rtl8169.c revision 1.149 1 /* $NetBSD: rtl8169.c,v 1.149 2017/02/20 06:46:41 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.149 2017/02/20 06:46:41 ozaki-r Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51 * RTL8110S, the RTL8168 and the RTL8111.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137 #include <sys/rndsource.h>
138
139 #include <sys/bus.h>
140
141 #include <dev/mii/mii.h>
142 #include <dev/mii/miivar.h>
143
144 #include <dev/ic/rtl81x9reg.h>
145 #include <dev/ic/rtl81x9var.h>
146
147 #include <dev/ic/rtl8169var.h>
148
149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
150
151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
152 static int re_rx_list_init(struct rtk_softc *);
153 static int re_tx_list_init(struct rtk_softc *);
154 static void re_rxeof(struct rtk_softc *);
155 static void re_txeof(struct rtk_softc *);
156 static void re_tick(void *);
157 static void re_start(struct ifnet *);
158 static int re_ioctl(struct ifnet *, u_long, void *);
159 static int re_init(struct ifnet *);
160 static void re_stop(struct ifnet *, int);
161 static void re_watchdog(struct ifnet *);
162
163 static int re_enable(struct rtk_softc *);
164 static void re_disable(struct rtk_softc *);
165
166 static int re_gmii_readreg(device_t, int, int);
167 static void re_gmii_writereg(device_t, int, int, int);
168
169 static int re_miibus_readreg(device_t, int, int);
170 static void re_miibus_writereg(device_t, int, int, int);
171 static void re_miibus_statchg(struct ifnet *);
172
173 static void re_reset(struct rtk_softc *);
174
175 static inline void
176 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
177 {
178
179 d->re_bufaddr_lo = htole32((uint32_t)addr);
180 if (sizeof(bus_addr_t) == sizeof(uint64_t))
181 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
182 else
183 d->re_bufaddr_hi = 0;
184 }
185
186 static int
187 re_gmii_readreg(device_t dev, int phy, int reg)
188 {
189 struct rtk_softc *sc = device_private(dev);
190 uint32_t rval;
191 int i;
192
193 if (phy != 7)
194 return 0;
195
196 /* Let the rgephy driver read the GMEDIASTAT register */
197
198 if (reg == RTK_GMEDIASTAT) {
199 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
200 return rval;
201 }
202
203 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
204 DELAY(1000);
205
206 for (i = 0; i < RTK_TIMEOUT; i++) {
207 rval = CSR_READ_4(sc, RTK_PHYAR);
208 if (rval & RTK_PHYAR_BUSY)
209 break;
210 DELAY(100);
211 }
212
213 if (i == RTK_TIMEOUT) {
214 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
215 return 0;
216 }
217
218 return rval & RTK_PHYAR_PHYDATA;
219 }
220
221 static void
222 re_gmii_writereg(device_t dev, int phy, int reg, int data)
223 {
224 struct rtk_softc *sc = device_private(dev);
225 uint32_t rval;
226 int i;
227
228 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
229 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
230 DELAY(1000);
231
232 for (i = 0; i < RTK_TIMEOUT; i++) {
233 rval = CSR_READ_4(sc, RTK_PHYAR);
234 if (!(rval & RTK_PHYAR_BUSY))
235 break;
236 DELAY(100);
237 }
238
239 if (i == RTK_TIMEOUT) {
240 printf("%s: PHY write reg %x <- %x failed\n",
241 device_xname(sc->sc_dev), reg, data);
242 }
243 }
244
245 static int
246 re_miibus_readreg(device_t dev, int phy, int reg)
247 {
248 struct rtk_softc *sc = device_private(dev);
249 uint16_t rval = 0;
250 uint16_t re8139_reg = 0;
251 int s;
252
253 s = splnet();
254
255 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
256 rval = re_gmii_readreg(dev, phy, reg);
257 splx(s);
258 return rval;
259 }
260
261 /* Pretend the internal PHY is only at address 0 */
262 if (phy) {
263 splx(s);
264 return 0;
265 }
266 switch (reg) {
267 case MII_BMCR:
268 re8139_reg = RTK_BMCR;
269 break;
270 case MII_BMSR:
271 re8139_reg = RTK_BMSR;
272 break;
273 case MII_ANAR:
274 re8139_reg = RTK_ANAR;
275 break;
276 case MII_ANER:
277 re8139_reg = RTK_ANER;
278 break;
279 case MII_ANLPAR:
280 re8139_reg = RTK_LPAR;
281 break;
282 case MII_PHYIDR1:
283 case MII_PHYIDR2:
284 splx(s);
285 return 0;
286 /*
287 * Allow the rlphy driver to read the media status
288 * register. If we have a link partner which does not
289 * support NWAY, this is the register which will tell
290 * us the results of parallel detection.
291 */
292 case RTK_MEDIASTAT:
293 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
294 splx(s);
295 return rval;
296 default:
297 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
298 splx(s);
299 return 0;
300 }
301 rval = CSR_READ_2(sc, re8139_reg);
302 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
303 /* 8139C+ has different bit layout. */
304 rval &= ~(BMCR_LOOP | BMCR_ISO);
305 }
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(device_t dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = device_private(dev);
314 uint16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
334 /* 8139C+ has different bit layout. */
335 data &= ~(BMCR_LOOP | BMCR_ISO);
336 }
337 break;
338 case MII_BMSR:
339 re8139_reg = RTK_BMSR;
340 break;
341 case MII_ANAR:
342 re8139_reg = RTK_ANAR;
343 break;
344 case MII_ANER:
345 re8139_reg = RTK_ANER;
346 break;
347 case MII_ANLPAR:
348 re8139_reg = RTK_LPAR;
349 break;
350 case MII_PHYIDR1:
351 case MII_PHYIDR2:
352 splx(s);
353 return;
354 break;
355 default:
356 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
357 splx(s);
358 return;
359 }
360 CSR_WRITE_2(sc, re8139_reg, data);
361 splx(s);
362 return;
363 }
364
365 static void
366 re_miibus_statchg(struct ifnet *ifp)
367 {
368
369 return;
370 }
371
372 static void
373 re_reset(struct rtk_softc *sc)
374 {
375 int i;
376
377 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
378
379 for (i = 0; i < RTK_TIMEOUT; i++) {
380 DELAY(10);
381 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
382 break;
383 }
384 if (i == RTK_TIMEOUT)
385 printf("%s: reset never completed!\n",
386 device_xname(sc->sc_dev));
387
388 /*
389 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
390 * but also says "Rtl8169s sigle chip detected".
391 */
392 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
393 CSR_WRITE_1(sc, RTK_LDPS, 1);
394
395 }
396
397 /*
398 * The following routine is designed to test for a defect on some
399 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
400 * lines connected to the bus, however for a 32-bit only card, they
401 * should be pulled high. The result of this defect is that the
402 * NIC will not work right if you plug it into a 64-bit slot: DMA
403 * operations will be done with 64-bit transfers, which will fail
404 * because the 64-bit data lines aren't connected.
405 *
406 * There's no way to work around this (short of talking a soldering
407 * iron to the board), however we can detect it. The method we use
408 * here is to put the NIC into digital loopback mode, set the receiver
409 * to promiscuous mode, and then try to send a frame. We then compare
410 * the frame data we sent to what was received. If the data matches,
411 * then the NIC is working correctly, otherwise we know the user has
412 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
413 * slot. In the latter case, there's no way the NIC can work correctly,
414 * so we print out a message on the console and abort the device attach.
415 */
416
417 int
418 re_diag(struct rtk_softc *sc)
419 {
420 struct ifnet *ifp = &sc->ethercom.ec_if;
421 struct mbuf *m0;
422 struct ether_header *eh;
423 struct re_rxsoft *rxs;
424 struct re_desc *cur_rx;
425 bus_dmamap_t dmamap;
426 uint16_t status;
427 uint32_t rxstat;
428 int total_len, i, s, error = 0;
429 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
430 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
431
432 /* Allocate a single mbuf */
433
434 MGETHDR(m0, M_DONTWAIT, MT_DATA);
435 if (m0 == NULL)
436 return ENOBUFS;
437
438 /*
439 * Initialize the NIC in test mode. This sets the chip up
440 * so that it can send and receive frames, but performs the
441 * following special functions:
442 * - Puts receiver in promiscuous mode
443 * - Enables digital loopback mode
444 * - Leaves interrupts turned off
445 */
446
447 ifp->if_flags |= IFF_PROMISC;
448 sc->re_testmode = 1;
449 re_init(ifp);
450 re_stop(ifp, 0);
451 DELAY(100000);
452 re_init(ifp);
453
454 /* Put some data in the mbuf */
455
456 eh = mtod(m0, struct ether_header *);
457 memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
458 memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
459 eh->ether_type = htons(ETHERTYPE_IP);
460 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
461
462 /*
463 * Queue the packet, start transmission.
464 */
465
466 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
467 s = splnet();
468 IF_ENQUEUE(&ifp->if_snd, m0);
469 re_start(ifp);
470 splx(s);
471 m0 = NULL;
472
473 /* Wait for it to propagate through the chip */
474
475 DELAY(100000);
476 for (i = 0; i < RTK_TIMEOUT; i++) {
477 status = CSR_READ_2(sc, RTK_ISR);
478 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
479 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
480 break;
481 DELAY(10);
482 }
483 if (i == RTK_TIMEOUT) {
484 aprint_error_dev(sc->sc_dev,
485 "diagnostic failed, failed to receive packet "
486 "in loopback mode\n");
487 error = EIO;
488 goto done;
489 }
490
491 /*
492 * The packet should have been dumped into the first
493 * entry in the RX DMA ring. Grab it from there.
494 */
495
496 rxs = &sc->re_ldata.re_rxsoft[0];
497 dmamap = rxs->rxs_dmamap;
498 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
499 BUS_DMASYNC_POSTREAD);
500 bus_dmamap_unload(sc->sc_dmat, dmamap);
501
502 m0 = rxs->rxs_mbuf;
503 rxs->rxs_mbuf = NULL;
504 eh = mtod(m0, struct ether_header *);
505
506 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
507 cur_rx = &sc->re_ldata.re_rx_list[0];
508 rxstat = le32toh(cur_rx->re_cmdstat);
509 total_len = rxstat & sc->re_rxlenmask;
510
511 if (total_len != ETHER_MIN_LEN) {
512 aprint_error_dev(sc->sc_dev,
513 "diagnostic failed, received short packet\n");
514 error = EIO;
515 goto done;
516 }
517
518 /* Test that the received packet data matches what we sent. */
519
520 if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
521 memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
522 ntohs(eh->ether_type) != ETHERTYPE_IP) {
523 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
524 "expected TX data: %s/%s/0x%x\n"
525 "received RX data: %s/%s/0x%x\n"
526 "You may have a defective 32-bit NIC plugged "
527 "into a 64-bit PCI slot.\n"
528 "Please re-install the NIC in a 32-bit slot "
529 "for proper operation.\n"
530 "Read the re(4) man page for more details.\n" ,
531 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
532 ether_sprintf(eh->ether_dhost),
533 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
534 error = EIO;
535 }
536
537 done:
538 /* Turn interface off, release resources */
539
540 sc->re_testmode = 0;
541 ifp->if_flags &= ~IFF_PROMISC;
542 re_stop(ifp, 0);
543 if (m0 != NULL)
544 m_freem(m0);
545
546 return error;
547 }
548
549
550 /*
551 * Attach the interface. Allocate softc structures, do ifmedia
552 * setup and ethernet/BPF attach.
553 */
554 void
555 re_attach(struct rtk_softc *sc)
556 {
557 uint8_t eaddr[ETHER_ADDR_LEN];
558 struct ifnet *ifp;
559 int error = 0, i;
560
561 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
562 uint32_t hwrev;
563
564 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
565 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
566 switch (hwrev) {
567 case RTK_HWREV_8169:
568 sc->sc_quirk |= RTKQ_8169NONS;
569 break;
570 case RTK_HWREV_8169S:
571 case RTK_HWREV_8110S:
572 case RTK_HWREV_8169_8110SB:
573 case RTK_HWREV_8169_8110SBL:
574 case RTK_HWREV_8169_8110SC:
575 sc->sc_quirk |= RTKQ_MACLDPS;
576 break;
577 case RTK_HWREV_8168_SPIN1:
578 case RTK_HWREV_8168_SPIN2:
579 case RTK_HWREV_8168_SPIN3:
580 sc->sc_quirk |= RTKQ_MACSTAT;
581 break;
582 case RTK_HWREV_8168C:
583 case RTK_HWREV_8168C_SPIN2:
584 case RTK_HWREV_8168CP:
585 case RTK_HWREV_8168D:
586 case RTK_HWREV_8168DP:
587 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
588 RTKQ_MACSTAT | RTKQ_CMDSTOP;
589 /*
590 * From FreeBSD driver:
591 *
592 * These (8168/8111) controllers support jumbo frame
593 * but it seems that enabling it requires touching
594 * additional magic registers. Depending on MAC
595 * revisions some controllers need to disable
596 * checksum offload. So disable jumbo frame until
597 * I have better idea what it really requires to
598 * make it support.
599 * RTL8168C/CP : supports up to 6KB jumbo frame.
600 * RTL8111C/CP : supports up to 9KB jumbo frame.
601 */
602 sc->sc_quirk |= RTKQ_NOJUMBO;
603 break;
604 case RTK_HWREV_8168E:
605 case RTK_HWREV_8168H:
606 case RTK_HWREV_8168H_SPIN1:
607 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
608 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
609 RTKQ_NOJUMBO;
610 break;
611 case RTK_HWREV_8168E_VL:
612 case RTK_HWREV_8168F:
613 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
614 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
615 break;
616 case RTK_HWREV_8168G:
617 case RTK_HWREV_8168G_SPIN1:
618 case RTK_HWREV_8168G_SPIN2:
619 case RTK_HWREV_8168G_SPIN4:
620 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
621 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
622 RTKQ_RXDV_GATED;
623 break;
624 case RTK_HWREV_8100E:
625 case RTK_HWREV_8100E_SPIN2:
626 case RTK_HWREV_8101E:
627 sc->sc_quirk |= RTKQ_NOJUMBO;
628 break;
629 case RTK_HWREV_8102E:
630 case RTK_HWREV_8102EL:
631 case RTK_HWREV_8103E:
632 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
633 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
634 break;
635 default:
636 aprint_normal_dev(sc->sc_dev,
637 "Unknown revision (0x%08x)\n", hwrev);
638 /* assume the latest features */
639 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
640 sc->sc_quirk |= RTKQ_NOJUMBO;
641 }
642
643 /* Set RX length mask */
644 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
645 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
646 } else {
647 sc->sc_quirk |= RTKQ_NOJUMBO;
648
649 /* Set RX length mask */
650 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
651 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
652 }
653
654 /* Reset the adapter. */
655 re_reset(sc);
656
657 /*
658 * RTL81x9 chips automatically read EEPROM to init MAC address,
659 * and some NAS override its MAC address per own configuration,
660 * so no need to explicitely read EEPROM and set ID registers.
661 */
662 #ifdef RE_USE_EECMD
663 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
664 /*
665 * Get station address from ID registers.
666 */
667 for (i = 0; i < ETHER_ADDR_LEN; i++)
668 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
669 } else {
670 uint16_t val;
671 int addr_len;
672
673 /*
674 * Get station address from the EEPROM.
675 */
676 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
677 addr_len = RTK_EEADDR_LEN1;
678 else
679 addr_len = RTK_EEADDR_LEN0;
680
681 /*
682 * Get station address from the EEPROM.
683 */
684 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
685 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
686 eaddr[(i * 2) + 0] = val & 0xff;
687 eaddr[(i * 2) + 1] = val >> 8;
688 }
689 }
690 #else
691 /*
692 * Get station address from ID registers.
693 */
694 for (i = 0; i < ETHER_ADDR_LEN; i++)
695 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
696 #endif
697
698 /* Take PHY out of power down mode. */
699 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
700 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
701
702 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
703 ether_sprintf(eaddr));
704
705 if (sc->re_ldata.re_tx_desc_cnt >
706 PAGE_SIZE / sizeof(struct re_desc)) {
707 sc->re_ldata.re_tx_desc_cnt =
708 PAGE_SIZE / sizeof(struct re_desc);
709 }
710
711 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
712 sc->re_ldata.re_tx_desc_cnt);
713 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
714
715 /* Allocate DMA'able memory for the TX ring */
716 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
717 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
718 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
719 aprint_error_dev(sc->sc_dev,
720 "can't allocate tx listseg, error = %d\n", error);
721 goto fail_0;
722 }
723
724 /* Load the map for the TX ring. */
725 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
726 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
727 (void **)&sc->re_ldata.re_tx_list,
728 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
729 aprint_error_dev(sc->sc_dev,
730 "can't map tx list, error = %d\n", error);
731 goto fail_1;
732 }
733 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
734
735 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
736 RE_TX_LIST_SZ(sc), 0, 0,
737 &sc->re_ldata.re_tx_list_map)) != 0) {
738 aprint_error_dev(sc->sc_dev,
739 "can't create tx list map, error = %d\n", error);
740 goto fail_2;
741 }
742
743
744 if ((error = bus_dmamap_load(sc->sc_dmat,
745 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
746 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
747 aprint_error_dev(sc->sc_dev,
748 "can't load tx list, error = %d\n", error);
749 goto fail_3;
750 }
751
752 /* Create DMA maps for TX buffers */
753 for (i = 0; i < RE_TX_QLEN; i++) {
754 error = bus_dmamap_create(sc->sc_dmat,
755 round_page(IP_MAXPACKET),
756 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
757 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
758 if (error) {
759 aprint_error_dev(sc->sc_dev,
760 "can't create DMA map for TX\n");
761 goto fail_4;
762 }
763 }
764
765 /* Allocate DMA'able memory for the RX ring */
766 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
767 if ((error = bus_dmamem_alloc(sc->sc_dmat,
768 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
769 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
770 aprint_error_dev(sc->sc_dev,
771 "can't allocate rx listseg, error = %d\n", error);
772 goto fail_4;
773 }
774
775 /* Load the map for the RX ring. */
776 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
777 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
778 (void **)&sc->re_ldata.re_rx_list,
779 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
780 aprint_error_dev(sc->sc_dev,
781 "can't map rx list, error = %d\n", error);
782 goto fail_5;
783 }
784 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
785
786 if ((error = bus_dmamap_create(sc->sc_dmat,
787 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
788 &sc->re_ldata.re_rx_list_map)) != 0) {
789 aprint_error_dev(sc->sc_dev,
790 "can't create rx list map, error = %d\n", error);
791 goto fail_6;
792 }
793
794 if ((error = bus_dmamap_load(sc->sc_dmat,
795 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
796 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
797 aprint_error_dev(sc->sc_dev,
798 "can't load rx list, error = %d\n", error);
799 goto fail_7;
800 }
801
802 /* Create DMA maps for RX buffers */
803 for (i = 0; i < RE_RX_DESC_CNT; i++) {
804 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
805 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
806 if (error) {
807 aprint_error_dev(sc->sc_dev,
808 "can't create DMA map for RX\n");
809 goto fail_8;
810 }
811 }
812
813 /*
814 * Record interface as attached. From here, we should not fail.
815 */
816 sc->sc_flags |= RTK_ATTACHED;
817
818 ifp = &sc->ethercom.ec_if;
819 ifp->if_softc = sc;
820 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
821 ifp->if_mtu = ETHERMTU;
822 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
823 ifp->if_ioctl = re_ioctl;
824 sc->ethercom.ec_capabilities |=
825 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
826 ifp->if_start = re_start;
827 ifp->if_stop = re_stop;
828
829 /*
830 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
831 * so we have a workaround to handle the bug by padding
832 * such packets manually.
833 */
834 ifp->if_capabilities |=
835 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
836 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
837 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
838 IFCAP_TSOv4;
839
840 /*
841 * XXX
842 * Still have no idea how to make TSO work on 8168C, 8168CP,
843 * 8102E, 8111C and 8111CP.
844 */
845 if ((sc->sc_quirk & RTKQ_DESCV2) != 0)
846 ifp->if_capabilities &= ~IFCAP_TSOv4;
847
848 ifp->if_watchdog = re_watchdog;
849 ifp->if_init = re_init;
850 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
851 ifp->if_capenable = ifp->if_capabilities;
852 IFQ_SET_READY(&ifp->if_snd);
853
854 callout_init(&sc->rtk_tick_ch, 0);
855
856 /* Do MII setup */
857 sc->mii.mii_ifp = ifp;
858 sc->mii.mii_readreg = re_miibus_readreg;
859 sc->mii.mii_writereg = re_miibus_writereg;
860 sc->mii.mii_statchg = re_miibus_statchg;
861 sc->ethercom.ec_mii = &sc->mii;
862 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
863 ether_mediastatus);
864 mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
865 MII_OFFSET_ANY, 0);
866 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
867
868 /*
869 * Call MI attach routine.
870 */
871 if_attach(ifp);
872 if_deferred_start_init(ifp, NULL);
873 ether_ifattach(ifp, eaddr);
874
875 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
876 RND_TYPE_NET, RND_FLAG_DEFAULT);
877
878 if (pmf_device_register(sc->sc_dev, NULL, NULL))
879 pmf_class_network_register(sc->sc_dev, ifp);
880 else
881 aprint_error_dev(sc->sc_dev,
882 "couldn't establish power handler\n");
883
884 return;
885
886 fail_8:
887 /* Destroy DMA maps for RX buffers. */
888 for (i = 0; i < RE_RX_DESC_CNT; i++)
889 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
890 bus_dmamap_destroy(sc->sc_dmat,
891 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
892
893 /* Free DMA'able memory for the RX ring. */
894 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
895 fail_7:
896 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
897 fail_6:
898 bus_dmamem_unmap(sc->sc_dmat,
899 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
900 fail_5:
901 bus_dmamem_free(sc->sc_dmat,
902 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
903
904 fail_4:
905 /* Destroy DMA maps for TX buffers. */
906 for (i = 0; i < RE_TX_QLEN; i++)
907 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
908 bus_dmamap_destroy(sc->sc_dmat,
909 sc->re_ldata.re_txq[i].txq_dmamap);
910
911 /* Free DMA'able memory for the TX ring. */
912 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
913 fail_3:
914 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
915 fail_2:
916 bus_dmamem_unmap(sc->sc_dmat,
917 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
918 fail_1:
919 bus_dmamem_free(sc->sc_dmat,
920 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
921 fail_0:
922 return;
923 }
924
925
926 /*
927 * re_activate:
928 * Handle device activation/deactivation requests.
929 */
930 int
931 re_activate(device_t self, enum devact act)
932 {
933 struct rtk_softc *sc = device_private(self);
934
935 switch (act) {
936 case DVACT_DEACTIVATE:
937 if_deactivate(&sc->ethercom.ec_if);
938 return 0;
939 default:
940 return EOPNOTSUPP;
941 }
942 }
943
944 /*
945 * re_detach:
946 * Detach a rtk interface.
947 */
948 int
949 re_detach(struct rtk_softc *sc)
950 {
951 struct ifnet *ifp = &sc->ethercom.ec_if;
952 int i;
953
954 /*
955 * Succeed now if there isn't any work to do.
956 */
957 if ((sc->sc_flags & RTK_ATTACHED) == 0)
958 return 0;
959
960 /* Unhook our tick handler. */
961 callout_stop(&sc->rtk_tick_ch);
962
963 /* Detach all PHYs. */
964 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
965
966 /* Delete all remaining media. */
967 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
968
969 rnd_detach_source(&sc->rnd_source);
970 ether_ifdetach(ifp);
971 if_detach(ifp);
972
973 /* Destroy DMA maps for RX buffers. */
974 for (i = 0; i < RE_RX_DESC_CNT; i++)
975 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
976 bus_dmamap_destroy(sc->sc_dmat,
977 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
978
979 /* Free DMA'able memory for the RX ring. */
980 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
981 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
982 bus_dmamem_unmap(sc->sc_dmat,
983 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
984 bus_dmamem_free(sc->sc_dmat,
985 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
986
987 /* Destroy DMA maps for TX buffers. */
988 for (i = 0; i < RE_TX_QLEN; i++)
989 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
990 bus_dmamap_destroy(sc->sc_dmat,
991 sc->re_ldata.re_txq[i].txq_dmamap);
992
993 /* Free DMA'able memory for the TX ring. */
994 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
995 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
996 bus_dmamem_unmap(sc->sc_dmat,
997 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
998 bus_dmamem_free(sc->sc_dmat,
999 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
1000
1001 pmf_device_deregister(sc->sc_dev);
1002
1003 /* we don't want to run again */
1004 sc->sc_flags &= ~RTK_ATTACHED;
1005
1006 return 0;
1007 }
1008
1009 /*
1010 * re_enable:
1011 * Enable the RTL81X9 chip.
1012 */
1013 static int
1014 re_enable(struct rtk_softc *sc)
1015 {
1016
1017 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
1018 if ((*sc->sc_enable)(sc) != 0) {
1019 printf("%s: device enable failed\n",
1020 device_xname(sc->sc_dev));
1021 return EIO;
1022 }
1023 sc->sc_flags |= RTK_ENABLED;
1024 }
1025 return 0;
1026 }
1027
1028 /*
1029 * re_disable:
1030 * Disable the RTL81X9 chip.
1031 */
1032 static void
1033 re_disable(struct rtk_softc *sc)
1034 {
1035
1036 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1037 (*sc->sc_disable)(sc);
1038 sc->sc_flags &= ~RTK_ENABLED;
1039 }
1040 }
1041
1042 static int
1043 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1044 {
1045 struct mbuf *n = NULL;
1046 bus_dmamap_t map;
1047 struct re_desc *d;
1048 struct re_rxsoft *rxs;
1049 uint32_t cmdstat;
1050 int error;
1051
1052 if (m == NULL) {
1053 MGETHDR(n, M_DONTWAIT, MT_DATA);
1054 if (n == NULL)
1055 return ENOBUFS;
1056
1057 MCLGET(n, M_DONTWAIT);
1058 if ((n->m_flags & M_EXT) == 0) {
1059 m_freem(n);
1060 return ENOBUFS;
1061 }
1062 m = n;
1063 } else
1064 m->m_data = m->m_ext.ext_buf;
1065
1066 /*
1067 * Initialize mbuf length fields and fixup
1068 * alignment so that the frame payload is
1069 * longword aligned.
1070 */
1071 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1072 m->m_data += RE_ETHER_ALIGN;
1073
1074 rxs = &sc->re_ldata.re_rxsoft[idx];
1075 map = rxs->rxs_dmamap;
1076 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1077 BUS_DMA_READ|BUS_DMA_NOWAIT);
1078
1079 if (error)
1080 goto out;
1081
1082 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1083 BUS_DMASYNC_PREREAD);
1084
1085 d = &sc->re_ldata.re_rx_list[idx];
1086 #ifdef DIAGNOSTIC
1087 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1088 cmdstat = le32toh(d->re_cmdstat);
1089 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1090 if (cmdstat & RE_RDESC_STAT_OWN) {
1091 panic("%s: tried to map busy RX descriptor",
1092 device_xname(sc->sc_dev));
1093 }
1094 #endif
1095
1096 rxs->rxs_mbuf = m;
1097
1098 d->re_vlanctl = 0;
1099 cmdstat = map->dm_segs[0].ds_len;
1100 if (idx == (RE_RX_DESC_CNT - 1))
1101 cmdstat |= RE_RDESC_CMD_EOR;
1102 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1103 d->re_cmdstat = htole32(cmdstat);
1104 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1105 cmdstat |= RE_RDESC_CMD_OWN;
1106 d->re_cmdstat = htole32(cmdstat);
1107 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1108
1109 return 0;
1110 out:
1111 if (n != NULL)
1112 m_freem(n);
1113 return ENOMEM;
1114 }
1115
1116 static int
1117 re_tx_list_init(struct rtk_softc *sc)
1118 {
1119 int i;
1120
1121 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1122 for (i = 0; i < RE_TX_QLEN; i++) {
1123 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1124 }
1125
1126 bus_dmamap_sync(sc->sc_dmat,
1127 sc->re_ldata.re_tx_list_map, 0,
1128 sc->re_ldata.re_tx_list_map->dm_mapsize,
1129 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130 sc->re_ldata.re_txq_prodidx = 0;
1131 sc->re_ldata.re_txq_considx = 0;
1132 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1133 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1134 sc->re_ldata.re_tx_nextfree = 0;
1135
1136 return 0;
1137 }
1138
1139 static int
1140 re_rx_list_init(struct rtk_softc *sc)
1141 {
1142 int i;
1143
1144 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1145
1146 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1147 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1148 return ENOBUFS;
1149 }
1150
1151 sc->re_ldata.re_rx_prodidx = 0;
1152 sc->re_head = sc->re_tail = NULL;
1153
1154 return 0;
1155 }
1156
1157 /*
1158 * RX handler for C+ and 8169. For the gigE chips, we support
1159 * the reception of jumbo frames that have been fragmented
1160 * across multiple 2K mbuf cluster buffers.
1161 */
1162 static void
1163 re_rxeof(struct rtk_softc *sc)
1164 {
1165 struct mbuf *m;
1166 struct ifnet *ifp;
1167 int i, total_len;
1168 struct re_desc *cur_rx;
1169 struct re_rxsoft *rxs;
1170 uint32_t rxstat, rxvlan;
1171
1172 ifp = &sc->ethercom.ec_if;
1173
1174 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1175 cur_rx = &sc->re_ldata.re_rx_list[i];
1176 RE_RXDESCSYNC(sc, i,
1177 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1178 rxstat = le32toh(cur_rx->re_cmdstat);
1179 rxvlan = le32toh(cur_rx->re_vlanctl);
1180 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1181 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1182 break;
1183 }
1184 total_len = rxstat & sc->re_rxlenmask;
1185 rxs = &sc->re_ldata.re_rxsoft[i];
1186 m = rxs->rxs_mbuf;
1187
1188 /* Invalidate the RX mbuf and unload its map */
1189
1190 bus_dmamap_sync(sc->sc_dmat,
1191 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1192 BUS_DMASYNC_POSTREAD);
1193 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1194
1195 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1196 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1197 if (sc->re_head == NULL)
1198 sc->re_head = sc->re_tail = m;
1199 else {
1200 m->m_flags &= ~M_PKTHDR;
1201 sc->re_tail->m_next = m;
1202 sc->re_tail = m;
1203 }
1204 re_newbuf(sc, i, NULL);
1205 continue;
1206 }
1207
1208 /*
1209 * NOTE: for the 8139C+, the frame length field
1210 * is always 12 bits in size, but for the gigE chips,
1211 * it is 13 bits (since the max RX frame length is 16K).
1212 * Unfortunately, all 32 bits in the status word
1213 * were already used, so to make room for the extra
1214 * length bit, RealTek took out the 'frame alignment
1215 * error' bit and shifted the other status bits
1216 * over one slot. The OWN, EOR, FS and LS bits are
1217 * still in the same places. We have already extracted
1218 * the frame length and checked the OWN bit, so rather
1219 * than using an alternate bit mapping, we shift the
1220 * status bits one space to the right so we can evaluate
1221 * them using the 8169 status as though it was in the
1222 * same format as that of the 8139C+.
1223 */
1224 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1225 rxstat >>= 1;
1226
1227 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1228 #ifdef RE_DEBUG
1229 printf("%s: RX error (rxstat = 0x%08x)",
1230 device_xname(sc->sc_dev), rxstat);
1231 if (rxstat & RE_RDESC_STAT_FRALIGN)
1232 printf(", frame alignment error");
1233 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1234 printf(", out of buffer space");
1235 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1236 printf(", FIFO overrun");
1237 if (rxstat & RE_RDESC_STAT_GIANT)
1238 printf(", giant packet");
1239 if (rxstat & RE_RDESC_STAT_RUNT)
1240 printf(", runt packet");
1241 if (rxstat & RE_RDESC_STAT_CRCERR)
1242 printf(", CRC error");
1243 printf("\n");
1244 #endif
1245 ifp->if_ierrors++;
1246 /*
1247 * If this is part of a multi-fragment packet,
1248 * discard all the pieces.
1249 */
1250 if (sc->re_head != NULL) {
1251 m_freem(sc->re_head);
1252 sc->re_head = sc->re_tail = NULL;
1253 }
1254 re_newbuf(sc, i, m);
1255 continue;
1256 }
1257
1258 /*
1259 * If allocating a replacement mbuf fails,
1260 * reload the current one.
1261 */
1262
1263 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1264 ifp->if_ierrors++;
1265 if (sc->re_head != NULL) {
1266 m_freem(sc->re_head);
1267 sc->re_head = sc->re_tail = NULL;
1268 }
1269 re_newbuf(sc, i, m);
1270 continue;
1271 }
1272
1273 if (sc->re_head != NULL) {
1274 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1275 /*
1276 * Special case: if there's 4 bytes or less
1277 * in this buffer, the mbuf can be discarded:
1278 * the last 4 bytes is the CRC, which we don't
1279 * care about anyway.
1280 */
1281 if (m->m_len <= ETHER_CRC_LEN) {
1282 sc->re_tail->m_len -=
1283 (ETHER_CRC_LEN - m->m_len);
1284 m_freem(m);
1285 } else {
1286 m->m_len -= ETHER_CRC_LEN;
1287 m->m_flags &= ~M_PKTHDR;
1288 sc->re_tail->m_next = m;
1289 }
1290 m = sc->re_head;
1291 sc->re_head = sc->re_tail = NULL;
1292 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1293 } else
1294 m->m_pkthdr.len = m->m_len =
1295 (total_len - ETHER_CRC_LEN);
1296
1297 m_set_rcvif(m, ifp);
1298
1299 /* Do RX checksumming */
1300 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1301 /* Check IP header checksum */
1302 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1303 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1304 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1305 m->m_pkthdr.csum_flags |=
1306 M_CSUM_IPv4_BAD;
1307
1308 /* Check TCP/UDP checksum */
1309 if (RE_TCPPKT(rxstat)) {
1310 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1311 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1312 m->m_pkthdr.csum_flags |=
1313 M_CSUM_TCP_UDP_BAD;
1314 } else if (RE_UDPPKT(rxstat)) {
1315 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1316 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
1317 /*
1318 * XXX: 8139C+ thinks UDP csum
1319 * 0xFFFF is bad, force software
1320 * calculation.
1321 */
1322 if (sc->sc_quirk & RTKQ_8139CPLUS)
1323 m->m_pkthdr.csum_flags
1324 &= ~M_CSUM_UDPv4;
1325 else
1326 m->m_pkthdr.csum_flags
1327 |= M_CSUM_TCP_UDP_BAD;
1328 }
1329 }
1330 }
1331 } else {
1332 /* Check IPv4 header checksum */
1333 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1334 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1335 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1336 m->m_pkthdr.csum_flags |=
1337 M_CSUM_IPv4_BAD;
1338
1339 /* Check TCPv4/UDPv4 checksum */
1340 if (RE_TCPPKT(rxstat)) {
1341 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1342 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1343 m->m_pkthdr.csum_flags |=
1344 M_CSUM_TCP_UDP_BAD;
1345 } else if (RE_UDPPKT(rxstat)) {
1346 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1347 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1348 m->m_pkthdr.csum_flags |=
1349 M_CSUM_TCP_UDP_BAD;
1350 }
1351 }
1352 /* XXX Check TCPv6/UDPv6 checksum? */
1353 }
1354
1355 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1356 VLAN_INPUT_TAG(ifp, m,
1357 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA),
1358 continue);
1359 }
1360 if_percpuq_enqueue(ifp->if_percpuq, m);
1361 }
1362
1363 sc->re_ldata.re_rx_prodidx = i;
1364 }
1365
1366 static void
1367 re_txeof(struct rtk_softc *sc)
1368 {
1369 struct ifnet *ifp;
1370 struct re_txq *txq;
1371 uint32_t txstat;
1372 int idx, descidx;
1373
1374 ifp = &sc->ethercom.ec_if;
1375
1376 for (idx = sc->re_ldata.re_txq_considx;
1377 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1378 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1379 txq = &sc->re_ldata.re_txq[idx];
1380 KASSERT(txq->txq_mbuf != NULL);
1381
1382 descidx = txq->txq_descidx;
1383 RE_TXDESCSYNC(sc, descidx,
1384 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1385 txstat =
1386 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1387 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1388 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1389 if (txstat & RE_TDESC_CMD_OWN) {
1390 break;
1391 }
1392
1393 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1394 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1395 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1396 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1397 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1398 m_freem(txq->txq_mbuf);
1399 txq->txq_mbuf = NULL;
1400
1401 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1402 ifp->if_collisions++;
1403 if (txstat & RE_TDESC_STAT_TXERRSUM)
1404 ifp->if_oerrors++;
1405 else
1406 ifp->if_opackets++;
1407 }
1408
1409 sc->re_ldata.re_txq_considx = idx;
1410
1411 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1412 ifp->if_flags &= ~IFF_OACTIVE;
1413
1414 /*
1415 * If not all descriptors have been released reaped yet,
1416 * reload the timer so that we will eventually get another
1417 * interrupt that will cause us to re-enter this routine.
1418 * This is done in case the transmitter has gone idle.
1419 */
1420 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1421 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1422 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1423 /*
1424 * Some chips will ignore a second TX request
1425 * issued while an existing transmission is in
1426 * progress. If the transmitter goes idle but
1427 * there are still packets waiting to be sent,
1428 * we need to restart the channel here to flush
1429 * them out. This only seems to be required with
1430 * the PCIe devices.
1431 */
1432 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1433 }
1434 } else
1435 ifp->if_timer = 0;
1436 }
1437
1438 static void
1439 re_tick(void *arg)
1440 {
1441 struct rtk_softc *sc = arg;
1442 int s;
1443
1444 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1445 s = splnet();
1446
1447 mii_tick(&sc->mii);
1448 splx(s);
1449
1450 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1451 }
1452
1453 int
1454 re_intr(void *arg)
1455 {
1456 struct rtk_softc *sc = arg;
1457 struct ifnet *ifp;
1458 uint16_t status;
1459 int handled = 0;
1460
1461 if (!device_has_power(sc->sc_dev))
1462 return 0;
1463
1464 ifp = &sc->ethercom.ec_if;
1465
1466 if ((ifp->if_flags & IFF_UP) == 0)
1467 return 0;
1468
1469 for (;;) {
1470
1471 status = CSR_READ_2(sc, RTK_ISR);
1472 /* If the card has gone away the read returns 0xffff. */
1473 if (status == 0xffff)
1474 break;
1475 if (status) {
1476 handled = 1;
1477 CSR_WRITE_2(sc, RTK_ISR, status);
1478 }
1479
1480 if ((status & RTK_INTRS_CPLUS) == 0)
1481 break;
1482
1483 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1484 re_rxeof(sc);
1485
1486 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1487 RTK_ISR_TX_DESC_UNAVAIL))
1488 re_txeof(sc);
1489
1490 if (status & RTK_ISR_SYSTEM_ERR) {
1491 re_init(ifp);
1492 }
1493
1494 if (status & RTK_ISR_LINKCHG) {
1495 callout_stop(&sc->rtk_tick_ch);
1496 re_tick(sc);
1497 }
1498 }
1499
1500 if (handled)
1501 if_schedule_deferred_start(ifp);
1502
1503 rnd_add_uint32(&sc->rnd_source, status);
1504
1505 return handled;
1506 }
1507
1508
1509
1510 /*
1511 * Main transmit routine for C+ and gigE NICs.
1512 */
1513
1514 static void
1515 re_start(struct ifnet *ifp)
1516 {
1517 struct rtk_softc *sc;
1518 struct mbuf *m;
1519 bus_dmamap_t map;
1520 struct re_txq *txq;
1521 struct re_desc *d;
1522 struct m_tag *mtag;
1523 uint32_t cmdstat, re_flags, vlanctl;
1524 int ofree, idx, error, nsegs, seg;
1525 int startdesc, curdesc, lastdesc;
1526 bool pad;
1527
1528 sc = ifp->if_softc;
1529 ofree = sc->re_ldata.re_txq_free;
1530
1531 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1532
1533 IFQ_POLL(&ifp->if_snd, m);
1534 if (m == NULL)
1535 break;
1536
1537 if (sc->re_ldata.re_txq_free == 0 ||
1538 sc->re_ldata.re_tx_free == 0) {
1539 /* no more free slots left */
1540 ifp->if_flags |= IFF_OACTIVE;
1541 break;
1542 }
1543
1544 /*
1545 * Set up checksum offload. Note: checksum offload bits must
1546 * appear in all descriptors of a multi-descriptor transmit
1547 * attempt. (This is according to testing done with an 8169
1548 * chip. I'm not sure if this is a requirement or a bug.)
1549 */
1550
1551 vlanctl = 0;
1552 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1553 uint32_t segsz = m->m_pkthdr.segsz;
1554
1555 re_flags = RE_TDESC_CMD_LGSEND |
1556 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1557 } else {
1558 /*
1559 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1560 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1561 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1562 */
1563 re_flags = 0;
1564 if ((m->m_pkthdr.csum_flags &
1565 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1566 != 0) {
1567 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1568 re_flags |= RE_TDESC_CMD_IPCSUM;
1569 if (m->m_pkthdr.csum_flags &
1570 M_CSUM_TCPv4) {
1571 re_flags |=
1572 RE_TDESC_CMD_TCPCSUM;
1573 } else if (m->m_pkthdr.csum_flags &
1574 M_CSUM_UDPv4) {
1575 re_flags |=
1576 RE_TDESC_CMD_UDPCSUM;
1577 }
1578 } else {
1579 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1580 if (m->m_pkthdr.csum_flags &
1581 M_CSUM_TCPv4) {
1582 vlanctl |=
1583 RE_TDESC_VLANCTL_TCPCSUM;
1584 } else if (m->m_pkthdr.csum_flags &
1585 M_CSUM_UDPv4) {
1586 vlanctl |=
1587 RE_TDESC_VLANCTL_UDPCSUM;
1588 }
1589 }
1590 }
1591 }
1592
1593 txq = &sc->re_ldata.re_txq[idx];
1594 map = txq->txq_dmamap;
1595 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1596 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1597
1598 if (__predict_false(error)) {
1599 /* XXX try to defrag if EFBIG? */
1600 printf("%s: can't map mbuf (error %d)\n",
1601 device_xname(sc->sc_dev), error);
1602
1603 IFQ_DEQUEUE(&ifp->if_snd, m);
1604 m_freem(m);
1605 ifp->if_oerrors++;
1606 continue;
1607 }
1608
1609 nsegs = map->dm_nsegs;
1610 pad = false;
1611 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1612 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1613 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1614 pad = true;
1615 nsegs++;
1616 }
1617
1618 if (nsegs > sc->re_ldata.re_tx_free) {
1619 /*
1620 * Not enough free descriptors to transmit this packet.
1621 */
1622 ifp->if_flags |= IFF_OACTIVE;
1623 bus_dmamap_unload(sc->sc_dmat, map);
1624 break;
1625 }
1626
1627 IFQ_DEQUEUE(&ifp->if_snd, m);
1628
1629 /*
1630 * Make sure that the caches are synchronized before we
1631 * ask the chip to start DMA for the packet data.
1632 */
1633 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1634 BUS_DMASYNC_PREWRITE);
1635
1636 /*
1637 * Set up hardware VLAN tagging. Note: vlan tag info must
1638 * appear in all descriptors of a multi-descriptor
1639 * transmission attempt.
1640 */
1641 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL)
1642 vlanctl |= bswap16(VLAN_TAG_VALUE(mtag)) |
1643 RE_TDESC_VLANCTL_TAG;
1644
1645 /*
1646 * Map the segment array into descriptors.
1647 * Note that we set the start-of-frame and
1648 * end-of-frame markers for either TX or RX,
1649 * but they really only have meaning in the TX case.
1650 * (In the RX case, it's the chip that tells us
1651 * where packets begin and end.)
1652 * We also keep track of the end of the ring
1653 * and set the end-of-ring bits as needed,
1654 * and we set the ownership bits in all except
1655 * the very first descriptor. (The caller will
1656 * set this descriptor later when it start
1657 * transmission or reception.)
1658 */
1659 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1660 lastdesc = -1;
1661 for (seg = 0; seg < map->dm_nsegs;
1662 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1663 d = &sc->re_ldata.re_tx_list[curdesc];
1664 #ifdef DIAGNOSTIC
1665 RE_TXDESCSYNC(sc, curdesc,
1666 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1667 cmdstat = le32toh(d->re_cmdstat);
1668 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1669 if (cmdstat & RE_TDESC_STAT_OWN) {
1670 panic("%s: tried to map busy TX descriptor",
1671 device_xname(sc->sc_dev));
1672 }
1673 #endif
1674
1675 d->re_vlanctl = htole32(vlanctl);
1676 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1677 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1678 if (seg == 0)
1679 cmdstat |= RE_TDESC_CMD_SOF;
1680 else
1681 cmdstat |= RE_TDESC_CMD_OWN;
1682 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1683 cmdstat |= RE_TDESC_CMD_EOR;
1684 if (seg == nsegs - 1) {
1685 cmdstat |= RE_TDESC_CMD_EOF;
1686 lastdesc = curdesc;
1687 }
1688 d->re_cmdstat = htole32(cmdstat);
1689 RE_TXDESCSYNC(sc, curdesc,
1690 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1691 }
1692 if (__predict_false(pad)) {
1693 d = &sc->re_ldata.re_tx_list[curdesc];
1694 d->re_vlanctl = htole32(vlanctl);
1695 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1696 cmdstat = re_flags |
1697 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1698 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1699 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1700 cmdstat |= RE_TDESC_CMD_EOR;
1701 d->re_cmdstat = htole32(cmdstat);
1702 RE_TXDESCSYNC(sc, curdesc,
1703 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1704 lastdesc = curdesc;
1705 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1706 }
1707 KASSERT(lastdesc != -1);
1708
1709 /* Transfer ownership of packet to the chip. */
1710
1711 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1712 htole32(RE_TDESC_CMD_OWN);
1713 RE_TXDESCSYNC(sc, startdesc,
1714 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1715
1716 /* update info of TX queue and descriptors */
1717 txq->txq_mbuf = m;
1718 txq->txq_descidx = lastdesc;
1719 txq->txq_nsegs = nsegs;
1720
1721 sc->re_ldata.re_txq_free--;
1722 sc->re_ldata.re_tx_free -= nsegs;
1723 sc->re_ldata.re_tx_nextfree = curdesc;
1724
1725 /*
1726 * If there's a BPF listener, bounce a copy of this frame
1727 * to him.
1728 */
1729 bpf_mtap(ifp, m);
1730 }
1731
1732 if (sc->re_ldata.re_txq_free < ofree) {
1733 /*
1734 * TX packets are enqueued.
1735 */
1736 sc->re_ldata.re_txq_prodidx = idx;
1737
1738 /*
1739 * Start the transmitter to poll.
1740 *
1741 * RealTek put the TX poll request register in a different
1742 * location on the 8169 gigE chip. I don't know why.
1743 */
1744 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1745 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1746 else
1747 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1748
1749 /*
1750 * Use the countdown timer for interrupt moderation.
1751 * 'TX done' interrupts are disabled. Instead, we reset the
1752 * countdown timer, which will begin counting until it hits
1753 * the value in the TIMERINT register, and then trigger an
1754 * interrupt. Each time we write to the TIMERCNT register,
1755 * the timer count is reset to 0.
1756 */
1757 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1758
1759 /*
1760 * Set a timeout in case the chip goes out to lunch.
1761 */
1762 ifp->if_timer = 5;
1763 }
1764 }
1765
1766 static int
1767 re_init(struct ifnet *ifp)
1768 {
1769 struct rtk_softc *sc = ifp->if_softc;
1770 uint32_t rxcfg = 0;
1771 uint16_t cfg;
1772 int error;
1773 #ifdef RE_USE_EECMD
1774 const uint8_t *enaddr;
1775 uint32_t reg;
1776 #endif
1777
1778 if ((error = re_enable(sc)) != 0)
1779 goto out;
1780
1781 /*
1782 * Cancel pending I/O and free all RX/TX buffers.
1783 */
1784 re_stop(ifp, 0);
1785
1786 re_reset(sc);
1787
1788 /*
1789 * Enable C+ RX and TX mode, as well as VLAN stripping and
1790 * RX checksum offload. We must configure the C+ register
1791 * before all others.
1792 */
1793 cfg = RE_CPLUSCMD_PCI_MRW;
1794
1795 /*
1796 * XXX: For old 8169 set bit 14.
1797 * For 8169S/8110S and above, do not set bit 14.
1798 */
1799 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1800 cfg |= (0x1 << 14);
1801
1802 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1803 cfg |= RE_CPLUSCMD_VLANSTRIP;
1804 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1805 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1806 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1807 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1808 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1809 cfg |= RE_CPLUSCMD_TXENB;
1810 } else
1811 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1812
1813 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1814
1815 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1816 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1817 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1818
1819 DELAY(10000);
1820
1821 #ifdef RE_USE_EECMD
1822 /*
1823 * Init our MAC address. Even though the chipset
1824 * documentation doesn't mention it, we need to enter "Config
1825 * register write enable" mode to modify the ID registers.
1826 */
1827 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1828 enaddr = CLLADDR(ifp->if_sadl);
1829 reg = enaddr[0] | (enaddr[1] << 8) |
1830 (enaddr[2] << 16) | (enaddr[3] << 24);
1831 CSR_WRITE_4(sc, RTK_IDR0, reg);
1832 reg = enaddr[4] | (enaddr[5] << 8);
1833 CSR_WRITE_4(sc, RTK_IDR4, reg);
1834 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1835 #endif
1836
1837 /*
1838 * For C+ mode, initialize the RX descriptors and mbufs.
1839 */
1840 re_rx_list_init(sc);
1841 re_tx_list_init(sc);
1842
1843 /*
1844 * Load the addresses of the RX and TX lists into the chip.
1845 */
1846 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1847 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1848 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1849 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1850
1851 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1852 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1853 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1854 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1855
1856 if (sc->sc_quirk & RTKQ_RXDV_GATED) {
1857 CSR_WRITE_4(sc, RTK_MISC,
1858 CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
1859 }
1860
1861 /*
1862 * Enable transmit and receive.
1863 */
1864 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1865
1866 /*
1867 * Set the initial TX and RX configuration.
1868 */
1869 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1870 /* test mode is needed only for old 8169 */
1871 CSR_WRITE_4(sc, RTK_TXCFG,
1872 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1873 } else
1874 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1875
1876 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1877
1878 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1879
1880 /* Set the individual bit to receive frames for this host only. */
1881 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1882 rxcfg |= RTK_RXCFG_RX_INDIV;
1883
1884 /* If we want promiscuous mode, set the allframes bit. */
1885 if (ifp->if_flags & IFF_PROMISC)
1886 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1887 else
1888 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1889 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1890
1891 /*
1892 * Set capture broadcast bit to capture broadcast frames.
1893 */
1894 if (ifp->if_flags & IFF_BROADCAST)
1895 rxcfg |= RTK_RXCFG_RX_BROAD;
1896 else
1897 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1898 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1899
1900 /*
1901 * Program the multicast filter, if necessary.
1902 */
1903 rtk_setmulti(sc);
1904
1905 /*
1906 * Enable interrupts.
1907 */
1908 if (sc->re_testmode)
1909 CSR_WRITE_2(sc, RTK_IMR, 0);
1910 else
1911 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1912
1913 /* Start RX/TX process. */
1914 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1915 #ifdef notdef
1916 /* Enable receiver and transmitter. */
1917 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1918 #endif
1919
1920 /*
1921 * Initialize the timer interrupt register so that
1922 * a timer interrupt will be generated once the timer
1923 * reaches a certain number of ticks. The timer is
1924 * reloaded on each transmit. This gives us TX interrupt
1925 * moderation, which dramatically improves TX frame rate.
1926 */
1927
1928 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1929 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1930 else {
1931 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1932
1933 /*
1934 * For 8169 gigE NICs, set the max allowed RX packet
1935 * size so we can receive jumbo frames.
1936 */
1937 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1938 }
1939
1940 if (sc->re_testmode)
1941 return 0;
1942
1943 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1944
1945 ifp->if_flags |= IFF_RUNNING;
1946 ifp->if_flags &= ~IFF_OACTIVE;
1947
1948 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1949
1950 out:
1951 if (error) {
1952 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1953 ifp->if_timer = 0;
1954 printf("%s: interface not running\n",
1955 device_xname(sc->sc_dev));
1956 }
1957
1958 return error;
1959 }
1960
1961 static int
1962 re_ioctl(struct ifnet *ifp, u_long command, void *data)
1963 {
1964 struct rtk_softc *sc = ifp->if_softc;
1965 struct ifreq *ifr = data;
1966 int s, error = 0;
1967
1968 s = splnet();
1969
1970 switch (command) {
1971 case SIOCSIFMTU:
1972 /*
1973 * Disable jumbo frames if it's not supported.
1974 */
1975 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
1976 ifr->ifr_mtu > ETHERMTU) {
1977 error = EINVAL;
1978 break;
1979 }
1980
1981 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
1982 error = EINVAL;
1983 else if ((error = ifioctl_common(ifp, command, data)) ==
1984 ENETRESET)
1985 error = 0;
1986 break;
1987 default:
1988 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
1989 break;
1990
1991 error = 0;
1992
1993 if (command == SIOCSIFCAP)
1994 error = (*ifp->if_init)(ifp);
1995 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
1996 ;
1997 else if (ifp->if_flags & IFF_RUNNING)
1998 rtk_setmulti(sc);
1999 break;
2000 }
2001
2002 splx(s);
2003
2004 return error;
2005 }
2006
2007 static void
2008 re_watchdog(struct ifnet *ifp)
2009 {
2010 struct rtk_softc *sc;
2011 int s;
2012
2013 sc = ifp->if_softc;
2014 s = splnet();
2015 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2016 ifp->if_oerrors++;
2017
2018 re_txeof(sc);
2019 re_rxeof(sc);
2020
2021 re_init(ifp);
2022
2023 splx(s);
2024 }
2025
2026 /*
2027 * Stop the adapter and free any mbufs allocated to the
2028 * RX and TX lists.
2029 */
2030 static void
2031 re_stop(struct ifnet *ifp, int disable)
2032 {
2033 int i;
2034 struct rtk_softc *sc = ifp->if_softc;
2035
2036 callout_stop(&sc->rtk_tick_ch);
2037
2038 mii_down(&sc->mii);
2039
2040 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
2041 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
2042 RTK_CMD_RX_ENB);
2043 else
2044 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2045 DELAY(1000);
2046 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2047 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
2048
2049 if (sc->re_head != NULL) {
2050 m_freem(sc->re_head);
2051 sc->re_head = sc->re_tail = NULL;
2052 }
2053
2054 /* Free the TX list buffers. */
2055 for (i = 0; i < RE_TX_QLEN; i++) {
2056 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2057 bus_dmamap_unload(sc->sc_dmat,
2058 sc->re_ldata.re_txq[i].txq_dmamap);
2059 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2060 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2061 }
2062 }
2063
2064 /* Free the RX list buffers. */
2065 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2066 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2067 bus_dmamap_unload(sc->sc_dmat,
2068 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2069 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2070 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2071 }
2072 }
2073
2074 if (disable)
2075 re_disable(sc);
2076
2077 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2078 ifp->if_timer = 0;
2079 }
2080