1135 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1136 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1137 return ENOBUFS;
1138 }
1139
1140 sc->re_ldata.re_rx_prodidx = 0;
1141 sc->re_head = sc->re_tail = NULL;
1142
1143 return 0;
1144 }
1145
1146 /*
1147 * RX handler for C+ and 8169. For the gigE chips, we support
1148 * the reception of jumbo frames that have been fragmented
1149 * across multiple 2K mbuf cluster buffers.
1150 */
1151 static void
1152 re_rxeof(struct rtk_softc *sc)
1153 {
1154 struct mbuf *m;
1155 struct ifnet *ifp;
1156 int i, total_len;
1157 struct re_desc *cur_rx;
1158 struct re_rxsoft *rxs;
1159 uint32_t rxstat, rxvlan;
1160
1161 ifp = &sc->ethercom.ec_if;
1162
1163 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1164 cur_rx = &sc->re_ldata.re_rx_list[i];
1165 RE_RXDESCSYNC(sc, i,
1166 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1167 rxstat = le32toh(cur_rx->re_cmdstat);
1168 rxvlan = le32toh(cur_rx->re_vlanctl);
1169 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1170 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1171 break;
1172 }
1173 total_len = rxstat & sc->re_rxlenmask;
1174 rxs = &sc->re_ldata.re_rxsoft[i];
1175 m = rxs->rxs_mbuf;
1176
1177 /* Invalidate the RX mbuf and unload its map */
1178
1179 bus_dmamap_sync(sc->sc_dmat,
1180 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1181 BUS_DMASYNC_POSTREAD);
1182 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1183
1184 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1185 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1186 if (sc->re_head == NULL)
1187 sc->re_head = sc->re_tail = m;
1188 else {
1189 m->m_flags &= ~M_PKTHDR;
1190 sc->re_tail->m_next = m;
1191 sc->re_tail = m;
1192 }
1193 re_newbuf(sc, i, NULL);
1194 continue;
1195 }
1196
1197 /*
1198 * NOTE: for the 8139C+, the frame length field
1199 * is always 12 bits in size, but for the gigE chips,
1200 * it is 13 bits (since the max RX frame length is 16K).
1201 * Unfortunately, all 32 bits in the status word
1202 * were already used, so to make room for the extra
1203 * length bit, RealTek took out the 'frame alignment
1204 * error' bit and shifted the other status bits
1205 * over one slot. The OWN, EOR, FS and LS bits are
1206 * still in the same places. We have already extracted
1207 * the frame length and checked the OWN bit, so rather
1208 * than using an alternate bit mapping, we shift the
1209 * status bits one space to the right so we can evaluate
1210 * them using the 8169 status as though it was in the
1211 * same format as that of the 8139C+.
1212 */
1213 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1214 rxstat >>= 1;
1215
1216 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1217 #ifdef RE_DEBUG
1218 printf("%s: RX error (rxstat = 0x%08x)",
1219 device_xname(sc->sc_dev), rxstat);
1220 if (rxstat & RE_RDESC_STAT_FRALIGN)
1221 printf(", frame alignment error");
1222 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1223 printf(", out of buffer space");
1224 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1225 printf(", FIFO overrun");
1226 if (rxstat & RE_RDESC_STAT_GIANT)
1227 printf(", giant packet");
1228 if (rxstat & RE_RDESC_STAT_RUNT)
1229 printf(", runt packet");
1230 if (rxstat & RE_RDESC_STAT_CRCERR)
1231 printf(", CRC error");
1232 printf("\n");
1233 #endif
1234 ifp->if_ierrors++;
1235 /*
1236 * If this is part of a multi-fragment packet,
1237 * discard all the pieces.
1238 */
1239 if (sc->re_head != NULL) {
1240 m_freem(sc->re_head);
1241 sc->re_head = sc->re_tail = NULL;
1242 }
1243 re_newbuf(sc, i, m);
1244 continue;
1245 }
1246
1247 /*
1248 * If allocating a replacement mbuf fails,
1249 * reload the current one.
1250 */
1251
1252 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1253 ifp->if_ierrors++;
1254 if (sc->re_head != NULL) {
1255 m_freem(sc->re_head);
1256 sc->re_head = sc->re_tail = NULL;
1257 }
1258 re_newbuf(sc, i, m);
1259 continue;
1260 }
1261
1262 if (sc->re_head != NULL) {
1263 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1264 /*
1265 * Special case: if there's 4 bytes or less
1266 * in this buffer, the mbuf can be discarded:
1267 * the last 4 bytes is the CRC, which we don't
1268 * care about anyway.
1269 */
1270 if (m->m_len <= ETHER_CRC_LEN) {
1271 sc->re_tail->m_len -=
1272 (ETHER_CRC_LEN - m->m_len);
1273 m_freem(m);
1274 } else {
1275 m->m_len -= ETHER_CRC_LEN;
1276 m->m_flags &= ~M_PKTHDR;
1277 sc->re_tail->m_next = m;
1278 }
1279 m = sc->re_head;
1280 sc->re_head = sc->re_tail = NULL;
1281 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1282 } else
1283 m->m_pkthdr.len = m->m_len =
1284 (total_len - ETHER_CRC_LEN);
1285
1286 ifp->if_ipackets++;
1287 m->m_pkthdr.rcvif = ifp;
1288
1289 /* Do RX checksumming */
1290 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1291 /* Check IP header checksum */
1292 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1293 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1294 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1295 m->m_pkthdr.csum_flags |=
1296 M_CSUM_IPv4_BAD;
1297
1298 /* Check TCP/UDP checksum */
1299 if (RE_TCPPKT(rxstat)) {
1300 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1301 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1302 m->m_pkthdr.csum_flags |=
1303 M_CSUM_TCP_UDP_BAD;
1304 } else if (RE_UDPPKT(rxstat)) {
1305 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1306 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
1307 /*
1308 * XXX: 8139C+ thinks UDP csum
1309 * 0xFFFF is bad, force software
1310 * calculation.
1311 */
1312 if (sc->sc_quirk & RTKQ_8139CPLUS)
1313 m->m_pkthdr.csum_flags
1314 &= ~M_CSUM_UDPv4;
1315 else
1316 m->m_pkthdr.csum_flags
1317 |= M_CSUM_TCP_UDP_BAD;
1318 }
1319 }
1320 }
1321 } else {
1322 /* Check IPv4 header checksum */
1323 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1324 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1325 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1326 m->m_pkthdr.csum_flags |=
1327 M_CSUM_IPv4_BAD;
1328
1329 /* Check TCPv4/UDPv4 checksum */
1330 if (RE_TCPPKT(rxstat)) {
1331 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1332 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1333 m->m_pkthdr.csum_flags |=
1334 M_CSUM_TCP_UDP_BAD;
1335 } else if (RE_UDPPKT(rxstat)) {
1336 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1337 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1338 m->m_pkthdr.csum_flags |=
1339 M_CSUM_TCP_UDP_BAD;
1340 }
1341 }
1342 /* XXX Check TCPv6/UDPv6 checksum? */
1343 }
1344
1345 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1346 VLAN_INPUT_TAG(ifp, m,
1347 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1348 continue);
1349 }
1350 bpf_mtap(ifp, m);
1351 (*ifp->if_input)(ifp, m);
1352 }
1353
1354 sc->re_ldata.re_rx_prodidx = i;
1355 }
1356
1357 static void
1358 re_txeof(struct rtk_softc *sc)
1359 {
1360 struct ifnet *ifp;
1361 struct re_txq *txq;
1362 uint32_t txstat;
1363 int idx, descidx;
1364
1365 ifp = &sc->ethercom.ec_if;
1366
1367 for (idx = sc->re_ldata.re_txq_considx;
1368 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1369 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1370 txq = &sc->re_ldata.re_txq[idx];
1371 KASSERT(txq->txq_mbuf != NULL);
1372
1373 descidx = txq->txq_descidx;
1374 RE_TXDESCSYNC(sc, descidx,
1375 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1376 txstat =
1377 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1378 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1379 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1380 if (txstat & RE_TDESC_CMD_OWN) {
1381 break;
1382 }
1383
1384 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1385 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1386 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1387 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1388 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1389 m_freem(txq->txq_mbuf);
1390 txq->txq_mbuf = NULL;
1391
1392 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1393 ifp->if_collisions++;
1394 if (txstat & RE_TDESC_STAT_TXERRSUM)
1395 ifp->if_oerrors++;
1396 else
1397 ifp->if_opackets++;
1398 }
1399
1400 sc->re_ldata.re_txq_considx = idx;
1401
1402 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1403 ifp->if_flags &= ~IFF_OACTIVE;
1404
1405 /*
1406 * If not all descriptors have been released reaped yet,
1407 * reload the timer so that we will eventually get another
1408 * interrupt that will cause us to re-enter this routine.
1409 * This is done in case the transmitter has gone idle.
1410 */
1411 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1412 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1413 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1414 /*
1415 * Some chips will ignore a second TX request
1416 * issued while an existing transmission is in
1417 * progress. If the transmitter goes idle but
1418 * there are still packets waiting to be sent,
1419 * we need to restart the channel here to flush
1420 * them out. This only seems to be required with
1421 * the PCIe devices.
1422 */
1423 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1424 }
1425 } else
1426 ifp->if_timer = 0;
1427 }
1428
1429 static void
1430 re_tick(void *arg)
1431 {
1432 struct rtk_softc *sc = arg;
1433 int s;
1434
1435 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1436 s = splnet();
1437
1438 mii_tick(&sc->mii);
1439 splx(s);
1440
1441 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1442 }
1443
1444 int
1445 re_intr(void *arg)
1446 {
1447 struct rtk_softc *sc = arg;
1448 struct ifnet *ifp;
1449 uint16_t status;
1450 int handled = 0;
1451
1452 if (!device_has_power(sc->sc_dev))
1453 return 0;
1454
1455 ifp = &sc->ethercom.ec_if;
1456
1457 if ((ifp->if_flags & IFF_UP) == 0)
1458 return 0;
1459
1460 for (;;) {
1461
1462 status = CSR_READ_2(sc, RTK_ISR);
1463 /* If the card has gone away the read returns 0xffff. */
1464 if (status == 0xffff)
1465 break;
1466 if (status) {
1467 handled = 1;
1468 CSR_WRITE_2(sc, RTK_ISR, status);
1469 }
1470
1471 if ((status & RTK_INTRS_CPLUS) == 0)
1472 break;
1473
1474 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1475 re_rxeof(sc);
1476
1477 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1478 RTK_ISR_TX_DESC_UNAVAIL))
1479 re_txeof(sc);
1480
1481 if (status & RTK_ISR_SYSTEM_ERR) {
1482 re_init(ifp);
1483 }
1484
1485 if (status & RTK_ISR_LINKCHG) {
1486 callout_stop(&sc->rtk_tick_ch);
1487 re_tick(sc);
1488 }
1489 }
1490
1491 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1492 re_start(ifp);
1493
1494 rnd_add_uint32(&sc->rnd_source, status);
1495
1496 return handled;
1497 }
1498
1499
1500
1501 /*
1502 * Main transmit routine for C+ and gigE NICs.
1503 */
1504
1505 static void
1506 re_start(struct ifnet *ifp)
1507 {
1508 struct rtk_softc *sc;
1509 struct mbuf *m;
1510 bus_dmamap_t map;
1511 struct re_txq *txq;
1512 struct re_desc *d;
1513 struct m_tag *mtag;
1514 uint32_t cmdstat, re_flags, vlanctl;
1515 int ofree, idx, error, nsegs, seg;
1516 int startdesc, curdesc, lastdesc;
1517 bool pad;
1518
1519 sc = ifp->if_softc;
1520 ofree = sc->re_ldata.re_txq_free;
1521
1522 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1523
1524 IFQ_POLL(&ifp->if_snd, m);
1525 if (m == NULL)
1526 break;
1527
1528 if (sc->re_ldata.re_txq_free == 0 ||
1529 sc->re_ldata.re_tx_free == 0) {
1530 /* no more free slots left */
1531 ifp->if_flags |= IFF_OACTIVE;
1532 break;
1533 }
1534
1535 /*
1536 * Set up checksum offload. Note: checksum offload bits must
1537 * appear in all descriptors of a multi-descriptor transmit
1538 * attempt. (This is according to testing done with an 8169
1539 * chip. I'm not sure if this is a requirement or a bug.)
1540 */
1541
1542 vlanctl = 0;
1543 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1544 uint32_t segsz = m->m_pkthdr.segsz;
1545
1546 re_flags = RE_TDESC_CMD_LGSEND |
1547 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1548 } else {
1549 /*
1550 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1551 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1552 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1553 */
1554 re_flags = 0;
1555 if ((m->m_pkthdr.csum_flags &
1556 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1557 != 0) {
1558 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1559 re_flags |= RE_TDESC_CMD_IPCSUM;
1560 if (m->m_pkthdr.csum_flags &
1561 M_CSUM_TCPv4) {
1562 re_flags |=
1563 RE_TDESC_CMD_TCPCSUM;
1564 } else if (m->m_pkthdr.csum_flags &
1565 M_CSUM_UDPv4) {
1566 re_flags |=
1567 RE_TDESC_CMD_UDPCSUM;
1568 }
1569 } else {
1570 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1571 if (m->m_pkthdr.csum_flags &
1572 M_CSUM_TCPv4) {
1573 vlanctl |=
1574 RE_TDESC_VLANCTL_TCPCSUM;
1575 } else if (m->m_pkthdr.csum_flags &
1576 M_CSUM_UDPv4) {
1577 vlanctl |=
1578 RE_TDESC_VLANCTL_UDPCSUM;
1579 }
1580 }
1581 }
1582 }
1583
1584 txq = &sc->re_ldata.re_txq[idx];
1585 map = txq->txq_dmamap;
1586 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1587 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1588
1589 if (__predict_false(error)) {
1590 /* XXX try to defrag if EFBIG? */
1591 printf("%s: can't map mbuf (error %d)\n",
1592 device_xname(sc->sc_dev), error);
1593
1594 IFQ_DEQUEUE(&ifp->if_snd, m);
1595 m_freem(m);
1596 ifp->if_oerrors++;
1597 continue;
1598 }
1599
1600 nsegs = map->dm_nsegs;
1601 pad = false;
1602 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1603 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1604 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1605 pad = true;
1606 nsegs++;
1607 }
1608
1609 if (nsegs > sc->re_ldata.re_tx_free) {
1610 /*
1611 * Not enough free descriptors to transmit this packet.
1612 */
1613 ifp->if_flags |= IFF_OACTIVE;
1614 bus_dmamap_unload(sc->sc_dmat, map);
1615 break;
1616 }
1617
1618 IFQ_DEQUEUE(&ifp->if_snd, m);
1619
1620 /*
1621 * Make sure that the caches are synchronized before we
1622 * ask the chip to start DMA for the packet data.
1623 */
1624 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1625 BUS_DMASYNC_PREWRITE);
1626
1627 /*
1628 * Set up hardware VLAN tagging. Note: vlan tag info must
1629 * appear in all descriptors of a multi-descriptor
1630 * transmission attempt.
1631 */
1632 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1633 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1634 RE_TDESC_VLANCTL_TAG;
1635
1636 /*
1637 * Map the segment array into descriptors.
1638 * Note that we set the start-of-frame and
1639 * end-of-frame markers for either TX or RX,
1640 * but they really only have meaning in the TX case.
1641 * (In the RX case, it's the chip that tells us
1642 * where packets begin and end.)
1643 * We also keep track of the end of the ring
1644 * and set the end-of-ring bits as needed,
1645 * and we set the ownership bits in all except
1646 * the very first descriptor. (The caller will
1647 * set this descriptor later when it start
1648 * transmission or reception.)
1649 */
1650 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1651 lastdesc = -1;
1652 for (seg = 0; seg < map->dm_nsegs;
1653 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1654 d = &sc->re_ldata.re_tx_list[curdesc];
1655 #ifdef DIAGNOSTIC
1656 RE_TXDESCSYNC(sc, curdesc,
1657 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1658 cmdstat = le32toh(d->re_cmdstat);
1659 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1660 if (cmdstat & RE_TDESC_STAT_OWN) {
1661 panic("%s: tried to map busy TX descriptor",
1662 device_xname(sc->sc_dev));
1663 }
1664 #endif
1665
1666 d->re_vlanctl = htole32(vlanctl);
1667 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1668 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1669 if (seg == 0)
1670 cmdstat |= RE_TDESC_CMD_SOF;
1671 else
1672 cmdstat |= RE_TDESC_CMD_OWN;
1673 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1674 cmdstat |= RE_TDESC_CMD_EOR;
1675 if (seg == nsegs - 1) {
1676 cmdstat |= RE_TDESC_CMD_EOF;
1677 lastdesc = curdesc;
1678 }
1679 d->re_cmdstat = htole32(cmdstat);
1680 RE_TXDESCSYNC(sc, curdesc,
1681 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1682 }
1683 if (__predict_false(pad)) {
1684 d = &sc->re_ldata.re_tx_list[curdesc];
1685 d->re_vlanctl = htole32(vlanctl);
1686 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1687 cmdstat = re_flags |
1688 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1689 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1690 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1691 cmdstat |= RE_TDESC_CMD_EOR;
1692 d->re_cmdstat = htole32(cmdstat);
1693 RE_TXDESCSYNC(sc, curdesc,
1694 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1695 lastdesc = curdesc;
1696 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1697 }
1698 KASSERT(lastdesc != -1);
1699
1700 /* Transfer ownership of packet to the chip. */
1701
1702 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1703 htole32(RE_TDESC_CMD_OWN);
1704 RE_TXDESCSYNC(sc, startdesc,
1705 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1706
1707 /* update info of TX queue and descriptors */
1708 txq->txq_mbuf = m;
1709 txq->txq_descidx = lastdesc;
1710 txq->txq_nsegs = nsegs;
1711
1712 sc->re_ldata.re_txq_free--;
1713 sc->re_ldata.re_tx_free -= nsegs;
1714 sc->re_ldata.re_tx_nextfree = curdesc;
1715
1716 /*
1717 * If there's a BPF listener, bounce a copy of this frame
1718 * to him.
1719 */
1720 bpf_mtap(ifp, m);
1721 }
1722
1723 if (sc->re_ldata.re_txq_free < ofree) {
1724 /*
1725 * TX packets are enqueued.
1726 */
1727 sc->re_ldata.re_txq_prodidx = idx;
1728
1729 /*
1730 * Start the transmitter to poll.
1731 *
1732 * RealTek put the TX poll request register in a different
1733 * location on the 8169 gigE chip. I don't know why.
1734 */
1735 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1736 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1737 else
1738 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1739
1740 /*
1741 * Use the countdown timer for interrupt moderation.
1742 * 'TX done' interrupts are disabled. Instead, we reset the
1743 * countdown timer, which will begin counting until it hits
1744 * the value in the TIMERINT register, and then trigger an
1745 * interrupt. Each time we write to the TIMERCNT register,
1746 * the timer count is reset to 0.
1747 */
1748 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1749
1750 /*
1751 * Set a timeout in case the chip goes out to lunch.
1752 */
1753 ifp->if_timer = 5;
1754 }
1755 }
1756
1757 static int
1758 re_init(struct ifnet *ifp)
1759 {
1760 struct rtk_softc *sc = ifp->if_softc;
1761 uint32_t rxcfg = 0;
1762 uint16_t cfg;
1763 int error;
1764 #ifdef RE_USE_EECMD
1765 const uint8_t *enaddr;
1766 uint32_t reg;
1767 #endif
1768
1769 if ((error = re_enable(sc)) != 0)
1770 goto out;
1771
1772 /*
1773 * Cancel pending I/O and free all RX/TX buffers.
1774 */
1775 re_stop(ifp, 0);
1776
1777 re_reset(sc);
1778
1779 /*
1780 * Enable C+ RX and TX mode, as well as VLAN stripping and
1781 * RX checksum offload. We must configure the C+ register
1782 * before all others.
1783 */
1784 cfg = RE_CPLUSCMD_PCI_MRW;
1785
1786 /*
1787 * XXX: For old 8169 set bit 14.
1788 * For 8169S/8110S and above, do not set bit 14.
1789 */
1790 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1791 cfg |= (0x1 << 14);
1792
1793 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1794 cfg |= RE_CPLUSCMD_VLANSTRIP;
1795 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1796 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1797 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1798 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1799 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1800 cfg |= RE_CPLUSCMD_TXENB;
1801 } else
1802 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1803
1804 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1805
1806 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1807 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1808 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1809
1810 DELAY(10000);
1811
1812 #ifdef RE_USE_EECMD
1813 /*
1814 * Init our MAC address. Even though the chipset
1815 * documentation doesn't mention it, we need to enter "Config
1816 * register write enable" mode to modify the ID registers.
1817 */
1818 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1819 enaddr = CLLADDR(ifp->if_sadl);
1820 reg = enaddr[0] | (enaddr[1] << 8) |
1821 (enaddr[2] << 16) | (enaddr[3] << 24);
1822 CSR_WRITE_4(sc, RTK_IDR0, reg);
1823 reg = enaddr[4] | (enaddr[5] << 8);
1824 CSR_WRITE_4(sc, RTK_IDR4, reg);
1825 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1826 #endif
1827
1828 /*
1829 * For C+ mode, initialize the RX descriptors and mbufs.
1830 */
1831 re_rx_list_init(sc);
1832 re_tx_list_init(sc);
1833
1834 /*
1835 * Load the addresses of the RX and TX lists into the chip.
1836 */
1837 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1838 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1839 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1840 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1841
1842 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1843 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1844 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1845 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1846
1847 /*
1848 * Enable transmit and receive.
1849 */
1850 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1851
1852 /*
1853 * Set the initial TX and RX configuration.
1854 */
1855 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1856 /* test mode is needed only for old 8169 */
1857 CSR_WRITE_4(sc, RTK_TXCFG,
1858 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1859 } else
1860 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1861
1862 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1863
1864 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1865
1866 /* Set the individual bit to receive frames for this host only. */
1867 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1868 rxcfg |= RTK_RXCFG_RX_INDIV;
1869
1870 /* If we want promiscuous mode, set the allframes bit. */
1871 if (ifp->if_flags & IFF_PROMISC)
1872 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1873 else
1874 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1875 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1876
1877 /*
1878 * Set capture broadcast bit to capture broadcast frames.
1879 */
1880 if (ifp->if_flags & IFF_BROADCAST)
1881 rxcfg |= RTK_RXCFG_RX_BROAD;
1882 else
1883 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1884 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1885
1886 /*
1887 * Program the multicast filter, if necessary.
1888 */
1889 rtk_setmulti(sc);
1890
1891 /*
1892 * Enable interrupts.
1893 */
1894 if (sc->re_testmode)
1895 CSR_WRITE_2(sc, RTK_IMR, 0);
1896 else
1897 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1898
1899 /* Start RX/TX process. */
1900 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1901 #ifdef notdef
1902 /* Enable receiver and transmitter. */
1903 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1904 #endif
1905
1906 /*
1907 * Initialize the timer interrupt register so that
1908 * a timer interrupt will be generated once the timer
1909 * reaches a certain number of ticks. The timer is
1910 * reloaded on each transmit. This gives us TX interrupt
1911 * moderation, which dramatically improves TX frame rate.
1912 */
1913
1914 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1915 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1916 else {
1917 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1918
1919 /*
1920 * For 8169 gigE NICs, set the max allowed RX packet
1921 * size so we can receive jumbo frames.
1922 */
1923 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1924 }
1925
1926 if (sc->re_testmode)
1927 return 0;
1928
1929 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1930
1931 ifp->if_flags |= IFF_RUNNING;
1932 ifp->if_flags &= ~IFF_OACTIVE;
1933
1934 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1935
1936 out:
1937 if (error) {
1938 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1939 ifp->if_timer = 0;
1940 printf("%s: interface not running\n",
1941 device_xname(sc->sc_dev));
1942 }
1943
1944 return error;
1945 }
1946
1947 static int
1948 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1949 {
1950 struct rtk_softc *sc = ifp->if_softc;
1951 struct ifreq *ifr = data;
1952 int s, error = 0;
1953
1954 s = splnet();
1955
1956 switch (command) {
1957 case SIOCSIFMTU:
1958 /*
1959 * Disable jumbo frames if it's not supported.
1960 */
1961 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1962 ifr->ifr_mtu > ETHERMTU) {
1963 error = EINVAL;
1964 break;
1965 }
1966
1967 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1968 error = EINVAL;
1969 else if ((error = ifioctl_common(ifp, command, data)) ==
1970 ENETRESET)
1971 error = 0;
1972 break;
1973 default:
1974 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1975 break;
1976
1977 error = 0;
1978
1979 if (command == SIOCSIFCAP)
1980 error = (*ifp->if_init)(ifp);
1981 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1982 ;
1983 else if (ifp->if_flags & IFF_RUNNING)
1984 rtk_setmulti(sc);
1985 break;
1986 }
1987
1988 splx(s);
1989
1990 return error;
1991 }
1992
1993 static void
1994 re_watchdog(struct ifnet *ifp)
1995 {
1996 struct rtk_softc *sc;
1997 int s;
1998
1999 sc = ifp->if_softc;
2000 s = splnet();
2001 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2002 ifp->if_oerrors++;
2003
2004 re_txeof(sc);
2005 re_rxeof(sc);
2006
2007 re_init(ifp);
2008
2009 splx(s);
2010 }
2011
2012 /*
2013 * Stop the adapter and free any mbufs allocated to the
2014 * RX and TX lists.
2015 */
2016 static void
2017 re_stop(struct ifnet *ifp, int disable)
2018 {
2019 int i;
2020 struct rtk_softc *sc = ifp->if_softc;
2021
2022 callout_stop(&sc->rtk_tick_ch);
2023
2024 mii_down(&sc->mii);
2025
2026 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
2027 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
2028 RTK_CMD_RX_ENB);
2029 else
2030 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2031 DELAY(1000);
2032 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2033 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
2034
2035 if (sc->re_head != NULL) {
2036 m_freem(sc->re_head);
2037 sc->re_head = sc->re_tail = NULL;
2038 }
2039
2040 /* Free the TX list buffers. */
2041 for (i = 0; i < RE_TX_QLEN; i++) {
2042 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2043 bus_dmamap_unload(sc->sc_dmat,
2044 sc->re_ldata.re_txq[i].txq_dmamap);
2045 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2046 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2047 }
2048 }
2049
2050 /* Free the RX list buffers. */
2051 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2052 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2053 bus_dmamap_unload(sc->sc_dmat,
2054 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2055 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2056 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2057 }
2058 }
2059
2060 if (disable)
2061 re_disable(sc);
2062
2063 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2064 ifp->if_timer = 0;
2065 }
2066