rtl8169.c revision 1.143.2.2 1 /* $NetBSD: rtl8169.c,v 1.143.2.2 2015/09/22 12:05:58 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.143.2.2 2015/09/22 12:05:58 skrll Exp $");
37
38 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
39
40 /*
41 * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
42 *
43 * Written by Bill Paul <wpaul (at) windriver.com>
44 * Senior Networking Software Engineer
45 * Wind River Systems
46 */
47
48 /*
49 * This driver is designed to support RealTek's next generation of
50 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
51 * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
52 * RTL8110S, the RTL8168 and the RTL8111.
53 *
54 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
55 * with the older 8139 family, however it also supports a special
56 * C+ mode of operation that provides several new performance enhancing
57 * features. These include:
58 *
59 * o Descriptor based DMA mechanism. Each descriptor represents
60 * a single packet fragment. Data buffers may be aligned on
61 * any byte boundary.
62 *
63 * o 64-bit DMA
64 *
65 * o TCP/IP checksum offload for both RX and TX
66 *
67 * o High and normal priority transmit DMA rings
68 *
69 * o VLAN tag insertion and extraction
70 *
71 * o TCP large send (segmentation offload)
72 *
73 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
74 * programming API is fairly straightforward. The RX filtering, EEPROM
75 * access and PHY access is the same as it is on the older 8139 series
76 * chips.
77 *
78 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
79 * same programming API and feature set as the 8139C+ with the following
80 * differences and additions:
81 *
82 * o 1000Mbps mode
83 *
84 * o Jumbo frames
85 *
86 * o GMII and TBI ports/registers for interfacing with copper
87 * or fiber PHYs
88 *
89 * o RX and TX DMA rings can have up to 1024 descriptors
90 * (the 8139C+ allows a maximum of 64)
91 *
92 * o Slight differences in register layout from the 8139C+
93 *
94 * The TX start and timer interrupt registers are at different locations
95 * on the 8169 than they are on the 8139C+. Also, the status word in the
96 * RX descriptor has a slightly different bit layout. The 8169 does not
97 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
98 * copper gigE PHY.
99 *
100 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
101 * (the 'S' stands for 'single-chip'). These devices have the same
102 * programming API as the older 8169, but also have some vendor-specific
103 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
104 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
105 *
106 * This driver takes advantage of the RX and TX checksum offload and
107 * VLAN tag insertion/extraction features. It also implements TX
108 * interrupt moderation using the timer interrupt registers, which
109 * significantly reduces TX interrupt load. There is also support
110 * for jumbo frames, however the 8169/8169S/8110S can not transmit
111 * jumbo frames larger than 7.5K, so the max MTU possible with this
112 * driver is 7500 bytes.
113 */
114
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #include <net/bpf.h>
138 #include <sys/rndsource.h>
139
140 #include <sys/bus.h>
141
142 #include <dev/mii/mii.h>
143 #include <dev/mii/miivar.h>
144
145 #include <dev/ic/rtl81x9reg.h>
146 #include <dev/ic/rtl81x9var.h>
147
148 #include <dev/ic/rtl8169var.h>
149
150 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
151
152 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
153 static int re_rx_list_init(struct rtk_softc *);
154 static int re_tx_list_init(struct rtk_softc *);
155 static void re_rxeof(struct rtk_softc *);
156 static void re_txeof(struct rtk_softc *);
157 static void re_tick(void *);
158 static void re_start(struct ifnet *);
159 static int re_ioctl(struct ifnet *, u_long, void *);
160 static int re_init(struct ifnet *);
161 static void re_stop(struct ifnet *, int);
162 static void re_watchdog(struct ifnet *);
163
164 static int re_enable(struct rtk_softc *);
165 static void re_disable(struct rtk_softc *);
166
167 static int re_gmii_readreg(device_t, int, int);
168 static void re_gmii_writereg(device_t, int, int, int);
169
170 static int re_miibus_readreg(device_t, int, int);
171 static void re_miibus_writereg(device_t, int, int, int);
172 static void re_miibus_statchg(struct ifnet *);
173
174 static void re_reset(struct rtk_softc *);
175
176 static inline void
177 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
178 {
179
180 d->re_bufaddr_lo = htole32((uint32_t)addr);
181 if (sizeof(bus_addr_t) == sizeof(uint64_t))
182 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
183 else
184 d->re_bufaddr_hi = 0;
185 }
186
187 static int
188 re_gmii_readreg(device_t dev, int phy, int reg)
189 {
190 struct rtk_softc *sc = device_private(dev);
191 uint32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(device_t dev, int phy, int reg, int data)
224 {
225 struct rtk_softc *sc = device_private(dev);
226 uint32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 printf("%s: PHY write reg %x <- %x failed\n",
242 device_xname(sc->sc_dev), reg, data);
243 }
244 }
245
246 static int
247 re_miibus_readreg(device_t dev, int phy, int reg)
248 {
249 struct rtk_softc *sc = device_private(dev);
250 uint16_t rval = 0;
251 uint16_t re8139_reg = 0;
252 int s;
253
254 s = splnet();
255
256 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
257 rval = re_gmii_readreg(dev, phy, reg);
258 splx(s);
259 return rval;
260 }
261
262 /* Pretend the internal PHY is only at address 0 */
263 if (phy) {
264 splx(s);
265 return 0;
266 }
267 switch (reg) {
268 case MII_BMCR:
269 re8139_reg = RTK_BMCR;
270 break;
271 case MII_BMSR:
272 re8139_reg = RTK_BMSR;
273 break;
274 case MII_ANAR:
275 re8139_reg = RTK_ANAR;
276 break;
277 case MII_ANER:
278 re8139_reg = RTK_ANER;
279 break;
280 case MII_ANLPAR:
281 re8139_reg = RTK_LPAR;
282 break;
283 case MII_PHYIDR1:
284 case MII_PHYIDR2:
285 splx(s);
286 return 0;
287 /*
288 * Allow the rlphy driver to read the media status
289 * register. If we have a link partner which does not
290 * support NWAY, this is the register which will tell
291 * us the results of parallel detection.
292 */
293 case RTK_MEDIASTAT:
294 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
295 splx(s);
296 return rval;
297 default:
298 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
299 splx(s);
300 return 0;
301 }
302 rval = CSR_READ_2(sc, re8139_reg);
303 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
304 /* 8139C+ has different bit layout. */
305 rval &= ~(BMCR_LOOP | BMCR_ISO);
306 }
307 splx(s);
308 return rval;
309 }
310
311 static void
312 re_miibus_writereg(device_t dev, int phy, int reg, int data)
313 {
314 struct rtk_softc *sc = device_private(dev);
315 uint16_t re8139_reg = 0;
316 int s;
317
318 s = splnet();
319
320 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
321 re_gmii_writereg(dev, phy, reg, data);
322 splx(s);
323 return;
324 }
325
326 /* Pretend the internal PHY is only at address 0 */
327 if (phy) {
328 splx(s);
329 return;
330 }
331 switch (reg) {
332 case MII_BMCR:
333 re8139_reg = RTK_BMCR;
334 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
335 /* 8139C+ has different bit layout. */
336 data &= ~(BMCR_LOOP | BMCR_ISO);
337 }
338 break;
339 case MII_BMSR:
340 re8139_reg = RTK_BMSR;
341 break;
342 case MII_ANAR:
343 re8139_reg = RTK_ANAR;
344 break;
345 case MII_ANER:
346 re8139_reg = RTK_ANER;
347 break;
348 case MII_ANLPAR:
349 re8139_reg = RTK_LPAR;
350 break;
351 case MII_PHYIDR1:
352 case MII_PHYIDR2:
353 splx(s);
354 return;
355 break;
356 default:
357 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
358 splx(s);
359 return;
360 }
361 CSR_WRITE_2(sc, re8139_reg, data);
362 splx(s);
363 return;
364 }
365
366 static void
367 re_miibus_statchg(struct ifnet *ifp)
368 {
369
370 return;
371 }
372
373 static void
374 re_reset(struct rtk_softc *sc)
375 {
376 int i;
377
378 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
379
380 for (i = 0; i < RTK_TIMEOUT; i++) {
381 DELAY(10);
382 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
383 break;
384 }
385 if (i == RTK_TIMEOUT)
386 printf("%s: reset never completed!\n",
387 device_xname(sc->sc_dev));
388
389 /*
390 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
391 * but also says "Rtl8169s sigle chip detected".
392 */
393 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
394 CSR_WRITE_1(sc, RTK_LDPS, 1);
395
396 }
397
398 /*
399 * The following routine is designed to test for a defect on some
400 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
401 * lines connected to the bus, however for a 32-bit only card, they
402 * should be pulled high. The result of this defect is that the
403 * NIC will not work right if you plug it into a 64-bit slot: DMA
404 * operations will be done with 64-bit transfers, which will fail
405 * because the 64-bit data lines aren't connected.
406 *
407 * There's no way to work around this (short of talking a soldering
408 * iron to the board), however we can detect it. The method we use
409 * here is to put the NIC into digital loopback mode, set the receiver
410 * to promiscuous mode, and then try to send a frame. We then compare
411 * the frame data we sent to what was received. If the data matches,
412 * then the NIC is working correctly, otherwise we know the user has
413 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
414 * slot. In the latter case, there's no way the NIC can work correctly,
415 * so we print out a message on the console and abort the device attach.
416 */
417
418 int
419 re_diag(struct rtk_softc *sc)
420 {
421 struct ifnet *ifp = &sc->ethercom.ec_if;
422 struct mbuf *m0;
423 struct ether_header *eh;
424 struct re_rxsoft *rxs;
425 struct re_desc *cur_rx;
426 bus_dmamap_t dmamap;
427 uint16_t status;
428 uint32_t rxstat;
429 int total_len, i, s, error = 0;
430 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
431 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
432
433 /* Allocate a single mbuf */
434
435 MGETHDR(m0, M_DONTWAIT, MT_DATA);
436 if (m0 == NULL)
437 return ENOBUFS;
438
439 /*
440 * Initialize the NIC in test mode. This sets the chip up
441 * so that it can send and receive frames, but performs the
442 * following special functions:
443 * - Puts receiver in promiscuous mode
444 * - Enables digital loopback mode
445 * - Leaves interrupts turned off
446 */
447
448 ifp->if_flags |= IFF_PROMISC;
449 sc->re_testmode = 1;
450 re_init(ifp);
451 re_stop(ifp, 0);
452 DELAY(100000);
453 re_init(ifp);
454
455 /* Put some data in the mbuf */
456
457 eh = mtod(m0, struct ether_header *);
458 memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
459 memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
460 eh->ether_type = htons(ETHERTYPE_IP);
461 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
462
463 /*
464 * Queue the packet, start transmission.
465 */
466
467 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
468 s = splnet();
469 IF_ENQUEUE(&ifp->if_snd, m0);
470 re_start(ifp);
471 splx(s);
472 m0 = NULL;
473
474 /* Wait for it to propagate through the chip */
475
476 DELAY(100000);
477 for (i = 0; i < RTK_TIMEOUT; i++) {
478 status = CSR_READ_2(sc, RTK_ISR);
479 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
480 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
481 break;
482 DELAY(10);
483 }
484 if (i == RTK_TIMEOUT) {
485 aprint_error_dev(sc->sc_dev,
486 "diagnostic failed, failed to receive packet "
487 "in loopback mode\n");
488 error = EIO;
489 goto done;
490 }
491
492 /*
493 * The packet should have been dumped into the first
494 * entry in the RX DMA ring. Grab it from there.
495 */
496
497 rxs = &sc->re_ldata.re_rxsoft[0];
498 dmamap = rxs->rxs_dmamap;
499 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
500 BUS_DMASYNC_POSTREAD);
501 bus_dmamap_unload(sc->sc_dmat, dmamap);
502
503 m0 = rxs->rxs_mbuf;
504 rxs->rxs_mbuf = NULL;
505 eh = mtod(m0, struct ether_header *);
506
507 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
508 cur_rx = &sc->re_ldata.re_rx_list[0];
509 rxstat = le32toh(cur_rx->re_cmdstat);
510 total_len = rxstat & sc->re_rxlenmask;
511
512 if (total_len != ETHER_MIN_LEN) {
513 aprint_error_dev(sc->sc_dev,
514 "diagnostic failed, received short packet\n");
515 error = EIO;
516 goto done;
517 }
518
519 /* Test that the received packet data matches what we sent. */
520
521 if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
522 memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
523 ntohs(eh->ether_type) != ETHERTYPE_IP) {
524 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
525 "expected TX data: %s/%s/0x%x\n"
526 "received RX data: %s/%s/0x%x\n"
527 "You may have a defective 32-bit NIC plugged "
528 "into a 64-bit PCI slot.\n"
529 "Please re-install the NIC in a 32-bit slot "
530 "for proper operation.\n"
531 "Read the re(4) man page for more details.\n" ,
532 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
533 ether_sprintf(eh->ether_dhost),
534 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
535 error = EIO;
536 }
537
538 done:
539 /* Turn interface off, release resources */
540
541 sc->re_testmode = 0;
542 ifp->if_flags &= ~IFF_PROMISC;
543 re_stop(ifp, 0);
544 if (m0 != NULL)
545 m_freem(m0);
546
547 return error;
548 }
549
550
551 /*
552 * Attach the interface. Allocate softc structures, do ifmedia
553 * setup and ethernet/BPF attach.
554 */
555 void
556 re_attach(struct rtk_softc *sc)
557 {
558 uint8_t eaddr[ETHER_ADDR_LEN];
559 struct ifnet *ifp;
560 int error = 0, i;
561
562 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
563 uint32_t hwrev;
564
565 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
566 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
567 switch (hwrev) {
568 case RTK_HWREV_8169:
569 sc->sc_quirk |= RTKQ_8169NONS;
570 break;
571 case RTK_HWREV_8169S:
572 case RTK_HWREV_8110S:
573 case RTK_HWREV_8169_8110SB:
574 case RTK_HWREV_8169_8110SBL:
575 case RTK_HWREV_8169_8110SC:
576 sc->sc_quirk |= RTKQ_MACLDPS;
577 break;
578 case RTK_HWREV_8168_SPIN1:
579 case RTK_HWREV_8168_SPIN2:
580 case RTK_HWREV_8168_SPIN3:
581 sc->sc_quirk |= RTKQ_MACSTAT;
582 break;
583 case RTK_HWREV_8168C:
584 case RTK_HWREV_8168C_SPIN2:
585 case RTK_HWREV_8168CP:
586 case RTK_HWREV_8168D:
587 case RTK_HWREV_8168DP:
588 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
589 RTKQ_MACSTAT | RTKQ_CMDSTOP;
590 /*
591 * From FreeBSD driver:
592 *
593 * These (8168/8111) controllers support jumbo frame
594 * but it seems that enabling it requires touching
595 * additional magic registers. Depending on MAC
596 * revisions some controllers need to disable
597 * checksum offload. So disable jumbo frame until
598 * I have better idea what it really requires to
599 * make it support.
600 * RTL8168C/CP : supports up to 6KB jumbo frame.
601 * RTL8111C/CP : supports up to 9KB jumbo frame.
602 */
603 sc->sc_quirk |= RTKQ_NOJUMBO;
604 break;
605 case RTK_HWREV_8168E:
606 case RTK_HWREV_8168H:
607 case RTK_HWREV_8168H_SPIN1:
608 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
609 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
610 RTKQ_NOJUMBO;
611 break;
612 case RTK_HWREV_8168E_VL:
613 case RTK_HWREV_8168F:
614 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
615 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
616 break;
617 case RTK_HWREV_8168G:
618 case RTK_HWREV_8168G_SPIN1:
619 case RTK_HWREV_8168G_SPIN2:
620 case RTK_HWREV_8168G_SPIN4:
621 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
622 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
623 RTKQ_RXDV_GATED;
624 break;
625 case RTK_HWREV_8100E:
626 case RTK_HWREV_8100E_SPIN2:
627 case RTK_HWREV_8101E:
628 sc->sc_quirk |= RTKQ_NOJUMBO;
629 break;
630 case RTK_HWREV_8102E:
631 case RTK_HWREV_8102EL:
632 case RTK_HWREV_8103E:
633 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
634 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
635 break;
636 default:
637 aprint_normal_dev(sc->sc_dev,
638 "Unknown revision (0x%08x)\n", hwrev);
639 /* assume the latest features */
640 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
641 sc->sc_quirk |= RTKQ_NOJUMBO;
642 }
643
644 /* Set RX length mask */
645 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
646 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
647 } else {
648 sc->sc_quirk |= RTKQ_NOJUMBO;
649
650 /* Set RX length mask */
651 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
652 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
653 }
654
655 /* Reset the adapter. */
656 re_reset(sc);
657
658 /*
659 * RTL81x9 chips automatically read EEPROM to init MAC address,
660 * and some NAS override its MAC address per own configuration,
661 * so no need to explicitely read EEPROM and set ID registers.
662 */
663 #ifdef RE_USE_EECMD
664 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
665 /*
666 * Get station address from ID registers.
667 */
668 for (i = 0; i < ETHER_ADDR_LEN; i++)
669 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
670 } else {
671 uint16_t val;
672 int addr_len;
673
674 /*
675 * Get station address from the EEPROM.
676 */
677 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
678 addr_len = RTK_EEADDR_LEN1;
679 else
680 addr_len = RTK_EEADDR_LEN0;
681
682 /*
683 * Get station address from the EEPROM.
684 */
685 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
686 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
687 eaddr[(i * 2) + 0] = val & 0xff;
688 eaddr[(i * 2) + 1] = val >> 8;
689 }
690 }
691 #else
692 /*
693 * Get station address from ID registers.
694 */
695 for (i = 0; i < ETHER_ADDR_LEN; i++)
696 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
697 #endif
698
699 /* Take PHY out of power down mode. */
700 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
701 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
702
703 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
704 ether_sprintf(eaddr));
705
706 if (sc->re_ldata.re_tx_desc_cnt >
707 PAGE_SIZE / sizeof(struct re_desc)) {
708 sc->re_ldata.re_tx_desc_cnt =
709 PAGE_SIZE / sizeof(struct re_desc);
710 }
711
712 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
713 sc->re_ldata.re_tx_desc_cnt);
714 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
715
716 /* Allocate DMA'able memory for the TX ring */
717 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
718 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
719 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
720 aprint_error_dev(sc->sc_dev,
721 "can't allocate tx listseg, error = %d\n", error);
722 goto fail_0;
723 }
724
725 /* Load the map for the TX ring. */
726 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
727 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
728 (void **)&sc->re_ldata.re_tx_list,
729 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
730 aprint_error_dev(sc->sc_dev,
731 "can't map tx list, error = %d\n", error);
732 goto fail_1;
733 }
734 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
735
736 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
737 RE_TX_LIST_SZ(sc), 0, 0,
738 &sc->re_ldata.re_tx_list_map)) != 0) {
739 aprint_error_dev(sc->sc_dev,
740 "can't create tx list map, error = %d\n", error);
741 goto fail_2;
742 }
743
744
745 if ((error = bus_dmamap_load(sc->sc_dmat,
746 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
747 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
748 aprint_error_dev(sc->sc_dev,
749 "can't load tx list, error = %d\n", error);
750 goto fail_3;
751 }
752
753 /* Create DMA maps for TX buffers */
754 for (i = 0; i < RE_TX_QLEN; i++) {
755 error = bus_dmamap_create(sc->sc_dmat,
756 round_page(IP_MAXPACKET),
757 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
758 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
759 if (error) {
760 aprint_error_dev(sc->sc_dev,
761 "can't create DMA map for TX\n");
762 goto fail_4;
763 }
764 }
765
766 /* Allocate DMA'able memory for the RX ring */
767 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
768 if ((error = bus_dmamem_alloc(sc->sc_dmat,
769 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
770 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
771 aprint_error_dev(sc->sc_dev,
772 "can't allocate rx listseg, error = %d\n", error);
773 goto fail_4;
774 }
775
776 /* Load the map for the RX ring. */
777 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
778 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
779 (void **)&sc->re_ldata.re_rx_list,
780 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
781 aprint_error_dev(sc->sc_dev,
782 "can't map rx list, error = %d\n", error);
783 goto fail_5;
784 }
785 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
786
787 if ((error = bus_dmamap_create(sc->sc_dmat,
788 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
789 &sc->re_ldata.re_rx_list_map)) != 0) {
790 aprint_error_dev(sc->sc_dev,
791 "can't create rx list map, error = %d\n", error);
792 goto fail_6;
793 }
794
795 if ((error = bus_dmamap_load(sc->sc_dmat,
796 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
797 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
798 aprint_error_dev(sc->sc_dev,
799 "can't load rx list, error = %d\n", error);
800 goto fail_7;
801 }
802
803 /* Create DMA maps for RX buffers */
804 for (i = 0; i < RE_RX_DESC_CNT; i++) {
805 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
806 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
807 if (error) {
808 aprint_error_dev(sc->sc_dev,
809 "can't create DMA map for RX\n");
810 goto fail_8;
811 }
812 }
813
814 /*
815 * Record interface as attached. From here, we should not fail.
816 */
817 sc->sc_flags |= RTK_ATTACHED;
818
819 ifp = &sc->ethercom.ec_if;
820 ifp->if_softc = sc;
821 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
822 ifp->if_mtu = ETHERMTU;
823 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
824 ifp->if_ioctl = re_ioctl;
825 sc->ethercom.ec_capabilities |=
826 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
827 ifp->if_start = re_start;
828 ifp->if_stop = re_stop;
829
830 /*
831 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
832 * so we have a workaround to handle the bug by padding
833 * such packets manually.
834 */
835 ifp->if_capabilities |=
836 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
837 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
838 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
839 IFCAP_TSOv4;
840
841 /*
842 * XXX
843 * Still have no idea how to make TSO work on 8168C, 8168CP,
844 * 8102E, 8111C and 8111CP.
845 */
846 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
847 ifp->if_capabilities &= ~IFCAP_TSOv4;
848
849 ifp->if_watchdog = re_watchdog;
850 ifp->if_init = re_init;
851 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
852 ifp->if_capenable = ifp->if_capabilities;
853 IFQ_SET_READY(&ifp->if_snd);
854
855 callout_init(&sc->rtk_tick_ch, 0);
856
857 /* Do MII setup */
858 sc->mii.mii_ifp = ifp;
859 sc->mii.mii_readreg = re_miibus_readreg;
860 sc->mii.mii_writereg = re_miibus_writereg;
861 sc->mii.mii_statchg = re_miibus_statchg;
862 sc->ethercom.ec_mii = &sc->mii;
863 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
864 ether_mediastatus);
865 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
866 MII_OFFSET_ANY, 0);
867 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
868
869 /*
870 * Call MI attach routine.
871 */
872 if_attach(ifp);
873 ether_ifattach(ifp, eaddr);
874
875 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
876 RND_TYPE_NET, RND_FLAG_DEFAULT);
877
878 if (pmf_device_register(sc->sc_dev, NULL, NULL))
879 pmf_class_network_register(sc->sc_dev, ifp);
880 else
881 aprint_error_dev(sc->sc_dev,
882 "couldn't establish power handler\n");
883
884 return;
885
886 fail_8:
887 /* Destroy DMA maps for RX buffers. */
888 for (i = 0; i < RE_RX_DESC_CNT; i++)
889 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
890 bus_dmamap_destroy(sc->sc_dmat,
891 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
892
893 /* Free DMA'able memory for the RX ring. */
894 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
895 fail_7:
896 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
897 fail_6:
898 bus_dmamem_unmap(sc->sc_dmat,
899 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
900 fail_5:
901 bus_dmamem_free(sc->sc_dmat,
902 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
903
904 fail_4:
905 /* Destroy DMA maps for TX buffers. */
906 for (i = 0; i < RE_TX_QLEN; i++)
907 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
908 bus_dmamap_destroy(sc->sc_dmat,
909 sc->re_ldata.re_txq[i].txq_dmamap);
910
911 /* Free DMA'able memory for the TX ring. */
912 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
913 fail_3:
914 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
915 fail_2:
916 bus_dmamem_unmap(sc->sc_dmat,
917 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
918 fail_1:
919 bus_dmamem_free(sc->sc_dmat,
920 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
921 fail_0:
922 return;
923 }
924
925
926 /*
927 * re_activate:
928 * Handle device activation/deactivation requests.
929 */
930 int
931 re_activate(device_t self, enum devact act)
932 {
933 struct rtk_softc *sc = device_private(self);
934
935 switch (act) {
936 case DVACT_DEACTIVATE:
937 if_deactivate(&sc->ethercom.ec_if);
938 return 0;
939 default:
940 return EOPNOTSUPP;
941 }
942 }
943
944 /*
945 * re_detach:
946 * Detach a rtk interface.
947 */
948 int
949 re_detach(struct rtk_softc *sc)
950 {
951 struct ifnet *ifp = &sc->ethercom.ec_if;
952 int i;
953
954 /*
955 * Succeed now if there isn't any work to do.
956 */
957 if ((sc->sc_flags & RTK_ATTACHED) == 0)
958 return 0;
959
960 /* Unhook our tick handler. */
961 callout_stop(&sc->rtk_tick_ch);
962
963 /* Detach all PHYs. */
964 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
965
966 /* Delete all remaining media. */
967 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
968
969 rnd_detach_source(&sc->rnd_source);
970 ether_ifdetach(ifp);
971 if_detach(ifp);
972
973 /* Destroy DMA maps for RX buffers. */
974 for (i = 0; i < RE_RX_DESC_CNT; i++)
975 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
976 bus_dmamap_destroy(sc->sc_dmat,
977 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
978
979 /* Free DMA'able memory for the RX ring. */
980 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
981 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
982 bus_dmamem_unmap(sc->sc_dmat,
983 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
984 bus_dmamem_free(sc->sc_dmat,
985 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
986
987 /* Destroy DMA maps for TX buffers. */
988 for (i = 0; i < RE_TX_QLEN; i++)
989 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
990 bus_dmamap_destroy(sc->sc_dmat,
991 sc->re_ldata.re_txq[i].txq_dmamap);
992
993 /* Free DMA'able memory for the TX ring. */
994 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
995 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
996 bus_dmamem_unmap(sc->sc_dmat,
997 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
998 bus_dmamem_free(sc->sc_dmat,
999 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
1000
1001 pmf_device_deregister(sc->sc_dev);
1002
1003 /* we don't want to run again */
1004 sc->sc_flags &= ~RTK_ATTACHED;
1005
1006 return 0;
1007 }
1008
1009 /*
1010 * re_enable:
1011 * Enable the RTL81X9 chip.
1012 */
1013 static int
1014 re_enable(struct rtk_softc *sc)
1015 {
1016
1017 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
1018 if ((*sc->sc_enable)(sc) != 0) {
1019 printf("%s: device enable failed\n",
1020 device_xname(sc->sc_dev));
1021 return EIO;
1022 }
1023 sc->sc_flags |= RTK_ENABLED;
1024 }
1025 return 0;
1026 }
1027
1028 /*
1029 * re_disable:
1030 * Disable the RTL81X9 chip.
1031 */
1032 static void
1033 re_disable(struct rtk_softc *sc)
1034 {
1035
1036 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1037 (*sc->sc_disable)(sc);
1038 sc->sc_flags &= ~RTK_ENABLED;
1039 }
1040 }
1041
1042 static int
1043 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1044 {
1045 struct mbuf *n = NULL;
1046 bus_dmamap_t map;
1047 struct re_desc *d;
1048 struct re_rxsoft *rxs;
1049 uint32_t cmdstat;
1050 int error;
1051
1052 if (m == NULL) {
1053 MGETHDR(n, M_DONTWAIT, MT_DATA);
1054 if (n == NULL)
1055 return ENOBUFS;
1056
1057 MCLGET(n, M_DONTWAIT);
1058 if ((n->m_flags & M_EXT) == 0) {
1059 m_freem(n);
1060 return ENOBUFS;
1061 }
1062 m = n;
1063 } else
1064 m->m_data = m->m_ext.ext_buf;
1065
1066 /*
1067 * Initialize mbuf length fields and fixup
1068 * alignment so that the frame payload is
1069 * longword aligned.
1070 */
1071 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1072 m->m_data += RE_ETHER_ALIGN;
1073
1074 rxs = &sc->re_ldata.re_rxsoft[idx];
1075 map = rxs->rxs_dmamap;
1076 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1077 BUS_DMA_READ|BUS_DMA_NOWAIT);
1078
1079 if (error)
1080 goto out;
1081
1082 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1083 BUS_DMASYNC_PREREAD);
1084
1085 d = &sc->re_ldata.re_rx_list[idx];
1086 #ifdef DIAGNOSTIC
1087 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1088 cmdstat = le32toh(d->re_cmdstat);
1089 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1090 if (cmdstat & RE_RDESC_STAT_OWN) {
1091 panic("%s: tried to map busy RX descriptor",
1092 device_xname(sc->sc_dev));
1093 }
1094 #endif
1095
1096 rxs->rxs_mbuf = m;
1097
1098 d->re_vlanctl = 0;
1099 cmdstat = map->dm_segs[0].ds_len;
1100 if (idx == (RE_RX_DESC_CNT - 1))
1101 cmdstat |= RE_RDESC_CMD_EOR;
1102 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1103 d->re_cmdstat = htole32(cmdstat);
1104 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1105 cmdstat |= RE_RDESC_CMD_OWN;
1106 d->re_cmdstat = htole32(cmdstat);
1107 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1108
1109 return 0;
1110 out:
1111 if (n != NULL)
1112 m_freem(n);
1113 return ENOMEM;
1114 }
1115
1116 static int
1117 re_tx_list_init(struct rtk_softc *sc)
1118 {
1119 int i;
1120
1121 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1122 for (i = 0; i < RE_TX_QLEN; i++) {
1123 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1124 }
1125
1126 bus_dmamap_sync(sc->sc_dmat,
1127 sc->re_ldata.re_tx_list_map, 0,
1128 sc->re_ldata.re_tx_list_map->dm_mapsize,
1129 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130 sc->re_ldata.re_txq_prodidx = 0;
1131 sc->re_ldata.re_txq_considx = 0;
1132 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1133 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1134 sc->re_ldata.re_tx_nextfree = 0;
1135
1136 return 0;
1137 }
1138
1139 static int
1140 re_rx_list_init(struct rtk_softc *sc)
1141 {
1142 int i;
1143
1144 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1145
1146 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1147 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1148 return ENOBUFS;
1149 }
1150
1151 sc->re_ldata.re_rx_prodidx = 0;
1152 sc->re_head = sc->re_tail = NULL;
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * RX handler for C+ and 8169. For the gigE chips, we support
1159 * the reception of jumbo frames that have been fragmented
1160 * across multiple 2K mbuf cluster buffers.
1161 */
1162 static void
1163 re_rxeof(struct rtk_softc *sc)
1164 {
1165 struct mbuf *m;
1166 struct ifnet *ifp;
1167 int i, total_len;
1168 struct re_desc *cur_rx;
1169 struct re_rxsoft *rxs;
1170 uint32_t rxstat, rxvlan;
1171
1172 ifp = &sc->ethercom.ec_if;
1173
1174 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1175 cur_rx = &sc->re_ldata.re_rx_list[i];
1176 RE_RXDESCSYNC(sc, i,
1177 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1178 rxstat = le32toh(cur_rx->re_cmdstat);
1179 rxvlan = le32toh(cur_rx->re_vlanctl);
1180 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1181 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1182 break;
1183 }
1184 total_len = rxstat & sc->re_rxlenmask;
1185 rxs = &sc->re_ldata.re_rxsoft[i];
1186 m = rxs->rxs_mbuf;
1187
1188 /* Invalidate the RX mbuf and unload its map */
1189
1190 bus_dmamap_sync(sc->sc_dmat,
1191 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1192 BUS_DMASYNC_POSTREAD);
1193 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1194
1195 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1196 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1197 if (sc->re_head == NULL)
1198 sc->re_head = sc->re_tail = m;
1199 else {
1200 m->m_flags &= ~M_PKTHDR;
1201 sc->re_tail->m_next = m;
1202 sc->re_tail = m;
1203 }
1204 re_newbuf(sc, i, NULL);
1205 continue;
1206 }
1207
1208 /*
1209 * NOTE: for the 8139C+, the frame length field
1210 * is always 12 bits in size, but for the gigE chips,
1211 * it is 13 bits (since the max RX frame length is 16K).
1212 * Unfortunately, all 32 bits in the status word
1213 * were already used, so to make room for the extra
1214 * length bit, RealTek took out the 'frame alignment
1215 * error' bit and shifted the other status bits
1216 * over one slot. The OWN, EOR, FS and LS bits are
1217 * still in the same places. We have already extracted
1218 * the frame length and checked the OWN bit, so rather
1219 * than using an alternate bit mapping, we shift the
1220 * status bits one space to the right so we can evaluate
1221 * them using the 8169 status as though it was in the
1222 * same format as that of the 8139C+.
1223 */
1224 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1225 rxstat >>= 1;
1226
1227 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1228 #ifdef RE_DEBUG
1229 printf("%s: RX error (rxstat = 0x%08x)",
1230 device_xname(sc->sc_dev), rxstat);
1231 if (rxstat & RE_RDESC_STAT_FRALIGN)
1232 printf(", frame alignment error");
1233 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1234 printf(", out of buffer space");
1235 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1236 printf(", FIFO overrun");
1237 if (rxstat & RE_RDESC_STAT_GIANT)
1238 printf(", giant packet");
1239 if (rxstat & RE_RDESC_STAT_RUNT)
1240 printf(", runt packet");
1241 if (rxstat & RE_RDESC_STAT_CRCERR)
1242 printf(", CRC error");
1243 printf("\n");
1244 #endif
1245 ifp->if_ierrors++;
1246 /*
1247 * If this is part of a multi-fragment packet,
1248 * discard all the pieces.
1249 */
1250 if (sc->re_head != NULL) {
1251 m_freem(sc->re_head);
1252 sc->re_head = sc->re_tail = NULL;
1253 }
1254 re_newbuf(sc, i, m);
1255 continue;
1256 }
1257
1258 /*
1259 * If allocating a replacement mbuf fails,
1260 * reload the current one.
1261 */
1262
1263 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1264 ifp->if_ierrors++;
1265 if (sc->re_head != NULL) {
1266 m_freem(sc->re_head);
1267 sc->re_head = sc->re_tail = NULL;
1268 }
1269 re_newbuf(sc, i, m);
1270 continue;
1271 }
1272
1273 if (sc->re_head != NULL) {
1274 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1275 /*
1276 * Special case: if there's 4 bytes or less
1277 * in this buffer, the mbuf can be discarded:
1278 * the last 4 bytes is the CRC, which we don't
1279 * care about anyway.
1280 */
1281 if (m->m_len <= ETHER_CRC_LEN) {
1282 sc->re_tail->m_len -=
1283 (ETHER_CRC_LEN - m->m_len);
1284 m_freem(m);
1285 } else {
1286 m->m_len -= ETHER_CRC_LEN;
1287 m->m_flags &= ~M_PKTHDR;
1288 sc->re_tail->m_next = m;
1289 }
1290 m = sc->re_head;
1291 sc->re_head = sc->re_tail = NULL;
1292 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1293 } else
1294 m->m_pkthdr.len = m->m_len =
1295 (total_len - ETHER_CRC_LEN);
1296
1297 ifp->if_ipackets++;
1298 m->m_pkthdr.rcvif = ifp;
1299
1300 /* Do RX checksumming */
1301 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1302 /* Check IP header checksum */
1303 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1304 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1305 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1306 m->m_pkthdr.csum_flags |=
1307 M_CSUM_IPv4_BAD;
1308
1309 /* Check TCP/UDP checksum */
1310 if (RE_TCPPKT(rxstat)) {
1311 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1312 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1313 m->m_pkthdr.csum_flags |=
1314 M_CSUM_TCP_UDP_BAD;
1315 } else if (RE_UDPPKT(rxstat)) {
1316 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1317 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
1318 /*
1319 * XXX: 8139C+ thinks UDP csum
1320 * 0xFFFF is bad, force software
1321 * calculation.
1322 */
1323 if (sc->sc_quirk & RTKQ_8139CPLUS)
1324 m->m_pkthdr.csum_flags
1325 &= ~M_CSUM_UDPv4;
1326 else
1327 m->m_pkthdr.csum_flags
1328 |= M_CSUM_TCP_UDP_BAD;
1329 }
1330 }
1331 }
1332 } else {
1333 /* Check IPv4 header checksum */
1334 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1335 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1336 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1337 m->m_pkthdr.csum_flags |=
1338 M_CSUM_IPv4_BAD;
1339
1340 /* Check TCPv4/UDPv4 checksum */
1341 if (RE_TCPPKT(rxstat)) {
1342 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1343 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1344 m->m_pkthdr.csum_flags |=
1345 M_CSUM_TCP_UDP_BAD;
1346 } else if (RE_UDPPKT(rxstat)) {
1347 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1348 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1349 m->m_pkthdr.csum_flags |=
1350 M_CSUM_TCP_UDP_BAD;
1351 }
1352 }
1353 /* XXX Check TCPv6/UDPv6 checksum? */
1354 }
1355
1356 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1357 VLAN_INPUT_TAG(ifp, m,
1358 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1359 continue);
1360 }
1361 bpf_mtap(ifp, m);
1362 (*ifp->if_input)(ifp, m);
1363 }
1364
1365 sc->re_ldata.re_rx_prodidx = i;
1366 }
1367
1368 static void
1369 re_txeof(struct rtk_softc *sc)
1370 {
1371 struct ifnet *ifp;
1372 struct re_txq *txq;
1373 uint32_t txstat;
1374 int idx, descidx;
1375
1376 ifp = &sc->ethercom.ec_if;
1377
1378 for (idx = sc->re_ldata.re_txq_considx;
1379 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1380 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1381 txq = &sc->re_ldata.re_txq[idx];
1382 KASSERT(txq->txq_mbuf != NULL);
1383
1384 descidx = txq->txq_descidx;
1385 RE_TXDESCSYNC(sc, descidx,
1386 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1387 txstat =
1388 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1389 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1390 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1391 if (txstat & RE_TDESC_CMD_OWN) {
1392 break;
1393 }
1394
1395 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1396 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1397 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1398 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1399 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1400 m_freem(txq->txq_mbuf);
1401 txq->txq_mbuf = NULL;
1402
1403 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1404 ifp->if_collisions++;
1405 if (txstat & RE_TDESC_STAT_TXERRSUM)
1406 ifp->if_oerrors++;
1407 else
1408 ifp->if_opackets++;
1409 }
1410
1411 sc->re_ldata.re_txq_considx = idx;
1412
1413 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1414 ifp->if_flags &= ~IFF_OACTIVE;
1415
1416 /*
1417 * If not all descriptors have been released reaped yet,
1418 * reload the timer so that we will eventually get another
1419 * interrupt that will cause us to re-enter this routine.
1420 * This is done in case the transmitter has gone idle.
1421 */
1422 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1423 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1424 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1425 /*
1426 * Some chips will ignore a second TX request
1427 * issued while an existing transmission is in
1428 * progress. If the transmitter goes idle but
1429 * there are still packets waiting to be sent,
1430 * we need to restart the channel here to flush
1431 * them out. This only seems to be required with
1432 * the PCIe devices.
1433 */
1434 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1435 }
1436 } else
1437 ifp->if_timer = 0;
1438 }
1439
1440 static void
1441 re_tick(void *arg)
1442 {
1443 struct rtk_softc *sc = arg;
1444 int s;
1445
1446 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1447 s = splnet();
1448
1449 mii_tick(&sc->mii);
1450 splx(s);
1451
1452 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1453 }
1454
1455 int
1456 re_intr(void *arg)
1457 {
1458 struct rtk_softc *sc = arg;
1459 struct ifnet *ifp;
1460 uint16_t status;
1461 int handled = 0;
1462
1463 if (!device_has_power(sc->sc_dev))
1464 return 0;
1465
1466 ifp = &sc->ethercom.ec_if;
1467
1468 if ((ifp->if_flags & IFF_UP) == 0)
1469 return 0;
1470
1471 for (;;) {
1472
1473 status = CSR_READ_2(sc, RTK_ISR);
1474 /* If the card has gone away the read returns 0xffff. */
1475 if (status == 0xffff)
1476 break;
1477 if (status) {
1478 handled = 1;
1479 CSR_WRITE_2(sc, RTK_ISR, status);
1480 }
1481
1482 if ((status & RTK_INTRS_CPLUS) == 0)
1483 break;
1484
1485 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1486 re_rxeof(sc);
1487
1488 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1489 RTK_ISR_TX_DESC_UNAVAIL))
1490 re_txeof(sc);
1491
1492 if (status & RTK_ISR_SYSTEM_ERR) {
1493 re_init(ifp);
1494 }
1495
1496 if (status & RTK_ISR_LINKCHG) {
1497 callout_stop(&sc->rtk_tick_ch);
1498 re_tick(sc);
1499 }
1500 }
1501
1502 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1503 re_start(ifp);
1504
1505 rnd_add_uint32(&sc->rnd_source, status);
1506
1507 return handled;
1508 }
1509
1510
1511
1512 /*
1513 * Main transmit routine for C+ and gigE NICs.
1514 */
1515
1516 static void
1517 re_start(struct ifnet *ifp)
1518 {
1519 struct rtk_softc *sc;
1520 struct mbuf *m;
1521 bus_dmamap_t map;
1522 struct re_txq *txq;
1523 struct re_desc *d;
1524 struct m_tag *mtag;
1525 uint32_t cmdstat, re_flags, vlanctl;
1526 int ofree, idx, error, nsegs, seg;
1527 int startdesc, curdesc, lastdesc;
1528 bool pad;
1529
1530 sc = ifp->if_softc;
1531 ofree = sc->re_ldata.re_txq_free;
1532
1533 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1534
1535 IFQ_POLL(&ifp->if_snd, m);
1536 if (m == NULL)
1537 break;
1538
1539 if (sc->re_ldata.re_txq_free == 0 ||
1540 sc->re_ldata.re_tx_free == 0) {
1541 /* no more free slots left */
1542 ifp->if_flags |= IFF_OACTIVE;
1543 break;
1544 }
1545
1546 /*
1547 * Set up checksum offload. Note: checksum offload bits must
1548 * appear in all descriptors of a multi-descriptor transmit
1549 * attempt. (This is according to testing done with an 8169
1550 * chip. I'm not sure if this is a requirement or a bug.)
1551 */
1552
1553 vlanctl = 0;
1554 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1555 uint32_t segsz = m->m_pkthdr.segsz;
1556
1557 re_flags = RE_TDESC_CMD_LGSEND |
1558 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1559 } else {
1560 /*
1561 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1562 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1563 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1564 */
1565 re_flags = 0;
1566 if ((m->m_pkthdr.csum_flags &
1567 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1568 != 0) {
1569 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1570 re_flags |= RE_TDESC_CMD_IPCSUM;
1571 if (m->m_pkthdr.csum_flags &
1572 M_CSUM_TCPv4) {
1573 re_flags |=
1574 RE_TDESC_CMD_TCPCSUM;
1575 } else if (m->m_pkthdr.csum_flags &
1576 M_CSUM_UDPv4) {
1577 re_flags |=
1578 RE_TDESC_CMD_UDPCSUM;
1579 }
1580 } else {
1581 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1582 if (m->m_pkthdr.csum_flags &
1583 M_CSUM_TCPv4) {
1584 vlanctl |=
1585 RE_TDESC_VLANCTL_TCPCSUM;
1586 } else if (m->m_pkthdr.csum_flags &
1587 M_CSUM_UDPv4) {
1588 vlanctl |=
1589 RE_TDESC_VLANCTL_UDPCSUM;
1590 }
1591 }
1592 }
1593 }
1594
1595 txq = &sc->re_ldata.re_txq[idx];
1596 map = txq->txq_dmamap;
1597 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1598 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1599
1600 if (__predict_false(error)) {
1601 /* XXX try to defrag if EFBIG? */
1602 printf("%s: can't map mbuf (error %d)\n",
1603 device_xname(sc->sc_dev), error);
1604
1605 IFQ_DEQUEUE(&ifp->if_snd, m);
1606 m_freem(m);
1607 ifp->if_oerrors++;
1608 continue;
1609 }
1610
1611 nsegs = map->dm_nsegs;
1612 pad = false;
1613 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1614 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1615 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1616 pad = true;
1617 nsegs++;
1618 }
1619
1620 if (nsegs > sc->re_ldata.re_tx_free) {
1621 /*
1622 * Not enough free descriptors to transmit this packet.
1623 */
1624 ifp->if_flags |= IFF_OACTIVE;
1625 bus_dmamap_unload(sc->sc_dmat, map);
1626 break;
1627 }
1628
1629 IFQ_DEQUEUE(&ifp->if_snd, m);
1630
1631 /*
1632 * Make sure that the caches are synchronized before we
1633 * ask the chip to start DMA for the packet data.
1634 */
1635 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1636 BUS_DMASYNC_PREWRITE);
1637
1638 /*
1639 * Set up hardware VLAN tagging. Note: vlan tag info must
1640 * appear in all descriptors of a multi-descriptor
1641 * transmission attempt.
1642 */
1643 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1644 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1645 RE_TDESC_VLANCTL_TAG;
1646
1647 /*
1648 * Map the segment array into descriptors.
1649 * Note that we set the start-of-frame and
1650 * end-of-frame markers for either TX or RX,
1651 * but they really only have meaning in the TX case.
1652 * (In the RX case, it's the chip that tells us
1653 * where packets begin and end.)
1654 * We also keep track of the end of the ring
1655 * and set the end-of-ring bits as needed,
1656 * and we set the ownership bits in all except
1657 * the very first descriptor. (The caller will
1658 * set this descriptor later when it start
1659 * transmission or reception.)
1660 */
1661 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1662 lastdesc = -1;
1663 for (seg = 0; seg < map->dm_nsegs;
1664 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1665 d = &sc->re_ldata.re_tx_list[curdesc];
1666 #ifdef DIAGNOSTIC
1667 RE_TXDESCSYNC(sc, curdesc,
1668 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1669 cmdstat = le32toh(d->re_cmdstat);
1670 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1671 if (cmdstat & RE_TDESC_STAT_OWN) {
1672 panic("%s: tried to map busy TX descriptor",
1673 device_xname(sc->sc_dev));
1674 }
1675 #endif
1676
1677 d->re_vlanctl = htole32(vlanctl);
1678 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1679 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1680 if (seg == 0)
1681 cmdstat |= RE_TDESC_CMD_SOF;
1682 else
1683 cmdstat |= RE_TDESC_CMD_OWN;
1684 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1685 cmdstat |= RE_TDESC_CMD_EOR;
1686 if (seg == nsegs - 1) {
1687 cmdstat |= RE_TDESC_CMD_EOF;
1688 lastdesc = curdesc;
1689 }
1690 d->re_cmdstat = htole32(cmdstat);
1691 RE_TXDESCSYNC(sc, curdesc,
1692 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1693 }
1694 if (__predict_false(pad)) {
1695 d = &sc->re_ldata.re_tx_list[curdesc];
1696 d->re_vlanctl = htole32(vlanctl);
1697 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1698 cmdstat = re_flags |
1699 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1700 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1701 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1702 cmdstat |= RE_TDESC_CMD_EOR;
1703 d->re_cmdstat = htole32(cmdstat);
1704 RE_TXDESCSYNC(sc, curdesc,
1705 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1706 lastdesc = curdesc;
1707 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1708 }
1709 KASSERT(lastdesc != -1);
1710
1711 /* Transfer ownership of packet to the chip. */
1712
1713 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1714 htole32(RE_TDESC_CMD_OWN);
1715 RE_TXDESCSYNC(sc, startdesc,
1716 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1717
1718 /* update info of TX queue and descriptors */
1719 txq->txq_mbuf = m;
1720 txq->txq_descidx = lastdesc;
1721 txq->txq_nsegs = nsegs;
1722
1723 sc->re_ldata.re_txq_free--;
1724 sc->re_ldata.re_tx_free -= nsegs;
1725 sc->re_ldata.re_tx_nextfree = curdesc;
1726
1727 /*
1728 * If there's a BPF listener, bounce a copy of this frame
1729 * to him.
1730 */
1731 bpf_mtap(ifp, m);
1732 }
1733
1734 if (sc->re_ldata.re_txq_free < ofree) {
1735 /*
1736 * TX packets are enqueued.
1737 */
1738 sc->re_ldata.re_txq_prodidx = idx;
1739
1740 /*
1741 * Start the transmitter to poll.
1742 *
1743 * RealTek put the TX poll request register in a different
1744 * location on the 8169 gigE chip. I don't know why.
1745 */
1746 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1747 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1748 else
1749 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1750
1751 /*
1752 * Use the countdown timer for interrupt moderation.
1753 * 'TX done' interrupts are disabled. Instead, we reset the
1754 * countdown timer, which will begin counting until it hits
1755 * the value in the TIMERINT register, and then trigger an
1756 * interrupt. Each time we write to the TIMERCNT register,
1757 * the timer count is reset to 0.
1758 */
1759 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1760
1761 /*
1762 * Set a timeout in case the chip goes out to lunch.
1763 */
1764 ifp->if_timer = 5;
1765 }
1766 }
1767
1768 static int
1769 re_init(struct ifnet *ifp)
1770 {
1771 struct rtk_softc *sc = ifp->if_softc;
1772 uint32_t rxcfg = 0;
1773 uint16_t cfg;
1774 int error;
1775 #ifdef RE_USE_EECMD
1776 const uint8_t *enaddr;
1777 uint32_t reg;
1778 #endif
1779
1780 if ((error = re_enable(sc)) != 0)
1781 goto out;
1782
1783 /*
1784 * Cancel pending I/O and free all RX/TX buffers.
1785 */
1786 re_stop(ifp, 0);
1787
1788 re_reset(sc);
1789
1790 /*
1791 * Enable C+ RX and TX mode, as well as VLAN stripping and
1792 * RX checksum offload. We must configure the C+ register
1793 * before all others.
1794 */
1795 cfg = RE_CPLUSCMD_PCI_MRW;
1796
1797 /*
1798 * XXX: For old 8169 set bit 14.
1799 * For 8169S/8110S and above, do not set bit 14.
1800 */
1801 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1802 cfg |= (0x1 << 14);
1803
1804 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1805 cfg |= RE_CPLUSCMD_VLANSTRIP;
1806 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1807 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1808 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1809 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1810 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1811 cfg |= RE_CPLUSCMD_TXENB;
1812 } else
1813 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1814
1815 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1816
1817 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1818 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1819 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1820
1821 DELAY(10000);
1822
1823 #ifdef RE_USE_EECMD
1824 /*
1825 * Init our MAC address. Even though the chipset
1826 * documentation doesn't mention it, we need to enter "Config
1827 * register write enable" mode to modify the ID registers.
1828 */
1829 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1830 enaddr = CLLADDR(ifp->if_sadl);
1831 reg = enaddr[0] | (enaddr[1] << 8) |
1832 (enaddr[2] << 16) | (enaddr[3] << 24);
1833 CSR_WRITE_4(sc, RTK_IDR0, reg);
1834 reg = enaddr[4] | (enaddr[5] << 8);
1835 CSR_WRITE_4(sc, RTK_IDR4, reg);
1836 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1837 #endif
1838
1839 /*
1840 * For C+ mode, initialize the RX descriptors and mbufs.
1841 */
1842 re_rx_list_init(sc);
1843 re_tx_list_init(sc);
1844
1845 /*
1846 * Load the addresses of the RX and TX lists into the chip.
1847 */
1848 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1849 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1850 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1851 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1852
1853 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1854 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1855 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1856 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1857
1858 if (sc->sc_quirk & RTKQ_RXDV_GATED) {
1859 CSR_WRITE_4(sc, RTK_MISC,
1860 CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
1861 }
1862
1863 /*
1864 * Enable transmit and receive.
1865 */
1866 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1867
1868 /*
1869 * Set the initial TX and RX configuration.
1870 */
1871 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1872 /* test mode is needed only for old 8169 */
1873 CSR_WRITE_4(sc, RTK_TXCFG,
1874 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1875 } else
1876 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1877
1878 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1879
1880 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1881
1882 /* Set the individual bit to receive frames for this host only. */
1883 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1884 rxcfg |= RTK_RXCFG_RX_INDIV;
1885
1886 /* If we want promiscuous mode, set the allframes bit. */
1887 if (ifp->if_flags & IFF_PROMISC)
1888 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1889 else
1890 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1891 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1892
1893 /*
1894 * Set capture broadcast bit to capture broadcast frames.
1895 */
1896 if (ifp->if_flags & IFF_BROADCAST)
1897 rxcfg |= RTK_RXCFG_RX_BROAD;
1898 else
1899 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1900 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1901
1902 /*
1903 * Program the multicast filter, if necessary.
1904 */
1905 rtk_setmulti(sc);
1906
1907 /*
1908 * Enable interrupts.
1909 */
1910 if (sc->re_testmode)
1911 CSR_WRITE_2(sc, RTK_IMR, 0);
1912 else
1913 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1914
1915 /* Start RX/TX process. */
1916 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1917 #ifdef notdef
1918 /* Enable receiver and transmitter. */
1919 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1920 #endif
1921
1922 /*
1923 * Initialize the timer interrupt register so that
1924 * a timer interrupt will be generated once the timer
1925 * reaches a certain number of ticks. The timer is
1926 * reloaded on each transmit. This gives us TX interrupt
1927 * moderation, which dramatically improves TX frame rate.
1928 */
1929
1930 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1931 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1932 else {
1933 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1934
1935 /*
1936 * For 8169 gigE NICs, set the max allowed RX packet
1937 * size so we can receive jumbo frames.
1938 */
1939 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1940 }
1941
1942 if (sc->re_testmode)
1943 return 0;
1944
1945 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1946
1947 ifp->if_flags |= IFF_RUNNING;
1948 ifp->if_flags &= ~IFF_OACTIVE;
1949
1950 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1951
1952 out:
1953 if (error) {
1954 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1955 ifp->if_timer = 0;
1956 printf("%s: interface not running\n",
1957 device_xname(sc->sc_dev));
1958 }
1959
1960 return error;
1961 }
1962
1963 static int
1964 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1965 {
1966 struct rtk_softc *sc = ifp->if_softc;
1967 struct ifreq *ifr = data;
1968 int s, error = 0;
1969
1970 s = splnet();
1971
1972 switch (command) {
1973 case SIOCSIFMTU:
1974 /*
1975 * Disable jumbo frames if it's not supported.
1976 */
1977 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1978 ifr->ifr_mtu > ETHERMTU) {
1979 error = EINVAL;
1980 break;
1981 }
1982
1983 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1984 error = EINVAL;
1985 else if ((error = ifioctl_common(ifp, command, data)) ==
1986 ENETRESET)
1987 error = 0;
1988 break;
1989 default:
1990 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1991 break;
1992
1993 error = 0;
1994
1995 if (command == SIOCSIFCAP)
1996 error = (*ifp->if_init)(ifp);
1997 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1998 ;
1999 else if (ifp->if_flags & IFF_RUNNING)
2000 rtk_setmulti(sc);
2001 break;
2002 }
2003
2004 splx(s);
2005
2006 return error;
2007 }
2008
2009 static void
2010 re_watchdog(struct ifnet *ifp)
2011 {
2012 struct rtk_softc *sc;
2013 int s;
2014
2015 sc = ifp->if_softc;
2016 s = splnet();
2017 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2018 ifp->if_oerrors++;
2019
2020 re_txeof(sc);
2021 re_rxeof(sc);
2022
2023 re_init(ifp);
2024
2025 splx(s);
2026 }
2027
2028 /*
2029 * Stop the adapter and free any mbufs allocated to the
2030 * RX and TX lists.
2031 */
2032 static void
2033 re_stop(struct ifnet *ifp, int disable)
2034 {
2035 int i;
2036 struct rtk_softc *sc = ifp->if_softc;
2037
2038 callout_stop(&sc->rtk_tick_ch);
2039
2040 mii_down(&sc->mii);
2041
2042 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
2043 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
2044 RTK_CMD_RX_ENB);
2045 else
2046 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2047 DELAY(1000);
2048 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2049 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
2050
2051 if (sc->re_head != NULL) {
2052 m_freem(sc->re_head);
2053 sc->re_head = sc->re_tail = NULL;
2054 }
2055
2056 /* Free the TX list buffers. */
2057 for (i = 0; i < RE_TX_QLEN; i++) {
2058 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2059 bus_dmamap_unload(sc->sc_dmat,
2060 sc->re_ldata.re_txq[i].txq_dmamap);
2061 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2062 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2063 }
2064 }
2065
2066 /* Free the RX list buffers. */
2067 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2068 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2069 bus_dmamap_unload(sc->sc_dmat,
2070 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2071 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2072 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2073 }
2074 }
2075
2076 if (disable)
2077 re_disable(sc);
2078
2079 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2080 ifp->if_timer = 0;
2081 }
2082