Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.157
      1 /*	$NetBSD: rtl8169.c,v 1.157 2019/01/22 03:42:26 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.157 2019/01/22 03:42:26 msaitoh Exp $");
     37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     38 
     39 /*
     40  * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
     41  *
     42  * Written by Bill Paul <wpaul (at) windriver.com>
     43  * Senior Networking Software Engineer
     44  * Wind River Systems
     45  */
     46 
     47 /*
     48  * This driver is designed to support RealTek's next generation of
     49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     50  * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
     51  * RTL8110S, the RTL8168 and the RTL8111.
     52  *
     53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     54  * with the older 8139 family, however it also supports a special
     55  * C+ mode of operation that provides several new performance enhancing
     56  * features. These include:
     57  *
     58  *	o Descriptor based DMA mechanism. Each descriptor represents
     59  *	  a single packet fragment. Data buffers may be aligned on
     60  *	  any byte boundary.
     61  *
     62  *	o 64-bit DMA
     63  *
     64  *	o TCP/IP checksum offload for both RX and TX
     65  *
     66  *	o High and normal priority transmit DMA rings
     67  *
     68  *	o VLAN tag insertion and extraction
     69  *
     70  *	o TCP large send (segmentation offload)
     71  *
     72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     73  * programming API is fairly straightforward. The RX filtering, EEPROM
     74  * access and PHY access is the same as it is on the older 8139 series
     75  * chips.
     76  *
     77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     78  * same programming API and feature set as the 8139C+ with the following
     79  * differences and additions:
     80  *
     81  *	o 1000Mbps mode
     82  *
     83  *	o Jumbo frames
     84  *
     85  *	o GMII and TBI ports/registers for interfacing with copper
     86  *	  or fiber PHYs
     87  *
     88  *      o RX and TX DMA rings can have up to 1024 descriptors
     89  *        (the 8139C+ allows a maximum of 64)
     90  *
     91  *	o Slight differences in register layout from the 8139C+
     92  *
     93  * The TX start and timer interrupt registers are at different locations
     94  * on the 8169 than they are on the 8139C+. Also, the status word in the
     95  * RX descriptor has a slightly different bit layout. The 8169 does not
     96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     97  * copper gigE PHY.
     98  *
     99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
    100  * (the 'S' stands for 'single-chip'). These devices have the same
    101  * programming API as the older 8169, but also have some vendor-specific
    102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    104  *
    105  * This driver takes advantage of the RX and TX checksum offload and
    106  * VLAN tag insertion/extraction features. It also implements TX
    107  * interrupt moderation using the timer interrupt registers, which
    108  * significantly reduces TX interrupt load. There is also support
    109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    110  * jumbo frames larger than 7.5K, so the max MTU possible with this
    111  * driver is 7500 bytes.
    112  */
    113 
    114 
    115 #include <sys/param.h>
    116 #include <sys/endian.h>
    117 #include <sys/systm.h>
    118 #include <sys/sockio.h>
    119 #include <sys/mbuf.h>
    120 #include <sys/malloc.h>
    121 #include <sys/kernel.h>
    122 #include <sys/socket.h>
    123 #include <sys/device.h>
    124 
    125 #include <net/if.h>
    126 #include <net/if_arp.h>
    127 #include <net/if_dl.h>
    128 #include <net/if_ether.h>
    129 #include <net/if_media.h>
    130 #include <net/if_vlanvar.h>
    131 
    132 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    133 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    134 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    135 
    136 #include <net/bpf.h>
    137 #include <sys/rndsource.h>
    138 
    139 #include <sys/bus.h>
    140 
    141 #include <dev/mii/mii.h>
    142 #include <dev/mii/miivar.h>
    143 
    144 #include <dev/ic/rtl81x9reg.h>
    145 #include <dev/ic/rtl81x9var.h>
    146 
    147 #include <dev/ic/rtl8169var.h>
    148 
    149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
    150 
    151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    152 static int re_rx_list_init(struct rtk_softc *);
    153 static int re_tx_list_init(struct rtk_softc *);
    154 static void re_rxeof(struct rtk_softc *);
    155 static void re_txeof(struct rtk_softc *);
    156 static void re_tick(void *);
    157 static void re_start(struct ifnet *);
    158 static int re_ioctl(struct ifnet *, u_long, void *);
    159 static int re_init(struct ifnet *);
    160 static void re_stop(struct ifnet *, int);
    161 static void re_watchdog(struct ifnet *);
    162 
    163 static int re_enable(struct rtk_softc *);
    164 static void re_disable(struct rtk_softc *);
    165 
    166 static int re_gmii_readreg(device_t, int, int, uint16_t *);
    167 static int re_gmii_writereg(device_t, int, int, uint16_t);
    168 
    169 static int re_miibus_readreg(device_t, int, int, uint16_t *);
    170 static int re_miibus_writereg(device_t, int, int, uint16_t);
    171 static void re_miibus_statchg(struct ifnet *);
    172 
    173 static void re_reset(struct rtk_softc *);
    174 
    175 static inline void
    176 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
    177 {
    178 
    179 	d->re_bufaddr_lo = htole32((uint32_t)addr);
    180 	if (sizeof(bus_addr_t) == sizeof(uint64_t))
    181 		d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
    182 	else
    183 		d->re_bufaddr_hi = 0;
    184 }
    185 
    186 static int
    187 re_gmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
    188 {
    189 	struct rtk_softc *sc = device_private(dev);
    190 	uint32_t data;
    191 	int i;
    192 
    193 	if (phy != 7)
    194 		return -1;
    195 
    196 	/* Let the rgephy driver read the GMEDIASTAT register */
    197 
    198 	if (reg == RTK_GMEDIASTAT) {
    199 		*val = CSR_READ_1(sc, RTK_GMEDIASTAT);
    200 		return 0;
    201 	}
    202 
    203 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    204 	DELAY(1000);
    205 
    206 	for (i = 0; i < RTK_TIMEOUT; i++) {
    207 		data = CSR_READ_4(sc, RTK_PHYAR);
    208 		if (data & RTK_PHYAR_BUSY)
    209 			break;
    210 		DELAY(100);
    211 	}
    212 
    213 	if (i == RTK_TIMEOUT) {
    214 		printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
    215 		return ETIMEDOUT;
    216 	}
    217 
    218 	*val = data & RTK_PHYAR_PHYDATA;
    219 	return 0;
    220 }
    221 
    222 static int
    223 re_gmii_writereg(device_t dev, int phy, int reg, uint16_t val)
    224 {
    225 	struct rtk_softc *sc = device_private(dev);
    226 	uint32_t data;
    227 	int i;
    228 
    229 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    230 	    (val & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    231 	DELAY(1000);
    232 
    233 	for (i = 0; i < RTK_TIMEOUT; i++) {
    234 		data = CSR_READ_4(sc, RTK_PHYAR);
    235 		if (!(data & RTK_PHYAR_BUSY))
    236 			break;
    237 		DELAY(100);
    238 	}
    239 
    240 	if (i == RTK_TIMEOUT) {
    241 		printf("%s: PHY write reg %x <- %hx failed\n",
    242 		    device_xname(sc->sc_dev), reg, val);
    243 		return ETIMEDOUT;
    244 	}
    245 
    246 	return 0;
    247 }
    248 
    249 static int
    250 re_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    251 {
    252 	struct rtk_softc *sc = device_private(dev);
    253 	uint16_t re8139_reg = 0;
    254 	int s, rv = 0;
    255 
    256 	s = splnet();
    257 
    258 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    259 		rv = re_gmii_readreg(dev, phy, reg, val);
    260 		splx(s);
    261 		return rv;
    262 	}
    263 
    264 	/* Pretend the internal PHY is only at address 0 */
    265 	if (phy) {
    266 		splx(s);
    267 		return -1;
    268 	}
    269 	switch (reg) {
    270 	case MII_BMCR:
    271 		re8139_reg = RTK_BMCR;
    272 		break;
    273 	case MII_BMSR:
    274 		re8139_reg = RTK_BMSR;
    275 		break;
    276 	case MII_ANAR:
    277 		re8139_reg = RTK_ANAR;
    278 		break;
    279 	case MII_ANER:
    280 		re8139_reg = RTK_ANER;
    281 		break;
    282 	case MII_ANLPAR:
    283 		re8139_reg = RTK_LPAR;
    284 		break;
    285 	case MII_PHYIDR1:
    286 	case MII_PHYIDR2:
    287 		*val = 0;
    288 		splx(s);
    289 		return 0;
    290 	/*
    291 	 * Allow the rlphy driver to read the media status
    292 	 * register. If we have a link partner which does not
    293 	 * support NWAY, this is the register which will tell
    294 	 * us the results of parallel detection.
    295 	 */
    296 	case RTK_MEDIASTAT:
    297 		*val = CSR_READ_1(sc, RTK_MEDIASTAT);
    298 		splx(s);
    299 		return 0;
    300 	default:
    301 		printf("%s: bad phy register\n", device_xname(sc->sc_dev));
    302 		splx(s);
    303 		return -1;
    304 	}
    305 	*val = CSR_READ_2(sc, re8139_reg);
    306 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
    307 		/* 8139C+ has different bit layout. */
    308 		*val &= ~(BMCR_LOOP | BMCR_ISO);
    309 	}
    310 	splx(s);
    311 	return 0;
    312 }
    313 
    314 static int
    315 re_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    316 {
    317 	struct rtk_softc *sc = device_private(dev);
    318 	uint16_t re8139_reg = 0;
    319 	int s, rv;
    320 
    321 	s = splnet();
    322 
    323 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    324 		rv = re_gmii_writereg(dev, phy, reg, val);
    325 		splx(s);
    326 		return rv;
    327 	}
    328 
    329 	/* Pretend the internal PHY is only at address 0 */
    330 	if (phy) {
    331 		splx(s);
    332 		return -1;
    333 	}
    334 	switch (reg) {
    335 	case MII_BMCR:
    336 		re8139_reg = RTK_BMCR;
    337 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
    338 			/* 8139C+ has different bit layout. */
    339 			val &= ~(BMCR_LOOP | BMCR_ISO);
    340 		}
    341 		break;
    342 	case MII_BMSR:
    343 		re8139_reg = RTK_BMSR;
    344 		break;
    345 	case MII_ANAR:
    346 		re8139_reg = RTK_ANAR;
    347 		break;
    348 	case MII_ANER:
    349 		re8139_reg = RTK_ANER;
    350 		break;
    351 	case MII_ANLPAR:
    352 		re8139_reg = RTK_LPAR;
    353 		break;
    354 	case MII_PHYIDR1:
    355 	case MII_PHYIDR2:
    356 		splx(s);
    357 		return 0;
    358 		break;
    359 	default:
    360 		printf("%s: bad phy register\n", device_xname(sc->sc_dev));
    361 		splx(s);
    362 		return -1;
    363 	}
    364 	CSR_WRITE_2(sc, re8139_reg, val);
    365 	splx(s);
    366 	return 0;
    367 }
    368 
    369 static void
    370 re_miibus_statchg(struct ifnet *ifp)
    371 {
    372 
    373 	return;
    374 }
    375 
    376 static void
    377 re_reset(struct rtk_softc *sc)
    378 {
    379 	int i;
    380 
    381 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    382 
    383 	for (i = 0; i < RTK_TIMEOUT; i++) {
    384 		DELAY(10);
    385 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    386 			break;
    387 	}
    388 	if (i == RTK_TIMEOUT)
    389 		printf("%s: reset never completed!\n",
    390 		    device_xname(sc->sc_dev));
    391 
    392 	/*
    393 	 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
    394 	 *     but also says "Rtl8169s sigle chip detected".
    395 	 */
    396 	if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
    397 		CSR_WRITE_1(sc, RTK_LDPS, 1);
    398 
    399 }
    400 
    401 /*
    402  * The following routine is designed to test for a defect on some
    403  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    404  * lines connected to the bus, however for a 32-bit only card, they
    405  * should be pulled high. The result of this defect is that the
    406  * NIC will not work right if you plug it into a 64-bit slot: DMA
    407  * operations will be done with 64-bit transfers, which will fail
    408  * because the 64-bit data lines aren't connected.
    409  *
    410  * There's no way to work around this (short of talking a soldering
    411  * iron to the board), however we can detect it. The method we use
    412  * here is to put the NIC into digital loopback mode, set the receiver
    413  * to promiscuous mode, and then try to send a frame. We then compare
    414  * the frame data we sent to what was received. If the data matches,
    415  * then the NIC is working correctly, otherwise we know the user has
    416  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    417  * slot. In the latter case, there's no way the NIC can work correctly,
    418  * so we print out a message on the console and abort the device attach.
    419  */
    420 
    421 int
    422 re_diag(struct rtk_softc *sc)
    423 {
    424 	struct ifnet *ifp = &sc->ethercom.ec_if;
    425 	struct mbuf *m0;
    426 	struct ether_header *eh;
    427 	struct re_rxsoft *rxs;
    428 	struct re_desc *cur_rx;
    429 	bus_dmamap_t dmamap;
    430 	uint16_t status;
    431 	uint32_t rxstat;
    432 	int total_len, i, s, error = 0;
    433 	static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    434 	static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    435 
    436 	/* Allocate a single mbuf */
    437 
    438 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    439 	if (m0 == NULL)
    440 		return ENOBUFS;
    441 
    442 	/*
    443 	 * Initialize the NIC in test mode. This sets the chip up
    444 	 * so that it can send and receive frames, but performs the
    445 	 * following special functions:
    446 	 * - Puts receiver in promiscuous mode
    447 	 * - Enables digital loopback mode
    448 	 * - Leaves interrupts turned off
    449 	 */
    450 
    451 	ifp->if_flags |= IFF_PROMISC;
    452 	sc->re_testmode = 1;
    453 	re_init(ifp);
    454 	re_stop(ifp, 0);
    455 	DELAY(100000);
    456 	re_init(ifp);
    457 
    458 	/* Put some data in the mbuf */
    459 
    460 	eh = mtod(m0, struct ether_header *);
    461 	memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
    462 	memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
    463 	eh->ether_type = htons(ETHERTYPE_IP);
    464 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    465 
    466 	/*
    467 	 * Queue the packet, start transmission.
    468 	 */
    469 
    470 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    471 	s = splnet();
    472 	IF_ENQUEUE(&ifp->if_snd, m0);
    473 	re_start(ifp);
    474 	splx(s);
    475 	m0 = NULL;
    476 
    477 	/* Wait for it to propagate through the chip */
    478 
    479 	DELAY(100000);
    480 	for (i = 0; i < RTK_TIMEOUT; i++) {
    481 		status = CSR_READ_2(sc, RTK_ISR);
    482 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    483 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    484 			break;
    485 		DELAY(10);
    486 	}
    487 	if (i == RTK_TIMEOUT) {
    488 		aprint_error_dev(sc->sc_dev,
    489 		    "diagnostic failed, failed to receive packet "
    490 		    "in loopback mode\n");
    491 		error = EIO;
    492 		goto done;
    493 	}
    494 
    495 	/*
    496 	 * The packet should have been dumped into the first
    497 	 * entry in the RX DMA ring. Grab it from there.
    498 	 */
    499 
    500 	rxs = &sc->re_ldata.re_rxsoft[0];
    501 	dmamap = rxs->rxs_dmamap;
    502 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    503 	    BUS_DMASYNC_POSTREAD);
    504 	bus_dmamap_unload(sc->sc_dmat, dmamap);
    505 
    506 	m0 = rxs->rxs_mbuf;
    507 	rxs->rxs_mbuf = NULL;
    508 	eh = mtod(m0, struct ether_header *);
    509 
    510 	RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    511 	cur_rx = &sc->re_ldata.re_rx_list[0];
    512 	rxstat = le32toh(cur_rx->re_cmdstat);
    513 	total_len = rxstat & sc->re_rxlenmask;
    514 
    515 	if (total_len != ETHER_MIN_LEN) {
    516 		aprint_error_dev(sc->sc_dev,
    517 		    "diagnostic failed, received short packet\n");
    518 		error = EIO;
    519 		goto done;
    520 	}
    521 
    522 	/* Test that the received packet data matches what we sent. */
    523 
    524 	if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
    525 	    memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
    526 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    527 		aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
    528 		    "expected TX data: %s/%s/0x%x\n"
    529 		    "received RX data: %s/%s/0x%x\n"
    530 		    "You may have a defective 32-bit NIC plugged "
    531 		    "into a 64-bit PCI slot.\n"
    532 		    "Please re-install the NIC in a 32-bit slot "
    533 		    "for proper operation.\n"
    534 		    "Read the re(4) man page for more details.\n" ,
    535 		    ether_sprintf(dst),  ether_sprintf(src), ETHERTYPE_IP,
    536 		    ether_sprintf(eh->ether_dhost),
    537 		    ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
    538 		error = EIO;
    539 	}
    540 
    541  done:
    542 	/* Turn interface off, release resources */
    543 
    544 	sc->re_testmode = 0;
    545 	ifp->if_flags &= ~IFF_PROMISC;
    546 	re_stop(ifp, 0);
    547 	if (m0 != NULL)
    548 		m_freem(m0);
    549 
    550 	return error;
    551 }
    552 
    553 
    554 /*
    555  * Attach the interface. Allocate softc structures, do ifmedia
    556  * setup and ethernet/BPF attach.
    557  */
    558 void
    559 re_attach(struct rtk_softc *sc)
    560 {
    561 	uint8_t eaddr[ETHER_ADDR_LEN];
    562 	struct ifnet *ifp;
    563 	int error = 0, i;
    564 
    565 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    566 		uint32_t hwrev;
    567 
    568 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    569 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
    570 		switch (hwrev) {
    571 		case RTK_HWREV_8169:
    572 			sc->sc_quirk |= RTKQ_8169NONS;
    573 			break;
    574 		case RTK_HWREV_8169S:
    575 		case RTK_HWREV_8110S:
    576 		case RTK_HWREV_8169_8110SB:
    577 		case RTK_HWREV_8169_8110SBL:
    578 		case RTK_HWREV_8169_8110SC:
    579 			sc->sc_quirk |= RTKQ_MACLDPS;
    580 			break;
    581 		case RTK_HWREV_8168_SPIN1:
    582 		case RTK_HWREV_8168_SPIN2:
    583 		case RTK_HWREV_8168_SPIN3:
    584 			sc->sc_quirk |= RTKQ_MACSTAT;
    585 			break;
    586 		case RTK_HWREV_8168C:
    587 		case RTK_HWREV_8168C_SPIN2:
    588 		case RTK_HWREV_8168CP:
    589 		case RTK_HWREV_8168D:
    590 		case RTK_HWREV_8168DP:
    591 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    592 			    RTKQ_MACSTAT | RTKQ_CMDSTOP;
    593 			/*
    594 			 * From FreeBSD driver:
    595 			 *
    596 			 * These (8168/8111) controllers support jumbo frame
    597 			 * but it seems that enabling it requires touching
    598 			 * additional magic registers. Depending on MAC
    599 			 * revisions some controllers need to disable
    600 			 * checksum offload. So disable jumbo frame until
    601 			 * I have better idea what it really requires to
    602 			 * make it support.
    603 			 * RTL8168C/CP : supports up to 6KB jumbo frame.
    604 			 * RTL8111C/CP : supports up to 9KB jumbo frame.
    605 			 */
    606 			sc->sc_quirk |= RTKQ_NOJUMBO;
    607 			break;
    608 		case RTK_HWREV_8168E:
    609 		case RTK_HWREV_8168H:
    610 		case RTK_HWREV_8168H_SPIN1:
    611 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    612 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
    613 			    RTKQ_NOJUMBO;
    614 			break;
    615 		case RTK_HWREV_8168E_VL:
    616 		case RTK_HWREV_8168F:
    617 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    618 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
    619 			break;
    620 		case RTK_HWREV_8168G:
    621 		case RTK_HWREV_8168G_SPIN1:
    622 		case RTK_HWREV_8168G_SPIN2:
    623 		case RTK_HWREV_8168G_SPIN4:
    624 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    625 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
    626 			    RTKQ_RXDV_GATED;
    627 			break;
    628 		case RTK_HWREV_8100E:
    629 		case RTK_HWREV_8100E_SPIN2:
    630 		case RTK_HWREV_8101E:
    631 			sc->sc_quirk |= RTKQ_NOJUMBO;
    632 			break;
    633 		case RTK_HWREV_8102E:
    634 		case RTK_HWREV_8102EL:
    635 		case RTK_HWREV_8103E:
    636 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    637 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
    638 			break;
    639 		default:
    640 			aprint_normal_dev(sc->sc_dev,
    641 			    "Unknown revision (0x%08x)\n", hwrev);
    642 			/* assume the latest features */
    643 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
    644 			sc->sc_quirk |= RTKQ_NOJUMBO;
    645 		}
    646 
    647 		/* Set RX length mask */
    648 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
    649 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
    650 	} else {
    651 		sc->sc_quirk |= RTKQ_NOJUMBO;
    652 
    653 		/* Set RX length mask */
    654 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
    655 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
    656 	}
    657 
    658 	/* Reset the adapter. */
    659 	re_reset(sc);
    660 
    661 	/*
    662 	 * RTL81x9 chips automatically read EEPROM to init MAC address,
    663 	 * and some NAS override its MAC address per own configuration,
    664 	 * so no need to explicitely read EEPROM and set ID registers.
    665 	 */
    666 #ifdef RE_USE_EECMD
    667 	if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
    668 		/*
    669 		 * Get station address from ID registers.
    670 		 */
    671 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    672 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    673 	} else {
    674 		uint16_t val;
    675 		int addr_len;
    676 
    677 		/*
    678 		 * Get station address from the EEPROM.
    679 		 */
    680 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    681 			addr_len = RTK_EEADDR_LEN1;
    682 		else
    683 			addr_len = RTK_EEADDR_LEN0;
    684 
    685 		/*
    686 		 * Get station address from the EEPROM.
    687 		 */
    688 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    689 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    690 			eaddr[(i * 2) + 0] = val & 0xff;
    691 			eaddr[(i * 2) + 1] = val >> 8;
    692 		}
    693 	}
    694 #else
    695 	/*
    696 	 * Get station address from ID registers.
    697 	 */
    698 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    699 		eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    700 #endif
    701 
    702 	/* Take PHY out of power down mode. */
    703 	if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
    704 		CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
    705 
    706 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    707 	    ether_sprintf(eaddr));
    708 
    709 	if (sc->re_ldata.re_tx_desc_cnt >
    710 	    PAGE_SIZE / sizeof(struct re_desc)) {
    711 		sc->re_ldata.re_tx_desc_cnt =
    712 		    PAGE_SIZE / sizeof(struct re_desc);
    713 	}
    714 
    715 	aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
    716 	    sc->re_ldata.re_tx_desc_cnt);
    717 	KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
    718 
    719 	/* Allocate DMA'able memory for the TX ring */
    720 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
    721 	    RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
    722 	    &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    723 		aprint_error_dev(sc->sc_dev,
    724 		    "can't allocate tx listseg, error = %d\n", error);
    725 		goto fail_0;
    726 	}
    727 
    728 	/* Load the map for the TX ring. */
    729 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
    730 	    sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
    731 	    (void **)&sc->re_ldata.re_tx_list,
    732 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    733 		aprint_error_dev(sc->sc_dev,
    734 		    "can't map tx list, error = %d\n", error);
    735 		goto fail_1;
    736 	}
    737 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
    738 
    739 	if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
    740 	    RE_TX_LIST_SZ(sc), 0, 0,
    741 	    &sc->re_ldata.re_tx_list_map)) != 0) {
    742 		aprint_error_dev(sc->sc_dev,
    743 		    "can't create tx list map, error = %d\n", error);
    744 		goto fail_2;
    745 	}
    746 
    747 
    748 	if ((error = bus_dmamap_load(sc->sc_dmat,
    749 	    sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
    750 	    RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    751 		aprint_error_dev(sc->sc_dev,
    752 		    "can't load tx list, error = %d\n", error);
    753 		goto fail_3;
    754 	}
    755 
    756 	/* Create DMA maps for TX buffers */
    757 	for (i = 0; i < RE_TX_QLEN; i++) {
    758 		error = bus_dmamap_create(sc->sc_dmat,
    759 		    round_page(IP_MAXPACKET),
    760 		    RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
    761 		    0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
    762 		if (error) {
    763 			aprint_error_dev(sc->sc_dev,
    764 			    "can't create DMA map for TX\n");
    765 			goto fail_4;
    766 		}
    767 	}
    768 
    769 	/* Allocate DMA'able memory for the RX ring */
    770 	/* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
    771 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    772 	    RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
    773 	    &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    774 		aprint_error_dev(sc->sc_dev,
    775 		    "can't allocate rx listseg, error = %d\n", error);
    776 		goto fail_4;
    777 	}
    778 
    779 	/* Load the map for the RX ring. */
    780 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
    781 	    sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
    782 	    (void **)&sc->re_ldata.re_rx_list,
    783 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    784 		aprint_error_dev(sc->sc_dev,
    785 		    "can't map rx list, error = %d\n", error);
    786 		goto fail_5;
    787 	}
    788 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
    789 
    790 	if ((error = bus_dmamap_create(sc->sc_dmat,
    791 	    RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
    792 	    &sc->re_ldata.re_rx_list_map)) != 0) {
    793 		aprint_error_dev(sc->sc_dev,
    794 		    "can't create rx list map, error = %d\n", error);
    795 		goto fail_6;
    796 	}
    797 
    798 	if ((error = bus_dmamap_load(sc->sc_dmat,
    799 	    sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
    800 	    RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    801 		aprint_error_dev(sc->sc_dev,
    802 		    "can't load rx list, error = %d\n", error);
    803 		goto fail_7;
    804 	}
    805 
    806 	/* Create DMA maps for RX buffers */
    807 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
    808 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    809 		    0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    810 		if (error) {
    811 			aprint_error_dev(sc->sc_dev,
    812 			    "can't create DMA map for RX\n");
    813 			goto fail_8;
    814 		}
    815 	}
    816 
    817 	/*
    818 	 * Record interface as attached. From here, we should not fail.
    819 	 */
    820 	sc->sc_flags |= RTK_ATTACHED;
    821 
    822 	ifp = &sc->ethercom.ec_if;
    823 	ifp->if_softc = sc;
    824 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    825 	ifp->if_mtu = ETHERMTU;
    826 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    827 	ifp->if_ioctl = re_ioctl;
    828 	sc->ethercom.ec_capabilities |=
    829 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    830 	ifp->if_start = re_start;
    831 	ifp->if_stop = re_stop;
    832 
    833 	/*
    834 	 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
    835 	 * so we have a workaround to handle the bug by padding
    836 	 * such packets manually.
    837 	 */
    838 	ifp->if_capabilities |=
    839 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    840 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    841 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    842 	    IFCAP_TSOv4;
    843 
    844 	ifp->if_watchdog = re_watchdog;
    845 	ifp->if_init = re_init;
    846 	ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
    847 	ifp->if_capenable = ifp->if_capabilities;
    848 	IFQ_SET_READY(&ifp->if_snd);
    849 
    850 	callout_init(&sc->rtk_tick_ch, 0);
    851 
    852 	/* Do MII setup */
    853 	sc->mii.mii_ifp = ifp;
    854 	sc->mii.mii_readreg = re_miibus_readreg;
    855 	sc->mii.mii_writereg = re_miibus_writereg;
    856 	sc->mii.mii_statchg = re_miibus_statchg;
    857 	sc->ethercom.ec_mii = &sc->mii;
    858 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
    859 	    ether_mediastatus);
    860 	mii_attach(sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    861 	    MII_OFFSET_ANY, 0);
    862 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    863 
    864 	/*
    865 	 * Call MI attach routine.
    866 	 */
    867 	if_attach(ifp);
    868 	if_deferred_start_init(ifp, NULL);
    869 	ether_ifattach(ifp, eaddr);
    870 
    871 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    872 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    873 
    874 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    875 		pmf_class_network_register(sc->sc_dev, ifp);
    876 	else
    877 		aprint_error_dev(sc->sc_dev,
    878 		    "couldn't establish power handler\n");
    879 
    880 	return;
    881 
    882  fail_8:
    883 	/* Destroy DMA maps for RX buffers. */
    884 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    885 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    886 			bus_dmamap_destroy(sc->sc_dmat,
    887 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    888 
    889 	/* Free DMA'able memory for the RX ring. */
    890 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    891  fail_7:
    892 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    893  fail_6:
    894 	bus_dmamem_unmap(sc->sc_dmat,
    895 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
    896  fail_5:
    897 	bus_dmamem_free(sc->sc_dmat,
    898 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    899 
    900  fail_4:
    901 	/* Destroy DMA maps for TX buffers. */
    902 	for (i = 0; i < RE_TX_QLEN; i++)
    903 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    904 			bus_dmamap_destroy(sc->sc_dmat,
    905 			    sc->re_ldata.re_txq[i].txq_dmamap);
    906 
    907 	/* Free DMA'able memory for the TX ring. */
    908 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    909  fail_3:
    910 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    911  fail_2:
    912 	bus_dmamem_unmap(sc->sc_dmat,
    913 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    914  fail_1:
    915 	bus_dmamem_free(sc->sc_dmat,
    916 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    917  fail_0:
    918 	return;
    919 }
    920 
    921 
    922 /*
    923  * re_activate:
    924  *     Handle device activation/deactivation requests.
    925  */
    926 int
    927 re_activate(device_t self, enum devact act)
    928 {
    929 	struct rtk_softc *sc = device_private(self);
    930 
    931 	switch (act) {
    932 	case DVACT_DEACTIVATE:
    933 		if_deactivate(&sc->ethercom.ec_if);
    934 		return 0;
    935 	default:
    936 		return EOPNOTSUPP;
    937 	}
    938 }
    939 
    940 /*
    941  * re_detach:
    942  *     Detach a rtk interface.
    943  */
    944 int
    945 re_detach(struct rtk_softc *sc)
    946 {
    947 	struct ifnet *ifp = &sc->ethercom.ec_if;
    948 	int i;
    949 
    950 	/*
    951 	 * Succeed now if there isn't any work to do.
    952 	 */
    953 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    954 		return 0;
    955 
    956 	/* Unhook our tick handler. */
    957 	callout_stop(&sc->rtk_tick_ch);
    958 
    959 	/* Detach all PHYs. */
    960 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    961 
    962 	/* Delete all remaining media. */
    963 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    964 
    965 	rnd_detach_source(&sc->rnd_source);
    966 	ether_ifdetach(ifp);
    967 	if_detach(ifp);
    968 
    969 	/* Destroy DMA maps for RX buffers. */
    970 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    971 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    972 			bus_dmamap_destroy(sc->sc_dmat,
    973 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    974 
    975 	/* Free DMA'able memory for the RX ring. */
    976 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    977 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    978 	bus_dmamem_unmap(sc->sc_dmat,
    979 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
    980 	bus_dmamem_free(sc->sc_dmat,
    981 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    982 
    983 	/* Destroy DMA maps for TX buffers. */
    984 	for (i = 0; i < RE_TX_QLEN; i++)
    985 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    986 			bus_dmamap_destroy(sc->sc_dmat,
    987 			    sc->re_ldata.re_txq[i].txq_dmamap);
    988 
    989 	/* Free DMA'able memory for the TX ring. */
    990 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    991 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    992 	bus_dmamem_unmap(sc->sc_dmat,
    993 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    994 	bus_dmamem_free(sc->sc_dmat,
    995 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    996 
    997 	pmf_device_deregister(sc->sc_dev);
    998 
    999 	/* we don't want to run again */
   1000 	sc->sc_flags &= ~RTK_ATTACHED;
   1001 
   1002 	return 0;
   1003 }
   1004 
   1005 /*
   1006  * re_enable:
   1007  *     Enable the RTL81X9 chip.
   1008  */
   1009 static int
   1010 re_enable(struct rtk_softc *sc)
   1011 {
   1012 
   1013 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
   1014 		if ((*sc->sc_enable)(sc) != 0) {
   1015 			printf("%s: device enable failed\n",
   1016 			    device_xname(sc->sc_dev));
   1017 			return EIO;
   1018 		}
   1019 		sc->sc_flags |= RTK_ENABLED;
   1020 	}
   1021 	return 0;
   1022 }
   1023 
   1024 /*
   1025  * re_disable:
   1026  *     Disable the RTL81X9 chip.
   1027  */
   1028 static void
   1029 re_disable(struct rtk_softc *sc)
   1030 {
   1031 
   1032 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
   1033 		(*sc->sc_disable)(sc);
   1034 		sc->sc_flags &= ~RTK_ENABLED;
   1035 	}
   1036 }
   1037 
   1038 static int
   1039 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1040 {
   1041 	struct mbuf *n = NULL;
   1042 	bus_dmamap_t map;
   1043 	struct re_desc *d;
   1044 	struct re_rxsoft *rxs;
   1045 	uint32_t cmdstat;
   1046 	int error;
   1047 
   1048 	if (m == NULL) {
   1049 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1050 		if (n == NULL)
   1051 			return ENOBUFS;
   1052 
   1053 		MCLGET(n, M_DONTWAIT);
   1054 		if ((n->m_flags & M_EXT) == 0) {
   1055 			m_freem(n);
   1056 			return ENOBUFS;
   1057 		}
   1058 		m = n;
   1059 	} else
   1060 		m->m_data = m->m_ext.ext_buf;
   1061 
   1062 	/*
   1063 	 * Initialize mbuf length fields and fixup
   1064 	 * alignment so that the frame payload is
   1065 	 * longword aligned.
   1066 	 */
   1067 	m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
   1068 	m->m_data += RE_ETHER_ALIGN;
   1069 
   1070 	rxs = &sc->re_ldata.re_rxsoft[idx];
   1071 	map = rxs->rxs_dmamap;
   1072 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1073 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1074 
   1075 	if (error)
   1076 		goto out;
   1077 
   1078 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1079 	    BUS_DMASYNC_PREREAD);
   1080 
   1081 	d = &sc->re_ldata.re_rx_list[idx];
   1082 #ifdef DIAGNOSTIC
   1083 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1084 	cmdstat = le32toh(d->re_cmdstat);
   1085 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1086 	if (cmdstat & RE_RDESC_STAT_OWN) {
   1087 		panic("%s: tried to map busy RX descriptor",
   1088 		    device_xname(sc->sc_dev));
   1089 	}
   1090 #endif
   1091 
   1092 	rxs->rxs_mbuf = m;
   1093 
   1094 	d->re_vlanctl = 0;
   1095 	cmdstat = map->dm_segs[0].ds_len;
   1096 	if (idx == (RE_RX_DESC_CNT - 1))
   1097 		cmdstat |= RE_RDESC_CMD_EOR;
   1098 	re_set_bufaddr(d, map->dm_segs[0].ds_addr);
   1099 	d->re_cmdstat = htole32(cmdstat);
   1100 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1101 	cmdstat |= RE_RDESC_CMD_OWN;
   1102 	d->re_cmdstat = htole32(cmdstat);
   1103 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1104 
   1105 	return 0;
   1106  out:
   1107 	if (n != NULL)
   1108 		m_freem(n);
   1109 	return ENOMEM;
   1110 }
   1111 
   1112 static int
   1113 re_tx_list_init(struct rtk_softc *sc)
   1114 {
   1115 	int i;
   1116 
   1117 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
   1118 	for (i = 0; i < RE_TX_QLEN; i++) {
   1119 		sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   1120 	}
   1121 
   1122 	bus_dmamap_sync(sc->sc_dmat,
   1123 	    sc->re_ldata.re_tx_list_map, 0,
   1124 	    sc->re_ldata.re_tx_list_map->dm_mapsize,
   1125 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1126 	sc->re_ldata.re_txq_prodidx = 0;
   1127 	sc->re_ldata.re_txq_considx = 0;
   1128 	sc->re_ldata.re_txq_free = RE_TX_QLEN;
   1129 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
   1130 	sc->re_ldata.re_tx_nextfree = 0;
   1131 
   1132 	return 0;
   1133 }
   1134 
   1135 static int
   1136 re_rx_list_init(struct rtk_softc *sc)
   1137 {
   1138 	int i;
   1139 
   1140 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
   1141 
   1142 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   1143 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1144 			return ENOBUFS;
   1145 	}
   1146 
   1147 	sc->re_ldata.re_rx_prodidx = 0;
   1148 	sc->re_head = sc->re_tail = NULL;
   1149 
   1150 	return 0;
   1151 }
   1152 
   1153 /*
   1154  * RX handler for C+ and 8169. For the gigE chips, we support
   1155  * the reception of jumbo frames that have been fragmented
   1156  * across multiple 2K mbuf cluster buffers.
   1157  */
   1158 static void
   1159 re_rxeof(struct rtk_softc *sc)
   1160 {
   1161 	struct mbuf *m;
   1162 	struct ifnet *ifp;
   1163 	int i, total_len;
   1164 	struct re_desc *cur_rx;
   1165 	struct re_rxsoft *rxs;
   1166 	uint32_t rxstat, rxvlan;
   1167 
   1168 	ifp = &sc->ethercom.ec_if;
   1169 
   1170 	for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
   1171 		cur_rx = &sc->re_ldata.re_rx_list[i];
   1172 		RE_RXDESCSYNC(sc, i,
   1173 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1174 		rxstat = le32toh(cur_rx->re_cmdstat);
   1175 		rxvlan = le32toh(cur_rx->re_vlanctl);
   1176 		RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1177 		if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
   1178 			break;
   1179 		}
   1180 		total_len = rxstat & sc->re_rxlenmask;
   1181 		rxs = &sc->re_ldata.re_rxsoft[i];
   1182 		m = rxs->rxs_mbuf;
   1183 
   1184 		/* Invalidate the RX mbuf and unload its map */
   1185 
   1186 		bus_dmamap_sync(sc->sc_dmat,
   1187 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
   1188 		    BUS_DMASYNC_POSTREAD);
   1189 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1190 
   1191 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
   1192 			m->m_len = MCLBYTES - RE_ETHER_ALIGN;
   1193 			if (sc->re_head == NULL)
   1194 				sc->re_head = sc->re_tail = m;
   1195 			else {
   1196 				m_remove_pkthdr(m);
   1197 				sc->re_tail->m_next = m;
   1198 				sc->re_tail = m;
   1199 			}
   1200 			re_newbuf(sc, i, NULL);
   1201 			continue;
   1202 		}
   1203 
   1204 		/*
   1205 		 * NOTE: for the 8139C+, the frame length field
   1206 		 * is always 12 bits in size, but for the gigE chips,
   1207 		 * it is 13 bits (since the max RX frame length is 16K).
   1208 		 * Unfortunately, all 32 bits in the status word
   1209 		 * were already used, so to make room for the extra
   1210 		 * length bit, RealTek took out the 'frame alignment
   1211 		 * error' bit and shifted the other status bits
   1212 		 * over one slot. The OWN, EOR, FS and LS bits are
   1213 		 * still in the same places. We have already extracted
   1214 		 * the frame length and checked the OWN bit, so rather
   1215 		 * than using an alternate bit mapping, we shift the
   1216 		 * status bits one space to the right so we can evaluate
   1217 		 * them using the 8169 status as though it was in the
   1218 		 * same format as that of the 8139C+.
   1219 		 */
   1220 		if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
   1221 			rxstat >>= 1;
   1222 
   1223 		if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
   1224 #ifdef RE_DEBUG
   1225 			printf("%s: RX error (rxstat = 0x%08x)",
   1226 			    device_xname(sc->sc_dev), rxstat);
   1227 			if (rxstat & RE_RDESC_STAT_FRALIGN)
   1228 				printf(", frame alignment error");
   1229 			if (rxstat & RE_RDESC_STAT_BUFOFLOW)
   1230 				printf(", out of buffer space");
   1231 			if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
   1232 				printf(", FIFO overrun");
   1233 			if (rxstat & RE_RDESC_STAT_GIANT)
   1234 				printf(", giant packet");
   1235 			if (rxstat & RE_RDESC_STAT_RUNT)
   1236 				printf(", runt packet");
   1237 			if (rxstat & RE_RDESC_STAT_CRCERR)
   1238 				printf(", CRC error");
   1239 			printf("\n");
   1240 #endif
   1241 			ifp->if_ierrors++;
   1242 			/*
   1243 			 * If this is part of a multi-fragment packet,
   1244 			 * discard all the pieces.
   1245 			 */
   1246 			if (sc->re_head != NULL) {
   1247 				m_freem(sc->re_head);
   1248 				sc->re_head = sc->re_tail = NULL;
   1249 			}
   1250 			re_newbuf(sc, i, m);
   1251 			continue;
   1252 		}
   1253 
   1254 		/*
   1255 		 * If allocating a replacement mbuf fails,
   1256 		 * reload the current one.
   1257 		 */
   1258 
   1259 		if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
   1260 			ifp->if_ierrors++;
   1261 			if (sc->re_head != NULL) {
   1262 				m_freem(sc->re_head);
   1263 				sc->re_head = sc->re_tail = NULL;
   1264 			}
   1265 			re_newbuf(sc, i, m);
   1266 			continue;
   1267 		}
   1268 
   1269 		if (sc->re_head != NULL) {
   1270 			m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
   1271 			/*
   1272 			 * Special case: if there's 4 bytes or less
   1273 			 * in this buffer, the mbuf can be discarded:
   1274 			 * the last 4 bytes is the CRC, which we don't
   1275 			 * care about anyway.
   1276 			 */
   1277 			if (m->m_len <= ETHER_CRC_LEN) {
   1278 				sc->re_tail->m_len -=
   1279 				    (ETHER_CRC_LEN - m->m_len);
   1280 				m_freem(m);
   1281 			} else {
   1282 				m->m_len -= ETHER_CRC_LEN;
   1283 				m_remove_pkthdr(m);
   1284 				sc->re_tail->m_next = m;
   1285 			}
   1286 			m = sc->re_head;
   1287 			sc->re_head = sc->re_tail = NULL;
   1288 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1289 		} else
   1290 			m->m_pkthdr.len = m->m_len =
   1291 			    (total_len - ETHER_CRC_LEN);
   1292 
   1293 		m_set_rcvif(m, ifp);
   1294 
   1295 		/* Do RX checksumming */
   1296 		if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1297 			/* Check IP header checksum */
   1298 			if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
   1299 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1300 				if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1301 					m->m_pkthdr.csum_flags |=
   1302 					    M_CSUM_IPv4_BAD;
   1303 
   1304 				/* Check TCP/UDP checksum */
   1305 				if (RE_TCPPKT(rxstat)) {
   1306 					m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1307 					if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1308 						m->m_pkthdr.csum_flags |=
   1309 						    M_CSUM_TCP_UDP_BAD;
   1310 				} else if (RE_UDPPKT(rxstat)) {
   1311 					m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1312 					if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
   1313 						/*
   1314 						 * XXX: 8139C+ thinks UDP csum
   1315 						 * 0xFFFF is bad, force software
   1316 						 * calculation.
   1317 						 */
   1318 						if (sc->sc_quirk & RTKQ_8139CPLUS)
   1319 							m->m_pkthdr.csum_flags
   1320 							    &= ~M_CSUM_UDPv4;
   1321 						else
   1322 							m->m_pkthdr.csum_flags
   1323 							    |= M_CSUM_TCP_UDP_BAD;
   1324 					}
   1325 				}
   1326 			}
   1327 		} else {
   1328 			/* Check IPv4 header checksum */
   1329 			if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
   1330 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1331 				if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1332 					m->m_pkthdr.csum_flags |=
   1333 					    M_CSUM_IPv4_BAD;
   1334 
   1335 				/* Check TCPv4/UDPv4 checksum */
   1336 				if (RE_TCPPKT(rxstat)) {
   1337 					m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1338 					if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1339 						m->m_pkthdr.csum_flags |=
   1340 						    M_CSUM_TCP_UDP_BAD;
   1341 				} else if (RE_UDPPKT(rxstat)) {
   1342 					m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1343 					if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
   1344 						m->m_pkthdr.csum_flags |=
   1345 						    M_CSUM_TCP_UDP_BAD;
   1346 				}
   1347 			}
   1348 			/* XXX Check TCPv6/UDPv6 checksum? */
   1349 		}
   1350 
   1351 		if (rxvlan & RE_RDESC_VLANCTL_TAG) {
   1352 			vlan_set_tag(m,
   1353 			     bswap16(rxvlan & RE_RDESC_VLANCTL_DATA));
   1354 		}
   1355 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1356 	}
   1357 
   1358 	sc->re_ldata.re_rx_prodidx = i;
   1359 }
   1360 
   1361 static void
   1362 re_txeof(struct rtk_softc *sc)
   1363 {
   1364 	struct ifnet *ifp;
   1365 	struct re_txq *txq;
   1366 	uint32_t txstat;
   1367 	int idx, descidx;
   1368 
   1369 	ifp = &sc->ethercom.ec_if;
   1370 
   1371 	for (idx = sc->re_ldata.re_txq_considx;
   1372 	    sc->re_ldata.re_txq_free < RE_TX_QLEN;
   1373 	    idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
   1374 		txq = &sc->re_ldata.re_txq[idx];
   1375 		KASSERT(txq->txq_mbuf != NULL);
   1376 
   1377 		descidx = txq->txq_descidx;
   1378 		RE_TXDESCSYNC(sc, descidx,
   1379 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1380 		txstat =
   1381 		    le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
   1382 		RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
   1383 		KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
   1384 		if (txstat & RE_TDESC_CMD_OWN) {
   1385 			break;
   1386 		}
   1387 
   1388 		sc->re_ldata.re_tx_free += txq->txq_nsegs;
   1389 		KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
   1390 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
   1391 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1392 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1393 		m_freem(txq->txq_mbuf);
   1394 		txq->txq_mbuf = NULL;
   1395 
   1396 		if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
   1397 			ifp->if_collisions++;
   1398 		if (txstat & RE_TDESC_STAT_TXERRSUM)
   1399 			ifp->if_oerrors++;
   1400 		else
   1401 			ifp->if_opackets++;
   1402 	}
   1403 
   1404 	sc->re_ldata.re_txq_considx = idx;
   1405 
   1406 	if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
   1407 		ifp->if_flags &= ~IFF_OACTIVE;
   1408 
   1409 	/*
   1410 	 * If not all descriptors have been released reaped yet,
   1411 	 * reload the timer so that we will eventually get another
   1412 	 * interrupt that will cause us to re-enter this routine.
   1413 	 * This is done in case the transmitter has gone idle.
   1414 	 */
   1415 	if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
   1416 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0)
   1417 			CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1418 		if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
   1419 			/*
   1420 			 * Some chips will ignore a second TX request
   1421 			 * issued while an existing transmission is in
   1422 			 * progress. If the transmitter goes idle but
   1423 			 * there are still packets waiting to be sent,
   1424 			 * we need to restart the channel here to flush
   1425 			 * them out. This only seems to be required with
   1426 			 * the PCIe devices.
   1427 			 */
   1428 			CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1429 		}
   1430 	} else
   1431 		ifp->if_timer = 0;
   1432 }
   1433 
   1434 static void
   1435 re_tick(void *arg)
   1436 {
   1437 	struct rtk_softc *sc = arg;
   1438 	int s;
   1439 
   1440 	/* XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1441 	s = splnet();
   1442 
   1443 	mii_tick(&sc->mii);
   1444 	splx(s);
   1445 
   1446 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1447 }
   1448 
   1449 int
   1450 re_intr(void *arg)
   1451 {
   1452 	struct rtk_softc *sc = arg;
   1453 	struct ifnet *ifp;
   1454 	uint16_t status;
   1455 	int handled = 0;
   1456 
   1457 	if (!device_has_power(sc->sc_dev))
   1458 		return 0;
   1459 
   1460 	ifp = &sc->ethercom.ec_if;
   1461 
   1462 	if ((ifp->if_flags & IFF_UP) == 0)
   1463 		return 0;
   1464 
   1465 	const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ?
   1466 	    RTK_INTRS_IM_HW : RTK_INTRS_CPLUS;
   1467 
   1468 	for (;;) {
   1469 
   1470 		status = CSR_READ_2(sc, RTK_ISR);
   1471 		/* If the card has gone away the read returns 0xffff. */
   1472 		if (status == 0xffff)
   1473 			break;
   1474 		if (status) {
   1475 			handled = 1;
   1476 			CSR_WRITE_2(sc, RTK_ISR, status);
   1477 		}
   1478 
   1479 		if ((status & status_mask) == 0)
   1480 			break;
   1481 
   1482 		if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
   1483 			re_rxeof(sc);
   1484 
   1485 		if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
   1486 		    RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK))
   1487 			re_txeof(sc);
   1488 
   1489 		if (status & RTK_ISR_SYSTEM_ERR) {
   1490 			re_init(ifp);
   1491 		}
   1492 
   1493 		if (status & RTK_ISR_LINKCHG) {
   1494 			callout_stop(&sc->rtk_tick_ch);
   1495 			re_tick(sc);
   1496 		}
   1497 	}
   1498 
   1499 	if (handled)
   1500 		if_schedule_deferred_start(ifp);
   1501 
   1502 	rnd_add_uint32(&sc->rnd_source, status);
   1503 
   1504 	return handled;
   1505 }
   1506 
   1507 
   1508 
   1509 /*
   1510  * Main transmit routine for C+ and gigE NICs.
   1511  */
   1512 
   1513 static void
   1514 re_start(struct ifnet *ifp)
   1515 {
   1516 	struct rtk_softc *sc;
   1517 	struct mbuf *m;
   1518 	bus_dmamap_t map;
   1519 	struct re_txq *txq;
   1520 	struct re_desc *d;
   1521 	uint32_t cmdstat, re_flags, vlanctl;
   1522 	int ofree, idx, error, nsegs, seg;
   1523 	int startdesc, curdesc, lastdesc;
   1524 	bool pad;
   1525 
   1526 	sc = ifp->if_softc;
   1527 	ofree = sc->re_ldata.re_txq_free;
   1528 
   1529 	for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
   1530 
   1531 		IFQ_POLL(&ifp->if_snd, m);
   1532 		if (m == NULL)
   1533 			break;
   1534 
   1535 		if (sc->re_ldata.re_txq_free == 0 ||
   1536 		    sc->re_ldata.re_tx_free == 0) {
   1537 			/* no more free slots left */
   1538 			ifp->if_flags |= IFF_OACTIVE;
   1539 			break;
   1540 		}
   1541 
   1542 		/*
   1543 		 * Set up checksum offload. Note: checksum offload bits must
   1544 		 * appear in all descriptors of a multi-descriptor transmit
   1545 		 * attempt. (This is according to testing done with an 8169
   1546 		 * chip. I'm not sure if this is a requirement or a bug.)
   1547 		 */
   1548 
   1549 		vlanctl = 0;
   1550 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1551 			uint32_t segsz = m->m_pkthdr.segsz;
   1552 
   1553 			if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1554 				re_flags = RE_TDESC_CMD_LGSEND |
   1555 				    (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
   1556 			} else {
   1557 				re_flags = RE_TDESC_CMD_LGSEND_V4;
   1558 				vlanctl |=
   1559 				    (segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT);
   1560 			}
   1561 		} else {
   1562 			/*
   1563 			 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
   1564 			 * is requested.  otherwise, RE_TDESC_CMD_TCPCSUM/
   1565 			 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
   1566 			 */
   1567 			re_flags = 0;
   1568 			if ((m->m_pkthdr.csum_flags &
   1569 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1570 			    != 0) {
   1571 				if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1572 					re_flags |= RE_TDESC_CMD_IPCSUM;
   1573 					if (m->m_pkthdr.csum_flags &
   1574 					    M_CSUM_TCPv4) {
   1575 						re_flags |=
   1576 						    RE_TDESC_CMD_TCPCSUM;
   1577 					} else if (m->m_pkthdr.csum_flags &
   1578 					    M_CSUM_UDPv4) {
   1579 						re_flags |=
   1580 						    RE_TDESC_CMD_UDPCSUM;
   1581 					}
   1582 				} else {
   1583 					vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
   1584 					if (m->m_pkthdr.csum_flags &
   1585 					    M_CSUM_TCPv4) {
   1586 						vlanctl |=
   1587 						    RE_TDESC_VLANCTL_TCPCSUM;
   1588 					} else if (m->m_pkthdr.csum_flags &
   1589 					    M_CSUM_UDPv4) {
   1590 						vlanctl |=
   1591 						    RE_TDESC_VLANCTL_UDPCSUM;
   1592 					}
   1593 				}
   1594 			}
   1595 		}
   1596 
   1597 		txq = &sc->re_ldata.re_txq[idx];
   1598 		map = txq->txq_dmamap;
   1599 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1600 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1601 
   1602 		if (__predict_false(error)) {
   1603 			/* XXX try to defrag if EFBIG? */
   1604 			printf("%s: can't map mbuf (error %d)\n",
   1605 			    device_xname(sc->sc_dev), error);
   1606 
   1607 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1608 			m_freem(m);
   1609 			ifp->if_oerrors++;
   1610 			continue;
   1611 		}
   1612 
   1613 		nsegs = map->dm_nsegs;
   1614 		pad = false;
   1615 		if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
   1616 		    (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
   1617 		    (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
   1618 			pad = true;
   1619 			nsegs++;
   1620 		}
   1621 
   1622 		if (nsegs > sc->re_ldata.re_tx_free) {
   1623 			/*
   1624 			 * Not enough free descriptors to transmit this packet.
   1625 			 */
   1626 			ifp->if_flags |= IFF_OACTIVE;
   1627 			bus_dmamap_unload(sc->sc_dmat, map);
   1628 			break;
   1629 		}
   1630 
   1631 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1632 
   1633 		/*
   1634 		 * Make sure that the caches are synchronized before we
   1635 		 * ask the chip to start DMA for the packet data.
   1636 		 */
   1637 		bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1638 		    BUS_DMASYNC_PREWRITE);
   1639 
   1640 		/*
   1641 		 * Set up hardware VLAN tagging. Note: vlan tag info must
   1642 		 * appear in all descriptors of a multi-descriptor
   1643 		 * transmission attempt.
   1644 		 */
   1645 		if (vlan_has_tag(m))
   1646 			vlanctl |= bswap16(vlan_get_tag(m)) |
   1647 			    RE_TDESC_VLANCTL_TAG;
   1648 
   1649 		/*
   1650 		 * Map the segment array into descriptors.
   1651 		 * Note that we set the start-of-frame and
   1652 		 * end-of-frame markers for either TX or RX,
   1653 		 * but they really only have meaning in the TX case.
   1654 		 * (In the RX case, it's the chip that tells us
   1655 		 *  where packets begin and end.)
   1656 		 * We also keep track of the end of the ring
   1657 		 * and set the end-of-ring bits as needed,
   1658 		 * and we set the ownership bits in all except
   1659 		 * the very first descriptor. (The caller will
   1660 		 * set this descriptor later when it start
   1661 		 * transmission or reception.)
   1662 		 */
   1663 		curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
   1664 		lastdesc = -1;
   1665 		for (seg = 0; seg < map->dm_nsegs;
   1666 		    seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
   1667 			d = &sc->re_ldata.re_tx_list[curdesc];
   1668 #ifdef DIAGNOSTIC
   1669 			RE_TXDESCSYNC(sc, curdesc,
   1670 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1671 			cmdstat = le32toh(d->re_cmdstat);
   1672 			RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
   1673 			if (cmdstat & RE_TDESC_STAT_OWN) {
   1674 				panic("%s: tried to map busy TX descriptor",
   1675 				    device_xname(sc->sc_dev));
   1676 			}
   1677 #endif
   1678 
   1679 			d->re_vlanctl = htole32(vlanctl);
   1680 			re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
   1681 			cmdstat = re_flags | map->dm_segs[seg].ds_len;
   1682 			if (seg == 0)
   1683 				cmdstat |= RE_TDESC_CMD_SOF;
   1684 			else
   1685 				cmdstat |= RE_TDESC_CMD_OWN;
   1686 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1687 				cmdstat |= RE_TDESC_CMD_EOR;
   1688 			if (seg == nsegs - 1) {
   1689 				cmdstat |= RE_TDESC_CMD_EOF;
   1690 				lastdesc = curdesc;
   1691 			}
   1692 			d->re_cmdstat = htole32(cmdstat);
   1693 			RE_TXDESCSYNC(sc, curdesc,
   1694 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1695 		}
   1696 		if (__predict_false(pad)) {
   1697 			d = &sc->re_ldata.re_tx_list[curdesc];
   1698 			d->re_vlanctl = htole32(vlanctl);
   1699 			re_set_bufaddr(d, RE_TXPADDADDR(sc));
   1700 			cmdstat = re_flags |
   1701 			    RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
   1702 			    (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
   1703 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1704 				cmdstat |= RE_TDESC_CMD_EOR;
   1705 			d->re_cmdstat = htole32(cmdstat);
   1706 			RE_TXDESCSYNC(sc, curdesc,
   1707 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1708 			lastdesc = curdesc;
   1709 			curdesc = RE_NEXT_TX_DESC(sc, curdesc);
   1710 		}
   1711 		KASSERT(lastdesc != -1);
   1712 
   1713 		/* Transfer ownership of packet to the chip. */
   1714 
   1715 		sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
   1716 		    htole32(RE_TDESC_CMD_OWN);
   1717 		RE_TXDESCSYNC(sc, startdesc,
   1718 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1719 
   1720 		/* update info of TX queue and descriptors */
   1721 		txq->txq_mbuf = m;
   1722 		txq->txq_descidx = lastdesc;
   1723 		txq->txq_nsegs = nsegs;
   1724 
   1725 		sc->re_ldata.re_txq_free--;
   1726 		sc->re_ldata.re_tx_free -= nsegs;
   1727 		sc->re_ldata.re_tx_nextfree = curdesc;
   1728 
   1729 		/*
   1730 		 * If there's a BPF listener, bounce a copy of this frame
   1731 		 * to him.
   1732 		 */
   1733 		bpf_mtap(ifp, m, BPF_D_OUT);
   1734 	}
   1735 
   1736 	if (sc->re_ldata.re_txq_free < ofree) {
   1737 		/*
   1738 		 * TX packets are enqueued.
   1739 		 */
   1740 		sc->re_ldata.re_txq_prodidx = idx;
   1741 
   1742 		/*
   1743 		 * Start the transmitter to poll.
   1744 		 *
   1745 		 * RealTek put the TX poll request register in a different
   1746 		 * location on the 8169 gigE chip. I don't know why.
   1747 		 */
   1748 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   1749 			CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
   1750 		else
   1751 			CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1752 
   1753 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
   1754 			/*
   1755 			 * Use the countdown timer for interrupt moderation.
   1756 			 * 'TX done' interrupts are disabled. Instead, we reset
   1757 			 * the countdown timer, which will begin counting until
   1758 			 * it hits the value in the TIMERINT register, and then
   1759 			 * trigger an interrupt. Each time we write to the
   1760 			 * TIMERCNT register, the timer count is reset to 0.
   1761 			 */
   1762 			CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1763 		}
   1764 
   1765 		/*
   1766 		 * Set a timeout in case the chip goes out to lunch.
   1767 		 */
   1768 		ifp->if_timer = 5;
   1769 	}
   1770 }
   1771 
   1772 static int
   1773 re_init(struct ifnet *ifp)
   1774 {
   1775 	struct rtk_softc *sc = ifp->if_softc;
   1776 	uint32_t rxcfg = 0;
   1777 	uint16_t cfg;
   1778 	int error;
   1779 #ifdef RE_USE_EECMD
   1780 	const uint8_t *enaddr;
   1781 	uint32_t reg;
   1782 #endif
   1783 
   1784 	if ((error = re_enable(sc)) != 0)
   1785 		goto out;
   1786 
   1787 	/*
   1788 	 * Cancel pending I/O and free all RX/TX buffers.
   1789 	 */
   1790 	re_stop(ifp, 0);
   1791 
   1792 	re_reset(sc);
   1793 
   1794 	/*
   1795 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1796 	 * RX checksum offload. We must configure the C+ register
   1797 	 * before all others.
   1798 	 */
   1799 	cfg = RE_CPLUSCMD_PCI_MRW;
   1800 
   1801 	/*
   1802 	 * XXX: For old 8169 set bit 14.
   1803 	 *      For 8169S/8110S and above, do not set bit 14.
   1804 	 */
   1805 	if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
   1806 		cfg |= (0x1 << 14);
   1807 
   1808 	if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
   1809 		cfg |= RE_CPLUSCMD_VLANSTRIP;
   1810 	if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
   1811 	     IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
   1812 		cfg |= RE_CPLUSCMD_RXCSUM_ENB;
   1813 	if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
   1814 		cfg |= RE_CPLUSCMD_MACSTAT_DIS;
   1815 		cfg |= RE_CPLUSCMD_TXENB;
   1816 	} else
   1817 		cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
   1818 
   1819 	CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
   1820 
   1821 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1822 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
   1823 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
   1824 			CSR_WRITE_2(sc, RTK_IM, 0x0000);
   1825 		} else {
   1826 			CSR_WRITE_2(sc, RTK_IM, 0x5151);
   1827 		}
   1828 	}
   1829 
   1830 	DELAY(10000);
   1831 
   1832 #ifdef RE_USE_EECMD
   1833 	/*
   1834 	 * Init our MAC address.  Even though the chipset
   1835 	 * documentation doesn't mention it, we need to enter "Config
   1836 	 * register write enable" mode to modify the ID registers.
   1837 	 */
   1838 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1839 	enaddr = CLLADDR(ifp->if_sadl);
   1840 	reg = enaddr[0] | (enaddr[1] << 8) |
   1841 	    (enaddr[2] << 16) | (enaddr[3] << 24);
   1842 	CSR_WRITE_4(sc, RTK_IDR0, reg);
   1843 	reg = enaddr[4] | (enaddr[5] << 8);
   1844 	CSR_WRITE_4(sc, RTK_IDR4, reg);
   1845 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1846 #endif
   1847 
   1848 	/*
   1849 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1850 	 */
   1851 	re_rx_list_init(sc);
   1852 	re_tx_list_init(sc);
   1853 
   1854 	/*
   1855 	 * Load the addresses of the RX and TX lists into the chip.
   1856 	 */
   1857 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1858 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1859 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1860 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1861 
   1862 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1863 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1864 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1865 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1866 
   1867 	if (sc->sc_quirk & RTKQ_RXDV_GATED) {
   1868 		CSR_WRITE_4(sc, RTK_MISC,
   1869 		    CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
   1870 	}
   1871 
   1872 	/*
   1873 	 * Enable transmit and receive.
   1874 	 */
   1875 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1876 
   1877 	/*
   1878 	 * Set the initial TX and RX configuration.
   1879 	 */
   1880 	if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
   1881 		/* test mode is needed only for old 8169 */
   1882 		CSR_WRITE_4(sc, RTK_TXCFG,
   1883 		    RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1884 	} else
   1885 		CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
   1886 
   1887 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1888 
   1889 	CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
   1890 
   1891 	/* Set the individual bit to receive frames for this host only. */
   1892 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1893 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1894 
   1895 	/* If we want promiscuous mode, set the allframes bit. */
   1896 	if (ifp->if_flags & IFF_PROMISC)
   1897 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1898 	else
   1899 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1900 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1901 
   1902 	/*
   1903 	 * Set capture broadcast bit to capture broadcast frames.
   1904 	 */
   1905 	if (ifp->if_flags & IFF_BROADCAST)
   1906 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1907 	else
   1908 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1909 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1910 
   1911 	/*
   1912 	 * Program the multicast filter, if necessary.
   1913 	 */
   1914 	rtk_setmulti(sc);
   1915 
   1916 	/*
   1917 	 * Enable interrupts.
   1918 	 */
   1919 	if (sc->re_testmode)
   1920 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1921 	else if ((sc->sc_quirk & RTKQ_IM_HW) != 0)
   1922 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW);
   1923 	else
   1924 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1925 
   1926 	/* Start RX/TX process. */
   1927 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1928 #ifdef notdef
   1929 	/* Enable receiver and transmitter. */
   1930 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1931 #endif
   1932 
   1933 	/*
   1934 	 * Initialize the timer interrupt register so that
   1935 	 * a timer interrupt will be generated once the timer
   1936 	 * reaches a certain number of ticks. The timer is
   1937 	 * reloaded on each transmit. This gives us TX interrupt
   1938 	 * moderation, which dramatically improves TX frame rate.
   1939 	 */
   1940 
   1941 	unsigned defer;		/* timer interval / ns */
   1942 	unsigned period;	/* busclock period / ns */
   1943 
   1944 	/*
   1945 	 * Maximum frame rate
   1946 	 * 1500 byte PDU -> 81274 Hz
   1947 	 *   46 byte PDU -> 1488096 Hz
   1948 	 *
   1949 	 * Deferring interrupts by up to 128us needs descriptors for
   1950 	 * 1500 byte PDU -> 10.4 frames
   1951 	 *   46 byte PDU -> 190.4 frames
   1952 	 *
   1953 	 */
   1954 	defer = 128000;
   1955 
   1956 	if ((sc->sc_quirk & RTKQ_IM_HW) != 0) {
   1957 		period = 1;
   1958 		defer = 0;
   1959 	} else if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
   1960 		period = 8;
   1961 	} else {
   1962 		switch (CSR_READ_4(sc, RTK_CFG2_BUSFREQ) & 0x7) {
   1963 		case RTK_BUSFREQ_33MHZ:
   1964 			period = 30;
   1965 			break;
   1966 		case RTK_BUSFREQ_66MHZ:
   1967 			period = 15;
   1968 			break;
   1969 		default:
   1970 			/* lowest possible clock */
   1971 			period = 60;
   1972 			break;
   1973 		}
   1974 	}
   1975 
   1976 	/* Timer Interrupt register address varies */
   1977 	uint16_t re8139_reg;
   1978 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   1979 		re8139_reg = RTK_TIMERINT;
   1980 	else
   1981 		re8139_reg = RTK_TIMERINT_8169;
   1982 	CSR_WRITE_4(sc, re8139_reg, defer / period);
   1983 
   1984 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
   1985 		/*
   1986 		 * For 8169 gigE NICs, set the max allowed RX packet
   1987 		 * size so we can receive jumbo frames.
   1988 		 */
   1989 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1990 	}
   1991 
   1992 	if (sc->re_testmode)
   1993 		return 0;
   1994 
   1995 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
   1996 
   1997 	ifp->if_flags |= IFF_RUNNING;
   1998 	ifp->if_flags &= ~IFF_OACTIVE;
   1999 
   2000 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   2001 
   2002  out:
   2003 	if (error) {
   2004 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2005 		ifp->if_timer = 0;
   2006 		printf("%s: interface not running\n",
   2007 		    device_xname(sc->sc_dev));
   2008 	}
   2009 
   2010 	return error;
   2011 }
   2012 
   2013 static int
   2014 re_ioctl(struct ifnet *ifp, u_long command, void *data)
   2015 {
   2016 	struct rtk_softc *sc = ifp->if_softc;
   2017 	struct ifreq *ifr = data;
   2018 	int s, error = 0;
   2019 
   2020 	s = splnet();
   2021 
   2022 	switch (command) {
   2023 	case SIOCSIFMTU:
   2024 		/*
   2025 		 * Disable jumbo frames if it's not supported.
   2026 		 */
   2027 		if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
   2028 		    ifr->ifr_mtu > ETHERMTU) {
   2029 			error = EINVAL;
   2030 			break;
   2031 		}
   2032 
   2033 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
   2034 			error = EINVAL;
   2035 		else if ((error = ifioctl_common(ifp, command, data)) ==
   2036 		    ENETRESET)
   2037 			error = 0;
   2038 		break;
   2039 	default:
   2040 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   2041 			break;
   2042 
   2043 		error = 0;
   2044 
   2045 		if (command == SIOCSIFCAP)
   2046 			error = (*ifp->if_init)(ifp);
   2047 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2048 			;
   2049 		else if (ifp->if_flags & IFF_RUNNING)
   2050 			rtk_setmulti(sc);
   2051 		break;
   2052 	}
   2053 
   2054 	splx(s);
   2055 
   2056 	return error;
   2057 }
   2058 
   2059 static void
   2060 re_watchdog(struct ifnet *ifp)
   2061 {
   2062 	struct rtk_softc *sc;
   2063 	int s;
   2064 
   2065 	sc = ifp->if_softc;
   2066 	s = splnet();
   2067 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   2068 	ifp->if_oerrors++;
   2069 
   2070 	re_txeof(sc);
   2071 	re_rxeof(sc);
   2072 
   2073 	re_init(ifp);
   2074 
   2075 	splx(s);
   2076 }
   2077 
   2078 /*
   2079  * Stop the adapter and free any mbufs allocated to the
   2080  * RX and TX lists.
   2081  */
   2082 static void
   2083 re_stop(struct ifnet *ifp, int disable)
   2084 {
   2085 	int i;
   2086 	struct rtk_softc *sc = ifp->if_softc;
   2087 
   2088 	callout_stop(&sc->rtk_tick_ch);
   2089 
   2090 	mii_down(&sc->mii);
   2091 
   2092 	if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
   2093 		CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
   2094 		    RTK_CMD_RX_ENB);
   2095 	else
   2096 		CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2097 	DELAY(1000);
   2098 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2099 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
   2100 
   2101 	if (sc->re_head != NULL) {
   2102 		m_freem(sc->re_head);
   2103 		sc->re_head = sc->re_tail = NULL;
   2104 	}
   2105 
   2106 	/* Free the TX list buffers. */
   2107 	for (i = 0; i < RE_TX_QLEN; i++) {
   2108 		if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
   2109 			bus_dmamap_unload(sc->sc_dmat,
   2110 			    sc->re_ldata.re_txq[i].txq_dmamap);
   2111 			m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
   2112 			sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   2113 		}
   2114 	}
   2115 
   2116 	/* Free the RX list buffers. */
   2117 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   2118 		if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
   2119 			bus_dmamap_unload(sc->sc_dmat,
   2120 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
   2121 			m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
   2122 			sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
   2123 		}
   2124 	}
   2125 
   2126 	if (disable)
   2127 		re_disable(sc);
   2128 
   2129 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2130 	ifp->if_timer = 0;
   2131 }
   2132