rtl8169.c revision 1.144 1 /* $NetBSD: rtl8169.c,v 1.144 2015/04/13 16:33:24 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.144 2015/04/13 16:33:24 riastradh Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51 * RTL8110S, the RTL8168 and the RTL8111.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137 #include <sys/rndsource.h>
138
139 #include <sys/bus.h>
140
141 #include <dev/mii/mii.h>
142 #include <dev/mii/miivar.h>
143
144 #include <dev/ic/rtl81x9reg.h>
145 #include <dev/ic/rtl81x9var.h>
146
147 #include <dev/ic/rtl8169var.h>
148
149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
150
151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
152 static int re_rx_list_init(struct rtk_softc *);
153 static int re_tx_list_init(struct rtk_softc *);
154 static void re_rxeof(struct rtk_softc *);
155 static void re_txeof(struct rtk_softc *);
156 static void re_tick(void *);
157 static void re_start(struct ifnet *);
158 static int re_ioctl(struct ifnet *, u_long, void *);
159 static int re_init(struct ifnet *);
160 static void re_stop(struct ifnet *, int);
161 static void re_watchdog(struct ifnet *);
162
163 static int re_enable(struct rtk_softc *);
164 static void re_disable(struct rtk_softc *);
165
166 static int re_gmii_readreg(device_t, int, int);
167 static void re_gmii_writereg(device_t, int, int, int);
168
169 static int re_miibus_readreg(device_t, int, int);
170 static void re_miibus_writereg(device_t, int, int, int);
171 static void re_miibus_statchg(struct ifnet *);
172
173 static void re_reset(struct rtk_softc *);
174
175 static inline void
176 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
177 {
178
179 d->re_bufaddr_lo = htole32((uint32_t)addr);
180 if (sizeof(bus_addr_t) == sizeof(uint64_t))
181 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
182 else
183 d->re_bufaddr_hi = 0;
184 }
185
186 static int
187 re_gmii_readreg(device_t dev, int phy, int reg)
188 {
189 struct rtk_softc *sc = device_private(dev);
190 uint32_t rval;
191 int i;
192
193 if (phy != 7)
194 return 0;
195
196 /* Let the rgephy driver read the GMEDIASTAT register */
197
198 if (reg == RTK_GMEDIASTAT) {
199 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
200 return rval;
201 }
202
203 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
204 DELAY(1000);
205
206 for (i = 0; i < RTK_TIMEOUT; i++) {
207 rval = CSR_READ_4(sc, RTK_PHYAR);
208 if (rval & RTK_PHYAR_BUSY)
209 break;
210 DELAY(100);
211 }
212
213 if (i == RTK_TIMEOUT) {
214 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
215 return 0;
216 }
217
218 return rval & RTK_PHYAR_PHYDATA;
219 }
220
221 static void
222 re_gmii_writereg(device_t dev, int phy, int reg, int data)
223 {
224 struct rtk_softc *sc = device_private(dev);
225 uint32_t rval;
226 int i;
227
228 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
229 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
230 DELAY(1000);
231
232 for (i = 0; i < RTK_TIMEOUT; i++) {
233 rval = CSR_READ_4(sc, RTK_PHYAR);
234 if (!(rval & RTK_PHYAR_BUSY))
235 break;
236 DELAY(100);
237 }
238
239 if (i == RTK_TIMEOUT) {
240 printf("%s: PHY write reg %x <- %x failed\n",
241 device_xname(sc->sc_dev), reg, data);
242 }
243 }
244
245 static int
246 re_miibus_readreg(device_t dev, int phy, int reg)
247 {
248 struct rtk_softc *sc = device_private(dev);
249 uint16_t rval = 0;
250 uint16_t re8139_reg = 0;
251 int s;
252
253 s = splnet();
254
255 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
256 rval = re_gmii_readreg(dev, phy, reg);
257 splx(s);
258 return rval;
259 }
260
261 /* Pretend the internal PHY is only at address 0 */
262 if (phy) {
263 splx(s);
264 return 0;
265 }
266 switch (reg) {
267 case MII_BMCR:
268 re8139_reg = RTK_BMCR;
269 break;
270 case MII_BMSR:
271 re8139_reg = RTK_BMSR;
272 break;
273 case MII_ANAR:
274 re8139_reg = RTK_ANAR;
275 break;
276 case MII_ANER:
277 re8139_reg = RTK_ANER;
278 break;
279 case MII_ANLPAR:
280 re8139_reg = RTK_LPAR;
281 break;
282 case MII_PHYIDR1:
283 case MII_PHYIDR2:
284 splx(s);
285 return 0;
286 /*
287 * Allow the rlphy driver to read the media status
288 * register. If we have a link partner which does not
289 * support NWAY, this is the register which will tell
290 * us the results of parallel detection.
291 */
292 case RTK_MEDIASTAT:
293 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
294 splx(s);
295 return rval;
296 default:
297 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
298 splx(s);
299 return 0;
300 }
301 rval = CSR_READ_2(sc, re8139_reg);
302 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
303 /* 8139C+ has different bit layout. */
304 rval &= ~(BMCR_LOOP | BMCR_ISO);
305 }
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(device_t dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = device_private(dev);
314 uint16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
334 /* 8139C+ has different bit layout. */
335 data &= ~(BMCR_LOOP | BMCR_ISO);
336 }
337 break;
338 case MII_BMSR:
339 re8139_reg = RTK_BMSR;
340 break;
341 case MII_ANAR:
342 re8139_reg = RTK_ANAR;
343 break;
344 case MII_ANER:
345 re8139_reg = RTK_ANER;
346 break;
347 case MII_ANLPAR:
348 re8139_reg = RTK_LPAR;
349 break;
350 case MII_PHYIDR1:
351 case MII_PHYIDR2:
352 splx(s);
353 return;
354 break;
355 default:
356 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
357 splx(s);
358 return;
359 }
360 CSR_WRITE_2(sc, re8139_reg, data);
361 splx(s);
362 return;
363 }
364
365 static void
366 re_miibus_statchg(struct ifnet *ifp)
367 {
368
369 return;
370 }
371
372 static void
373 re_reset(struct rtk_softc *sc)
374 {
375 int i;
376
377 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
378
379 for (i = 0; i < RTK_TIMEOUT; i++) {
380 DELAY(10);
381 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
382 break;
383 }
384 if (i == RTK_TIMEOUT)
385 printf("%s: reset never completed!\n",
386 device_xname(sc->sc_dev));
387
388 /*
389 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
390 * but also says "Rtl8169s sigle chip detected".
391 */
392 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
393 CSR_WRITE_1(sc, RTK_LDPS, 1);
394
395 }
396
397 /*
398 * The following routine is designed to test for a defect on some
399 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
400 * lines connected to the bus, however for a 32-bit only card, they
401 * should be pulled high. The result of this defect is that the
402 * NIC will not work right if you plug it into a 64-bit slot: DMA
403 * operations will be done with 64-bit transfers, which will fail
404 * because the 64-bit data lines aren't connected.
405 *
406 * There's no way to work around this (short of talking a soldering
407 * iron to the board), however we can detect it. The method we use
408 * here is to put the NIC into digital loopback mode, set the receiver
409 * to promiscuous mode, and then try to send a frame. We then compare
410 * the frame data we sent to what was received. If the data matches,
411 * then the NIC is working correctly, otherwise we know the user has
412 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
413 * slot. In the latter case, there's no way the NIC can work correctly,
414 * so we print out a message on the console and abort the device attach.
415 */
416
417 int
418 re_diag(struct rtk_softc *sc)
419 {
420 struct ifnet *ifp = &sc->ethercom.ec_if;
421 struct mbuf *m0;
422 struct ether_header *eh;
423 struct re_rxsoft *rxs;
424 struct re_desc *cur_rx;
425 bus_dmamap_t dmamap;
426 uint16_t status;
427 uint32_t rxstat;
428 int total_len, i, s, error = 0;
429 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
430 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
431
432 /* Allocate a single mbuf */
433
434 MGETHDR(m0, M_DONTWAIT, MT_DATA);
435 if (m0 == NULL)
436 return ENOBUFS;
437
438 /*
439 * Initialize the NIC in test mode. This sets the chip up
440 * so that it can send and receive frames, but performs the
441 * following special functions:
442 * - Puts receiver in promiscuous mode
443 * - Enables digital loopback mode
444 * - Leaves interrupts turned off
445 */
446
447 ifp->if_flags |= IFF_PROMISC;
448 sc->re_testmode = 1;
449 re_init(ifp);
450 re_stop(ifp, 0);
451 DELAY(100000);
452 re_init(ifp);
453
454 /* Put some data in the mbuf */
455
456 eh = mtod(m0, struct ether_header *);
457 memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
458 memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
459 eh->ether_type = htons(ETHERTYPE_IP);
460 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
461
462 /*
463 * Queue the packet, start transmission.
464 */
465
466 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
467 s = splnet();
468 IF_ENQUEUE(&ifp->if_snd, m0);
469 re_start(ifp);
470 splx(s);
471 m0 = NULL;
472
473 /* Wait for it to propagate through the chip */
474
475 DELAY(100000);
476 for (i = 0; i < RTK_TIMEOUT; i++) {
477 status = CSR_READ_2(sc, RTK_ISR);
478 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
479 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
480 break;
481 DELAY(10);
482 }
483 if (i == RTK_TIMEOUT) {
484 aprint_error_dev(sc->sc_dev,
485 "diagnostic failed, failed to receive packet "
486 "in loopback mode\n");
487 error = EIO;
488 goto done;
489 }
490
491 /*
492 * The packet should have been dumped into the first
493 * entry in the RX DMA ring. Grab it from there.
494 */
495
496 rxs = &sc->re_ldata.re_rxsoft[0];
497 dmamap = rxs->rxs_dmamap;
498 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
499 BUS_DMASYNC_POSTREAD);
500 bus_dmamap_unload(sc->sc_dmat, dmamap);
501
502 m0 = rxs->rxs_mbuf;
503 rxs->rxs_mbuf = NULL;
504 eh = mtod(m0, struct ether_header *);
505
506 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
507 cur_rx = &sc->re_ldata.re_rx_list[0];
508 rxstat = le32toh(cur_rx->re_cmdstat);
509 total_len = rxstat & sc->re_rxlenmask;
510
511 if (total_len != ETHER_MIN_LEN) {
512 aprint_error_dev(sc->sc_dev,
513 "diagnostic failed, received short packet\n");
514 error = EIO;
515 goto done;
516 }
517
518 /* Test that the received packet data matches what we sent. */
519
520 if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
521 memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
522 ntohs(eh->ether_type) != ETHERTYPE_IP) {
523 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
524 "expected TX data: %s/%s/0x%x\n"
525 "received RX data: %s/%s/0x%x\n"
526 "You may have a defective 32-bit NIC plugged "
527 "into a 64-bit PCI slot.\n"
528 "Please re-install the NIC in a 32-bit slot "
529 "for proper operation.\n"
530 "Read the re(4) man page for more details.\n" ,
531 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
532 ether_sprintf(eh->ether_dhost),
533 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
534 error = EIO;
535 }
536
537 done:
538 /* Turn interface off, release resources */
539
540 sc->re_testmode = 0;
541 ifp->if_flags &= ~IFF_PROMISC;
542 re_stop(ifp, 0);
543 if (m0 != NULL)
544 m_freem(m0);
545
546 return error;
547 }
548
549
550 /*
551 * Attach the interface. Allocate softc structures, do ifmedia
552 * setup and ethernet/BPF attach.
553 */
554 void
555 re_attach(struct rtk_softc *sc)
556 {
557 uint8_t eaddr[ETHER_ADDR_LEN];
558 struct ifnet *ifp;
559 int error = 0, i;
560
561 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
562 uint32_t hwrev;
563
564 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
565 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
566 switch (hwrev) {
567 case RTK_HWREV_8169:
568 sc->sc_quirk |= RTKQ_8169NONS;
569 break;
570 case RTK_HWREV_8169S:
571 case RTK_HWREV_8110S:
572 case RTK_HWREV_8169_8110SB:
573 case RTK_HWREV_8169_8110SBL:
574 case RTK_HWREV_8169_8110SC:
575 sc->sc_quirk |= RTKQ_MACLDPS;
576 break;
577 case RTK_HWREV_8168_SPIN1:
578 case RTK_HWREV_8168_SPIN2:
579 case RTK_HWREV_8168_SPIN3:
580 sc->sc_quirk |= RTKQ_MACSTAT;
581 break;
582 case RTK_HWREV_8168C:
583 case RTK_HWREV_8168C_SPIN2:
584 case RTK_HWREV_8168CP:
585 case RTK_HWREV_8168D:
586 case RTK_HWREV_8168DP:
587 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
588 RTKQ_MACSTAT | RTKQ_CMDSTOP;
589 /*
590 * From FreeBSD driver:
591 *
592 * These (8168/8111) controllers support jumbo frame
593 * but it seems that enabling it requires touching
594 * additional magic registers. Depending on MAC
595 * revisions some controllers need to disable
596 * checksum offload. So disable jumbo frame until
597 * I have better idea what it really requires to
598 * make it support.
599 * RTL8168C/CP : supports up to 6KB jumbo frame.
600 * RTL8111C/CP : supports up to 9KB jumbo frame.
601 */
602 sc->sc_quirk |= RTKQ_NOJUMBO;
603 break;
604 case RTK_HWREV_8168E:
605 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
606 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
607 RTKQ_NOJUMBO;
608 break;
609 case RTK_HWREV_8168E_VL:
610 case RTK_HWREV_8168F:
611 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
612 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
613 break;
614 case RTK_HWREV_8168G:
615 case RTK_HWREV_8168G_SPIN1:
616 case RTK_HWREV_8168G_SPIN2:
617 case RTK_HWREV_8168G_SPIN4:
618 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
619 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
620 RTKQ_RXDV_GATED;
621 break;
622 case RTK_HWREV_8100E:
623 case RTK_HWREV_8100E_SPIN2:
624 case RTK_HWREV_8101E:
625 sc->sc_quirk |= RTKQ_NOJUMBO;
626 break;
627 case RTK_HWREV_8102E:
628 case RTK_HWREV_8102EL:
629 case RTK_HWREV_8103E:
630 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
631 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
632 break;
633 default:
634 aprint_normal_dev(sc->sc_dev,
635 "Unknown revision (0x%08x)\n", hwrev);
636 /* assume the latest features */
637 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
638 sc->sc_quirk |= RTKQ_NOJUMBO;
639 }
640
641 /* Set RX length mask */
642 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
643 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
644 } else {
645 sc->sc_quirk |= RTKQ_NOJUMBO;
646
647 /* Set RX length mask */
648 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
649 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
650 }
651
652 /* Reset the adapter. */
653 re_reset(sc);
654
655 /*
656 * RTL81x9 chips automatically read EEPROM to init MAC address,
657 * and some NAS override its MAC address per own configuration,
658 * so no need to explicitely read EEPROM and set ID registers.
659 */
660 #ifdef RE_USE_EECMD
661 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
662 /*
663 * Get station address from ID registers.
664 */
665 for (i = 0; i < ETHER_ADDR_LEN; i++)
666 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
667 } else {
668 uint16_t val;
669 int addr_len;
670
671 /*
672 * Get station address from the EEPROM.
673 */
674 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
675 addr_len = RTK_EEADDR_LEN1;
676 else
677 addr_len = RTK_EEADDR_LEN0;
678
679 /*
680 * Get station address from the EEPROM.
681 */
682 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
683 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
684 eaddr[(i * 2) + 0] = val & 0xff;
685 eaddr[(i * 2) + 1] = val >> 8;
686 }
687 }
688 #else
689 /*
690 * Get station address from ID registers.
691 */
692 for (i = 0; i < ETHER_ADDR_LEN; i++)
693 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
694 #endif
695
696 /* Take PHY out of power down mode. */
697 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
698 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
699
700 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
701 ether_sprintf(eaddr));
702
703 if (sc->re_ldata.re_tx_desc_cnt >
704 PAGE_SIZE / sizeof(struct re_desc)) {
705 sc->re_ldata.re_tx_desc_cnt =
706 PAGE_SIZE / sizeof(struct re_desc);
707 }
708
709 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
710 sc->re_ldata.re_tx_desc_cnt);
711 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
712
713 /* Allocate DMA'able memory for the TX ring */
714 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
715 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
716 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
717 aprint_error_dev(sc->sc_dev,
718 "can't allocate tx listseg, error = %d\n", error);
719 goto fail_0;
720 }
721
722 /* Load the map for the TX ring. */
723 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
724 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
725 (void **)&sc->re_ldata.re_tx_list,
726 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
727 aprint_error_dev(sc->sc_dev,
728 "can't map tx list, error = %d\n", error);
729 goto fail_1;
730 }
731 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
732
733 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
734 RE_TX_LIST_SZ(sc), 0, 0,
735 &sc->re_ldata.re_tx_list_map)) != 0) {
736 aprint_error_dev(sc->sc_dev,
737 "can't create tx list map, error = %d\n", error);
738 goto fail_2;
739 }
740
741
742 if ((error = bus_dmamap_load(sc->sc_dmat,
743 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
744 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
745 aprint_error_dev(sc->sc_dev,
746 "can't load tx list, error = %d\n", error);
747 goto fail_3;
748 }
749
750 /* Create DMA maps for TX buffers */
751 for (i = 0; i < RE_TX_QLEN; i++) {
752 error = bus_dmamap_create(sc->sc_dmat,
753 round_page(IP_MAXPACKET),
754 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
755 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
756 if (error) {
757 aprint_error_dev(sc->sc_dev,
758 "can't create DMA map for TX\n");
759 goto fail_4;
760 }
761 }
762
763 /* Allocate DMA'able memory for the RX ring */
764 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
765 if ((error = bus_dmamem_alloc(sc->sc_dmat,
766 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
767 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
768 aprint_error_dev(sc->sc_dev,
769 "can't allocate rx listseg, error = %d\n", error);
770 goto fail_4;
771 }
772
773 /* Load the map for the RX ring. */
774 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
775 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
776 (void **)&sc->re_ldata.re_rx_list,
777 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
778 aprint_error_dev(sc->sc_dev,
779 "can't map rx list, error = %d\n", error);
780 goto fail_5;
781 }
782 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
783
784 if ((error = bus_dmamap_create(sc->sc_dmat,
785 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
786 &sc->re_ldata.re_rx_list_map)) != 0) {
787 aprint_error_dev(sc->sc_dev,
788 "can't create rx list map, error = %d\n", error);
789 goto fail_6;
790 }
791
792 if ((error = bus_dmamap_load(sc->sc_dmat,
793 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
794 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
795 aprint_error_dev(sc->sc_dev,
796 "can't load rx list, error = %d\n", error);
797 goto fail_7;
798 }
799
800 /* Create DMA maps for RX buffers */
801 for (i = 0; i < RE_RX_DESC_CNT; i++) {
802 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
803 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
804 if (error) {
805 aprint_error_dev(sc->sc_dev,
806 "can't create DMA map for RX\n");
807 goto fail_8;
808 }
809 }
810
811 /*
812 * Record interface as attached. From here, we should not fail.
813 */
814 sc->sc_flags |= RTK_ATTACHED;
815
816 ifp = &sc->ethercom.ec_if;
817 ifp->if_softc = sc;
818 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
819 ifp->if_mtu = ETHERMTU;
820 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
821 ifp->if_ioctl = re_ioctl;
822 sc->ethercom.ec_capabilities |=
823 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
824 ifp->if_start = re_start;
825 ifp->if_stop = re_stop;
826
827 /*
828 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
829 * so we have a workaround to handle the bug by padding
830 * such packets manually.
831 */
832 ifp->if_capabilities |=
833 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
834 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
835 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
836 IFCAP_TSOv4;
837
838 /*
839 * XXX
840 * Still have no idea how to make TSO work on 8168C, 8168CP,
841 * 8102E, 8111C and 8111CP.
842 */
843 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
844 ifp->if_capabilities &= ~IFCAP_TSOv4;
845
846 ifp->if_watchdog = re_watchdog;
847 ifp->if_init = re_init;
848 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
849 ifp->if_capenable = ifp->if_capabilities;
850 IFQ_SET_READY(&ifp->if_snd);
851
852 callout_init(&sc->rtk_tick_ch, 0);
853
854 /* Do MII setup */
855 sc->mii.mii_ifp = ifp;
856 sc->mii.mii_readreg = re_miibus_readreg;
857 sc->mii.mii_writereg = re_miibus_writereg;
858 sc->mii.mii_statchg = re_miibus_statchg;
859 sc->ethercom.ec_mii = &sc->mii;
860 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
861 ether_mediastatus);
862 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
863 MII_OFFSET_ANY, 0);
864 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
865
866 /*
867 * Call MI attach routine.
868 */
869 if_attach(ifp);
870 ether_ifattach(ifp, eaddr);
871
872 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
873 RND_TYPE_NET, RND_FLAG_DEFAULT);
874
875 if (pmf_device_register(sc->sc_dev, NULL, NULL))
876 pmf_class_network_register(sc->sc_dev, ifp);
877 else
878 aprint_error_dev(sc->sc_dev,
879 "couldn't establish power handler\n");
880
881 return;
882
883 fail_8:
884 /* Destroy DMA maps for RX buffers. */
885 for (i = 0; i < RE_RX_DESC_CNT; i++)
886 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
887 bus_dmamap_destroy(sc->sc_dmat,
888 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
889
890 /* Free DMA'able memory for the RX ring. */
891 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
892 fail_7:
893 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
894 fail_6:
895 bus_dmamem_unmap(sc->sc_dmat,
896 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
897 fail_5:
898 bus_dmamem_free(sc->sc_dmat,
899 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
900
901 fail_4:
902 /* Destroy DMA maps for TX buffers. */
903 for (i = 0; i < RE_TX_QLEN; i++)
904 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
905 bus_dmamap_destroy(sc->sc_dmat,
906 sc->re_ldata.re_txq[i].txq_dmamap);
907
908 /* Free DMA'able memory for the TX ring. */
909 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
910 fail_3:
911 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
912 fail_2:
913 bus_dmamem_unmap(sc->sc_dmat,
914 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
915 fail_1:
916 bus_dmamem_free(sc->sc_dmat,
917 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
918 fail_0:
919 return;
920 }
921
922
923 /*
924 * re_activate:
925 * Handle device activation/deactivation requests.
926 */
927 int
928 re_activate(device_t self, enum devact act)
929 {
930 struct rtk_softc *sc = device_private(self);
931
932 switch (act) {
933 case DVACT_DEACTIVATE:
934 if_deactivate(&sc->ethercom.ec_if);
935 return 0;
936 default:
937 return EOPNOTSUPP;
938 }
939 }
940
941 /*
942 * re_detach:
943 * Detach a rtk interface.
944 */
945 int
946 re_detach(struct rtk_softc *sc)
947 {
948 struct ifnet *ifp = &sc->ethercom.ec_if;
949 int i;
950
951 /*
952 * Succeed now if there isn't any work to do.
953 */
954 if ((sc->sc_flags & RTK_ATTACHED) == 0)
955 return 0;
956
957 /* Unhook our tick handler. */
958 callout_stop(&sc->rtk_tick_ch);
959
960 /* Detach all PHYs. */
961 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
962
963 /* Delete all remaining media. */
964 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
965
966 rnd_detach_source(&sc->rnd_source);
967 ether_ifdetach(ifp);
968 if_detach(ifp);
969
970 /* Destroy DMA maps for RX buffers. */
971 for (i = 0; i < RE_RX_DESC_CNT; i++)
972 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
973 bus_dmamap_destroy(sc->sc_dmat,
974 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
975
976 /* Free DMA'able memory for the RX ring. */
977 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
978 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
979 bus_dmamem_unmap(sc->sc_dmat,
980 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
981 bus_dmamem_free(sc->sc_dmat,
982 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
983
984 /* Destroy DMA maps for TX buffers. */
985 for (i = 0; i < RE_TX_QLEN; i++)
986 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
987 bus_dmamap_destroy(sc->sc_dmat,
988 sc->re_ldata.re_txq[i].txq_dmamap);
989
990 /* Free DMA'able memory for the TX ring. */
991 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
992 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
993 bus_dmamem_unmap(sc->sc_dmat,
994 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
995 bus_dmamem_free(sc->sc_dmat,
996 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
997
998 pmf_device_deregister(sc->sc_dev);
999
1000 /* we don't want to run again */
1001 sc->sc_flags &= ~RTK_ATTACHED;
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * re_enable:
1008 * Enable the RTL81X9 chip.
1009 */
1010 static int
1011 re_enable(struct rtk_softc *sc)
1012 {
1013
1014 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
1015 if ((*sc->sc_enable)(sc) != 0) {
1016 printf("%s: device enable failed\n",
1017 device_xname(sc->sc_dev));
1018 return EIO;
1019 }
1020 sc->sc_flags |= RTK_ENABLED;
1021 }
1022 return 0;
1023 }
1024
1025 /*
1026 * re_disable:
1027 * Disable the RTL81X9 chip.
1028 */
1029 static void
1030 re_disable(struct rtk_softc *sc)
1031 {
1032
1033 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1034 (*sc->sc_disable)(sc);
1035 sc->sc_flags &= ~RTK_ENABLED;
1036 }
1037 }
1038
1039 static int
1040 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1041 {
1042 struct mbuf *n = NULL;
1043 bus_dmamap_t map;
1044 struct re_desc *d;
1045 struct re_rxsoft *rxs;
1046 uint32_t cmdstat;
1047 int error;
1048
1049 if (m == NULL) {
1050 MGETHDR(n, M_DONTWAIT, MT_DATA);
1051 if (n == NULL)
1052 return ENOBUFS;
1053
1054 MCLGET(n, M_DONTWAIT);
1055 if ((n->m_flags & M_EXT) == 0) {
1056 m_freem(n);
1057 return ENOBUFS;
1058 }
1059 m = n;
1060 } else
1061 m->m_data = m->m_ext.ext_buf;
1062
1063 /*
1064 * Initialize mbuf length fields and fixup
1065 * alignment so that the frame payload is
1066 * longword aligned.
1067 */
1068 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1069 m->m_data += RE_ETHER_ALIGN;
1070
1071 rxs = &sc->re_ldata.re_rxsoft[idx];
1072 map = rxs->rxs_dmamap;
1073 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1074 BUS_DMA_READ|BUS_DMA_NOWAIT);
1075
1076 if (error)
1077 goto out;
1078
1079 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1080 BUS_DMASYNC_PREREAD);
1081
1082 d = &sc->re_ldata.re_rx_list[idx];
1083 #ifdef DIAGNOSTIC
1084 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1085 cmdstat = le32toh(d->re_cmdstat);
1086 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1087 if (cmdstat & RE_RDESC_STAT_OWN) {
1088 panic("%s: tried to map busy RX descriptor",
1089 device_xname(sc->sc_dev));
1090 }
1091 #endif
1092
1093 rxs->rxs_mbuf = m;
1094
1095 d->re_vlanctl = 0;
1096 cmdstat = map->dm_segs[0].ds_len;
1097 if (idx == (RE_RX_DESC_CNT - 1))
1098 cmdstat |= RE_RDESC_CMD_EOR;
1099 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1100 d->re_cmdstat = htole32(cmdstat);
1101 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1102 cmdstat |= RE_RDESC_CMD_OWN;
1103 d->re_cmdstat = htole32(cmdstat);
1104 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1105
1106 return 0;
1107 out:
1108 if (n != NULL)
1109 m_freem(n);
1110 return ENOMEM;
1111 }
1112
1113 static int
1114 re_tx_list_init(struct rtk_softc *sc)
1115 {
1116 int i;
1117
1118 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1119 for (i = 0; i < RE_TX_QLEN; i++) {
1120 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1121 }
1122
1123 bus_dmamap_sync(sc->sc_dmat,
1124 sc->re_ldata.re_tx_list_map, 0,
1125 sc->re_ldata.re_tx_list_map->dm_mapsize,
1126 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1127 sc->re_ldata.re_txq_prodidx = 0;
1128 sc->re_ldata.re_txq_considx = 0;
1129 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1130 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1131 sc->re_ldata.re_tx_nextfree = 0;
1132
1133 return 0;
1134 }
1135
1136 static int
1137 re_rx_list_init(struct rtk_softc *sc)
1138 {
1139 int i;
1140
1141 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1142
1143 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1144 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1145 return ENOBUFS;
1146 }
1147
1148 sc->re_ldata.re_rx_prodidx = 0;
1149 sc->re_head = sc->re_tail = NULL;
1150
1151 return 0;
1152 }
1153
1154 /*
1155 * RX handler for C+ and 8169. For the gigE chips, we support
1156 * the reception of jumbo frames that have been fragmented
1157 * across multiple 2K mbuf cluster buffers.
1158 */
1159 static void
1160 re_rxeof(struct rtk_softc *sc)
1161 {
1162 struct mbuf *m;
1163 struct ifnet *ifp;
1164 int i, total_len;
1165 struct re_desc *cur_rx;
1166 struct re_rxsoft *rxs;
1167 uint32_t rxstat, rxvlan;
1168
1169 ifp = &sc->ethercom.ec_if;
1170
1171 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1172 cur_rx = &sc->re_ldata.re_rx_list[i];
1173 RE_RXDESCSYNC(sc, i,
1174 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1175 rxstat = le32toh(cur_rx->re_cmdstat);
1176 rxvlan = le32toh(cur_rx->re_vlanctl);
1177 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1178 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1179 break;
1180 }
1181 total_len = rxstat & sc->re_rxlenmask;
1182 rxs = &sc->re_ldata.re_rxsoft[i];
1183 m = rxs->rxs_mbuf;
1184
1185 /* Invalidate the RX mbuf and unload its map */
1186
1187 bus_dmamap_sync(sc->sc_dmat,
1188 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1189 BUS_DMASYNC_POSTREAD);
1190 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1191
1192 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1193 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1194 if (sc->re_head == NULL)
1195 sc->re_head = sc->re_tail = m;
1196 else {
1197 m->m_flags &= ~M_PKTHDR;
1198 sc->re_tail->m_next = m;
1199 sc->re_tail = m;
1200 }
1201 re_newbuf(sc, i, NULL);
1202 continue;
1203 }
1204
1205 /*
1206 * NOTE: for the 8139C+, the frame length field
1207 * is always 12 bits in size, but for the gigE chips,
1208 * it is 13 bits (since the max RX frame length is 16K).
1209 * Unfortunately, all 32 bits in the status word
1210 * were already used, so to make room for the extra
1211 * length bit, RealTek took out the 'frame alignment
1212 * error' bit and shifted the other status bits
1213 * over one slot. The OWN, EOR, FS and LS bits are
1214 * still in the same places. We have already extracted
1215 * the frame length and checked the OWN bit, so rather
1216 * than using an alternate bit mapping, we shift the
1217 * status bits one space to the right so we can evaluate
1218 * them using the 8169 status as though it was in the
1219 * same format as that of the 8139C+.
1220 */
1221 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1222 rxstat >>= 1;
1223
1224 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1225 #ifdef RE_DEBUG
1226 printf("%s: RX error (rxstat = 0x%08x)",
1227 device_xname(sc->sc_dev), rxstat);
1228 if (rxstat & RE_RDESC_STAT_FRALIGN)
1229 printf(", frame alignment error");
1230 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1231 printf(", out of buffer space");
1232 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1233 printf(", FIFO overrun");
1234 if (rxstat & RE_RDESC_STAT_GIANT)
1235 printf(", giant packet");
1236 if (rxstat & RE_RDESC_STAT_RUNT)
1237 printf(", runt packet");
1238 if (rxstat & RE_RDESC_STAT_CRCERR)
1239 printf(", CRC error");
1240 printf("\n");
1241 #endif
1242 ifp->if_ierrors++;
1243 /*
1244 * If this is part of a multi-fragment packet,
1245 * discard all the pieces.
1246 */
1247 if (sc->re_head != NULL) {
1248 m_freem(sc->re_head);
1249 sc->re_head = sc->re_tail = NULL;
1250 }
1251 re_newbuf(sc, i, m);
1252 continue;
1253 }
1254
1255 /*
1256 * If allocating a replacement mbuf fails,
1257 * reload the current one.
1258 */
1259
1260 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1261 ifp->if_ierrors++;
1262 if (sc->re_head != NULL) {
1263 m_freem(sc->re_head);
1264 sc->re_head = sc->re_tail = NULL;
1265 }
1266 re_newbuf(sc, i, m);
1267 continue;
1268 }
1269
1270 if (sc->re_head != NULL) {
1271 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1272 /*
1273 * Special case: if there's 4 bytes or less
1274 * in this buffer, the mbuf can be discarded:
1275 * the last 4 bytes is the CRC, which we don't
1276 * care about anyway.
1277 */
1278 if (m->m_len <= ETHER_CRC_LEN) {
1279 sc->re_tail->m_len -=
1280 (ETHER_CRC_LEN - m->m_len);
1281 m_freem(m);
1282 } else {
1283 m->m_len -= ETHER_CRC_LEN;
1284 m->m_flags &= ~M_PKTHDR;
1285 sc->re_tail->m_next = m;
1286 }
1287 m = sc->re_head;
1288 sc->re_head = sc->re_tail = NULL;
1289 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1290 } else
1291 m->m_pkthdr.len = m->m_len =
1292 (total_len - ETHER_CRC_LEN);
1293
1294 ifp->if_ipackets++;
1295 m->m_pkthdr.rcvif = ifp;
1296
1297 /* Do RX checksumming */
1298 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1299 /* Check IP header checksum */
1300 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1301 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1302 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1303 m->m_pkthdr.csum_flags |=
1304 M_CSUM_IPv4_BAD;
1305
1306 /* Check TCP/UDP checksum */
1307 if (RE_TCPPKT(rxstat)) {
1308 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1309 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1310 m->m_pkthdr.csum_flags |=
1311 M_CSUM_TCP_UDP_BAD;
1312 } else if (RE_UDPPKT(rxstat)) {
1313 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1314 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
1315 /*
1316 * XXX: 8139C+ thinks UDP csum
1317 * 0xFFFF is bad, force software
1318 * calculation.
1319 */
1320 if (sc->sc_quirk & RTKQ_8139CPLUS)
1321 m->m_pkthdr.csum_flags
1322 &= ~M_CSUM_UDPv4;
1323 else
1324 m->m_pkthdr.csum_flags
1325 |= M_CSUM_TCP_UDP_BAD;
1326 }
1327 }
1328 }
1329 } else {
1330 /* Check IPv4 header checksum */
1331 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1332 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1333 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1334 m->m_pkthdr.csum_flags |=
1335 M_CSUM_IPv4_BAD;
1336
1337 /* Check TCPv4/UDPv4 checksum */
1338 if (RE_TCPPKT(rxstat)) {
1339 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1340 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1341 m->m_pkthdr.csum_flags |=
1342 M_CSUM_TCP_UDP_BAD;
1343 } else if (RE_UDPPKT(rxstat)) {
1344 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1345 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1346 m->m_pkthdr.csum_flags |=
1347 M_CSUM_TCP_UDP_BAD;
1348 }
1349 }
1350 /* XXX Check TCPv6/UDPv6 checksum? */
1351 }
1352
1353 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1354 VLAN_INPUT_TAG(ifp, m,
1355 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1356 continue);
1357 }
1358 bpf_mtap(ifp, m);
1359 (*ifp->if_input)(ifp, m);
1360 }
1361
1362 sc->re_ldata.re_rx_prodidx = i;
1363 }
1364
1365 static void
1366 re_txeof(struct rtk_softc *sc)
1367 {
1368 struct ifnet *ifp;
1369 struct re_txq *txq;
1370 uint32_t txstat;
1371 int idx, descidx;
1372
1373 ifp = &sc->ethercom.ec_if;
1374
1375 for (idx = sc->re_ldata.re_txq_considx;
1376 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1377 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1378 txq = &sc->re_ldata.re_txq[idx];
1379 KASSERT(txq->txq_mbuf != NULL);
1380
1381 descidx = txq->txq_descidx;
1382 RE_TXDESCSYNC(sc, descidx,
1383 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1384 txstat =
1385 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1386 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1387 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1388 if (txstat & RE_TDESC_CMD_OWN) {
1389 break;
1390 }
1391
1392 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1393 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1394 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1395 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1396 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1397 m_freem(txq->txq_mbuf);
1398 txq->txq_mbuf = NULL;
1399
1400 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1401 ifp->if_collisions++;
1402 if (txstat & RE_TDESC_STAT_TXERRSUM)
1403 ifp->if_oerrors++;
1404 else
1405 ifp->if_opackets++;
1406 }
1407
1408 sc->re_ldata.re_txq_considx = idx;
1409
1410 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1411 ifp->if_flags &= ~IFF_OACTIVE;
1412
1413 /*
1414 * If not all descriptors have been released reaped yet,
1415 * reload the timer so that we will eventually get another
1416 * interrupt that will cause us to re-enter this routine.
1417 * This is done in case the transmitter has gone idle.
1418 */
1419 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1420 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1421 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1422 /*
1423 * Some chips will ignore a second TX request
1424 * issued while an existing transmission is in
1425 * progress. If the transmitter goes idle but
1426 * there are still packets waiting to be sent,
1427 * we need to restart the channel here to flush
1428 * them out. This only seems to be required with
1429 * the PCIe devices.
1430 */
1431 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1432 }
1433 } else
1434 ifp->if_timer = 0;
1435 }
1436
1437 static void
1438 re_tick(void *arg)
1439 {
1440 struct rtk_softc *sc = arg;
1441 int s;
1442
1443 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1444 s = splnet();
1445
1446 mii_tick(&sc->mii);
1447 splx(s);
1448
1449 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1450 }
1451
1452 int
1453 re_intr(void *arg)
1454 {
1455 struct rtk_softc *sc = arg;
1456 struct ifnet *ifp;
1457 uint16_t status;
1458 int handled = 0;
1459
1460 if (!device_has_power(sc->sc_dev))
1461 return 0;
1462
1463 ifp = &sc->ethercom.ec_if;
1464
1465 if ((ifp->if_flags & IFF_UP) == 0)
1466 return 0;
1467
1468 for (;;) {
1469
1470 status = CSR_READ_2(sc, RTK_ISR);
1471 /* If the card has gone away the read returns 0xffff. */
1472 if (status == 0xffff)
1473 break;
1474 if (status) {
1475 handled = 1;
1476 CSR_WRITE_2(sc, RTK_ISR, status);
1477 }
1478
1479 if ((status & RTK_INTRS_CPLUS) == 0)
1480 break;
1481
1482 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1483 re_rxeof(sc);
1484
1485 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1486 RTK_ISR_TX_DESC_UNAVAIL))
1487 re_txeof(sc);
1488
1489 if (status & RTK_ISR_SYSTEM_ERR) {
1490 re_init(ifp);
1491 }
1492
1493 if (status & RTK_ISR_LINKCHG) {
1494 callout_stop(&sc->rtk_tick_ch);
1495 re_tick(sc);
1496 }
1497 }
1498
1499 if (handled && !IFQ_IS_EMPTY(&ifp->if_snd))
1500 re_start(ifp);
1501
1502 rnd_add_uint32(&sc->rnd_source, status);
1503
1504 return handled;
1505 }
1506
1507
1508
1509 /*
1510 * Main transmit routine for C+ and gigE NICs.
1511 */
1512
1513 static void
1514 re_start(struct ifnet *ifp)
1515 {
1516 struct rtk_softc *sc;
1517 struct mbuf *m;
1518 bus_dmamap_t map;
1519 struct re_txq *txq;
1520 struct re_desc *d;
1521 struct m_tag *mtag;
1522 uint32_t cmdstat, re_flags, vlanctl;
1523 int ofree, idx, error, nsegs, seg;
1524 int startdesc, curdesc, lastdesc;
1525 bool pad;
1526
1527 sc = ifp->if_softc;
1528 ofree = sc->re_ldata.re_txq_free;
1529
1530 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1531
1532 IFQ_POLL(&ifp->if_snd, m);
1533 if (m == NULL)
1534 break;
1535
1536 if (sc->re_ldata.re_txq_free == 0 ||
1537 sc->re_ldata.re_tx_free == 0) {
1538 /* no more free slots left */
1539 ifp->if_flags |= IFF_OACTIVE;
1540 break;
1541 }
1542
1543 /*
1544 * Set up checksum offload. Note: checksum offload bits must
1545 * appear in all descriptors of a multi-descriptor transmit
1546 * attempt. (This is according to testing done with an 8169
1547 * chip. I'm not sure if this is a requirement or a bug.)
1548 */
1549
1550 vlanctl = 0;
1551 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1552 uint32_t segsz = m->m_pkthdr.segsz;
1553
1554 re_flags = RE_TDESC_CMD_LGSEND |
1555 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1556 } else {
1557 /*
1558 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1559 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1560 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1561 */
1562 re_flags = 0;
1563 if ((m->m_pkthdr.csum_flags &
1564 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1565 != 0) {
1566 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1567 re_flags |= RE_TDESC_CMD_IPCSUM;
1568 if (m->m_pkthdr.csum_flags &
1569 M_CSUM_TCPv4) {
1570 re_flags |=
1571 RE_TDESC_CMD_TCPCSUM;
1572 } else if (m->m_pkthdr.csum_flags &
1573 M_CSUM_UDPv4) {
1574 re_flags |=
1575 RE_TDESC_CMD_UDPCSUM;
1576 }
1577 } else {
1578 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1579 if (m->m_pkthdr.csum_flags &
1580 M_CSUM_TCPv4) {
1581 vlanctl |=
1582 RE_TDESC_VLANCTL_TCPCSUM;
1583 } else if (m->m_pkthdr.csum_flags &
1584 M_CSUM_UDPv4) {
1585 vlanctl |=
1586 RE_TDESC_VLANCTL_UDPCSUM;
1587 }
1588 }
1589 }
1590 }
1591
1592 txq = &sc->re_ldata.re_txq[idx];
1593 map = txq->txq_dmamap;
1594 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1595 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1596
1597 if (__predict_false(error)) {
1598 /* XXX try to defrag if EFBIG? */
1599 printf("%s: can't map mbuf (error %d)\n",
1600 device_xname(sc->sc_dev), error);
1601
1602 IFQ_DEQUEUE(&ifp->if_snd, m);
1603 m_freem(m);
1604 ifp->if_oerrors++;
1605 continue;
1606 }
1607
1608 nsegs = map->dm_nsegs;
1609 pad = false;
1610 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1611 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1612 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1613 pad = true;
1614 nsegs++;
1615 }
1616
1617 if (nsegs > sc->re_ldata.re_tx_free) {
1618 /*
1619 * Not enough free descriptors to transmit this packet.
1620 */
1621 ifp->if_flags |= IFF_OACTIVE;
1622 bus_dmamap_unload(sc->sc_dmat, map);
1623 break;
1624 }
1625
1626 IFQ_DEQUEUE(&ifp->if_snd, m);
1627
1628 /*
1629 * Make sure that the caches are synchronized before we
1630 * ask the chip to start DMA for the packet data.
1631 */
1632 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1633 BUS_DMASYNC_PREWRITE);
1634
1635 /*
1636 * Set up hardware VLAN tagging. Note: vlan tag info must
1637 * appear in all descriptors of a multi-descriptor
1638 * transmission attempt.
1639 */
1640 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1641 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1642 RE_TDESC_VLANCTL_TAG;
1643
1644 /*
1645 * Map the segment array into descriptors.
1646 * Note that we set the start-of-frame and
1647 * end-of-frame markers for either TX or RX,
1648 * but they really only have meaning in the TX case.
1649 * (In the RX case, it's the chip that tells us
1650 * where packets begin and end.)
1651 * We also keep track of the end of the ring
1652 * and set the end-of-ring bits as needed,
1653 * and we set the ownership bits in all except
1654 * the very first descriptor. (The caller will
1655 * set this descriptor later when it start
1656 * transmission or reception.)
1657 */
1658 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1659 lastdesc = -1;
1660 for (seg = 0; seg < map->dm_nsegs;
1661 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1662 d = &sc->re_ldata.re_tx_list[curdesc];
1663 #ifdef DIAGNOSTIC
1664 RE_TXDESCSYNC(sc, curdesc,
1665 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1666 cmdstat = le32toh(d->re_cmdstat);
1667 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1668 if (cmdstat & RE_TDESC_STAT_OWN) {
1669 panic("%s: tried to map busy TX descriptor",
1670 device_xname(sc->sc_dev));
1671 }
1672 #endif
1673
1674 d->re_vlanctl = htole32(vlanctl);
1675 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1676 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1677 if (seg == 0)
1678 cmdstat |= RE_TDESC_CMD_SOF;
1679 else
1680 cmdstat |= RE_TDESC_CMD_OWN;
1681 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1682 cmdstat |= RE_TDESC_CMD_EOR;
1683 if (seg == nsegs - 1) {
1684 cmdstat |= RE_TDESC_CMD_EOF;
1685 lastdesc = curdesc;
1686 }
1687 d->re_cmdstat = htole32(cmdstat);
1688 RE_TXDESCSYNC(sc, curdesc,
1689 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1690 }
1691 if (__predict_false(pad)) {
1692 d = &sc->re_ldata.re_tx_list[curdesc];
1693 d->re_vlanctl = htole32(vlanctl);
1694 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1695 cmdstat = re_flags |
1696 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1697 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1698 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1699 cmdstat |= RE_TDESC_CMD_EOR;
1700 d->re_cmdstat = htole32(cmdstat);
1701 RE_TXDESCSYNC(sc, curdesc,
1702 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1703 lastdesc = curdesc;
1704 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1705 }
1706 KASSERT(lastdesc != -1);
1707
1708 /* Transfer ownership of packet to the chip. */
1709
1710 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1711 htole32(RE_TDESC_CMD_OWN);
1712 RE_TXDESCSYNC(sc, startdesc,
1713 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1714
1715 /* update info of TX queue and descriptors */
1716 txq->txq_mbuf = m;
1717 txq->txq_descidx = lastdesc;
1718 txq->txq_nsegs = nsegs;
1719
1720 sc->re_ldata.re_txq_free--;
1721 sc->re_ldata.re_tx_free -= nsegs;
1722 sc->re_ldata.re_tx_nextfree = curdesc;
1723
1724 /*
1725 * If there's a BPF listener, bounce a copy of this frame
1726 * to him.
1727 */
1728 bpf_mtap(ifp, m);
1729 }
1730
1731 if (sc->re_ldata.re_txq_free < ofree) {
1732 /*
1733 * TX packets are enqueued.
1734 */
1735 sc->re_ldata.re_txq_prodidx = idx;
1736
1737 /*
1738 * Start the transmitter to poll.
1739 *
1740 * RealTek put the TX poll request register in a different
1741 * location on the 8169 gigE chip. I don't know why.
1742 */
1743 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1744 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1745 else
1746 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1747
1748 /*
1749 * Use the countdown timer for interrupt moderation.
1750 * 'TX done' interrupts are disabled. Instead, we reset the
1751 * countdown timer, which will begin counting until it hits
1752 * the value in the TIMERINT register, and then trigger an
1753 * interrupt. Each time we write to the TIMERCNT register,
1754 * the timer count is reset to 0.
1755 */
1756 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1757
1758 /*
1759 * Set a timeout in case the chip goes out to lunch.
1760 */
1761 ifp->if_timer = 5;
1762 }
1763 }
1764
1765 static int
1766 re_init(struct ifnet *ifp)
1767 {
1768 struct rtk_softc *sc = ifp->if_softc;
1769 uint32_t rxcfg = 0;
1770 uint16_t cfg;
1771 int error;
1772 #ifdef RE_USE_EECMD
1773 const uint8_t *enaddr;
1774 uint32_t reg;
1775 #endif
1776
1777 if ((error = re_enable(sc)) != 0)
1778 goto out;
1779
1780 /*
1781 * Cancel pending I/O and free all RX/TX buffers.
1782 */
1783 re_stop(ifp, 0);
1784
1785 re_reset(sc);
1786
1787 /*
1788 * Enable C+ RX and TX mode, as well as VLAN stripping and
1789 * RX checksum offload. We must configure the C+ register
1790 * before all others.
1791 */
1792 cfg = RE_CPLUSCMD_PCI_MRW;
1793
1794 /*
1795 * XXX: For old 8169 set bit 14.
1796 * For 8169S/8110S and above, do not set bit 14.
1797 */
1798 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1799 cfg |= (0x1 << 14);
1800
1801 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1802 cfg |= RE_CPLUSCMD_VLANSTRIP;
1803 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1804 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1805 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1806 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1807 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1808 cfg |= RE_CPLUSCMD_TXENB;
1809 } else
1810 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1811
1812 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1813
1814 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1815 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1816 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1817
1818 DELAY(10000);
1819
1820 #ifdef RE_USE_EECMD
1821 /*
1822 * Init our MAC address. Even though the chipset
1823 * documentation doesn't mention it, we need to enter "Config
1824 * register write enable" mode to modify the ID registers.
1825 */
1826 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1827 enaddr = CLLADDR(ifp->if_sadl);
1828 reg = enaddr[0] | (enaddr[1] << 8) |
1829 (enaddr[2] << 16) | (enaddr[3] << 24);
1830 CSR_WRITE_4(sc, RTK_IDR0, reg);
1831 reg = enaddr[4] | (enaddr[5] << 8);
1832 CSR_WRITE_4(sc, RTK_IDR4, reg);
1833 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1834 #endif
1835
1836 /*
1837 * For C+ mode, initialize the RX descriptors and mbufs.
1838 */
1839 re_rx_list_init(sc);
1840 re_tx_list_init(sc);
1841
1842 /*
1843 * Load the addresses of the RX and TX lists into the chip.
1844 */
1845 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1846 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1847 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1848 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1849
1850 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1851 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1852 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1853 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1854
1855 if (sc->sc_quirk & RTKQ_RXDV_GATED) {
1856 CSR_WRITE_4(sc, RTK_MISC,
1857 CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
1858 }
1859
1860 /*
1861 * Enable transmit and receive.
1862 */
1863 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1864
1865 /*
1866 * Set the initial TX and RX configuration.
1867 */
1868 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1869 /* test mode is needed only for old 8169 */
1870 CSR_WRITE_4(sc, RTK_TXCFG,
1871 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1872 } else
1873 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1874
1875 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1876
1877 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1878
1879 /* Set the individual bit to receive frames for this host only. */
1880 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1881 rxcfg |= RTK_RXCFG_RX_INDIV;
1882
1883 /* If we want promiscuous mode, set the allframes bit. */
1884 if (ifp->if_flags & IFF_PROMISC)
1885 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1886 else
1887 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1888 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1889
1890 /*
1891 * Set capture broadcast bit to capture broadcast frames.
1892 */
1893 if (ifp->if_flags & IFF_BROADCAST)
1894 rxcfg |= RTK_RXCFG_RX_BROAD;
1895 else
1896 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1897 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1898
1899 /*
1900 * Program the multicast filter, if necessary.
1901 */
1902 rtk_setmulti(sc);
1903
1904 /*
1905 * Enable interrupts.
1906 */
1907 if (sc->re_testmode)
1908 CSR_WRITE_2(sc, RTK_IMR, 0);
1909 else
1910 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1911
1912 /* Start RX/TX process. */
1913 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1914 #ifdef notdef
1915 /* Enable receiver and transmitter. */
1916 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1917 #endif
1918
1919 /*
1920 * Initialize the timer interrupt register so that
1921 * a timer interrupt will be generated once the timer
1922 * reaches a certain number of ticks. The timer is
1923 * reloaded on each transmit. This gives us TX interrupt
1924 * moderation, which dramatically improves TX frame rate.
1925 */
1926
1927 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1928 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1929 else {
1930 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1931
1932 /*
1933 * For 8169 gigE NICs, set the max allowed RX packet
1934 * size so we can receive jumbo frames.
1935 */
1936 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1937 }
1938
1939 if (sc->re_testmode)
1940 return 0;
1941
1942 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1943
1944 ifp->if_flags |= IFF_RUNNING;
1945 ifp->if_flags &= ~IFF_OACTIVE;
1946
1947 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1948
1949 out:
1950 if (error) {
1951 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1952 ifp->if_timer = 0;
1953 printf("%s: interface not running\n",
1954 device_xname(sc->sc_dev));
1955 }
1956
1957 return error;
1958 }
1959
1960 static int
1961 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1962 {
1963 struct rtk_softc *sc = ifp->if_softc;
1964 struct ifreq *ifr = data;
1965 int s, error = 0;
1966
1967 s = splnet();
1968
1969 switch (command) {
1970 case SIOCSIFMTU:
1971 /*
1972 * Disable jumbo frames if it's not supported.
1973 */
1974 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1975 ifr->ifr_mtu > ETHERMTU) {
1976 error = EINVAL;
1977 break;
1978 }
1979
1980 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1981 error = EINVAL;
1982 else if ((error = ifioctl_common(ifp, command, data)) ==
1983 ENETRESET)
1984 error = 0;
1985 break;
1986 default:
1987 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1988 break;
1989
1990 error = 0;
1991
1992 if (command == SIOCSIFCAP)
1993 error = (*ifp->if_init)(ifp);
1994 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1995 ;
1996 else if (ifp->if_flags & IFF_RUNNING)
1997 rtk_setmulti(sc);
1998 break;
1999 }
2000
2001 splx(s);
2002
2003 return error;
2004 }
2005
2006 static void
2007 re_watchdog(struct ifnet *ifp)
2008 {
2009 struct rtk_softc *sc;
2010 int s;
2011
2012 sc = ifp->if_softc;
2013 s = splnet();
2014 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2015 ifp->if_oerrors++;
2016
2017 re_txeof(sc);
2018 re_rxeof(sc);
2019
2020 re_init(ifp);
2021
2022 splx(s);
2023 }
2024
2025 /*
2026 * Stop the adapter and free any mbufs allocated to the
2027 * RX and TX lists.
2028 */
2029 static void
2030 re_stop(struct ifnet *ifp, int disable)
2031 {
2032 int i;
2033 struct rtk_softc *sc = ifp->if_softc;
2034
2035 callout_stop(&sc->rtk_tick_ch);
2036
2037 mii_down(&sc->mii);
2038
2039 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
2040 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
2041 RTK_CMD_RX_ENB);
2042 else
2043 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2044 DELAY(1000);
2045 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2046 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
2047
2048 if (sc->re_head != NULL) {
2049 m_freem(sc->re_head);
2050 sc->re_head = sc->re_tail = NULL;
2051 }
2052
2053 /* Free the TX list buffers. */
2054 for (i = 0; i < RE_TX_QLEN; i++) {
2055 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2056 bus_dmamap_unload(sc->sc_dmat,
2057 sc->re_ldata.re_txq[i].txq_dmamap);
2058 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2059 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2060 }
2061 }
2062
2063 /* Free the RX list buffers. */
2064 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2065 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2066 bus_dmamap_unload(sc->sc_dmat,
2067 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2068 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2069 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2070 }
2071 }
2072
2073 if (disable)
2074 re_disable(sc);
2075
2076 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2077 ifp->if_timer = 0;
2078 }
2079