rtl8169.c revision 1.154.2.1 1 /* $NetBSD: rtl8169.c,v 1.154.2.1 2019/06/10 22:07:11 christos Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.154.2.1 2019/06/10 22:07:11 christos Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51 * RTL8110S, the RTL8168 and the RTL8111.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137 #include <sys/rndsource.h>
138
139 #include <sys/bus.h>
140
141 #include <dev/mii/mii.h>
142 #include <dev/mii/miivar.h>
143
144 #include <dev/ic/rtl81x9reg.h>
145 #include <dev/ic/rtl81x9var.h>
146
147 #include <dev/ic/rtl8169var.h>
148
149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
150
151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
152 static int re_rx_list_init(struct rtk_softc *);
153 static int re_tx_list_init(struct rtk_softc *);
154 static void re_rxeof(struct rtk_softc *);
155 static void re_txeof(struct rtk_softc *);
156 static void re_tick(void *);
157 static void re_start(struct ifnet *);
158 static int re_ioctl(struct ifnet *, u_long, void *);
159 static int re_init(struct ifnet *);
160 static void re_stop(struct ifnet *, int);
161 static void re_watchdog(struct ifnet *);
162
163 static int re_enable(struct rtk_softc *);
164 static void re_disable(struct rtk_softc *);
165
166 static int re_gmii_readreg(device_t, int, int, uint16_t *);
167 static int re_gmii_writereg(device_t, int, int, uint16_t);
168
169 static int re_miibus_readreg(device_t, int, int, uint16_t *);
170 static int re_miibus_writereg(device_t, int, int, uint16_t);
171 static void re_miibus_statchg(struct ifnet *);
172
173 static void re_reset(struct rtk_softc *);
174
175 static inline void
176 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
177 {
178
179 d->re_bufaddr_lo = htole32((uint32_t)addr);
180 if (sizeof(bus_addr_t) == sizeof(uint64_t))
181 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
182 else
183 d->re_bufaddr_hi = 0;
184 }
185
186 static int
187 re_gmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
188 {
189 struct rtk_softc *sc = device_private(dev);
190 uint32_t data;
191 int i;
192
193 if (phy != 7)
194 return -1;
195
196 /* Let the rgephy driver read the GMEDIASTAT register */
197
198 if (reg == RTK_GMEDIASTAT) {
199 *val = CSR_READ_1(sc, RTK_GMEDIASTAT);
200 return 0;
201 }
202
203 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
204 DELAY(1000);
205
206 for (i = 0; i < RTK_TIMEOUT; i++) {
207 data = CSR_READ_4(sc, RTK_PHYAR);
208 if (data & RTK_PHYAR_BUSY)
209 break;
210 DELAY(100);
211 }
212
213 if (i == RTK_TIMEOUT) {
214 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
215 return ETIMEDOUT;
216 }
217
218 *val = data & RTK_PHYAR_PHYDATA;
219 return 0;
220 }
221
222 static int
223 re_gmii_writereg(device_t dev, int phy, int reg, uint16_t val)
224 {
225 struct rtk_softc *sc = device_private(dev);
226 uint32_t data;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (val & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 data = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(data & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 printf("%s: PHY write reg %x <- %hx failed\n",
242 device_xname(sc->sc_dev), reg, val);
243 return ETIMEDOUT;
244 }
245
246 return 0;
247 }
248
249 static int
250 re_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
251 {
252 struct rtk_softc *sc = device_private(dev);
253 uint16_t re8139_reg = 0;
254 int s, rv = 0;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rv = re_gmii_readreg(dev, phy, reg, val);
260 splx(s);
261 return rv;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return -1;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 *val = 0;
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 *val = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return 0;
300 default:
301 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
302 splx(s);
303 return -1;
304 }
305 *val = CSR_READ_2(sc, re8139_reg);
306 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
307 /* 8139C+ has different bit layout. */
308 *val &= ~(BMCR_LOOP | BMCR_ISO);
309 }
310 splx(s);
311 return 0;
312 }
313
314 static int
315 re_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
316 {
317 struct rtk_softc *sc = device_private(dev);
318 uint16_t re8139_reg = 0;
319 int s, rv;
320
321 s = splnet();
322
323 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
324 rv = re_gmii_writereg(dev, phy, reg, val);
325 splx(s);
326 return rv;
327 }
328
329 /* Pretend the internal PHY is only at address 0 */
330 if (phy) {
331 splx(s);
332 return -1;
333 }
334 switch (reg) {
335 case MII_BMCR:
336 re8139_reg = RTK_BMCR;
337 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
338 /* 8139C+ has different bit layout. */
339 val &= ~(BMCR_LOOP | BMCR_ISO);
340 }
341 break;
342 case MII_BMSR:
343 re8139_reg = RTK_BMSR;
344 break;
345 case MII_ANAR:
346 re8139_reg = RTK_ANAR;
347 break;
348 case MII_ANER:
349 re8139_reg = RTK_ANER;
350 break;
351 case MII_ANLPAR:
352 re8139_reg = RTK_LPAR;
353 break;
354 case MII_PHYIDR1:
355 case MII_PHYIDR2:
356 splx(s);
357 return 0;
358 break;
359 default:
360 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
361 splx(s);
362 return -1;
363 }
364 CSR_WRITE_2(sc, re8139_reg, val);
365 splx(s);
366 return 0;
367 }
368
369 static void
370 re_miibus_statchg(struct ifnet *ifp)
371 {
372
373 return;
374 }
375
376 static void
377 re_reset(struct rtk_softc *sc)
378 {
379 int i;
380
381 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
382
383 for (i = 0; i < RTK_TIMEOUT; i++) {
384 DELAY(10);
385 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
386 break;
387 }
388 if (i == RTK_TIMEOUT)
389 printf("%s: reset never completed!\n",
390 device_xname(sc->sc_dev));
391
392 /*
393 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
394 * but also says "Rtl8169s sigle chip detected".
395 */
396 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
397 CSR_WRITE_1(sc, RTK_LDPS, 1);
398
399 }
400
401 /*
402 * The following routine is designed to test for a defect on some
403 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
404 * lines connected to the bus, however for a 32-bit only card, they
405 * should be pulled high. The result of this defect is that the
406 * NIC will not work right if you plug it into a 64-bit slot: DMA
407 * operations will be done with 64-bit transfers, which will fail
408 * because the 64-bit data lines aren't connected.
409 *
410 * There's no way to work around this (short of talking a soldering
411 * iron to the board), however we can detect it. The method we use
412 * here is to put the NIC into digital loopback mode, set the receiver
413 * to promiscuous mode, and then try to send a frame. We then compare
414 * the frame data we sent to what was received. If the data matches,
415 * then the NIC is working correctly, otherwise we know the user has
416 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
417 * slot. In the latter case, there's no way the NIC can work correctly,
418 * so we print out a message on the console and abort the device attach.
419 */
420
421 int
422 re_diag(struct rtk_softc *sc)
423 {
424 struct ifnet *ifp = &sc->ethercom.ec_if;
425 struct mbuf *m0;
426 struct ether_header *eh;
427 struct re_rxsoft *rxs;
428 struct re_desc *cur_rx;
429 bus_dmamap_t dmamap;
430 uint16_t status;
431 uint32_t rxstat;
432 int total_len, i, s, error = 0;
433 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
434 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
435
436 /* Allocate a single mbuf */
437
438 MGETHDR(m0, M_DONTWAIT, MT_DATA);
439 if (m0 == NULL)
440 return ENOBUFS;
441
442 /*
443 * Initialize the NIC in test mode. This sets the chip up
444 * so that it can send and receive frames, but performs the
445 * following special functions:
446 * - Puts receiver in promiscuous mode
447 * - Enables digital loopback mode
448 * - Leaves interrupts turned off
449 */
450
451 ifp->if_flags |= IFF_PROMISC;
452 sc->re_testmode = 1;
453 re_init(ifp);
454 re_stop(ifp, 0);
455 DELAY(100000);
456 re_init(ifp);
457
458 /* Put some data in the mbuf */
459
460 eh = mtod(m0, struct ether_header *);
461 memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
462 memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
463 eh->ether_type = htons(ETHERTYPE_IP);
464 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
465
466 /*
467 * Queue the packet, start transmission.
468 */
469
470 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
471 s = splnet();
472 IF_ENQUEUE(&ifp->if_snd, m0);
473 re_start(ifp);
474 splx(s);
475 m0 = NULL;
476
477 /* Wait for it to propagate through the chip */
478
479 DELAY(100000);
480 for (i = 0; i < RTK_TIMEOUT; i++) {
481 status = CSR_READ_2(sc, RTK_ISR);
482 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
483 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
484 break;
485 DELAY(10);
486 }
487 if (i == RTK_TIMEOUT) {
488 aprint_error_dev(sc->sc_dev,
489 "diagnostic failed, failed to receive packet "
490 "in loopback mode\n");
491 error = EIO;
492 goto done;
493 }
494
495 /*
496 * The packet should have been dumped into the first
497 * entry in the RX DMA ring. Grab it from there.
498 */
499
500 rxs = &sc->re_ldata.re_rxsoft[0];
501 dmamap = rxs->rxs_dmamap;
502 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
503 BUS_DMASYNC_POSTREAD);
504 bus_dmamap_unload(sc->sc_dmat, dmamap);
505
506 m0 = rxs->rxs_mbuf;
507 rxs->rxs_mbuf = NULL;
508 eh = mtod(m0, struct ether_header *);
509
510 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
511 cur_rx = &sc->re_ldata.re_rx_list[0];
512 rxstat = le32toh(cur_rx->re_cmdstat);
513 total_len = rxstat & sc->re_rxlenmask;
514
515 if (total_len != ETHER_MIN_LEN) {
516 aprint_error_dev(sc->sc_dev,
517 "diagnostic failed, received short packet\n");
518 error = EIO;
519 goto done;
520 }
521
522 /* Test that the received packet data matches what we sent. */
523
524 if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
525 memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
526 ntohs(eh->ether_type) != ETHERTYPE_IP) {
527 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
528 "expected TX data: %s/%s/0x%x\n"
529 "received RX data: %s/%s/0x%x\n"
530 "You may have a defective 32-bit NIC plugged "
531 "into a 64-bit PCI slot.\n"
532 "Please re-install the NIC in a 32-bit slot "
533 "for proper operation.\n"
534 "Read the re(4) man page for more details.\n" ,
535 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
536 ether_sprintf(eh->ether_dhost),
537 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
538 error = EIO;
539 }
540
541 done:
542 /* Turn interface off, release resources */
543
544 sc->re_testmode = 0;
545 ifp->if_flags &= ~IFF_PROMISC;
546 re_stop(ifp, 0);
547 if (m0 != NULL)
548 m_freem(m0);
549
550 return error;
551 }
552
553
554 /*
555 * Attach the interface. Allocate softc structures, do ifmedia
556 * setup and ethernet/BPF attach.
557 */
558 void
559 re_attach(struct rtk_softc *sc)
560 {
561 uint8_t eaddr[ETHER_ADDR_LEN];
562 struct ifnet *ifp;
563 struct mii_data *mii = &sc->mii;
564 int error = 0, i;
565
566 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
567 uint32_t hwrev;
568
569 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
570 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
571 switch (hwrev) {
572 case RTK_HWREV_8169:
573 sc->sc_quirk |= RTKQ_8169NONS;
574 break;
575 case RTK_HWREV_8169S:
576 case RTK_HWREV_8110S:
577 case RTK_HWREV_8169_8110SB:
578 case RTK_HWREV_8169_8110SBL:
579 case RTK_HWREV_8169_8110SC:
580 sc->sc_quirk |= RTKQ_MACLDPS;
581 break;
582 case RTK_HWREV_8168_SPIN1:
583 case RTK_HWREV_8168_SPIN2:
584 case RTK_HWREV_8168_SPIN3:
585 sc->sc_quirk |= RTKQ_MACSTAT;
586 break;
587 case RTK_HWREV_8168C:
588 case RTK_HWREV_8168C_SPIN2:
589 case RTK_HWREV_8168CP:
590 case RTK_HWREV_8168D:
591 case RTK_HWREV_8168DP:
592 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
593 RTKQ_MACSTAT | RTKQ_CMDSTOP;
594 /*
595 * From FreeBSD driver:
596 *
597 * These (8168/8111) controllers support jumbo frame
598 * but it seems that enabling it requires touching
599 * additional magic registers. Depending on MAC
600 * revisions some controllers need to disable
601 * checksum offload. So disable jumbo frame until
602 * I have better idea what it really requires to
603 * make it support.
604 * RTL8168C/CP : supports up to 6KB jumbo frame.
605 * RTL8111C/CP : supports up to 9KB jumbo frame.
606 */
607 sc->sc_quirk |= RTKQ_NOJUMBO;
608 break;
609 case RTK_HWREV_8168E:
610 case RTK_HWREV_8168H:
611 case RTK_HWREV_8168H_SPIN1:
612 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
613 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
614 RTKQ_NOJUMBO;
615 break;
616 case RTK_HWREV_8168E_VL:
617 case RTK_HWREV_8168F:
618 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
619 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
620 break;
621 case RTK_HWREV_8168G:
622 case RTK_HWREV_8168G_SPIN1:
623 case RTK_HWREV_8168G_SPIN2:
624 case RTK_HWREV_8168G_SPIN4:
625 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
626 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
627 RTKQ_RXDV_GATED;
628 break;
629 case RTK_HWREV_8100E:
630 case RTK_HWREV_8100E_SPIN2:
631 case RTK_HWREV_8101E:
632 sc->sc_quirk |= RTKQ_NOJUMBO;
633 break;
634 case RTK_HWREV_8102E:
635 case RTK_HWREV_8102EL:
636 case RTK_HWREV_8103E:
637 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
638 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
639 break;
640 default:
641 aprint_normal_dev(sc->sc_dev,
642 "Unknown revision (0x%08x)\n", hwrev);
643 /* assume the latest features */
644 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
645 sc->sc_quirk |= RTKQ_NOJUMBO;
646 }
647
648 /* Set RX length mask */
649 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
650 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
651 } else {
652 sc->sc_quirk |= RTKQ_NOJUMBO;
653
654 /* Set RX length mask */
655 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
656 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
657 }
658
659 /* Reset the adapter. */
660 re_reset(sc);
661
662 /*
663 * RTL81x9 chips automatically read EEPROM to init MAC address,
664 * and some NAS override its MAC address per own configuration,
665 * so no need to explicitely read EEPROM and set ID registers.
666 */
667 #ifdef RE_USE_EECMD
668 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
669 /*
670 * Get station address from ID registers.
671 */
672 for (i = 0; i < ETHER_ADDR_LEN; i++)
673 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
674 } else {
675 uint16_t val;
676 int addr_len;
677
678 /*
679 * Get station address from the EEPROM.
680 */
681 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
682 addr_len = RTK_EEADDR_LEN1;
683 else
684 addr_len = RTK_EEADDR_LEN0;
685
686 /*
687 * Get station address from the EEPROM.
688 */
689 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
690 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
691 eaddr[(i * 2) + 0] = val & 0xff;
692 eaddr[(i * 2) + 1] = val >> 8;
693 }
694 }
695 #else
696 /*
697 * Get station address from ID registers.
698 */
699 for (i = 0; i < ETHER_ADDR_LEN; i++)
700 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
701 #endif
702
703 /* Take PHY out of power down mode. */
704 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
705 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
706
707 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
708 ether_sprintf(eaddr));
709
710 if (sc->re_ldata.re_tx_desc_cnt >
711 PAGE_SIZE / sizeof(struct re_desc)) {
712 sc->re_ldata.re_tx_desc_cnt =
713 PAGE_SIZE / sizeof(struct re_desc);
714 }
715
716 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
717 sc->re_ldata.re_tx_desc_cnt);
718 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
719
720 /* Allocate DMA'able memory for the TX ring */
721 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
722 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
723 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
724 aprint_error_dev(sc->sc_dev,
725 "can't allocate tx listseg, error = %d\n", error);
726 goto fail_0;
727 }
728
729 /* Load the map for the TX ring. */
730 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
731 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
732 (void **)&sc->re_ldata.re_tx_list,
733 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
734 aprint_error_dev(sc->sc_dev,
735 "can't map tx list, error = %d\n", error);
736 goto fail_1;
737 }
738 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
739
740 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
741 RE_TX_LIST_SZ(sc), 0, 0,
742 &sc->re_ldata.re_tx_list_map)) != 0) {
743 aprint_error_dev(sc->sc_dev,
744 "can't create tx list map, error = %d\n", error);
745 goto fail_2;
746 }
747
748
749 if ((error = bus_dmamap_load(sc->sc_dmat,
750 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
751 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
752 aprint_error_dev(sc->sc_dev,
753 "can't load tx list, error = %d\n", error);
754 goto fail_3;
755 }
756
757 /* Create DMA maps for TX buffers */
758 for (i = 0; i < RE_TX_QLEN; i++) {
759 error = bus_dmamap_create(sc->sc_dmat,
760 round_page(IP_MAXPACKET),
761 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
762 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
763 if (error) {
764 aprint_error_dev(sc->sc_dev,
765 "can't create DMA map for TX\n");
766 goto fail_4;
767 }
768 }
769
770 /* Allocate DMA'able memory for the RX ring */
771 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
772 if ((error = bus_dmamem_alloc(sc->sc_dmat,
773 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
774 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
775 aprint_error_dev(sc->sc_dev,
776 "can't allocate rx listseg, error = %d\n", error);
777 goto fail_4;
778 }
779
780 /* Load the map for the RX ring. */
781 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
782 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
783 (void **)&sc->re_ldata.re_rx_list,
784 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
785 aprint_error_dev(sc->sc_dev,
786 "can't map rx list, error = %d\n", error);
787 goto fail_5;
788 }
789 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
790
791 if ((error = bus_dmamap_create(sc->sc_dmat,
792 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
793 &sc->re_ldata.re_rx_list_map)) != 0) {
794 aprint_error_dev(sc->sc_dev,
795 "can't create rx list map, error = %d\n", error);
796 goto fail_6;
797 }
798
799 if ((error = bus_dmamap_load(sc->sc_dmat,
800 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
801 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
802 aprint_error_dev(sc->sc_dev,
803 "can't load rx list, error = %d\n", error);
804 goto fail_7;
805 }
806
807 /* Create DMA maps for RX buffers */
808 for (i = 0; i < RE_RX_DESC_CNT; i++) {
809 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
810 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
811 if (error) {
812 aprint_error_dev(sc->sc_dev,
813 "can't create DMA map for RX\n");
814 goto fail_8;
815 }
816 }
817
818 /*
819 * Record interface as attached. From here, we should not fail.
820 */
821 sc->sc_flags |= RTK_ATTACHED;
822
823 ifp = &sc->ethercom.ec_if;
824 ifp->if_softc = sc;
825 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
826 ifp->if_mtu = ETHERMTU;
827 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
828 ifp->if_ioctl = re_ioctl;
829 sc->ethercom.ec_capabilities |=
830 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
831 ifp->if_start = re_start;
832 ifp->if_stop = re_stop;
833
834 /*
835 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
836 * so we have a workaround to handle the bug by padding
837 * such packets manually.
838 */
839 ifp->if_capabilities |=
840 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
841 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
842 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
843 IFCAP_TSOv4;
844
845 ifp->if_watchdog = re_watchdog;
846 ifp->if_init = re_init;
847 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
848 ifp->if_capenable = ifp->if_capabilities;
849 IFQ_SET_READY(&ifp->if_snd);
850
851 callout_init(&sc->rtk_tick_ch, 0);
852
853 /* Do MII setup */
854 mii->mii_ifp = ifp;
855 mii->mii_readreg = re_miibus_readreg;
856 mii->mii_writereg = re_miibus_writereg;
857 mii->mii_statchg = re_miibus_statchg;
858 sc->ethercom.ec_mii = mii;
859 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
860 ether_mediastatus);
861 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
862 MII_OFFSET_ANY, 0);
863 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
864
865 /*
866 * Call MI attach routine.
867 */
868 if_attach(ifp);
869 if_deferred_start_init(ifp, NULL);
870 ether_ifattach(ifp, eaddr);
871
872 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
873 RND_TYPE_NET, RND_FLAG_DEFAULT);
874
875 if (pmf_device_register(sc->sc_dev, NULL, NULL))
876 pmf_class_network_register(sc->sc_dev, ifp);
877 else
878 aprint_error_dev(sc->sc_dev,
879 "couldn't establish power handler\n");
880
881 return;
882
883 fail_8:
884 /* Destroy DMA maps for RX buffers. */
885 for (i = 0; i < RE_RX_DESC_CNT; i++)
886 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
887 bus_dmamap_destroy(sc->sc_dmat,
888 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
889
890 /* Free DMA'able memory for the RX ring. */
891 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
892 fail_7:
893 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
894 fail_6:
895 bus_dmamem_unmap(sc->sc_dmat,
896 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
897 fail_5:
898 bus_dmamem_free(sc->sc_dmat,
899 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
900
901 fail_4:
902 /* Destroy DMA maps for TX buffers. */
903 for (i = 0; i < RE_TX_QLEN; i++)
904 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
905 bus_dmamap_destroy(sc->sc_dmat,
906 sc->re_ldata.re_txq[i].txq_dmamap);
907
908 /* Free DMA'able memory for the TX ring. */
909 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
910 fail_3:
911 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
912 fail_2:
913 bus_dmamem_unmap(sc->sc_dmat,
914 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
915 fail_1:
916 bus_dmamem_free(sc->sc_dmat,
917 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
918 fail_0:
919 return;
920 }
921
922
923 /*
924 * re_activate:
925 * Handle device activation/deactivation requests.
926 */
927 int
928 re_activate(device_t self, enum devact act)
929 {
930 struct rtk_softc *sc = device_private(self);
931
932 switch (act) {
933 case DVACT_DEACTIVATE:
934 if_deactivate(&sc->ethercom.ec_if);
935 return 0;
936 default:
937 return EOPNOTSUPP;
938 }
939 }
940
941 /*
942 * re_detach:
943 * Detach a rtk interface.
944 */
945 int
946 re_detach(struct rtk_softc *sc)
947 {
948 struct ifnet *ifp = &sc->ethercom.ec_if;
949 int i;
950
951 /*
952 * Succeed now if there isn't any work to do.
953 */
954 if ((sc->sc_flags & RTK_ATTACHED) == 0)
955 return 0;
956
957 /* Unhook our tick handler. */
958 callout_stop(&sc->rtk_tick_ch);
959
960 /* Detach all PHYs. */
961 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
962
963 /* Delete all remaining media. */
964 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
965
966 rnd_detach_source(&sc->rnd_source);
967 ether_ifdetach(ifp);
968 if_detach(ifp);
969
970 /* Destroy DMA maps for RX buffers. */
971 for (i = 0; i < RE_RX_DESC_CNT; i++)
972 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
973 bus_dmamap_destroy(sc->sc_dmat,
974 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
975
976 /* Free DMA'able memory for the RX ring. */
977 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
978 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
979 bus_dmamem_unmap(sc->sc_dmat,
980 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
981 bus_dmamem_free(sc->sc_dmat,
982 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
983
984 /* Destroy DMA maps for TX buffers. */
985 for (i = 0; i < RE_TX_QLEN; i++)
986 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
987 bus_dmamap_destroy(sc->sc_dmat,
988 sc->re_ldata.re_txq[i].txq_dmamap);
989
990 /* Free DMA'able memory for the TX ring. */
991 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
992 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
993 bus_dmamem_unmap(sc->sc_dmat,
994 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
995 bus_dmamem_free(sc->sc_dmat,
996 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
997
998 pmf_device_deregister(sc->sc_dev);
999
1000 /* we don't want to run again */
1001 sc->sc_flags &= ~RTK_ATTACHED;
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * re_enable:
1008 * Enable the RTL81X9 chip.
1009 */
1010 static int
1011 re_enable(struct rtk_softc *sc)
1012 {
1013
1014 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
1015 if ((*sc->sc_enable)(sc) != 0) {
1016 printf("%s: device enable failed\n",
1017 device_xname(sc->sc_dev));
1018 return EIO;
1019 }
1020 sc->sc_flags |= RTK_ENABLED;
1021 }
1022 return 0;
1023 }
1024
1025 /*
1026 * re_disable:
1027 * Disable the RTL81X9 chip.
1028 */
1029 static void
1030 re_disable(struct rtk_softc *sc)
1031 {
1032
1033 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1034 (*sc->sc_disable)(sc);
1035 sc->sc_flags &= ~RTK_ENABLED;
1036 }
1037 }
1038
1039 static int
1040 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1041 {
1042 struct mbuf *n = NULL;
1043 bus_dmamap_t map;
1044 struct re_desc *d;
1045 struct re_rxsoft *rxs;
1046 uint32_t cmdstat;
1047 int error;
1048
1049 if (m == NULL) {
1050 MGETHDR(n, M_DONTWAIT, MT_DATA);
1051 if (n == NULL)
1052 return ENOBUFS;
1053
1054 MCLGET(n, M_DONTWAIT);
1055 if ((n->m_flags & M_EXT) == 0) {
1056 m_freem(n);
1057 return ENOBUFS;
1058 }
1059 m = n;
1060 } else
1061 m->m_data = m->m_ext.ext_buf;
1062
1063 /*
1064 * Initialize mbuf length fields and fixup
1065 * alignment so that the frame payload is
1066 * longword aligned.
1067 */
1068 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1069 m->m_data += RE_ETHER_ALIGN;
1070
1071 rxs = &sc->re_ldata.re_rxsoft[idx];
1072 map = rxs->rxs_dmamap;
1073 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1074 BUS_DMA_READ|BUS_DMA_NOWAIT);
1075
1076 if (error)
1077 goto out;
1078
1079 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1080 BUS_DMASYNC_PREREAD);
1081
1082 d = &sc->re_ldata.re_rx_list[idx];
1083 #ifdef DIAGNOSTIC
1084 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1085 cmdstat = le32toh(d->re_cmdstat);
1086 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1087 if (cmdstat & RE_RDESC_STAT_OWN) {
1088 panic("%s: tried to map busy RX descriptor",
1089 device_xname(sc->sc_dev));
1090 }
1091 #endif
1092
1093 rxs->rxs_mbuf = m;
1094
1095 d->re_vlanctl = 0;
1096 cmdstat = map->dm_segs[0].ds_len;
1097 if (idx == (RE_RX_DESC_CNT - 1))
1098 cmdstat |= RE_RDESC_CMD_EOR;
1099 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1100 d->re_cmdstat = htole32(cmdstat);
1101 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1102 cmdstat |= RE_RDESC_CMD_OWN;
1103 d->re_cmdstat = htole32(cmdstat);
1104 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1105
1106 return 0;
1107 out:
1108 if (n != NULL)
1109 m_freem(n);
1110 return ENOMEM;
1111 }
1112
1113 static int
1114 re_tx_list_init(struct rtk_softc *sc)
1115 {
1116 int i;
1117
1118 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1119 for (i = 0; i < RE_TX_QLEN; i++) {
1120 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1121 }
1122
1123 bus_dmamap_sync(sc->sc_dmat,
1124 sc->re_ldata.re_tx_list_map, 0,
1125 sc->re_ldata.re_tx_list_map->dm_mapsize,
1126 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1127 sc->re_ldata.re_txq_prodidx = 0;
1128 sc->re_ldata.re_txq_considx = 0;
1129 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1130 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1131 sc->re_ldata.re_tx_nextfree = 0;
1132
1133 return 0;
1134 }
1135
1136 static int
1137 re_rx_list_init(struct rtk_softc *sc)
1138 {
1139 int i;
1140
1141 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1142
1143 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1144 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1145 return ENOBUFS;
1146 }
1147
1148 sc->re_ldata.re_rx_prodidx = 0;
1149 sc->re_head = sc->re_tail = NULL;
1150
1151 return 0;
1152 }
1153
1154 /*
1155 * RX handler for C+ and 8169. For the gigE chips, we support
1156 * the reception of jumbo frames that have been fragmented
1157 * across multiple 2K mbuf cluster buffers.
1158 */
1159 static void
1160 re_rxeof(struct rtk_softc *sc)
1161 {
1162 struct mbuf *m;
1163 struct ifnet *ifp;
1164 int i, total_len;
1165 struct re_desc *cur_rx;
1166 struct re_rxsoft *rxs;
1167 uint32_t rxstat, rxvlan;
1168
1169 ifp = &sc->ethercom.ec_if;
1170
1171 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1172 cur_rx = &sc->re_ldata.re_rx_list[i];
1173 RE_RXDESCSYNC(sc, i,
1174 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1175 rxstat = le32toh(cur_rx->re_cmdstat);
1176 rxvlan = le32toh(cur_rx->re_vlanctl);
1177 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1178 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1179 break;
1180 }
1181 total_len = rxstat & sc->re_rxlenmask;
1182 rxs = &sc->re_ldata.re_rxsoft[i];
1183 m = rxs->rxs_mbuf;
1184
1185 /* Invalidate the RX mbuf and unload its map */
1186
1187 bus_dmamap_sync(sc->sc_dmat,
1188 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1189 BUS_DMASYNC_POSTREAD);
1190 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1191
1192 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1193 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1194 if (sc->re_head == NULL)
1195 sc->re_head = sc->re_tail = m;
1196 else {
1197 m_remove_pkthdr(m);
1198 sc->re_tail->m_next = m;
1199 sc->re_tail = m;
1200 }
1201 re_newbuf(sc, i, NULL);
1202 continue;
1203 }
1204
1205 /*
1206 * NOTE: for the 8139C+, the frame length field
1207 * is always 12 bits in size, but for the gigE chips,
1208 * it is 13 bits (since the max RX frame length is 16K).
1209 * Unfortunately, all 32 bits in the status word
1210 * were already used, so to make room for the extra
1211 * length bit, RealTek took out the 'frame alignment
1212 * error' bit and shifted the other status bits
1213 * over one slot. The OWN, EOR, FS and LS bits are
1214 * still in the same places. We have already extracted
1215 * the frame length and checked the OWN bit, so rather
1216 * than using an alternate bit mapping, we shift the
1217 * status bits one space to the right so we can evaluate
1218 * them using the 8169 status as though it was in the
1219 * same format as that of the 8139C+.
1220 */
1221 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1222 rxstat >>= 1;
1223
1224 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1225 #ifdef RE_DEBUG
1226 printf("%s: RX error (rxstat = 0x%08x)",
1227 device_xname(sc->sc_dev), rxstat);
1228 if (rxstat & RE_RDESC_STAT_FRALIGN)
1229 printf(", frame alignment error");
1230 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1231 printf(", out of buffer space");
1232 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1233 printf(", FIFO overrun");
1234 if (rxstat & RE_RDESC_STAT_GIANT)
1235 printf(", giant packet");
1236 if (rxstat & RE_RDESC_STAT_RUNT)
1237 printf(", runt packet");
1238 if (rxstat & RE_RDESC_STAT_CRCERR)
1239 printf(", CRC error");
1240 printf("\n");
1241 #endif
1242 ifp->if_ierrors++;
1243 /*
1244 * If this is part of a multi-fragment packet,
1245 * discard all the pieces.
1246 */
1247 if (sc->re_head != NULL) {
1248 m_freem(sc->re_head);
1249 sc->re_head = sc->re_tail = NULL;
1250 }
1251 re_newbuf(sc, i, m);
1252 continue;
1253 }
1254
1255 /*
1256 * If allocating a replacement mbuf fails,
1257 * reload the current one.
1258 */
1259
1260 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1261 ifp->if_ierrors++;
1262 if (sc->re_head != NULL) {
1263 m_freem(sc->re_head);
1264 sc->re_head = sc->re_tail = NULL;
1265 }
1266 re_newbuf(sc, i, m);
1267 continue;
1268 }
1269
1270 if (sc->re_head != NULL) {
1271 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1272 /*
1273 * Special case: if there's 4 bytes or less
1274 * in this buffer, the mbuf can be discarded:
1275 * the last 4 bytes is the CRC, which we don't
1276 * care about anyway.
1277 */
1278 if (m->m_len <= ETHER_CRC_LEN) {
1279 sc->re_tail->m_len -=
1280 (ETHER_CRC_LEN - m->m_len);
1281 m_freem(m);
1282 } else {
1283 m->m_len -= ETHER_CRC_LEN;
1284 m_remove_pkthdr(m);
1285 sc->re_tail->m_next = m;
1286 }
1287 m = sc->re_head;
1288 sc->re_head = sc->re_tail = NULL;
1289 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1290 } else
1291 m->m_pkthdr.len = m->m_len =
1292 (total_len - ETHER_CRC_LEN);
1293
1294 m_set_rcvif(m, ifp);
1295
1296 /* Do RX checksumming */
1297 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1298 /* Check IP header checksum */
1299 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1300 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1301 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1302 m->m_pkthdr.csum_flags |=
1303 M_CSUM_IPv4_BAD;
1304
1305 /* Check TCP/UDP checksum */
1306 if (RE_TCPPKT(rxstat)) {
1307 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1308 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1309 m->m_pkthdr.csum_flags |=
1310 M_CSUM_TCP_UDP_BAD;
1311 } else if (RE_UDPPKT(rxstat)) {
1312 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1313 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
1314 /*
1315 * XXX: 8139C+ thinks UDP csum
1316 * 0xFFFF is bad, force software
1317 * calculation.
1318 */
1319 if (sc->sc_quirk & RTKQ_8139CPLUS)
1320 m->m_pkthdr.csum_flags
1321 &= ~M_CSUM_UDPv4;
1322 else
1323 m->m_pkthdr.csum_flags
1324 |= M_CSUM_TCP_UDP_BAD;
1325 }
1326 }
1327 }
1328 } else {
1329 /* Check IPv4 header checksum */
1330 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1331 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1332 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1333 m->m_pkthdr.csum_flags |=
1334 M_CSUM_IPv4_BAD;
1335
1336 /* Check TCPv4/UDPv4 checksum */
1337 if (RE_TCPPKT(rxstat)) {
1338 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1339 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1340 m->m_pkthdr.csum_flags |=
1341 M_CSUM_TCP_UDP_BAD;
1342 } else if (RE_UDPPKT(rxstat)) {
1343 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1344 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1345 m->m_pkthdr.csum_flags |=
1346 M_CSUM_TCP_UDP_BAD;
1347 }
1348 }
1349 /* XXX Check TCPv6/UDPv6 checksum? */
1350 }
1351
1352 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1353 vlan_set_tag(m,
1354 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA));
1355 }
1356 if_percpuq_enqueue(ifp->if_percpuq, m);
1357 }
1358
1359 sc->re_ldata.re_rx_prodidx = i;
1360 }
1361
1362 static void
1363 re_txeof(struct rtk_softc *sc)
1364 {
1365 struct ifnet *ifp;
1366 struct re_txq *txq;
1367 uint32_t txstat;
1368 int idx, descidx;
1369
1370 ifp = &sc->ethercom.ec_if;
1371
1372 for (idx = sc->re_ldata.re_txq_considx;
1373 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1374 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1375 txq = &sc->re_ldata.re_txq[idx];
1376 KASSERT(txq->txq_mbuf != NULL);
1377
1378 descidx = txq->txq_descidx;
1379 RE_TXDESCSYNC(sc, descidx,
1380 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1381 txstat =
1382 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1383 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1384 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1385 if (txstat & RE_TDESC_CMD_OWN) {
1386 break;
1387 }
1388
1389 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1390 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1391 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1392 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1393 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1394 m_freem(txq->txq_mbuf);
1395 txq->txq_mbuf = NULL;
1396
1397 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1398 ifp->if_collisions++;
1399 if (txstat & RE_TDESC_STAT_TXERRSUM)
1400 ifp->if_oerrors++;
1401 else
1402 ifp->if_opackets++;
1403 }
1404
1405 sc->re_ldata.re_txq_considx = idx;
1406
1407 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1408 ifp->if_flags &= ~IFF_OACTIVE;
1409
1410 /*
1411 * If not all descriptors have been released reaped yet,
1412 * reload the timer so that we will eventually get another
1413 * interrupt that will cause us to re-enter this routine.
1414 * This is done in case the transmitter has gone idle.
1415 */
1416 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1417 if ((sc->sc_quirk & RTKQ_IM_HW) == 0)
1418 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1419 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1420 /*
1421 * Some chips will ignore a second TX request
1422 * issued while an existing transmission is in
1423 * progress. If the transmitter goes idle but
1424 * there are still packets waiting to be sent,
1425 * we need to restart the channel here to flush
1426 * them out. This only seems to be required with
1427 * the PCIe devices.
1428 */
1429 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1430 }
1431 } else
1432 ifp->if_timer = 0;
1433 }
1434
1435 static void
1436 re_tick(void *arg)
1437 {
1438 struct rtk_softc *sc = arg;
1439 int s;
1440
1441 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1442 s = splnet();
1443
1444 mii_tick(&sc->mii);
1445 splx(s);
1446
1447 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1448 }
1449
1450 int
1451 re_intr(void *arg)
1452 {
1453 struct rtk_softc *sc = arg;
1454 struct ifnet *ifp;
1455 uint16_t status;
1456 int handled = 0;
1457
1458 if (!device_has_power(sc->sc_dev))
1459 return 0;
1460
1461 ifp = &sc->ethercom.ec_if;
1462
1463 if ((ifp->if_flags & IFF_UP) == 0)
1464 return 0;
1465
1466 const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ?
1467 RTK_INTRS_IM_HW : RTK_INTRS_CPLUS;
1468
1469 for (;;) {
1470
1471 status = CSR_READ_2(sc, RTK_ISR);
1472 /* If the card has gone away the read returns 0xffff. */
1473 if (status == 0xffff)
1474 break;
1475 if (status) {
1476 handled = 1;
1477 CSR_WRITE_2(sc, RTK_ISR, status);
1478 }
1479
1480 if ((status & status_mask) == 0)
1481 break;
1482
1483 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1484 re_rxeof(sc);
1485
1486 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1487 RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK))
1488 re_txeof(sc);
1489
1490 if (status & RTK_ISR_SYSTEM_ERR) {
1491 re_init(ifp);
1492 }
1493
1494 if (status & RTK_ISR_LINKCHG) {
1495 callout_stop(&sc->rtk_tick_ch);
1496 re_tick(sc);
1497 }
1498 }
1499
1500 if (handled)
1501 if_schedule_deferred_start(ifp);
1502
1503 rnd_add_uint32(&sc->rnd_source, status);
1504
1505 return handled;
1506 }
1507
1508
1509
1510 /*
1511 * Main transmit routine for C+ and gigE NICs.
1512 */
1513
1514 static void
1515 re_start(struct ifnet *ifp)
1516 {
1517 struct rtk_softc *sc;
1518 struct mbuf *m;
1519 bus_dmamap_t map;
1520 struct re_txq *txq;
1521 struct re_desc *d;
1522 uint32_t cmdstat, re_flags, vlanctl;
1523 int ofree, idx, error, nsegs, seg;
1524 int startdesc, curdesc, lastdesc;
1525 bool pad;
1526
1527 sc = ifp->if_softc;
1528 ofree = sc->re_ldata.re_txq_free;
1529
1530 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1531
1532 IFQ_POLL(&ifp->if_snd, m);
1533 if (m == NULL)
1534 break;
1535
1536 if (sc->re_ldata.re_txq_free == 0 ||
1537 sc->re_ldata.re_tx_free == 0) {
1538 /* no more free slots left */
1539 ifp->if_flags |= IFF_OACTIVE;
1540 break;
1541 }
1542
1543 /*
1544 * Set up checksum offload. Note: checksum offload bits must
1545 * appear in all descriptors of a multi-descriptor transmit
1546 * attempt. (This is according to testing done with an 8169
1547 * chip. I'm not sure if this is a requirement or a bug.)
1548 */
1549
1550 vlanctl = 0;
1551 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1552 uint32_t segsz = m->m_pkthdr.segsz;
1553
1554 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1555 re_flags = RE_TDESC_CMD_LGSEND |
1556 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1557 } else {
1558 re_flags = RE_TDESC_CMD_LGSEND_V4;
1559 vlanctl |=
1560 (segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT);
1561 }
1562 } else {
1563 /*
1564 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1565 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1566 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1567 */
1568 re_flags = 0;
1569 if ((m->m_pkthdr.csum_flags &
1570 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1571 != 0) {
1572 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1573 re_flags |= RE_TDESC_CMD_IPCSUM;
1574 if (m->m_pkthdr.csum_flags &
1575 M_CSUM_TCPv4) {
1576 re_flags |=
1577 RE_TDESC_CMD_TCPCSUM;
1578 } else if (m->m_pkthdr.csum_flags &
1579 M_CSUM_UDPv4) {
1580 re_flags |=
1581 RE_TDESC_CMD_UDPCSUM;
1582 }
1583 } else {
1584 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1585 if (m->m_pkthdr.csum_flags &
1586 M_CSUM_TCPv4) {
1587 vlanctl |=
1588 RE_TDESC_VLANCTL_TCPCSUM;
1589 } else if (m->m_pkthdr.csum_flags &
1590 M_CSUM_UDPv4) {
1591 vlanctl |=
1592 RE_TDESC_VLANCTL_UDPCSUM;
1593 }
1594 }
1595 }
1596 }
1597
1598 txq = &sc->re_ldata.re_txq[idx];
1599 map = txq->txq_dmamap;
1600 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1601 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1602
1603 if (__predict_false(error)) {
1604 /* XXX try to defrag if EFBIG? */
1605 printf("%s: can't map mbuf (error %d)\n",
1606 device_xname(sc->sc_dev), error);
1607
1608 IFQ_DEQUEUE(&ifp->if_snd, m);
1609 m_freem(m);
1610 ifp->if_oerrors++;
1611 continue;
1612 }
1613
1614 nsegs = map->dm_nsegs;
1615 pad = false;
1616 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1617 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1618 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1619 pad = true;
1620 nsegs++;
1621 }
1622
1623 if (nsegs > sc->re_ldata.re_tx_free) {
1624 /*
1625 * Not enough free descriptors to transmit this packet.
1626 */
1627 ifp->if_flags |= IFF_OACTIVE;
1628 bus_dmamap_unload(sc->sc_dmat, map);
1629 break;
1630 }
1631
1632 IFQ_DEQUEUE(&ifp->if_snd, m);
1633
1634 /*
1635 * Make sure that the caches are synchronized before we
1636 * ask the chip to start DMA for the packet data.
1637 */
1638 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1639 BUS_DMASYNC_PREWRITE);
1640
1641 /*
1642 * Set up hardware VLAN tagging. Note: vlan tag info must
1643 * appear in all descriptors of a multi-descriptor
1644 * transmission attempt.
1645 */
1646 if (vlan_has_tag(m))
1647 vlanctl |= bswap16(vlan_get_tag(m)) |
1648 RE_TDESC_VLANCTL_TAG;
1649
1650 /*
1651 * Map the segment array into descriptors.
1652 * Note that we set the start-of-frame and
1653 * end-of-frame markers for either TX or RX,
1654 * but they really only have meaning in the TX case.
1655 * (In the RX case, it's the chip that tells us
1656 * where packets begin and end.)
1657 * We also keep track of the end of the ring
1658 * and set the end-of-ring bits as needed,
1659 * and we set the ownership bits in all except
1660 * the very first descriptor. (The caller will
1661 * set this descriptor later when it start
1662 * transmission or reception.)
1663 */
1664 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1665 lastdesc = -1;
1666 for (seg = 0; seg < map->dm_nsegs;
1667 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1668 d = &sc->re_ldata.re_tx_list[curdesc];
1669 #ifdef DIAGNOSTIC
1670 RE_TXDESCSYNC(sc, curdesc,
1671 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1672 cmdstat = le32toh(d->re_cmdstat);
1673 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1674 if (cmdstat & RE_TDESC_STAT_OWN) {
1675 panic("%s: tried to map busy TX descriptor",
1676 device_xname(sc->sc_dev));
1677 }
1678 #endif
1679
1680 d->re_vlanctl = htole32(vlanctl);
1681 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1682 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1683 if (seg == 0)
1684 cmdstat |= RE_TDESC_CMD_SOF;
1685 else
1686 cmdstat |= RE_TDESC_CMD_OWN;
1687 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1688 cmdstat |= RE_TDESC_CMD_EOR;
1689 if (seg == nsegs - 1) {
1690 cmdstat |= RE_TDESC_CMD_EOF;
1691 lastdesc = curdesc;
1692 }
1693 d->re_cmdstat = htole32(cmdstat);
1694 RE_TXDESCSYNC(sc, curdesc,
1695 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1696 }
1697 if (__predict_false(pad)) {
1698 d = &sc->re_ldata.re_tx_list[curdesc];
1699 d->re_vlanctl = htole32(vlanctl);
1700 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1701 cmdstat = re_flags |
1702 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1703 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1704 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1705 cmdstat |= RE_TDESC_CMD_EOR;
1706 d->re_cmdstat = htole32(cmdstat);
1707 RE_TXDESCSYNC(sc, curdesc,
1708 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1709 lastdesc = curdesc;
1710 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1711 }
1712 KASSERT(lastdesc != -1);
1713
1714 /* Transfer ownership of packet to the chip. */
1715
1716 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1717 htole32(RE_TDESC_CMD_OWN);
1718 RE_TXDESCSYNC(sc, startdesc,
1719 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1720
1721 /* update info of TX queue and descriptors */
1722 txq->txq_mbuf = m;
1723 txq->txq_descidx = lastdesc;
1724 txq->txq_nsegs = nsegs;
1725
1726 sc->re_ldata.re_txq_free--;
1727 sc->re_ldata.re_tx_free -= nsegs;
1728 sc->re_ldata.re_tx_nextfree = curdesc;
1729
1730 /*
1731 * If there's a BPF listener, bounce a copy of this frame
1732 * to him.
1733 */
1734 bpf_mtap(ifp, m, BPF_D_OUT);
1735 }
1736
1737 if (sc->re_ldata.re_txq_free < ofree) {
1738 /*
1739 * TX packets are enqueued.
1740 */
1741 sc->re_ldata.re_txq_prodidx = idx;
1742
1743 /*
1744 * Start the transmitter to poll.
1745 *
1746 * RealTek put the TX poll request register in a different
1747 * location on the 8169 gigE chip. I don't know why.
1748 */
1749 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1750 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1751 else
1752 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1753
1754 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
1755 /*
1756 * Use the countdown timer for interrupt moderation.
1757 * 'TX done' interrupts are disabled. Instead, we reset
1758 * the countdown timer, which will begin counting until
1759 * it hits the value in the TIMERINT register, and then
1760 * trigger an interrupt. Each time we write to the
1761 * TIMERCNT register, the timer count is reset to 0.
1762 */
1763 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1764 }
1765
1766 /*
1767 * Set a timeout in case the chip goes out to lunch.
1768 */
1769 ifp->if_timer = 5;
1770 }
1771 }
1772
1773 static int
1774 re_init(struct ifnet *ifp)
1775 {
1776 struct rtk_softc *sc = ifp->if_softc;
1777 uint32_t rxcfg = 0;
1778 uint16_t cfg;
1779 int error;
1780 #ifdef RE_USE_EECMD
1781 const uint8_t *enaddr;
1782 uint32_t reg;
1783 #endif
1784
1785 if ((error = re_enable(sc)) != 0)
1786 goto out;
1787
1788 /*
1789 * Cancel pending I/O and free all RX/TX buffers.
1790 */
1791 re_stop(ifp, 0);
1792
1793 re_reset(sc);
1794
1795 /*
1796 * Enable C+ RX and TX mode, as well as VLAN stripping and
1797 * RX checksum offload. We must configure the C+ register
1798 * before all others.
1799 */
1800 cfg = RE_CPLUSCMD_PCI_MRW;
1801
1802 /*
1803 * XXX: For old 8169 set bit 14.
1804 * For 8169S/8110S and above, do not set bit 14.
1805 */
1806 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1807 cfg |= (0x1 << 14);
1808
1809 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1810 cfg |= RE_CPLUSCMD_VLANSTRIP;
1811 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1812 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1813 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1814 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1815 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1816 cfg |= RE_CPLUSCMD_TXENB;
1817 } else
1818 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1819
1820 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1821
1822 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1823 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
1824 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
1825 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1826 } else {
1827 CSR_WRITE_2(sc, RTK_IM, 0x5151);
1828 }
1829 }
1830
1831 DELAY(10000);
1832
1833 #ifdef RE_USE_EECMD
1834 /*
1835 * Init our MAC address. Even though the chipset
1836 * documentation doesn't mention it, we need to enter "Config
1837 * register write enable" mode to modify the ID registers.
1838 */
1839 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1840 enaddr = CLLADDR(ifp->if_sadl);
1841 reg = enaddr[0] | (enaddr[1] << 8) |
1842 (enaddr[2] << 16) | (enaddr[3] << 24);
1843 CSR_WRITE_4(sc, RTK_IDR0, reg);
1844 reg = enaddr[4] | (enaddr[5] << 8);
1845 CSR_WRITE_4(sc, RTK_IDR4, reg);
1846 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1847 #endif
1848
1849 /*
1850 * For C+ mode, initialize the RX descriptors and mbufs.
1851 */
1852 re_rx_list_init(sc);
1853 re_tx_list_init(sc);
1854
1855 /*
1856 * Load the addresses of the RX and TX lists into the chip.
1857 */
1858 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1859 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1860 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1861 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1862
1863 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1864 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1865 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1866 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1867
1868 if (sc->sc_quirk & RTKQ_RXDV_GATED) {
1869 CSR_WRITE_4(sc, RTK_MISC,
1870 CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
1871 }
1872
1873 /*
1874 * Enable transmit and receive.
1875 */
1876 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1877
1878 /*
1879 * Set the initial TX and RX configuration.
1880 */
1881 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1882 /* test mode is needed only for old 8169 */
1883 CSR_WRITE_4(sc, RTK_TXCFG,
1884 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1885 } else
1886 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1887
1888 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1889
1890 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1891
1892 /* Set the individual bit to receive frames for this host only. */
1893 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1894 rxcfg |= RTK_RXCFG_RX_INDIV;
1895
1896 /* If we want promiscuous mode, set the allframes bit. */
1897 if (ifp->if_flags & IFF_PROMISC)
1898 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1899 else
1900 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1901 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1902
1903 /*
1904 * Set capture broadcast bit to capture broadcast frames.
1905 */
1906 if (ifp->if_flags & IFF_BROADCAST)
1907 rxcfg |= RTK_RXCFG_RX_BROAD;
1908 else
1909 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1910 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1911
1912 /*
1913 * Program the multicast filter, if necessary.
1914 */
1915 rtk_setmulti(sc);
1916
1917 /*
1918 * Enable interrupts.
1919 */
1920 if (sc->re_testmode)
1921 CSR_WRITE_2(sc, RTK_IMR, 0);
1922 else if ((sc->sc_quirk & RTKQ_IM_HW) != 0)
1923 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW);
1924 else
1925 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1926
1927 /* Start RX/TX process. */
1928 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1929 #ifdef notdef
1930 /* Enable receiver and transmitter. */
1931 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1932 #endif
1933
1934 /*
1935 * Initialize the timer interrupt register so that
1936 * a timer interrupt will be generated once the timer
1937 * reaches a certain number of ticks. The timer is
1938 * reloaded on each transmit. This gives us TX interrupt
1939 * moderation, which dramatically improves TX frame rate.
1940 */
1941
1942 unsigned defer; /* timer interval / ns */
1943 unsigned period; /* busclock period / ns */
1944
1945 /*
1946 * Maximum frame rate
1947 * 1500 byte PDU -> 81274 Hz
1948 * 46 byte PDU -> 1488096 Hz
1949 *
1950 * Deferring interrupts by up to 128us needs descriptors for
1951 * 1500 byte PDU -> 10.4 frames
1952 * 46 byte PDU -> 190.4 frames
1953 *
1954 */
1955 defer = 128000;
1956
1957 if ((sc->sc_quirk & RTKQ_IM_HW) != 0) {
1958 period = 1;
1959 defer = 0;
1960 } else if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1961 period = 8;
1962 } else {
1963 switch (CSR_READ_1(sc, RTK_CFG2_BUSFREQ) & 0x7) {
1964 case RTK_BUSFREQ_33MHZ:
1965 period = 30;
1966 break;
1967 case RTK_BUSFREQ_66MHZ:
1968 period = 15;
1969 break;
1970 default:
1971 /* lowest possible clock */
1972 period = 60;
1973 break;
1974 }
1975 }
1976
1977 /* Timer Interrupt register address varies */
1978 uint16_t re8139_reg;
1979 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1980 re8139_reg = RTK_TIMERINT;
1981 else
1982 re8139_reg = RTK_TIMERINT_8169;
1983 CSR_WRITE_4(sc, re8139_reg, defer / period);
1984
1985 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
1986 /*
1987 * For 8169 gigE NICs, set the max allowed RX packet
1988 * size so we can receive jumbo frames.
1989 */
1990 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1991 }
1992
1993 if (sc->re_testmode)
1994 return 0;
1995
1996 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
1997
1998 ifp->if_flags |= IFF_RUNNING;
1999 ifp->if_flags &= ~IFF_OACTIVE;
2000
2001 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
2002
2003 out:
2004 if (error) {
2005 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2006 ifp->if_timer = 0;
2007 printf("%s: interface not running\n",
2008 device_xname(sc->sc_dev));
2009 }
2010
2011 return error;
2012 }
2013
2014 static int
2015 re_ioctl(struct ifnet *ifp, u_long command, void *data)
2016 {
2017 struct rtk_softc *sc = ifp->if_softc;
2018 struct ifreq *ifr = data;
2019 int s, error = 0;
2020
2021 s = splnet();
2022
2023 switch (command) {
2024 case SIOCSIFMTU:
2025 /*
2026 * Disable jumbo frames if it's not supported.
2027 */
2028 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
2029 ifr->ifr_mtu > ETHERMTU) {
2030 error = EINVAL;
2031 break;
2032 }
2033
2034 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2035 error = EINVAL;
2036 else if ((error = ifioctl_common(ifp, command, data)) ==
2037 ENETRESET)
2038 error = 0;
2039 break;
2040 default:
2041 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2042 break;
2043
2044 error = 0;
2045
2046 if (command == SIOCSIFCAP)
2047 error = (*ifp->if_init)(ifp);
2048 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2049 ;
2050 else if (ifp->if_flags & IFF_RUNNING)
2051 rtk_setmulti(sc);
2052 break;
2053 }
2054
2055 splx(s);
2056
2057 return error;
2058 }
2059
2060 static void
2061 re_watchdog(struct ifnet *ifp)
2062 {
2063 struct rtk_softc *sc;
2064 int s;
2065
2066 sc = ifp->if_softc;
2067 s = splnet();
2068 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2069 ifp->if_oerrors++;
2070
2071 re_txeof(sc);
2072 re_rxeof(sc);
2073
2074 re_init(ifp);
2075
2076 splx(s);
2077 }
2078
2079 /*
2080 * Stop the adapter and free any mbufs allocated to the
2081 * RX and TX lists.
2082 */
2083 static void
2084 re_stop(struct ifnet *ifp, int disable)
2085 {
2086 int i;
2087 struct rtk_softc *sc = ifp->if_softc;
2088
2089 callout_stop(&sc->rtk_tick_ch);
2090
2091 mii_down(&sc->mii);
2092
2093 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
2094 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
2095 RTK_CMD_RX_ENB);
2096 else
2097 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2098 DELAY(1000);
2099 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2100 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
2101
2102 if (sc->re_head != NULL) {
2103 m_freem(sc->re_head);
2104 sc->re_head = sc->re_tail = NULL;
2105 }
2106
2107 /* Free the TX list buffers. */
2108 for (i = 0; i < RE_TX_QLEN; i++) {
2109 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2110 bus_dmamap_unload(sc->sc_dmat,
2111 sc->re_ldata.re_txq[i].txq_dmamap);
2112 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2113 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2114 }
2115 }
2116
2117 /* Free the RX list buffers. */
2118 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2119 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2120 bus_dmamap_unload(sc->sc_dmat,
2121 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2122 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2123 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2124 }
2125 }
2126
2127 if (disable)
2128 re_disable(sc);
2129
2130 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2131 ifp->if_timer = 0;
2132 }
2133