Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.155
      1 /*	$NetBSD: rtl8169.c,v 1.155 2018/11/13 10:51:49 mlelstv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.155 2018/11/13 10:51:49 mlelstv Exp $");
     37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     38 
     39 /*
     40  * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
     41  *
     42  * Written by Bill Paul <wpaul (at) windriver.com>
     43  * Senior Networking Software Engineer
     44  * Wind River Systems
     45  */
     46 
     47 /*
     48  * This driver is designed to support RealTek's next generation of
     49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     50  * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
     51  * RTL8110S, the RTL8168 and the RTL8111.
     52  *
     53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     54  * with the older 8139 family, however it also supports a special
     55  * C+ mode of operation that provides several new performance enhancing
     56  * features. These include:
     57  *
     58  *	o Descriptor based DMA mechanism. Each descriptor represents
     59  *	  a single packet fragment. Data buffers may be aligned on
     60  *	  any byte boundary.
     61  *
     62  *	o 64-bit DMA
     63  *
     64  *	o TCP/IP checksum offload for both RX and TX
     65  *
     66  *	o High and normal priority transmit DMA rings
     67  *
     68  *	o VLAN tag insertion and extraction
     69  *
     70  *	o TCP large send (segmentation offload)
     71  *
     72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     73  * programming API is fairly straightforward. The RX filtering, EEPROM
     74  * access and PHY access is the same as it is on the older 8139 series
     75  * chips.
     76  *
     77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     78  * same programming API and feature set as the 8139C+ with the following
     79  * differences and additions:
     80  *
     81  *	o 1000Mbps mode
     82  *
     83  *	o Jumbo frames
     84  *
     85  *	o GMII and TBI ports/registers for interfacing with copper
     86  *	  or fiber PHYs
     87  *
     88  *      o RX and TX DMA rings can have up to 1024 descriptors
     89  *        (the 8139C+ allows a maximum of 64)
     90  *
     91  *	o Slight differences in register layout from the 8139C+
     92  *
     93  * The TX start and timer interrupt registers are at different locations
     94  * on the 8169 than they are on the 8139C+. Also, the status word in the
     95  * RX descriptor has a slightly different bit layout. The 8169 does not
     96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     97  * copper gigE PHY.
     98  *
     99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
    100  * (the 'S' stands for 'single-chip'). These devices have the same
    101  * programming API as the older 8169, but also have some vendor-specific
    102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    104  *
    105  * This driver takes advantage of the RX and TX checksum offload and
    106  * VLAN tag insertion/extraction features. It also implements TX
    107  * interrupt moderation using the timer interrupt registers, which
    108  * significantly reduces TX interrupt load. There is also support
    109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    110  * jumbo frames larger than 7.5K, so the max MTU possible with this
    111  * driver is 7500 bytes.
    112  */
    113 
    114 
    115 #include <sys/param.h>
    116 #include <sys/endian.h>
    117 #include <sys/systm.h>
    118 #include <sys/sockio.h>
    119 #include <sys/mbuf.h>
    120 #include <sys/malloc.h>
    121 #include <sys/kernel.h>
    122 #include <sys/socket.h>
    123 #include <sys/device.h>
    124 
    125 #include <net/if.h>
    126 #include <net/if_arp.h>
    127 #include <net/if_dl.h>
    128 #include <net/if_ether.h>
    129 #include <net/if_media.h>
    130 #include <net/if_vlanvar.h>
    131 
    132 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    133 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    134 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    135 
    136 #include <net/bpf.h>
    137 #include <sys/rndsource.h>
    138 
    139 #include <sys/bus.h>
    140 
    141 #include <dev/mii/mii.h>
    142 #include <dev/mii/miivar.h>
    143 
    144 #include <dev/ic/rtl81x9reg.h>
    145 #include <dev/ic/rtl81x9var.h>
    146 
    147 #include <dev/ic/rtl8169var.h>
    148 
    149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
    150 
    151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    152 static int re_rx_list_init(struct rtk_softc *);
    153 static int re_tx_list_init(struct rtk_softc *);
    154 static void re_rxeof(struct rtk_softc *);
    155 static void re_txeof(struct rtk_softc *);
    156 static void re_tick(void *);
    157 static void re_start(struct ifnet *);
    158 static int re_ioctl(struct ifnet *, u_long, void *);
    159 static int re_init(struct ifnet *);
    160 static void re_stop(struct ifnet *, int);
    161 static void re_watchdog(struct ifnet *);
    162 
    163 static int re_enable(struct rtk_softc *);
    164 static void re_disable(struct rtk_softc *);
    165 
    166 static int re_gmii_readreg(device_t, int, int);
    167 static void re_gmii_writereg(device_t, int, int, int);
    168 
    169 static int re_miibus_readreg(device_t, int, int);
    170 static void re_miibus_writereg(device_t, int, int, int);
    171 static void re_miibus_statchg(struct ifnet *);
    172 
    173 static void re_reset(struct rtk_softc *);
    174 
    175 static inline void
    176 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
    177 {
    178 
    179 	d->re_bufaddr_lo = htole32((uint32_t)addr);
    180 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    181 		d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
    182 	else
    183 		d->re_bufaddr_hi = 0;
    184 }
    185 
    186 static int
    187 re_gmii_readreg(device_t dev, int phy, int reg)
    188 {
    189 	struct rtk_softc *sc = device_private(dev);
    190 	uint32_t rval;
    191 	int i;
    192 
    193 	if (phy != 7)
    194 		return 0;
    195 
    196 	/* Let the rgephy driver read the GMEDIASTAT register */
    197 
    198 	if (reg == RTK_GMEDIASTAT) {
    199 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    200 		return rval;
    201 	}
    202 
    203 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    204 	DELAY(1000);
    205 
    206 	for (i = 0; i < RTK_TIMEOUT; i++) {
    207 		rval = CSR_READ_4(sc, RTK_PHYAR);
    208 		if (rval & RTK_PHYAR_BUSY)
    209 			break;
    210 		DELAY(100);
    211 	}
    212 
    213 	if (i == RTK_TIMEOUT) {
    214 		printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
    215 		return 0;
    216 	}
    217 
    218 	return rval & RTK_PHYAR_PHYDATA;
    219 }
    220 
    221 static void
    222 re_gmii_writereg(device_t dev, int phy, int reg, int data)
    223 {
    224 	struct rtk_softc *sc = device_private(dev);
    225 	uint32_t rval;
    226 	int i;
    227 
    228 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    229 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    230 	DELAY(1000);
    231 
    232 	for (i = 0; i < RTK_TIMEOUT; i++) {
    233 		rval = CSR_READ_4(sc, RTK_PHYAR);
    234 		if (!(rval & RTK_PHYAR_BUSY))
    235 			break;
    236 		DELAY(100);
    237 	}
    238 
    239 	if (i == RTK_TIMEOUT) {
    240 		printf("%s: PHY write reg %x <- %x failed\n",
    241 		    device_xname(sc->sc_dev), reg, data);
    242 	}
    243 }
    244 
    245 static int
    246 re_miibus_readreg(device_t dev, int phy, int reg)
    247 {
    248 	struct rtk_softc *sc = device_private(dev);
    249 	uint16_t rval = 0;
    250 	uint16_t re8139_reg = 0;
    251 	int s;
    252 
    253 	s = splnet();
    254 
    255 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    256 		rval = re_gmii_readreg(dev, phy, reg);
    257 		splx(s);
    258 		return rval;
    259 	}
    260 
    261 	/* Pretend the internal PHY is only at address 0 */
    262 	if (phy) {
    263 		splx(s);
    264 		return 0;
    265 	}
    266 	switch (reg) {
    267 	case MII_BMCR:
    268 		re8139_reg = RTK_BMCR;
    269 		break;
    270 	case MII_BMSR:
    271 		re8139_reg = RTK_BMSR;
    272 		break;
    273 	case MII_ANAR:
    274 		re8139_reg = RTK_ANAR;
    275 		break;
    276 	case MII_ANER:
    277 		re8139_reg = RTK_ANER;
    278 		break;
    279 	case MII_ANLPAR:
    280 		re8139_reg = RTK_LPAR;
    281 		break;
    282 	case MII_PHYIDR1:
    283 	case MII_PHYIDR2:
    284 		splx(s);
    285 		return 0;
    286 	/*
    287 	 * Allow the rlphy driver to read the media status
    288 	 * register. If we have a link partner which does not
    289 	 * support NWAY, this is the register which will tell
    290 	 * us the results of parallel detection.
    291 	 */
    292 	case RTK_MEDIASTAT:
    293 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    294 		splx(s);
    295 		return rval;
    296 	default:
    297 		printf("%s: bad phy register\n", device_xname(sc->sc_dev));
    298 		splx(s);
    299 		return 0;
    300 	}
    301 	rval = CSR_READ_2(sc, re8139_reg);
    302 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
    303 		/* 8139C+ has different bit layout. */
    304 		rval &= ~(BMCR_LOOP | BMCR_ISO);
    305 	}
    306 	splx(s);
    307 	return rval;
    308 }
    309 
    310 static void
    311 re_miibus_writereg(device_t dev, int phy, int reg, int data)
    312 {
    313 	struct rtk_softc *sc = device_private(dev);
    314 	uint16_t re8139_reg = 0;
    315 	int s;
    316 
    317 	s = splnet();
    318 
    319 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    320 		re_gmii_writereg(dev, phy, reg, data);
    321 		splx(s);
    322 		return;
    323 	}
    324 
    325 	/* Pretend the internal PHY is only at address 0 */
    326 	if (phy) {
    327 		splx(s);
    328 		return;
    329 	}
    330 	switch (reg) {
    331 	case MII_BMCR:
    332 		re8139_reg = RTK_BMCR;
    333 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
    334 			/* 8139C+ has different bit layout. */
    335 			data &= ~(BMCR_LOOP | BMCR_ISO);
    336 		}
    337 		break;
    338 	case MII_BMSR:
    339 		re8139_reg = RTK_BMSR;
    340 		break;
    341 	case MII_ANAR:
    342 		re8139_reg = RTK_ANAR;
    343 		break;
    344 	case MII_ANER:
    345 		re8139_reg = RTK_ANER;
    346 		break;
    347 	case MII_ANLPAR:
    348 		re8139_reg = RTK_LPAR;
    349 		break;
    350 	case MII_PHYIDR1:
    351 	case MII_PHYIDR2:
    352 		splx(s);
    353 		return;
    354 		break;
    355 	default:
    356 		printf("%s: bad phy register\n", device_xname(sc->sc_dev));
    357 		splx(s);
    358 		return;
    359 	}
    360 	CSR_WRITE_2(sc, re8139_reg, data);
    361 	splx(s);
    362 	return;
    363 }
    364 
    365 static void
    366 re_miibus_statchg(struct ifnet *ifp)
    367 {
    368 
    369 	return;
    370 }
    371 
    372 static void
    373 re_reset(struct rtk_softc *sc)
    374 {
    375 	int i;
    376 
    377 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    378 
    379 	for (i = 0; i < RTK_TIMEOUT; i++) {
    380 		DELAY(10);
    381 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    382 			break;
    383 	}
    384 	if (i == RTK_TIMEOUT)
    385 		printf("%s: reset never completed!\n",
    386 		    device_xname(sc->sc_dev));
    387 
    388 	/*
    389 	 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
    390 	 *     but also says "Rtl8169s sigle chip detected".
    391 	 */
    392 	if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
    393 		CSR_WRITE_1(sc, RTK_LDPS, 1);
    394 
    395 }
    396 
    397 /*
    398  * The following routine is designed to test for a defect on some
    399  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    400  * lines connected to the bus, however for a 32-bit only card, they
    401  * should be pulled high. The result of this defect is that the
    402  * NIC will not work right if you plug it into a 64-bit slot: DMA
    403  * operations will be done with 64-bit transfers, which will fail
    404  * because the 64-bit data lines aren't connected.
    405  *
    406  * There's no way to work around this (short of talking a soldering
    407  * iron to the board), however we can detect it. The method we use
    408  * here is to put the NIC into digital loopback mode, set the receiver
    409  * to promiscuous mode, and then try to send a frame. We then compare
    410  * the frame data we sent to what was received. If the data matches,
    411  * then the NIC is working correctly, otherwise we know the user has
    412  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    413  * slot. In the latter case, there's no way the NIC can work correctly,
    414  * so we print out a message on the console and abort the device attach.
    415  */
    416 
    417 int
    418 re_diag(struct rtk_softc *sc)
    419 {
    420 	struct ifnet *ifp = &sc->ethercom.ec_if;
    421 	struct mbuf *m0;
    422 	struct ether_header *eh;
    423 	struct re_rxsoft *rxs;
    424 	struct re_desc *cur_rx;
    425 	bus_dmamap_t dmamap;
    426 	uint16_t status;
    427 	uint32_t rxstat;
    428 	int total_len, i, s, error = 0;
    429 	static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    430 	static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    431 
    432 	/* Allocate a single mbuf */
    433 
    434 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    435 	if (m0 == NULL)
    436 		return ENOBUFS;
    437 
    438 	/*
    439 	 * Initialize the NIC in test mode. This sets the chip up
    440 	 * so that it can send and receive frames, but performs the
    441 	 * following special functions:
    442 	 * - Puts receiver in promiscuous mode
    443 	 * - Enables digital loopback mode
    444 	 * - Leaves interrupts turned off
    445 	 */
    446 
    447 	ifp->if_flags |= IFF_PROMISC;
    448 	sc->re_testmode = 1;
    449 	re_init(ifp);
    450 	re_stop(ifp, 0);
    451 	DELAY(100000);
    452 	re_init(ifp);
    453 
    454 	/* Put some data in the mbuf */
    455 
    456 	eh = mtod(m0, struct ether_header *);
    457 	memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
    458 	memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
    459 	eh->ether_type = htons(ETHERTYPE_IP);
    460 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    461 
    462 	/*
    463 	 * Queue the packet, start transmission.
    464 	 */
    465 
    466 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    467 	s = splnet();
    468 	IF_ENQUEUE(&ifp->if_snd, m0);
    469 	re_start(ifp);
    470 	splx(s);
    471 	m0 = NULL;
    472 
    473 	/* Wait for it to propagate through the chip */
    474 
    475 	DELAY(100000);
    476 	for (i = 0; i < RTK_TIMEOUT; i++) {
    477 		status = CSR_READ_2(sc, RTK_ISR);
    478 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    479 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    480 			break;
    481 		DELAY(10);
    482 	}
    483 	if (i == RTK_TIMEOUT) {
    484 		aprint_error_dev(sc->sc_dev,
    485 		    "diagnostic failed, failed to receive packet "
    486 		    "in loopback mode\n");
    487 		error = EIO;
    488 		goto done;
    489 	}
    490 
    491 	/*
    492 	 * The packet should have been dumped into the first
    493 	 * entry in the RX DMA ring. Grab it from there.
    494 	 */
    495 
    496 	rxs = &sc->re_ldata.re_rxsoft[0];
    497 	dmamap = rxs->rxs_dmamap;
    498 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    499 	    BUS_DMASYNC_POSTREAD);
    500 	bus_dmamap_unload(sc->sc_dmat, dmamap);
    501 
    502 	m0 = rxs->rxs_mbuf;
    503 	rxs->rxs_mbuf = NULL;
    504 	eh = mtod(m0, struct ether_header *);
    505 
    506 	RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    507 	cur_rx = &sc->re_ldata.re_rx_list[0];
    508 	rxstat = le32toh(cur_rx->re_cmdstat);
    509 	total_len = rxstat & sc->re_rxlenmask;
    510 
    511 	if (total_len != ETHER_MIN_LEN) {
    512 		aprint_error_dev(sc->sc_dev,
    513 		    "diagnostic failed, received short packet\n");
    514 		error = EIO;
    515 		goto done;
    516 	}
    517 
    518 	/* Test that the received packet data matches what we sent. */
    519 
    520 	if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
    521 	    memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
    522 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    523 		aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
    524 		    "expected TX data: %s/%s/0x%x\n"
    525 		    "received RX data: %s/%s/0x%x\n"
    526 		    "You may have a defective 32-bit NIC plugged "
    527 		    "into a 64-bit PCI slot.\n"
    528 		    "Please re-install the NIC in a 32-bit slot "
    529 		    "for proper operation.\n"
    530 		    "Read the re(4) man page for more details.\n" ,
    531 		    ether_sprintf(dst),  ether_sprintf(src), ETHERTYPE_IP,
    532 		    ether_sprintf(eh->ether_dhost),
    533 		    ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
    534 		error = EIO;
    535 	}
    536 
    537  done:
    538 	/* Turn interface off, release resources */
    539 
    540 	sc->re_testmode = 0;
    541 	ifp->if_flags &= ~IFF_PROMISC;
    542 	re_stop(ifp, 0);
    543 	if (m0 != NULL)
    544 		m_freem(m0);
    545 
    546 	return error;
    547 }
    548 
    549 
    550 /*
    551  * Attach the interface. Allocate softc structures, do ifmedia
    552  * setup and ethernet/BPF attach.
    553  */
    554 void
    555 re_attach(struct rtk_softc *sc)
    556 {
    557 	uint8_t eaddr[ETHER_ADDR_LEN];
    558 	struct ifnet *ifp;
    559 	int error = 0, i;
    560 
    561 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    562 		uint32_t hwrev;
    563 
    564 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    565 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
    566 		switch (hwrev) {
    567 		case RTK_HWREV_8169:
    568 			sc->sc_quirk |= RTKQ_8169NONS;
    569 			break;
    570 		case RTK_HWREV_8169S:
    571 		case RTK_HWREV_8110S:
    572 		case RTK_HWREV_8169_8110SB:
    573 		case RTK_HWREV_8169_8110SBL:
    574 		case RTK_HWREV_8169_8110SC:
    575 			sc->sc_quirk |= RTKQ_MACLDPS;
    576 			break;
    577 		case RTK_HWREV_8168_SPIN1:
    578 		case RTK_HWREV_8168_SPIN2:
    579 		case RTK_HWREV_8168_SPIN3:
    580 			sc->sc_quirk |= RTKQ_MACSTAT;
    581 			break;
    582 		case RTK_HWREV_8168C:
    583 		case RTK_HWREV_8168C_SPIN2:
    584 		case RTK_HWREV_8168CP:
    585 		case RTK_HWREV_8168D:
    586 		case RTK_HWREV_8168DP:
    587 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    588 			    RTKQ_MACSTAT | RTKQ_CMDSTOP;
    589 			/*
    590 			 * From FreeBSD driver:
    591 			 *
    592 			 * These (8168/8111) controllers support jumbo frame
    593 			 * but it seems that enabling it requires touching
    594 			 * additional magic registers. Depending on MAC
    595 			 * revisions some controllers need to disable
    596 			 * checksum offload. So disable jumbo frame until
    597 			 * I have better idea what it really requires to
    598 			 * make it support.
    599 			 * RTL8168C/CP : supports up to 6KB jumbo frame.
    600 			 * RTL8111C/CP : supports up to 9KB jumbo frame.
    601 			 */
    602 			sc->sc_quirk |= RTKQ_NOJUMBO;
    603 			break;
    604 		case RTK_HWREV_8168E:
    605 		case RTK_HWREV_8168H:
    606 		case RTK_HWREV_8168H_SPIN1:
    607 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    608 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
    609 			    RTKQ_NOJUMBO;
    610 			break;
    611 		case RTK_HWREV_8168E_VL:
    612 		case RTK_HWREV_8168F:
    613 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    614 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
    615 			break;
    616 		case RTK_HWREV_8168G:
    617 		case RTK_HWREV_8168G_SPIN1:
    618 		case RTK_HWREV_8168G_SPIN2:
    619 		case RTK_HWREV_8168G_SPIN4:
    620 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    621 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
    622 			    RTKQ_RXDV_GATED;
    623 			break;
    624 		case RTK_HWREV_8100E:
    625 		case RTK_HWREV_8100E_SPIN2:
    626 		case RTK_HWREV_8101E:
    627 			sc->sc_quirk |= RTKQ_NOJUMBO;
    628 			break;
    629 		case RTK_HWREV_8102E:
    630 		case RTK_HWREV_8102EL:
    631 		case RTK_HWREV_8103E:
    632 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    633 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
    634 			break;
    635 		default:
    636 			aprint_normal_dev(sc->sc_dev,
    637 			    "Unknown revision (0x%08x)\n", hwrev);
    638 			/* assume the latest features */
    639 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
    640 			sc->sc_quirk |= RTKQ_NOJUMBO;
    641 		}
    642 
    643 		/* Set RX length mask */
    644 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
    645 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
    646 	} else {
    647 		sc->sc_quirk |= RTKQ_NOJUMBO;
    648 
    649 		/* Set RX length mask */
    650 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
    651 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
    652 	}
    653 
    654 	/* Reset the adapter. */
    655 	re_reset(sc);
    656 
    657 	/*
    658 	 * RTL81x9 chips automatically read EEPROM to init MAC address,
    659 	 * and some NAS override its MAC address per own configuration,
    660 	 * so no need to explicitely read EEPROM and set ID registers.
    661 	 */
    662 #ifdef RE_USE_EECMD
    663 	if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
    664 		/*
    665 		 * Get station address from ID registers.
    666 		 */
    667 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    668 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    669 	} else {
    670 		uint16_t val;
    671 		int addr_len;
    672 
    673 		/*
    674 		 * Get station address from the EEPROM.
    675 		 */
    676 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    677 			addr_len = RTK_EEADDR_LEN1;
    678 		else
    679 			addr_len = RTK_EEADDR_LEN0;
    680 
    681 		/*
    682 		 * Get station address from the EEPROM.
    683 		 */
    684 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    685 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    686 			eaddr[(i * 2) + 0] = val & 0xff;
    687 			eaddr[(i * 2) + 1] = val >> 8;
    688 		}
    689 	}
    690 #else
    691 	/*
    692 	 * Get station address from ID registers.
    693 	 */
    694 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    695 		eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    696 #endif
    697 
    698 	/* Take PHY out of power down mode. */
    699 	if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
    700 		CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
    701 
    702 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    703 	    ether_sprintf(eaddr));
    704 
    705 	if (sc->re_ldata.re_tx_desc_cnt >
    706 	    PAGE_SIZE / sizeof(struct re_desc)) {
    707 		sc->re_ldata.re_tx_desc_cnt =
    708 		    PAGE_SIZE / sizeof(struct re_desc);
    709 	}
    710 
    711 	aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
    712 	    sc->re_ldata.re_tx_desc_cnt);
    713 	KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
    714 
    715 	/* Allocate DMA'able memory for the TX ring */
    716 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
    717 	    RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
    718 	    &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    719 		aprint_error_dev(sc->sc_dev,
    720 		    "can't allocate tx listseg, error = %d\n", error);
    721 		goto fail_0;
    722 	}
    723 
    724 	/* Load the map for the TX ring. */
    725 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
    726 	    sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
    727 	    (void **)&sc->re_ldata.re_tx_list,
    728 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    729 		aprint_error_dev(sc->sc_dev,
    730 		    "can't map tx list, error = %d\n", error);
    731 		goto fail_1;
    732 	}
    733 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
    734 
    735 	if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
    736 	    RE_TX_LIST_SZ(sc), 0, 0,
    737 	    &sc->re_ldata.re_tx_list_map)) != 0) {
    738 		aprint_error_dev(sc->sc_dev,
    739 		    "can't create tx list map, error = %d\n", error);
    740 		goto fail_2;
    741 	}
    742 
    743 
    744 	if ((error = bus_dmamap_load(sc->sc_dmat,
    745 	    sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
    746 	    RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    747 		aprint_error_dev(sc->sc_dev,
    748 		    "can't load tx list, error = %d\n", error);
    749 		goto fail_3;
    750 	}
    751 
    752 	/* Create DMA maps for TX buffers */
    753 	for (i = 0; i < RE_TX_QLEN; i++) {
    754 		error = bus_dmamap_create(sc->sc_dmat,
    755 		    round_page(IP_MAXPACKET),
    756 		    RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
    757 		    0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
    758 		if (error) {
    759 			aprint_error_dev(sc->sc_dev,
    760 			    "can't create DMA map for TX\n");
    761 			goto fail_4;
    762 		}
    763 	}
    764 
    765 	/* Allocate DMA'able memory for the RX ring */
    766 	/* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
    767 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    768 	    RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
    769 	    &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    770 		aprint_error_dev(sc->sc_dev,
    771 		    "can't allocate rx listseg, error = %d\n", error);
    772 		goto fail_4;
    773 	}
    774 
    775 	/* Load the map for the RX ring. */
    776 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
    777 	    sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
    778 	    (void **)&sc->re_ldata.re_rx_list,
    779 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    780 		aprint_error_dev(sc->sc_dev,
    781 		    "can't map rx list, error = %d\n", error);
    782 		goto fail_5;
    783 	}
    784 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
    785 
    786 	if ((error = bus_dmamap_create(sc->sc_dmat,
    787 	    RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
    788 	    &sc->re_ldata.re_rx_list_map)) != 0) {
    789 		aprint_error_dev(sc->sc_dev,
    790 		    "can't create rx list map, error = %d\n", error);
    791 		goto fail_6;
    792 	}
    793 
    794 	if ((error = bus_dmamap_load(sc->sc_dmat,
    795 	    sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
    796 	    RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    797 		aprint_error_dev(sc->sc_dev,
    798 		    "can't load rx list, error = %d\n", error);
    799 		goto fail_7;
    800 	}
    801 
    802 	/* Create DMA maps for RX buffers */
    803 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
    804 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    805 		    0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    806 		if (error) {
    807 			aprint_error_dev(sc->sc_dev,
    808 			    "can't create DMA map for RX\n");
    809 			goto fail_8;
    810 		}
    811 	}
    812 
    813 	/*
    814 	 * Record interface as attached. From here, we should not fail.
    815 	 */
    816 	sc->sc_flags |= RTK_ATTACHED;
    817 
    818 	ifp = &sc->ethercom.ec_if;
    819 	ifp->if_softc = sc;
    820 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    821 	ifp->if_mtu = ETHERMTU;
    822 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    823 	ifp->if_ioctl = re_ioctl;
    824 	sc->ethercom.ec_capabilities |=
    825 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    826 	ifp->if_start = re_start;
    827 	ifp->if_stop = re_stop;
    828 
    829 	/*
    830 	 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
    831 	 * so we have a workaround to handle the bug by padding
    832 	 * such packets manually.
    833 	 */
    834 	ifp->if_capabilities |=
    835 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    836 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    837 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    838 	    IFCAP_TSOv4;
    839 
    840 	ifp->if_watchdog = re_watchdog;
    841 	ifp->if_init = re_init;
    842 	ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
    843 	ifp->if_capenable = ifp->if_capabilities;
    844 	IFQ_SET_READY(&ifp->if_snd);
    845 
    846 	callout_init(&sc->rtk_tick_ch, 0);
    847 
    848 	/* Do MII setup */
    849 	sc->mii.mii_ifp = ifp;
    850 	sc->mii.mii_readreg = re_miibus_readreg;
    851 	sc->mii.mii_writereg = re_miibus_writereg;
    852 	sc->mii.mii_statchg = re_miibus_statchg;
    853 	sc->ethercom.ec_mii = &sc->mii;
    854 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
    855 	    ether_mediastatus);
    856 	mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    857 	    MII_OFFSET_ANY, 0);
    858 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    859 
    860 	/*
    861 	 * Call MI attach routine.
    862 	 */
    863 	if_attach(ifp);
    864 	if_deferred_start_init(ifp, NULL);
    865 	ether_ifattach(ifp, eaddr);
    866 
    867 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    868 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    869 
    870 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    871 		pmf_class_network_register(sc->sc_dev, ifp);
    872 	else
    873 		aprint_error_dev(sc->sc_dev,
    874 		    "couldn't establish power handler\n");
    875 
    876 	return;
    877 
    878  fail_8:
    879 	/* Destroy DMA maps for RX buffers. */
    880 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    881 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    882 			bus_dmamap_destroy(sc->sc_dmat,
    883 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    884 
    885 	/* Free DMA'able memory for the RX ring. */
    886 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    887  fail_7:
    888 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    889  fail_6:
    890 	bus_dmamem_unmap(sc->sc_dmat,
    891 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
    892  fail_5:
    893 	bus_dmamem_free(sc->sc_dmat,
    894 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    895 
    896  fail_4:
    897 	/* Destroy DMA maps for TX buffers. */
    898 	for (i = 0; i < RE_TX_QLEN; i++)
    899 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    900 			bus_dmamap_destroy(sc->sc_dmat,
    901 			    sc->re_ldata.re_txq[i].txq_dmamap);
    902 
    903 	/* Free DMA'able memory for the TX ring. */
    904 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    905  fail_3:
    906 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    907  fail_2:
    908 	bus_dmamem_unmap(sc->sc_dmat,
    909 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    910  fail_1:
    911 	bus_dmamem_free(sc->sc_dmat,
    912 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    913  fail_0:
    914 	return;
    915 }
    916 
    917 
    918 /*
    919  * re_activate:
    920  *     Handle device activation/deactivation requests.
    921  */
    922 int
    923 re_activate(device_t self, enum devact act)
    924 {
    925 	struct rtk_softc *sc = device_private(self);
    926 
    927 	switch (act) {
    928 	case DVACT_DEACTIVATE:
    929 		if_deactivate(&sc->ethercom.ec_if);
    930 		return 0;
    931 	default:
    932 		return EOPNOTSUPP;
    933 	}
    934 }
    935 
    936 /*
    937  * re_detach:
    938  *     Detach a rtk interface.
    939  */
    940 int
    941 re_detach(struct rtk_softc *sc)
    942 {
    943 	struct ifnet *ifp = &sc->ethercom.ec_if;
    944 	int i;
    945 
    946 	/*
    947 	 * Succeed now if there isn't any work to do.
    948 	 */
    949 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    950 		return 0;
    951 
    952 	/* Unhook our tick handler. */
    953 	callout_stop(&sc->rtk_tick_ch);
    954 
    955 	/* Detach all PHYs. */
    956 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    957 
    958 	/* Delete all remaining media. */
    959 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    960 
    961 	rnd_detach_source(&sc->rnd_source);
    962 	ether_ifdetach(ifp);
    963 	if_detach(ifp);
    964 
    965 	/* Destroy DMA maps for RX buffers. */
    966 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    967 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    968 			bus_dmamap_destroy(sc->sc_dmat,
    969 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    970 
    971 	/* Free DMA'able memory for the RX ring. */
    972 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    973 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    974 	bus_dmamem_unmap(sc->sc_dmat,
    975 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
    976 	bus_dmamem_free(sc->sc_dmat,
    977 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    978 
    979 	/* Destroy DMA maps for TX buffers. */
    980 	for (i = 0; i < RE_TX_QLEN; i++)
    981 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    982 			bus_dmamap_destroy(sc->sc_dmat,
    983 			    sc->re_ldata.re_txq[i].txq_dmamap);
    984 
    985 	/* Free DMA'able memory for the TX ring. */
    986 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    987 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    988 	bus_dmamem_unmap(sc->sc_dmat,
    989 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    990 	bus_dmamem_free(sc->sc_dmat,
    991 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    992 
    993 	pmf_device_deregister(sc->sc_dev);
    994 
    995 	/* we don't want to run again */
    996 	sc->sc_flags &= ~RTK_ATTACHED;
    997 
    998 	return 0;
    999 }
   1000 
   1001 /*
   1002  * re_enable:
   1003  *     Enable the RTL81X9 chip.
   1004  */
   1005 static int
   1006 re_enable(struct rtk_softc *sc)
   1007 {
   1008 
   1009 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
   1010 		if ((*sc->sc_enable)(sc) != 0) {
   1011 			printf("%s: device enable failed\n",
   1012 			    device_xname(sc->sc_dev));
   1013 			return EIO;
   1014 		}
   1015 		sc->sc_flags |= RTK_ENABLED;
   1016 	}
   1017 	return 0;
   1018 }
   1019 
   1020 /*
   1021  * re_disable:
   1022  *     Disable the RTL81X9 chip.
   1023  */
   1024 static void
   1025 re_disable(struct rtk_softc *sc)
   1026 {
   1027 
   1028 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
   1029 		(*sc->sc_disable)(sc);
   1030 		sc->sc_flags &= ~RTK_ENABLED;
   1031 	}
   1032 }
   1033 
   1034 static int
   1035 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1036 {
   1037 	struct mbuf *n = NULL;
   1038 	bus_dmamap_t map;
   1039 	struct re_desc *d;
   1040 	struct re_rxsoft *rxs;
   1041 	uint32_t cmdstat;
   1042 	int error;
   1043 
   1044 	if (m == NULL) {
   1045 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1046 		if (n == NULL)
   1047 			return ENOBUFS;
   1048 
   1049 		MCLGET(n, M_DONTWAIT);
   1050 		if ((n->m_flags & M_EXT) == 0) {
   1051 			m_freem(n);
   1052 			return ENOBUFS;
   1053 		}
   1054 		m = n;
   1055 	} else
   1056 		m->m_data = m->m_ext.ext_buf;
   1057 
   1058 	/*
   1059 	 * Initialize mbuf length fields and fixup
   1060 	 * alignment so that the frame payload is
   1061 	 * longword aligned.
   1062 	 */
   1063 	m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
   1064 	m->m_data += RE_ETHER_ALIGN;
   1065 
   1066 	rxs = &sc->re_ldata.re_rxsoft[idx];
   1067 	map = rxs->rxs_dmamap;
   1068 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1069 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1070 
   1071 	if (error)
   1072 		goto out;
   1073 
   1074 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1075 	    BUS_DMASYNC_PREREAD);
   1076 
   1077 	d = &sc->re_ldata.re_rx_list[idx];
   1078 #ifdef DIAGNOSTIC
   1079 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1080 	cmdstat = le32toh(d->re_cmdstat);
   1081 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1082 	if (cmdstat & RE_RDESC_STAT_OWN) {
   1083 		panic("%s: tried to map busy RX descriptor",
   1084 		    device_xname(sc->sc_dev));
   1085 	}
   1086 #endif
   1087 
   1088 	rxs->rxs_mbuf = m;
   1089 
   1090 	d->re_vlanctl = 0;
   1091 	cmdstat = map->dm_segs[0].ds_len;
   1092 	if (idx == (RE_RX_DESC_CNT - 1))
   1093 		cmdstat |= RE_RDESC_CMD_EOR;
   1094 	re_set_bufaddr(d, map->dm_segs[0].ds_addr);
   1095 	d->re_cmdstat = htole32(cmdstat);
   1096 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1097 	cmdstat |= RE_RDESC_CMD_OWN;
   1098 	d->re_cmdstat = htole32(cmdstat);
   1099 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1100 
   1101 	return 0;
   1102  out:
   1103 	if (n != NULL)
   1104 		m_freem(n);
   1105 	return ENOMEM;
   1106 }
   1107 
   1108 static int
   1109 re_tx_list_init(struct rtk_softc *sc)
   1110 {
   1111 	int i;
   1112 
   1113 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
   1114 	for (i = 0; i < RE_TX_QLEN; i++) {
   1115 		sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   1116 	}
   1117 
   1118 	bus_dmamap_sync(sc->sc_dmat,
   1119 	    sc->re_ldata.re_tx_list_map, 0,
   1120 	    sc->re_ldata.re_tx_list_map->dm_mapsize,
   1121 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1122 	sc->re_ldata.re_txq_prodidx = 0;
   1123 	sc->re_ldata.re_txq_considx = 0;
   1124 	sc->re_ldata.re_txq_free = RE_TX_QLEN;
   1125 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
   1126 	sc->re_ldata.re_tx_nextfree = 0;
   1127 
   1128 	return 0;
   1129 }
   1130 
   1131 static int
   1132 re_rx_list_init(struct rtk_softc *sc)
   1133 {
   1134 	int i;
   1135 
   1136 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
   1137 
   1138 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   1139 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1140 			return ENOBUFS;
   1141 	}
   1142 
   1143 	sc->re_ldata.re_rx_prodidx = 0;
   1144 	sc->re_head = sc->re_tail = NULL;
   1145 
   1146 	return 0;
   1147 }
   1148 
   1149 /*
   1150  * RX handler for C+ and 8169. For the gigE chips, we support
   1151  * the reception of jumbo frames that have been fragmented
   1152  * across multiple 2K mbuf cluster buffers.
   1153  */
   1154 static void
   1155 re_rxeof(struct rtk_softc *sc)
   1156 {
   1157 	struct mbuf *m;
   1158 	struct ifnet *ifp;
   1159 	int i, total_len;
   1160 	struct re_desc *cur_rx;
   1161 	struct re_rxsoft *rxs;
   1162 	uint32_t rxstat, rxvlan;
   1163 
   1164 	ifp = &sc->ethercom.ec_if;
   1165 
   1166 	for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
   1167 		cur_rx = &sc->re_ldata.re_rx_list[i];
   1168 		RE_RXDESCSYNC(sc, i,
   1169 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1170 		rxstat = le32toh(cur_rx->re_cmdstat);
   1171 		rxvlan = le32toh(cur_rx->re_vlanctl);
   1172 		RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1173 		if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
   1174 			break;
   1175 		}
   1176 		total_len = rxstat & sc->re_rxlenmask;
   1177 		rxs = &sc->re_ldata.re_rxsoft[i];
   1178 		m = rxs->rxs_mbuf;
   1179 
   1180 		/* Invalidate the RX mbuf and unload its map */
   1181 
   1182 		bus_dmamap_sync(sc->sc_dmat,
   1183 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
   1184 		    BUS_DMASYNC_POSTREAD);
   1185 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1186 
   1187 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
   1188 			m->m_len = MCLBYTES - RE_ETHER_ALIGN;
   1189 			if (sc->re_head == NULL)
   1190 				sc->re_head = sc->re_tail = m;
   1191 			else {
   1192 				m_remove_pkthdr(m);
   1193 				sc->re_tail->m_next = m;
   1194 				sc->re_tail = m;
   1195 			}
   1196 			re_newbuf(sc, i, NULL);
   1197 			continue;
   1198 		}
   1199 
   1200 		/*
   1201 		 * NOTE: for the 8139C+, the frame length field
   1202 		 * is always 12 bits in size, but for the gigE chips,
   1203 		 * it is 13 bits (since the max RX frame length is 16K).
   1204 		 * Unfortunately, all 32 bits in the status word
   1205 		 * were already used, so to make room for the extra
   1206 		 * length bit, RealTek took out the 'frame alignment
   1207 		 * error' bit and shifted the other status bits
   1208 		 * over one slot. The OWN, EOR, FS and LS bits are
   1209 		 * still in the same places. We have already extracted
   1210 		 * the frame length and checked the OWN bit, so rather
   1211 		 * than using an alternate bit mapping, we shift the
   1212 		 * status bits one space to the right so we can evaluate
   1213 		 * them using the 8169 status as though it was in the
   1214 		 * same format as that of the 8139C+.
   1215 		 */
   1216 		if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
   1217 			rxstat >>= 1;
   1218 
   1219 		if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
   1220 #ifdef RE_DEBUG
   1221 			printf("%s: RX error (rxstat = 0x%08x)",
   1222 			    device_xname(sc->sc_dev), rxstat);
   1223 			if (rxstat & RE_RDESC_STAT_FRALIGN)
   1224 				printf(", frame alignment error");
   1225 			if (rxstat & RE_RDESC_STAT_BUFOFLOW)
   1226 				printf(", out of buffer space");
   1227 			if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
   1228 				printf(", FIFO overrun");
   1229 			if (rxstat & RE_RDESC_STAT_GIANT)
   1230 				printf(", giant packet");
   1231 			if (rxstat & RE_RDESC_STAT_RUNT)
   1232 				printf(", runt packet");
   1233 			if (rxstat & RE_RDESC_STAT_CRCERR)
   1234 				printf(", CRC error");
   1235 			printf("\n");
   1236 #endif
   1237 			ifp->if_ierrors++;
   1238 			/*
   1239 			 * If this is part of a multi-fragment packet,
   1240 			 * discard all the pieces.
   1241 			 */
   1242 			if (sc->re_head != NULL) {
   1243 				m_freem(sc->re_head);
   1244 				sc->re_head = sc->re_tail = NULL;
   1245 			}
   1246 			re_newbuf(sc, i, m);
   1247 			continue;
   1248 		}
   1249 
   1250 		/*
   1251 		 * If allocating a replacement mbuf fails,
   1252 		 * reload the current one.
   1253 		 */
   1254 
   1255 		if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
   1256 			ifp->if_ierrors++;
   1257 			if (sc->re_head != NULL) {
   1258 				m_freem(sc->re_head);
   1259 				sc->re_head = sc->re_tail = NULL;
   1260 			}
   1261 			re_newbuf(sc, i, m);
   1262 			continue;
   1263 		}
   1264 
   1265 		if (sc->re_head != NULL) {
   1266 			m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
   1267 			/*
   1268 			 * Special case: if there's 4 bytes or less
   1269 			 * in this buffer, the mbuf can be discarded:
   1270 			 * the last 4 bytes is the CRC, which we don't
   1271 			 * care about anyway.
   1272 			 */
   1273 			if (m->m_len <= ETHER_CRC_LEN) {
   1274 				sc->re_tail->m_len -=
   1275 				    (ETHER_CRC_LEN - m->m_len);
   1276 				m_freem(m);
   1277 			} else {
   1278 				m->m_len -= ETHER_CRC_LEN;
   1279 				m_remove_pkthdr(m);
   1280 				sc->re_tail->m_next = m;
   1281 			}
   1282 			m = sc->re_head;
   1283 			sc->re_head = sc->re_tail = NULL;
   1284 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1285 		} else
   1286 			m->m_pkthdr.len = m->m_len =
   1287 			    (total_len - ETHER_CRC_LEN);
   1288 
   1289 		m_set_rcvif(m, ifp);
   1290 
   1291 		/* Do RX checksumming */
   1292 		if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1293 			/* Check IP header checksum */
   1294 			if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
   1295 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1296 				if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1297 					m->m_pkthdr.csum_flags |=
   1298 					    M_CSUM_IPv4_BAD;
   1299 
   1300 				/* Check TCP/UDP checksum */
   1301 				if (RE_TCPPKT(rxstat)) {
   1302 					m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1303 					if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1304 						m->m_pkthdr.csum_flags |=
   1305 						    M_CSUM_TCP_UDP_BAD;
   1306 				} else if (RE_UDPPKT(rxstat)) {
   1307 					m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1308 					if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
   1309 						/*
   1310 						 * XXX: 8139C+ thinks UDP csum
   1311 						 * 0xFFFF is bad, force software
   1312 						 * calculation.
   1313 						 */
   1314 						if (sc->sc_quirk & RTKQ_8139CPLUS)
   1315 							m->m_pkthdr.csum_flags
   1316 							    &= ~M_CSUM_UDPv4;
   1317 						else
   1318 							m->m_pkthdr.csum_flags
   1319 							    |= M_CSUM_TCP_UDP_BAD;
   1320 					}
   1321 				}
   1322 			}
   1323 		} else {
   1324 			/* Check IPv4 header checksum */
   1325 			if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
   1326 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1327 				if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1328 					m->m_pkthdr.csum_flags |=
   1329 					    M_CSUM_IPv4_BAD;
   1330 
   1331 				/* Check TCPv4/UDPv4 checksum */
   1332 				if (RE_TCPPKT(rxstat)) {
   1333 					m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1334 					if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1335 						m->m_pkthdr.csum_flags |=
   1336 						    M_CSUM_TCP_UDP_BAD;
   1337 				} else if (RE_UDPPKT(rxstat)) {
   1338 					m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1339 					if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
   1340 						m->m_pkthdr.csum_flags |=
   1341 						    M_CSUM_TCP_UDP_BAD;
   1342 				}
   1343 			}
   1344 			/* XXX Check TCPv6/UDPv6 checksum? */
   1345 		}
   1346 
   1347 		if (rxvlan & RE_RDESC_VLANCTL_TAG) {
   1348 			vlan_set_tag(m,
   1349 			     bswap16(rxvlan & RE_RDESC_VLANCTL_DATA));
   1350 		}
   1351 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1352 	}
   1353 
   1354 	sc->re_ldata.re_rx_prodidx = i;
   1355 }
   1356 
   1357 static void
   1358 re_txeof(struct rtk_softc *sc)
   1359 {
   1360 	struct ifnet *ifp;
   1361 	struct re_txq *txq;
   1362 	uint32_t txstat;
   1363 	int idx, descidx;
   1364 
   1365 	ifp = &sc->ethercom.ec_if;
   1366 
   1367 	for (idx = sc->re_ldata.re_txq_considx;
   1368 	    sc->re_ldata.re_txq_free < RE_TX_QLEN;
   1369 	    idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
   1370 		txq = &sc->re_ldata.re_txq[idx];
   1371 		KASSERT(txq->txq_mbuf != NULL);
   1372 
   1373 		descidx = txq->txq_descidx;
   1374 		RE_TXDESCSYNC(sc, descidx,
   1375 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1376 		txstat =
   1377 		    le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
   1378 		RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
   1379 		KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
   1380 		if (txstat & RE_TDESC_CMD_OWN) {
   1381 			break;
   1382 		}
   1383 
   1384 		sc->re_ldata.re_tx_free += txq->txq_nsegs;
   1385 		KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
   1386 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
   1387 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1388 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1389 		m_freem(txq->txq_mbuf);
   1390 		txq->txq_mbuf = NULL;
   1391 
   1392 		if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
   1393 			ifp->if_collisions++;
   1394 		if (txstat & RE_TDESC_STAT_TXERRSUM)
   1395 			ifp->if_oerrors++;
   1396 		else
   1397 			ifp->if_opackets++;
   1398 	}
   1399 
   1400 	sc->re_ldata.re_txq_considx = idx;
   1401 
   1402 	if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
   1403 		ifp->if_flags &= ~IFF_OACTIVE;
   1404 
   1405 	/*
   1406 	 * If not all descriptors have been released reaped yet,
   1407 	 * reload the timer so that we will eventually get another
   1408 	 * interrupt that will cause us to re-enter this routine.
   1409 	 * This is done in case the transmitter has gone idle.
   1410 	 */
   1411 	if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
   1412 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0)
   1413 			CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1414 		if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
   1415 			/*
   1416 			 * Some chips will ignore a second TX request
   1417 			 * issued while an existing transmission is in
   1418 			 * progress. If the transmitter goes idle but
   1419 			 * there are still packets waiting to be sent,
   1420 			 * we need to restart the channel here to flush
   1421 			 * them out. This only seems to be required with
   1422 			 * the PCIe devices.
   1423 			 */
   1424 			CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1425 		}
   1426 	} else
   1427 		ifp->if_timer = 0;
   1428 }
   1429 
   1430 static void
   1431 re_tick(void *arg)
   1432 {
   1433 	struct rtk_softc *sc = arg;
   1434 	int s;
   1435 
   1436 	/* XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1437 	s = splnet();
   1438 
   1439 	mii_tick(&sc->mii);
   1440 	splx(s);
   1441 
   1442 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1443 }
   1444 
   1445 int
   1446 re_intr(void *arg)
   1447 {
   1448 	struct rtk_softc *sc = arg;
   1449 	struct ifnet *ifp;
   1450 	uint16_t status;
   1451 	int handled = 0;
   1452 
   1453 	if (!device_has_power(sc->sc_dev))
   1454 		return 0;
   1455 
   1456 	ifp = &sc->ethercom.ec_if;
   1457 
   1458 	if ((ifp->if_flags & IFF_UP) == 0)
   1459 		return 0;
   1460 
   1461 	const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ?
   1462 	    RTK_INTRS_IM_HW : RTK_INTRS_CPLUS;
   1463 
   1464 	for (;;) {
   1465 
   1466 		status = CSR_READ_2(sc, RTK_ISR);
   1467 		/* If the card has gone away the read returns 0xffff. */
   1468 		if (status == 0xffff)
   1469 			break;
   1470 		if (status) {
   1471 			handled = 1;
   1472 			CSR_WRITE_2(sc, RTK_ISR, status);
   1473 		}
   1474 
   1475 		if ((status & status_mask) == 0)
   1476 			break;
   1477 
   1478 		if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
   1479 			re_rxeof(sc);
   1480 
   1481 		if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
   1482 		    RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK))
   1483 			re_txeof(sc);
   1484 
   1485 		if (status & RTK_ISR_SYSTEM_ERR) {
   1486 			re_init(ifp);
   1487 		}
   1488 
   1489 		if (status & RTK_ISR_LINKCHG) {
   1490 			callout_stop(&sc->rtk_tick_ch);
   1491 			re_tick(sc);
   1492 		}
   1493 	}
   1494 
   1495 	if (handled)
   1496 		if_schedule_deferred_start(ifp);
   1497 
   1498 	rnd_add_uint32(&sc->rnd_source, status);
   1499 
   1500 	return handled;
   1501 }
   1502 
   1503 
   1504 
   1505 /*
   1506  * Main transmit routine for C+ and gigE NICs.
   1507  */
   1508 
   1509 static void
   1510 re_start(struct ifnet *ifp)
   1511 {
   1512 	struct rtk_softc *sc;
   1513 	struct mbuf *m;
   1514 	bus_dmamap_t map;
   1515 	struct re_txq *txq;
   1516 	struct re_desc *d;
   1517 	uint32_t cmdstat, re_flags, vlanctl;
   1518 	int ofree, idx, error, nsegs, seg;
   1519 	int startdesc, curdesc, lastdesc;
   1520 	bool pad;
   1521 
   1522 	sc = ifp->if_softc;
   1523 	ofree = sc->re_ldata.re_txq_free;
   1524 
   1525 	for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
   1526 
   1527 		IFQ_POLL(&ifp->if_snd, m);
   1528 		if (m == NULL)
   1529 			break;
   1530 
   1531 		if (sc->re_ldata.re_txq_free == 0 ||
   1532 		    sc->re_ldata.re_tx_free == 0) {
   1533 			/* no more free slots left */
   1534 			ifp->if_flags |= IFF_OACTIVE;
   1535 			break;
   1536 		}
   1537 
   1538 		/*
   1539 		 * Set up checksum offload. Note: checksum offload bits must
   1540 		 * appear in all descriptors of a multi-descriptor transmit
   1541 		 * attempt. (This is according to testing done with an 8169
   1542 		 * chip. I'm not sure if this is a requirement or a bug.)
   1543 		 */
   1544 
   1545 		vlanctl = 0;
   1546 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1547 			uint32_t segsz = m->m_pkthdr.segsz;
   1548 
   1549 			if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1550 				re_flags = RE_TDESC_CMD_LGSEND |
   1551 				    (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
   1552 			} else {
   1553 				re_flags = RE_TDESC_CMD_LGSEND_V4;
   1554 				vlanctl |=
   1555 				    (segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT);
   1556 			}
   1557 		} else {
   1558 			/*
   1559 			 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
   1560 			 * is requested.  otherwise, RE_TDESC_CMD_TCPCSUM/
   1561 			 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
   1562 			 */
   1563 			re_flags = 0;
   1564 			if ((m->m_pkthdr.csum_flags &
   1565 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1566 			    != 0) {
   1567 				if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1568 					re_flags |= RE_TDESC_CMD_IPCSUM;
   1569 					if (m->m_pkthdr.csum_flags &
   1570 					    M_CSUM_TCPv4) {
   1571 						re_flags |=
   1572 						    RE_TDESC_CMD_TCPCSUM;
   1573 					} else if (m->m_pkthdr.csum_flags &
   1574 					    M_CSUM_UDPv4) {
   1575 						re_flags |=
   1576 						    RE_TDESC_CMD_UDPCSUM;
   1577 					}
   1578 				} else {
   1579 					vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
   1580 					if (m->m_pkthdr.csum_flags &
   1581 					    M_CSUM_TCPv4) {
   1582 						vlanctl |=
   1583 						    RE_TDESC_VLANCTL_TCPCSUM;
   1584 					} else if (m->m_pkthdr.csum_flags &
   1585 					    M_CSUM_UDPv4) {
   1586 						vlanctl |=
   1587 						    RE_TDESC_VLANCTL_UDPCSUM;
   1588 					}
   1589 				}
   1590 			}
   1591 		}
   1592 
   1593 		txq = &sc->re_ldata.re_txq[idx];
   1594 		map = txq->txq_dmamap;
   1595 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1596 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1597 
   1598 		if (__predict_false(error)) {
   1599 			/* XXX try to defrag if EFBIG? */
   1600 			printf("%s: can't map mbuf (error %d)\n",
   1601 			    device_xname(sc->sc_dev), error);
   1602 
   1603 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1604 			m_freem(m);
   1605 			ifp->if_oerrors++;
   1606 			continue;
   1607 		}
   1608 
   1609 		nsegs = map->dm_nsegs;
   1610 		pad = false;
   1611 		if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
   1612 		    (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
   1613 		    (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
   1614 			pad = true;
   1615 			nsegs++;
   1616 		}
   1617 
   1618 		if (nsegs > sc->re_ldata.re_tx_free) {
   1619 			/*
   1620 			 * Not enough free descriptors to transmit this packet.
   1621 			 */
   1622 			ifp->if_flags |= IFF_OACTIVE;
   1623 			bus_dmamap_unload(sc->sc_dmat, map);
   1624 			break;
   1625 		}
   1626 
   1627 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1628 
   1629 		/*
   1630 		 * Make sure that the caches are synchronized before we
   1631 		 * ask the chip to start DMA for the packet data.
   1632 		 */
   1633 		bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1634 		    BUS_DMASYNC_PREWRITE);
   1635 
   1636 		/*
   1637 		 * Set up hardware VLAN tagging. Note: vlan tag info must
   1638 		 * appear in all descriptors of a multi-descriptor
   1639 		 * transmission attempt.
   1640 		 */
   1641 		if (vlan_has_tag(m))
   1642 			vlanctl |= bswap16(vlan_get_tag(m)) |
   1643 			    RE_TDESC_VLANCTL_TAG;
   1644 
   1645 		/*
   1646 		 * Map the segment array into descriptors.
   1647 		 * Note that we set the start-of-frame and
   1648 		 * end-of-frame markers for either TX or RX,
   1649 		 * but they really only have meaning in the TX case.
   1650 		 * (In the RX case, it's the chip that tells us
   1651 		 *  where packets begin and end.)
   1652 		 * We also keep track of the end of the ring
   1653 		 * and set the end-of-ring bits as needed,
   1654 		 * and we set the ownership bits in all except
   1655 		 * the very first descriptor. (The caller will
   1656 		 * set this descriptor later when it start
   1657 		 * transmission or reception.)
   1658 		 */
   1659 		curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
   1660 		lastdesc = -1;
   1661 		for (seg = 0; seg < map->dm_nsegs;
   1662 		    seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
   1663 			d = &sc->re_ldata.re_tx_list[curdesc];
   1664 #ifdef DIAGNOSTIC
   1665 			RE_TXDESCSYNC(sc, curdesc,
   1666 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1667 			cmdstat = le32toh(d->re_cmdstat);
   1668 			RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
   1669 			if (cmdstat & RE_TDESC_STAT_OWN) {
   1670 				panic("%s: tried to map busy TX descriptor",
   1671 				    device_xname(sc->sc_dev));
   1672 			}
   1673 #endif
   1674 
   1675 			d->re_vlanctl = htole32(vlanctl);
   1676 			re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
   1677 			cmdstat = re_flags | map->dm_segs[seg].ds_len;
   1678 			if (seg == 0)
   1679 				cmdstat |= RE_TDESC_CMD_SOF;
   1680 			else
   1681 				cmdstat |= RE_TDESC_CMD_OWN;
   1682 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1683 				cmdstat |= RE_TDESC_CMD_EOR;
   1684 			if (seg == nsegs - 1) {
   1685 				cmdstat |= RE_TDESC_CMD_EOF;
   1686 				lastdesc = curdesc;
   1687 			}
   1688 			d->re_cmdstat = htole32(cmdstat);
   1689 			RE_TXDESCSYNC(sc, curdesc,
   1690 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1691 		}
   1692 		if (__predict_false(pad)) {
   1693 			d = &sc->re_ldata.re_tx_list[curdesc];
   1694 			d->re_vlanctl = htole32(vlanctl);
   1695 			re_set_bufaddr(d, RE_TXPADDADDR(sc));
   1696 			cmdstat = re_flags |
   1697 			    RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
   1698 			    (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
   1699 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1700 				cmdstat |= RE_TDESC_CMD_EOR;
   1701 			d->re_cmdstat = htole32(cmdstat);
   1702 			RE_TXDESCSYNC(sc, curdesc,
   1703 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1704 			lastdesc = curdesc;
   1705 			curdesc = RE_NEXT_TX_DESC(sc, curdesc);
   1706 		}
   1707 		KASSERT(lastdesc != -1);
   1708 
   1709 		/* Transfer ownership of packet to the chip. */
   1710 
   1711 		sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
   1712 		    htole32(RE_TDESC_CMD_OWN);
   1713 		RE_TXDESCSYNC(sc, startdesc,
   1714 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1715 
   1716 		/* update info of TX queue and descriptors */
   1717 		txq->txq_mbuf = m;
   1718 		txq->txq_descidx = lastdesc;
   1719 		txq->txq_nsegs = nsegs;
   1720 
   1721 		sc->re_ldata.re_txq_free--;
   1722 		sc->re_ldata.re_tx_free -= nsegs;
   1723 		sc->re_ldata.re_tx_nextfree = curdesc;
   1724 
   1725 		/*
   1726 		 * If there's a BPF listener, bounce a copy of this frame
   1727 		 * to him.
   1728 		 */
   1729 		bpf_mtap(ifp, m, BPF_D_OUT);
   1730 	}
   1731 
   1732 	if (sc->re_ldata.re_txq_free < ofree) {
   1733 		/*
   1734 		 * TX packets are enqueued.
   1735 		 */
   1736 		sc->re_ldata.re_txq_prodidx = idx;
   1737 
   1738 		/*
   1739 		 * Start the transmitter to poll.
   1740 		 *
   1741 		 * RealTek put the TX poll request register in a different
   1742 		 * location on the 8169 gigE chip. I don't know why.
   1743 		 */
   1744 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   1745 			CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
   1746 		else
   1747 			CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1748 
   1749 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
   1750 			/*
   1751 			 * Use the countdown timer for interrupt moderation.
   1752 			 * 'TX done' interrupts are disabled. Instead, we reset
   1753 			 * the countdown timer, which will begin counting until
   1754 			 * it hits the value in the TIMERINT register, and then
   1755 			 * trigger an interrupt. Each time we write to the
   1756 			 * TIMERCNT register, the timer count is reset to 0.
   1757 			 */
   1758 			CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1759 		}
   1760 
   1761 		/*
   1762 		 * Set a timeout in case the chip goes out to lunch.
   1763 		 */
   1764 		ifp->if_timer = 5;
   1765 	}
   1766 }
   1767 
   1768 static int
   1769 re_init(struct ifnet *ifp)
   1770 {
   1771 	struct rtk_softc *sc = ifp->if_softc;
   1772 	uint32_t rxcfg = 0;
   1773 	uint16_t cfg;
   1774 	int error;
   1775 #ifdef RE_USE_EECMD
   1776 	const uint8_t *enaddr;
   1777 	uint32_t reg;
   1778 #endif
   1779 
   1780 	if ((error = re_enable(sc)) != 0)
   1781 		goto out;
   1782 
   1783 	/*
   1784 	 * Cancel pending I/O and free all RX/TX buffers.
   1785 	 */
   1786 	re_stop(ifp, 0);
   1787 
   1788 	re_reset(sc);
   1789 
   1790 	/*
   1791 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1792 	 * RX checksum offload. We must configure the C+ register
   1793 	 * before all others.
   1794 	 */
   1795 	cfg = RE_CPLUSCMD_PCI_MRW;
   1796 
   1797 	/*
   1798 	 * XXX: For old 8169 set bit 14.
   1799 	 *      For 8169S/8110S and above, do not set bit 14.
   1800 	 */
   1801 	if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
   1802 		cfg |= (0x1 << 14);
   1803 
   1804 	if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
   1805 		cfg |= RE_CPLUSCMD_VLANSTRIP;
   1806 	if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
   1807 	     IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
   1808 		cfg |= RE_CPLUSCMD_RXCSUM_ENB;
   1809 	if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
   1810 		cfg |= RE_CPLUSCMD_MACSTAT_DIS;
   1811 		cfg |= RE_CPLUSCMD_TXENB;
   1812 	} else
   1813 		cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
   1814 
   1815 	CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
   1816 
   1817 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1818 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
   1819 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
   1820 			CSR_WRITE_2(sc, RTK_IM, 0x0000);
   1821 		} else {
   1822 			CSR_WRITE_2(sc, RTK_IM, 0x5151);
   1823 		}
   1824 	}
   1825 
   1826 	DELAY(10000);
   1827 
   1828 #ifdef RE_USE_EECMD
   1829 	/*
   1830 	 * Init our MAC address.  Even though the chipset
   1831 	 * documentation doesn't mention it, we need to enter "Config
   1832 	 * register write enable" mode to modify the ID registers.
   1833 	 */
   1834 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1835 	enaddr = CLLADDR(ifp->if_sadl);
   1836 	reg = enaddr[0] | (enaddr[1] << 8) |
   1837 	    (enaddr[2] << 16) | (enaddr[3] << 24);
   1838 	CSR_WRITE_4(sc, RTK_IDR0, reg);
   1839 	reg = enaddr[4] | (enaddr[5] << 8);
   1840 	CSR_WRITE_4(sc, RTK_IDR4, reg);
   1841 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1842 #endif
   1843 
   1844 	/*
   1845 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1846 	 */
   1847 	re_rx_list_init(sc);
   1848 	re_tx_list_init(sc);
   1849 
   1850 	/*
   1851 	 * Load the addresses of the RX and TX lists into the chip.
   1852 	 */
   1853 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1854 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1855 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1856 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1857 
   1858 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1859 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1860 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1861 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1862 
   1863 	if (sc->sc_quirk & RTKQ_RXDV_GATED) {
   1864 		CSR_WRITE_4(sc, RTK_MISC,
   1865 		    CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
   1866 	}
   1867 
   1868 	/*
   1869 	 * Enable transmit and receive.
   1870 	 */
   1871 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1872 
   1873 	/*
   1874 	 * Set the initial TX and RX configuration.
   1875 	 */
   1876 	if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
   1877 		/* test mode is needed only for old 8169 */
   1878 		CSR_WRITE_4(sc, RTK_TXCFG,
   1879 		    RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1880 	} else
   1881 		CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
   1882 
   1883 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1884 
   1885 	CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
   1886 
   1887 	/* Set the individual bit to receive frames for this host only. */
   1888 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1889 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1890 
   1891 	/* If we want promiscuous mode, set the allframes bit. */
   1892 	if (ifp->if_flags & IFF_PROMISC)
   1893 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1894 	else
   1895 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1896 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1897 
   1898 	/*
   1899 	 * Set capture broadcast bit to capture broadcast frames.
   1900 	 */
   1901 	if (ifp->if_flags & IFF_BROADCAST)
   1902 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1903 	else
   1904 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1905 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1906 
   1907 	/*
   1908 	 * Program the multicast filter, if necessary.
   1909 	 */
   1910 	rtk_setmulti(sc);
   1911 
   1912 	/*
   1913 	 * Enable interrupts.
   1914 	 */
   1915 	if (sc->re_testmode)
   1916 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1917 	else if ((sc->sc_quirk & RTKQ_IM_HW) != 0)
   1918 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW);
   1919 	else
   1920 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1921 
   1922 	/* Start RX/TX process. */
   1923 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1924 #ifdef notdef
   1925 	/* Enable receiver and transmitter. */
   1926 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1927 #endif
   1928 
   1929 	/*
   1930 	 * Initialize the timer interrupt register so that
   1931 	 * a timer interrupt will be generated once the timer
   1932 	 * reaches a certain number of ticks. The timer is
   1933 	 * reloaded on each transmit. This gives us TX interrupt
   1934 	 * moderation, which dramatically improves TX frame rate.
   1935 	 */
   1936 
   1937 	unsigned defer;		/* timer interval / ns */
   1938 	unsigned period;	/* busclock period / ns */
   1939 
   1940 	/*
   1941 	 * Maximum frame rate
   1942 	 * 1500 byte PDU -> 81274 Hz
   1943 	 *   46 byte PDU -> 1488096 Hz
   1944 	 *
   1945 	 * Deferring interrupts by up to 128us needs descriptors for
   1946 	 * 1500 byte PDU -> 10.4 frames
   1947 	 *   46 byte PDU -> 190.4 frames
   1948 	 *
   1949 	 */
   1950 	defer = 128000;
   1951 
   1952 	if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
   1953 		period = 1;
   1954 		defer = 0;
   1955 	} else if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
   1956 		period = 8;
   1957 	} else {
   1958 		switch (CSR_READ_4(sc, RTK_CFG2_BUSFREQ) & 0x7) {
   1959 		case RTK_BUSFREQ_33MHZ:
   1960 			period = 30;
   1961 			break;
   1962 		case RTK_BUSFREQ_66MHZ:
   1963 			period = 15;
   1964 			break;
   1965 		default:
   1966 			/* lowest possible clock */
   1967 			period = 60;
   1968 			break;
   1969 		}
   1970 	}
   1971 
   1972 	/* Timer Interrupt register address varies */
   1973 	uint16_t re8139_reg;
   1974 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   1975 		re8139_reg = RTK_TIMERINT;
   1976 	else
   1977 		re8139_reg = RTK_TIMERINT_8169;
   1978 	CSR_WRITE_4(sc, re8139_reg, defer / period);
   1979 
   1980 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
   1981 		/*
   1982 		 * For 8169 gigE NICs, set the max allowed RX packet
   1983 		 * size so we can receive jumbo frames.
   1984 		 */
   1985 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1986 	}
   1987 
   1988 	if (sc->re_testmode)
   1989 		return 0;
   1990 
   1991 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
   1992 
   1993 	ifp->if_flags |= IFF_RUNNING;
   1994 	ifp->if_flags &= ~IFF_OACTIVE;
   1995 
   1996 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1997 
   1998  out:
   1999 	if (error) {
   2000 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2001 		ifp->if_timer = 0;
   2002 		printf("%s: interface not running\n",
   2003 		    device_xname(sc->sc_dev));
   2004 	}
   2005 
   2006 	return error;
   2007 }
   2008 
   2009 static int
   2010 re_ioctl(struct ifnet *ifp, u_long command, void *data)
   2011 {
   2012 	struct rtk_softc *sc = ifp->if_softc;
   2013 	struct ifreq *ifr = data;
   2014 	int s, error = 0;
   2015 
   2016 	s = splnet();
   2017 
   2018 	switch (command) {
   2019 	case SIOCSIFMTU:
   2020 		/*
   2021 		 * Disable jumbo frames if it's not supported.
   2022 		 */
   2023 		if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
   2024 		    ifr->ifr_mtu > ETHERMTU) {
   2025 			error = EINVAL;
   2026 			break;
   2027 		}
   2028 
   2029 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
   2030 			error = EINVAL;
   2031 		else if ((error = ifioctl_common(ifp, command, data)) ==
   2032 		    ENETRESET)
   2033 			error = 0;
   2034 		break;
   2035 	default:
   2036 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   2037 			break;
   2038 
   2039 		error = 0;
   2040 
   2041 		if (command == SIOCSIFCAP)
   2042 			error = (*ifp->if_init)(ifp);
   2043 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2044 			;
   2045 		else if (ifp->if_flags & IFF_RUNNING)
   2046 			rtk_setmulti(sc);
   2047 		break;
   2048 	}
   2049 
   2050 	splx(s);
   2051 
   2052 	return error;
   2053 }
   2054 
   2055 static void
   2056 re_watchdog(struct ifnet *ifp)
   2057 {
   2058 	struct rtk_softc *sc;
   2059 	int s;
   2060 
   2061 	sc = ifp->if_softc;
   2062 	s = splnet();
   2063 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   2064 	ifp->if_oerrors++;
   2065 
   2066 	re_txeof(sc);
   2067 	re_rxeof(sc);
   2068 
   2069 	re_init(ifp);
   2070 
   2071 	splx(s);
   2072 }
   2073 
   2074 /*
   2075  * Stop the adapter and free any mbufs allocated to the
   2076  * RX and TX lists.
   2077  */
   2078 static void
   2079 re_stop(struct ifnet *ifp, int disable)
   2080 {
   2081 	int i;
   2082 	struct rtk_softc *sc = ifp->if_softc;
   2083 
   2084 	callout_stop(&sc->rtk_tick_ch);
   2085 
   2086 	mii_down(&sc->mii);
   2087 
   2088 	if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
   2089 		CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
   2090 		    RTK_CMD_RX_ENB);
   2091 	else
   2092 		CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2093 	DELAY(1000);
   2094 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2095 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
   2096 
   2097 	if (sc->re_head != NULL) {
   2098 		m_freem(sc->re_head);
   2099 		sc->re_head = sc->re_tail = NULL;
   2100 	}
   2101 
   2102 	/* Free the TX list buffers. */
   2103 	for (i = 0; i < RE_TX_QLEN; i++) {
   2104 		if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
   2105 			bus_dmamap_unload(sc->sc_dmat,
   2106 			    sc->re_ldata.re_txq[i].txq_dmamap);
   2107 			m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
   2108 			sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   2109 		}
   2110 	}
   2111 
   2112 	/* Free the RX list buffers. */
   2113 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   2114 		if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
   2115 			bus_dmamap_unload(sc->sc_dmat,
   2116 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
   2117 			m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
   2118 			sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
   2119 		}
   2120 	}
   2121 
   2122 	if (disable)
   2123 		re_disable(sc);
   2124 
   2125 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2126 	ifp->if_timer = 0;
   2127 }
   2128