rtl8169.c revision 1.159.2.2 1 /* $NetBSD: rtl8169.c,v 1.159.2.2 2023/08/04 15:06:50 martin Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.159.2.2 2023/08/04 15:06:50 martin Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51 * RTL8110S, the RTL8168 and the RTL8111.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137 #include <sys/rndsource.h>
138
139 #include <sys/bus.h>
140
141 #include <dev/mii/mii.h>
142 #include <dev/mii/miivar.h>
143
144 #include <dev/ic/rtl81x9reg.h>
145 #include <dev/ic/rtl81x9var.h>
146
147 #include <dev/ic/rtl8169var.h>
148
149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
150
151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
152 static int re_rx_list_init(struct rtk_softc *);
153 static int re_tx_list_init(struct rtk_softc *);
154 static void re_rxeof(struct rtk_softc *);
155 static void re_txeof(struct rtk_softc *);
156 static void re_tick(void *);
157 static void re_start(struct ifnet *);
158 static int re_ioctl(struct ifnet *, u_long, void *);
159 static int re_init(struct ifnet *);
160 static void re_stop(struct ifnet *, int);
161 static void re_watchdog(struct ifnet *);
162
163 static int re_enable(struct rtk_softc *);
164 static void re_disable(struct rtk_softc *);
165
166 static int re_gmii_readreg(device_t, int, int, uint16_t *);
167 static int re_gmii_writereg(device_t, int, int, uint16_t);
168
169 static int re_miibus_readreg(device_t, int, int, uint16_t *);
170 static int re_miibus_writereg(device_t, int, int, uint16_t);
171 static void re_miibus_statchg(struct ifnet *);
172
173 static void re_reset(struct rtk_softc *);
174
175 static const struct re_revision {
176 uint32_t re_chipid;
177 const char *re_name;
178 } re_revisions[] = {
179 { RTK_HWREV_8100, "RTL8100" },
180 { RTK_HWREV_8100E, "RTL8100E" },
181 { RTK_HWREV_8100E_SPIN2, "RTL8100E 2" },
182 { RTK_HWREV_8101, "RTL8101" },
183 { RTK_HWREV_8101E, "RTL8101E" },
184 { RTK_HWREV_8102E, "RTL8102E" },
185 { RTK_HWREV_8106E, "RTL8106E" },
186 { RTK_HWREV_8401E, "RTL8401E" },
187 { RTK_HWREV_8402, "RTL8402" },
188 { RTK_HWREV_8411, "RTL8411" },
189 { RTK_HWREV_8411B, "RTL8411B" },
190 { RTK_HWREV_8102EL, "RTL8102EL" },
191 { RTK_HWREV_8102EL_SPIN1, "RTL8102EL 1" },
192 { RTK_HWREV_8103E, "RTL8103E" },
193 { RTK_HWREV_8110S, "RTL8110S" },
194 { RTK_HWREV_8139CPLUS, "RTL8139C+" },
195 { RTK_HWREV_8168B_SPIN1, "RTL8168 1" },
196 { RTK_HWREV_8168B_SPIN2, "RTL8168 2" },
197 { RTK_HWREV_8168B_SPIN3, "RTL8168 3" },
198 { RTK_HWREV_8168C, "RTL8168C/8111C" },
199 { RTK_HWREV_8168C_SPIN2, "RTL8168C/8111C" },
200 { RTK_HWREV_8168CP, "RTL8168CP/8111CP" },
201 { RTK_HWREV_8168F, "RTL8168F/8111F" },
202 { RTK_HWREV_8168G, "RTL8168G/8111G" },
203 { RTK_HWREV_8168GU, "RTL8168GU/8111GU" },
204 { RTK_HWREV_8168H, "RTL8168H/8111H" },
205 { RTK_HWREV_8105E, "RTL8105E" },
206 { RTK_HWREV_8105E_SPIN1, "RTL8105E" },
207 { RTK_HWREV_8168D, "RTL8168D/8111D" },
208 { RTK_HWREV_8168DP, "RTL8168DP/8111DP" },
209 { RTK_HWREV_8168E, "RTL8168E/8111E" },
210 { RTK_HWREV_8168E_VL, "RTL8168E/8111E-VL" },
211 { RTK_HWREV_8168EP, "RTL8168EP/8111EP" },
212 { RTK_HWREV_8168FP, "RTL8168FP/8117" },
213 { RTK_HWREV_8169, "RTL8169" },
214 { RTK_HWREV_8169_8110SB, "RTL8169/8110SB" },
215 { RTK_HWREV_8169_8110SBL, "RTL8169SBL" },
216 { RTK_HWREV_8169_8110SC, "RTL8169/8110SCd" },
217 { RTK_HWREV_8169_8110SCE, "RTL8169/8110SCe" },
218 { RTK_HWREV_8169S, "RTL8169S" },
219
220 { 0, NULL }
221 };
222
223 static inline void
224 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
225 {
226
227 d->re_bufaddr_lo = htole32((uint32_t)addr);
228 if (sizeof(bus_addr_t) == sizeof(uint64_t))
229 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
230 else
231 d->re_bufaddr_hi = 0;
232 }
233
234 static int
235 re_gmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
236 {
237 struct rtk_softc *sc = device_private(dev);
238 uint32_t data;
239 int i;
240
241 if (phy != 7)
242 return -1;
243
244 /* Let the rgephy driver read the GMEDIASTAT register */
245
246 if (reg == RTK_GMEDIASTAT) {
247 *val = CSR_READ_1(sc, RTK_GMEDIASTAT);
248 return 0;
249 }
250
251 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
252 DELAY(1000);
253
254 for (i = 0; i < RTK_TIMEOUT; i++) {
255 data = CSR_READ_4(sc, RTK_PHYAR);
256 if (data & RTK_PHYAR_BUSY)
257 break;
258 DELAY(100);
259 }
260
261 if (i == RTK_TIMEOUT) {
262 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
263 return ETIMEDOUT;
264 }
265
266 *val = data & RTK_PHYAR_PHYDATA;
267 return 0;
268 }
269
270 static int
271 re_gmii_writereg(device_t dev, int phy, int reg, uint16_t val)
272 {
273 struct rtk_softc *sc = device_private(dev);
274 uint32_t data;
275 int i;
276
277 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
278 (val & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
279 DELAY(1000);
280
281 for (i = 0; i < RTK_TIMEOUT; i++) {
282 data = CSR_READ_4(sc, RTK_PHYAR);
283 if (!(data & RTK_PHYAR_BUSY))
284 break;
285 DELAY(100);
286 }
287
288 if (i == RTK_TIMEOUT) {
289 printf("%s: PHY write reg %x <- %hx failed\n",
290 device_xname(sc->sc_dev), reg, val);
291 return ETIMEDOUT;
292 }
293
294 return 0;
295 }
296
297 static int
298 re_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
299 {
300 struct rtk_softc *sc = device_private(dev);
301 uint16_t re8139_reg = 0;
302 int s, rv = 0;
303
304 s = splnet();
305
306 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
307 rv = re_gmii_readreg(dev, phy, reg, val);
308 splx(s);
309 return rv;
310 }
311
312 /* Pretend the internal PHY is only at address 0 */
313 if (phy) {
314 splx(s);
315 return -1;
316 }
317 switch (reg) {
318 case MII_BMCR:
319 re8139_reg = RTK_BMCR;
320 break;
321 case MII_BMSR:
322 re8139_reg = RTK_BMSR;
323 break;
324 case MII_ANAR:
325 re8139_reg = RTK_ANAR;
326 break;
327 case MII_ANER:
328 re8139_reg = RTK_ANER;
329 break;
330 case MII_ANLPAR:
331 re8139_reg = RTK_LPAR;
332 break;
333 case MII_PHYIDR1:
334 case MII_PHYIDR2:
335 *val = 0;
336 splx(s);
337 return 0;
338 /*
339 * Allow the rlphy driver to read the media status
340 * register. If we have a link partner which does not
341 * support NWAY, this is the register which will tell
342 * us the results of parallel detection.
343 */
344 case RTK_MEDIASTAT:
345 *val = CSR_READ_1(sc, RTK_MEDIASTAT);
346 splx(s);
347 return 0;
348 default:
349 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
350 splx(s);
351 return -1;
352 }
353 *val = CSR_READ_2(sc, re8139_reg);
354 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
355 /* 8139C+ has different bit layout. */
356 *val &= ~(BMCR_LOOP | BMCR_ISO);
357 }
358 splx(s);
359 return 0;
360 }
361
362 static int
363 re_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
364 {
365 struct rtk_softc *sc = device_private(dev);
366 uint16_t re8139_reg = 0;
367 int s, rv;
368
369 s = splnet();
370
371 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
372 rv = re_gmii_writereg(dev, phy, reg, val);
373 splx(s);
374 return rv;
375 }
376
377 /* Pretend the internal PHY is only at address 0 */
378 if (phy) {
379 splx(s);
380 return -1;
381 }
382 switch (reg) {
383 case MII_BMCR:
384 re8139_reg = RTK_BMCR;
385 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
386 /* 8139C+ has different bit layout. */
387 val &= ~(BMCR_LOOP | BMCR_ISO);
388 }
389 break;
390 case MII_BMSR:
391 re8139_reg = RTK_BMSR;
392 break;
393 case MII_ANAR:
394 re8139_reg = RTK_ANAR;
395 break;
396 case MII_ANER:
397 re8139_reg = RTK_ANER;
398 break;
399 case MII_ANLPAR:
400 re8139_reg = RTK_LPAR;
401 break;
402 case MII_PHYIDR1:
403 case MII_PHYIDR2:
404 splx(s);
405 return 0;
406 break;
407 default:
408 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
409 splx(s);
410 return -1;
411 }
412 CSR_WRITE_2(sc, re8139_reg, val);
413 splx(s);
414 return 0;
415 }
416
417 static void
418 re_miibus_statchg(struct ifnet *ifp)
419 {
420
421 return;
422 }
423
424 static void
425 re_reset(struct rtk_softc *sc)
426 {
427 int i;
428
429 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
430
431 for (i = 0; i < RTK_TIMEOUT; i++) {
432 DELAY(10);
433 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
434 break;
435 }
436 if (i == RTK_TIMEOUT)
437 printf("%s: reset never completed!\n",
438 device_xname(sc->sc_dev));
439
440 /*
441 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
442 * but also says "Rtl8169s sigle chip detected".
443 */
444 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
445 CSR_WRITE_1(sc, RTK_LDPS, 1);
446
447 }
448
449 /*
450 * The following routine is designed to test for a defect on some
451 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
452 * lines connected to the bus, however for a 32-bit only card, they
453 * should be pulled high. The result of this defect is that the
454 * NIC will not work right if you plug it into a 64-bit slot: DMA
455 * operations will be done with 64-bit transfers, which will fail
456 * because the 64-bit data lines aren't connected.
457 *
458 * There's no way to work around this (short of talking a soldering
459 * iron to the board), however we can detect it. The method we use
460 * here is to put the NIC into digital loopback mode, set the receiver
461 * to promiscuous mode, and then try to send a frame. We then compare
462 * the frame data we sent to what was received. If the data matches,
463 * then the NIC is working correctly, otherwise we know the user has
464 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
465 * slot. In the latter case, there's no way the NIC can work correctly,
466 * so we print out a message on the console and abort the device attach.
467 */
468
469 int
470 re_diag(struct rtk_softc *sc)
471 {
472 struct ifnet *ifp = &sc->ethercom.ec_if;
473 struct mbuf *m0;
474 struct ether_header *eh;
475 struct re_rxsoft *rxs;
476 struct re_desc *cur_rx;
477 bus_dmamap_t dmamap;
478 uint16_t status;
479 uint32_t rxstat;
480 int total_len, i, s, error = 0;
481 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
482 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
483
484 /* Allocate a single mbuf */
485
486 MGETHDR(m0, M_DONTWAIT, MT_DATA);
487 if (m0 == NULL)
488 return ENOBUFS;
489
490 /*
491 * Initialize the NIC in test mode. This sets the chip up
492 * so that it can send and receive frames, but performs the
493 * following special functions:
494 * - Puts receiver in promiscuous mode
495 * - Enables digital loopback mode
496 * - Leaves interrupts turned off
497 */
498
499 ifp->if_flags |= IFF_PROMISC;
500 sc->re_testmode = 1;
501 re_init(ifp);
502 re_stop(ifp, 0);
503 DELAY(100000);
504 re_init(ifp);
505
506 /* Put some data in the mbuf */
507
508 eh = mtod(m0, struct ether_header *);
509 memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
510 memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
511 eh->ether_type = htons(ETHERTYPE_IP);
512 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
513
514 /*
515 * Queue the packet, start transmission.
516 */
517
518 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
519 s = splnet();
520 IF_ENQUEUE(&ifp->if_snd, m0);
521 re_start(ifp);
522 splx(s);
523 m0 = NULL;
524
525 /* Wait for it to propagate through the chip */
526
527 DELAY(100000);
528 for (i = 0; i < RTK_TIMEOUT; i++) {
529 status = CSR_READ_2(sc, RTK_ISR);
530 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
531 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
532 break;
533 DELAY(10);
534 }
535 if (i == RTK_TIMEOUT) {
536 aprint_error_dev(sc->sc_dev,
537 "diagnostic failed, failed to receive packet "
538 "in loopback mode\n");
539 error = EIO;
540 goto done;
541 }
542
543 /*
544 * The packet should have been dumped into the first
545 * entry in the RX DMA ring. Grab it from there.
546 */
547
548 rxs = &sc->re_ldata.re_rxsoft[0];
549 dmamap = rxs->rxs_dmamap;
550 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
551 BUS_DMASYNC_POSTREAD);
552 bus_dmamap_unload(sc->sc_dmat, dmamap);
553
554 m0 = rxs->rxs_mbuf;
555 rxs->rxs_mbuf = NULL;
556 eh = mtod(m0, struct ether_header *);
557
558 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
559 cur_rx = &sc->re_ldata.re_rx_list[0];
560 rxstat = le32toh(cur_rx->re_cmdstat);
561 total_len = rxstat & sc->re_rxlenmask;
562
563 if (total_len != ETHER_MIN_LEN) {
564 aprint_error_dev(sc->sc_dev,
565 "diagnostic failed, received short packet\n");
566 error = EIO;
567 goto done;
568 }
569
570 /* Test that the received packet data matches what we sent. */
571
572 if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
573 memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
574 ntohs(eh->ether_type) != ETHERTYPE_IP) {
575 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
576 "expected TX data: %s/%s/0x%x\n"
577 "received RX data: %s/%s/0x%x\n"
578 "You may have a defective 32-bit NIC plugged "
579 "into a 64-bit PCI slot.\n"
580 "Please re-install the NIC in a 32-bit slot "
581 "for proper operation.\n"
582 "Read the re(4) man page for more details.\n" ,
583 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
584 ether_sprintf(eh->ether_dhost),
585 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
586 error = EIO;
587 }
588
589 done:
590 /* Turn interface off, release resources */
591
592 sc->re_testmode = 0;
593 ifp->if_flags &= ~IFF_PROMISC;
594 re_stop(ifp, 0);
595 if (m0 != NULL)
596 m_freem(m0);
597
598 return error;
599 }
600
601
602 /*
603 * Attach the interface. Allocate softc structures, do ifmedia
604 * setup and ethernet/BPF attach.
605 */
606 void
607 re_attach(struct rtk_softc *sc)
608 {
609 uint8_t eaddr[ETHER_ADDR_LEN];
610 struct ifnet *ifp;
611 struct mii_data *mii = &sc->mii;
612 int error = 0, i;
613 const struct re_revision *rr;
614 const char *re_name = NULL;
615
616 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
617 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
618 sc->sc_hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
619
620 for (rr = re_revisions; rr->re_name != NULL; rr++) {
621 if (rr->re_chipid == sc->sc_hwrev)
622 re_name = rr->re_name;
623 }
624
625 if (re_name == NULL)
626 aprint_normal_dev(sc->sc_dev,
627 "unknown ASIC (0x%04x)\n", sc->sc_hwrev >> 16);
628 else
629 aprint_normal_dev(sc->sc_dev,
630 "%s (0x%04x)\n", re_name, sc->sc_hwrev >> 16);
631
632 switch (sc->sc_hwrev) {
633 case RTK_HWREV_8169:
634 sc->sc_quirk |= RTKQ_8169NONS;
635 break;
636 case RTK_HWREV_8169S:
637 case RTK_HWREV_8110S:
638 case RTK_HWREV_8169_8110SB:
639 case RTK_HWREV_8169_8110SBL:
640 case RTK_HWREV_8169_8110SC:
641 sc->sc_quirk |= RTKQ_MACLDPS;
642 break;
643 case RTK_HWREV_8168B_SPIN1:
644 case RTK_HWREV_8168B_SPIN2:
645 case RTK_HWREV_8168B_SPIN3:
646 sc->sc_quirk |= RTKQ_MACSTAT;
647 break;
648 case RTK_HWREV_8168C:
649 case RTK_HWREV_8168C_SPIN2:
650 case RTK_HWREV_8168CP:
651 case RTK_HWREV_8168D:
652 case RTK_HWREV_8168DP:
653 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
654 RTKQ_MACSTAT | RTKQ_CMDSTOP;
655 /*
656 * From FreeBSD driver:
657 *
658 * These (8168/8111) controllers support jumbo frame
659 * but it seems that enabling it requires touching
660 * additional magic registers. Depending on MAC
661 * revisions some controllers need to disable
662 * checksum offload. So disable jumbo frame until
663 * I have better idea what it really requires to
664 * make it support.
665 * RTL8168C/CP : supports up to 6KB jumbo frame.
666 * RTL8111C/CP : supports up to 9KB jumbo frame.
667 */
668 sc->sc_quirk |= RTKQ_NOJUMBO;
669 break;
670 case RTK_HWREV_8168E:
671 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
672 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
673 RTKQ_NOJUMBO;
674 break;
675 case RTK_HWREV_8168E_VL:
676 case RTK_HWREV_8168F:
677 case RTK_HWREV_8411:
678 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
679 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
680 break;
681 case RTK_HWREV_8168EP:
682 case RTK_HWREV_8168FP:
683 case RTK_HWREV_8168G:
684 case RTK_HWREV_8168GU:
685 case RTK_HWREV_8168H:
686 case RTK_HWREV_8411B:
687 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
688 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
689 RTKQ_RXDV_GATED | RTKQ_TXRXEN_LATER;
690 break;
691 case RTK_HWREV_8100E:
692 case RTK_HWREV_8100E_SPIN2:
693 case RTK_HWREV_8101E:
694 sc->sc_quirk |= RTKQ_NOJUMBO;
695 break;
696 case RTK_HWREV_8102E:
697 case RTK_HWREV_8102EL:
698 case RTK_HWREV_8102EL_SPIN1:
699 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
700 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
701 break;
702 case RTK_HWREV_8103E:
703 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
704 RTKQ_MACSTAT | RTKQ_CMDSTOP;
705 break;
706 case RTK_HWREV_8401E:
707 case RTK_HWREV_8105E:
708 case RTK_HWREV_8105E_SPIN1: /* XXX */
709 case RTK_HWREV_8106E:
710 sc->sc_quirk |= RTKQ_PHYWAKE_PM |
711 RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
712 RTKQ_CMDSTOP;
713 break;
714 case RTK_HWREV_8402:
715 sc->sc_quirk |= RTKQ_PHYWAKE_PM |
716 RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
717 RTKQ_CMDSTOP; /* CMDSTOP_WAIT_TXQ */
718 break;
719 default:
720 aprint_normal_dev(sc->sc_dev, "Use default quirks\n");
721 /* assume the latest features */
722 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
723 sc->sc_quirk |= RTKQ_NOJUMBO;
724 }
725
726 /* Set RX length mask */
727 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
728 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
729 } else {
730 sc->sc_quirk |= RTKQ_NOJUMBO;
731
732 /* Set RX length mask */
733 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
734 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
735 }
736
737 /* Reset the adapter. */
738 re_reset(sc);
739
740 /*
741 * RTL81x9 chips automatically read EEPROM to init MAC address,
742 * and some NAS override its MAC address per own configuration,
743 * so no need to explicitely read EEPROM and set ID registers.
744 */
745 #ifdef RE_USE_EECMD
746 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
747 /*
748 * Get station address from ID registers.
749 */
750 for (i = 0; i < ETHER_ADDR_LEN; i++)
751 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
752 } else {
753 uint16_t val;
754 int addr_len;
755
756 /*
757 * Get station address from the EEPROM.
758 */
759 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
760 addr_len = RTK_EEADDR_LEN1;
761 else
762 addr_len = RTK_EEADDR_LEN0;
763
764 /*
765 * Get station address from the EEPROM.
766 */
767 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
768 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
769 eaddr[(i * 2) + 0] = val & 0xff;
770 eaddr[(i * 2) + 1] = val >> 8;
771 }
772 }
773 #else
774 /*
775 * Get station address from ID registers.
776 */
777 for (i = 0; i < ETHER_ADDR_LEN; i++)
778 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
779 #endif
780
781 /* Take PHY out of power down mode. */
782 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
783 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
784
785 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
786 ether_sprintf(eaddr));
787
788 if (sc->re_ldata.re_tx_desc_cnt >
789 PAGE_SIZE / sizeof(struct re_desc)) {
790 sc->re_ldata.re_tx_desc_cnt =
791 PAGE_SIZE / sizeof(struct re_desc);
792 }
793
794 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
795 sc->re_ldata.re_tx_desc_cnt);
796 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
797
798 /* Allocate DMA'able memory for the TX ring */
799 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
800 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
801 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
802 aprint_error_dev(sc->sc_dev,
803 "can't allocate tx listseg, error = %d\n", error);
804 goto fail_0;
805 }
806
807 /* Load the map for the TX ring. */
808 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
809 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
810 (void **)&sc->re_ldata.re_tx_list,
811 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
812 aprint_error_dev(sc->sc_dev,
813 "can't map tx list, error = %d\n", error);
814 goto fail_1;
815 }
816 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
817
818 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
819 RE_TX_LIST_SZ(sc), 0, 0,
820 &sc->re_ldata.re_tx_list_map)) != 0) {
821 aprint_error_dev(sc->sc_dev,
822 "can't create tx list map, error = %d\n", error);
823 goto fail_2;
824 }
825
826
827 if ((error = bus_dmamap_load(sc->sc_dmat,
828 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
829 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
830 aprint_error_dev(sc->sc_dev,
831 "can't load tx list, error = %d\n", error);
832 goto fail_3;
833 }
834
835 /* Create DMA maps for TX buffers */
836 for (i = 0; i < RE_TX_QLEN; i++) {
837 error = bus_dmamap_create(sc->sc_dmat,
838 round_page(IP_MAXPACKET),
839 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
840 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
841 if (error) {
842 aprint_error_dev(sc->sc_dev,
843 "can't create DMA map for TX\n");
844 goto fail_4;
845 }
846 }
847
848 /* Allocate DMA'able memory for the RX ring */
849 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
850 if ((error = bus_dmamem_alloc(sc->sc_dmat,
851 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
852 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
853 aprint_error_dev(sc->sc_dev,
854 "can't allocate rx listseg, error = %d\n", error);
855 goto fail_4;
856 }
857
858 /* Load the map for the RX ring. */
859 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
860 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
861 (void **)&sc->re_ldata.re_rx_list,
862 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
863 aprint_error_dev(sc->sc_dev,
864 "can't map rx list, error = %d\n", error);
865 goto fail_5;
866 }
867 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
868
869 if ((error = bus_dmamap_create(sc->sc_dmat,
870 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
871 &sc->re_ldata.re_rx_list_map)) != 0) {
872 aprint_error_dev(sc->sc_dev,
873 "can't create rx list map, error = %d\n", error);
874 goto fail_6;
875 }
876
877 if ((error = bus_dmamap_load(sc->sc_dmat,
878 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
879 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
880 aprint_error_dev(sc->sc_dev,
881 "can't load rx list, error = %d\n", error);
882 goto fail_7;
883 }
884
885 /* Create DMA maps for RX buffers */
886 for (i = 0; i < RE_RX_DESC_CNT; i++) {
887 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
888 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
889 if (error) {
890 aprint_error_dev(sc->sc_dev,
891 "can't create DMA map for RX\n");
892 goto fail_8;
893 }
894 }
895
896 /*
897 * Record interface as attached. From here, we should not fail.
898 */
899 sc->sc_flags |= RTK_ATTACHED;
900
901 ifp = &sc->ethercom.ec_if;
902 ifp->if_softc = sc;
903 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
904 ifp->if_mtu = ETHERMTU;
905 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
906 ifp->if_ioctl = re_ioctl;
907 sc->ethercom.ec_capabilities |=
908 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
909 ifp->if_start = re_start;
910 ifp->if_stop = re_stop;
911
912 /*
913 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
914 * so we have a workaround to handle the bug by padding
915 * such packets manually.
916 */
917 ifp->if_capabilities |=
918 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
919 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
920 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
921 IFCAP_TSOv4;
922
923 ifp->if_watchdog = re_watchdog;
924 ifp->if_init = re_init;
925 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
926 ifp->if_capenable = ifp->if_capabilities;
927 IFQ_SET_READY(&ifp->if_snd);
928
929 callout_init(&sc->rtk_tick_ch, 0);
930
931 /* Do MII setup */
932 mii->mii_ifp = ifp;
933 mii->mii_readreg = re_miibus_readreg;
934 mii->mii_writereg = re_miibus_writereg;
935 mii->mii_statchg = re_miibus_statchg;
936 sc->ethercom.ec_mii = mii;
937 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
938 ether_mediastatus);
939 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
940 MII_OFFSET_ANY, 0);
941 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
942
943 /*
944 * Call MI attach routine.
945 */
946 if_attach(ifp);
947 if_deferred_start_init(ifp, NULL);
948 ether_ifattach(ifp, eaddr);
949
950 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
951 RND_TYPE_NET, RND_FLAG_DEFAULT);
952
953 if (pmf_device_register(sc->sc_dev, NULL, NULL))
954 pmf_class_network_register(sc->sc_dev, ifp);
955 else
956 aprint_error_dev(sc->sc_dev,
957 "couldn't establish power handler\n");
958
959 return;
960
961 fail_8:
962 /* Destroy DMA maps for RX buffers. */
963 for (i = 0; i < RE_RX_DESC_CNT; i++)
964 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
965 bus_dmamap_destroy(sc->sc_dmat,
966 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
967
968 /* Free DMA'able memory for the RX ring. */
969 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
970 fail_7:
971 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
972 fail_6:
973 bus_dmamem_unmap(sc->sc_dmat,
974 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
975 fail_5:
976 bus_dmamem_free(sc->sc_dmat,
977 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
978
979 fail_4:
980 /* Destroy DMA maps for TX buffers. */
981 for (i = 0; i < RE_TX_QLEN; i++)
982 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
983 bus_dmamap_destroy(sc->sc_dmat,
984 sc->re_ldata.re_txq[i].txq_dmamap);
985
986 /* Free DMA'able memory for the TX ring. */
987 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
988 fail_3:
989 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
990 fail_2:
991 bus_dmamem_unmap(sc->sc_dmat,
992 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
993 fail_1:
994 bus_dmamem_free(sc->sc_dmat,
995 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
996 fail_0:
997 return;
998 }
999
1000
1001 /*
1002 * re_activate:
1003 * Handle device activation/deactivation requests.
1004 */
1005 int
1006 re_activate(device_t self, enum devact act)
1007 {
1008 struct rtk_softc *sc = device_private(self);
1009
1010 switch (act) {
1011 case DVACT_DEACTIVATE:
1012 if_deactivate(&sc->ethercom.ec_if);
1013 return 0;
1014 default:
1015 return EOPNOTSUPP;
1016 }
1017 }
1018
1019 /*
1020 * re_detach:
1021 * Detach a rtk interface.
1022 */
1023 int
1024 re_detach(struct rtk_softc *sc)
1025 {
1026 struct ifnet *ifp = &sc->ethercom.ec_if;
1027 int i;
1028
1029 /*
1030 * Succeed now if there isn't any work to do.
1031 */
1032 if ((sc->sc_flags & RTK_ATTACHED) == 0)
1033 return 0;
1034
1035 /* Unhook our tick handler. */
1036 callout_stop(&sc->rtk_tick_ch);
1037
1038 /* Detach all PHYs. */
1039 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
1040
1041 /* Delete all remaining media. */
1042 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
1043
1044 rnd_detach_source(&sc->rnd_source);
1045 ether_ifdetach(ifp);
1046 if_detach(ifp);
1047
1048 /* Destroy DMA maps for RX buffers. */
1049 for (i = 0; i < RE_RX_DESC_CNT; i++)
1050 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
1051 bus_dmamap_destroy(sc->sc_dmat,
1052 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
1053
1054 /* Free DMA'able memory for the RX ring. */
1055 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
1056 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
1057 bus_dmamem_unmap(sc->sc_dmat,
1058 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
1059 bus_dmamem_free(sc->sc_dmat,
1060 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
1061
1062 /* Destroy DMA maps for TX buffers. */
1063 for (i = 0; i < RE_TX_QLEN; i++)
1064 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
1065 bus_dmamap_destroy(sc->sc_dmat,
1066 sc->re_ldata.re_txq[i].txq_dmamap);
1067
1068 /* Free DMA'able memory for the TX ring. */
1069 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
1070 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
1071 bus_dmamem_unmap(sc->sc_dmat,
1072 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1073 bus_dmamem_free(sc->sc_dmat,
1074 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
1075
1076 pmf_device_deregister(sc->sc_dev);
1077
1078 /* we don't want to run again */
1079 sc->sc_flags &= ~RTK_ATTACHED;
1080
1081 return 0;
1082 }
1083
1084 /*
1085 * re_enable:
1086 * Enable the RTL81X9 chip.
1087 */
1088 static int
1089 re_enable(struct rtk_softc *sc)
1090 {
1091
1092 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
1093 if ((*sc->sc_enable)(sc) != 0) {
1094 printf("%s: device enable failed\n",
1095 device_xname(sc->sc_dev));
1096 return EIO;
1097 }
1098 sc->sc_flags |= RTK_ENABLED;
1099 }
1100 return 0;
1101 }
1102
1103 /*
1104 * re_disable:
1105 * Disable the RTL81X9 chip.
1106 */
1107 static void
1108 re_disable(struct rtk_softc *sc)
1109 {
1110
1111 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1112 (*sc->sc_disable)(sc);
1113 sc->sc_flags &= ~RTK_ENABLED;
1114 }
1115 }
1116
1117 static int
1118 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1119 {
1120 struct mbuf *n = NULL;
1121 bus_dmamap_t map;
1122 struct re_desc *d;
1123 struct re_rxsoft *rxs;
1124 uint32_t cmdstat;
1125 int error;
1126
1127 if (m == NULL) {
1128 MGETHDR(n, M_DONTWAIT, MT_DATA);
1129 if (n == NULL)
1130 return ENOBUFS;
1131
1132 MCLGET(n, M_DONTWAIT);
1133 if ((n->m_flags & M_EXT) == 0) {
1134 m_freem(n);
1135 return ENOBUFS;
1136 }
1137 m = n;
1138 } else
1139 m->m_data = m->m_ext.ext_buf;
1140
1141 /*
1142 * Initialize mbuf length fields and fixup
1143 * alignment so that the frame payload is
1144 * longword aligned.
1145 */
1146 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1147 m->m_data += RE_ETHER_ALIGN;
1148
1149 rxs = &sc->re_ldata.re_rxsoft[idx];
1150 map = rxs->rxs_dmamap;
1151 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1152 BUS_DMA_READ|BUS_DMA_NOWAIT);
1153
1154 if (error)
1155 goto out;
1156
1157 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1158 BUS_DMASYNC_PREREAD);
1159
1160 d = &sc->re_ldata.re_rx_list[idx];
1161 #ifdef DIAGNOSTIC
1162 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1163 cmdstat = le32toh(d->re_cmdstat);
1164 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1165 if (cmdstat & RE_RDESC_STAT_OWN) {
1166 panic("%s: tried to map busy RX descriptor",
1167 device_xname(sc->sc_dev));
1168 }
1169 #endif
1170
1171 rxs->rxs_mbuf = m;
1172
1173 d->re_vlanctl = 0;
1174 cmdstat = map->dm_segs[0].ds_len;
1175 if (idx == (RE_RX_DESC_CNT - 1))
1176 cmdstat |= RE_RDESC_CMD_EOR;
1177 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1178 d->re_cmdstat = htole32(cmdstat);
1179 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1180 cmdstat |= RE_RDESC_CMD_OWN;
1181 d->re_cmdstat = htole32(cmdstat);
1182 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1183
1184 return 0;
1185 out:
1186 if (n != NULL)
1187 m_freem(n);
1188 return ENOMEM;
1189 }
1190
1191 static int
1192 re_tx_list_init(struct rtk_softc *sc)
1193 {
1194 int i;
1195
1196 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1197 for (i = 0; i < RE_TX_QLEN; i++) {
1198 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1199 }
1200
1201 bus_dmamap_sync(sc->sc_dmat,
1202 sc->re_ldata.re_tx_list_map, 0,
1203 sc->re_ldata.re_tx_list_map->dm_mapsize,
1204 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1205 sc->re_ldata.re_txq_prodidx = 0;
1206 sc->re_ldata.re_txq_considx = 0;
1207 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1208 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1209 sc->re_ldata.re_tx_nextfree = 0;
1210
1211 return 0;
1212 }
1213
1214 static int
1215 re_rx_list_init(struct rtk_softc *sc)
1216 {
1217 int i;
1218
1219 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1220
1221 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1222 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1223 return ENOBUFS;
1224 }
1225
1226 sc->re_ldata.re_rx_prodidx = 0;
1227 sc->re_head = sc->re_tail = NULL;
1228
1229 return 0;
1230 }
1231
1232 /*
1233 * RX handler for C+ and 8169. For the gigE chips, we support
1234 * the reception of jumbo frames that have been fragmented
1235 * across multiple 2K mbuf cluster buffers.
1236 */
1237 static void
1238 re_rxeof(struct rtk_softc *sc)
1239 {
1240 struct mbuf *m;
1241 struct ifnet *ifp;
1242 int i, total_len;
1243 struct re_desc *cur_rx;
1244 struct re_rxsoft *rxs;
1245 uint32_t rxstat, rxvlan;
1246
1247 ifp = &sc->ethercom.ec_if;
1248
1249 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1250 cur_rx = &sc->re_ldata.re_rx_list[i];
1251 RE_RXDESCSYNC(sc, i,
1252 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1253 rxstat = le32toh(cur_rx->re_cmdstat);
1254 rxvlan = le32toh(cur_rx->re_vlanctl);
1255 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1256 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1257 break;
1258 }
1259 total_len = rxstat & sc->re_rxlenmask;
1260 rxs = &sc->re_ldata.re_rxsoft[i];
1261 m = rxs->rxs_mbuf;
1262
1263 /* Invalidate the RX mbuf and unload its map */
1264
1265 bus_dmamap_sync(sc->sc_dmat,
1266 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1267 BUS_DMASYNC_POSTREAD);
1268 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1269
1270 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1271 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1272 if (sc->re_head == NULL)
1273 sc->re_head = sc->re_tail = m;
1274 else {
1275 m_remove_pkthdr(m);
1276 sc->re_tail->m_next = m;
1277 sc->re_tail = m;
1278 }
1279 re_newbuf(sc, i, NULL);
1280 continue;
1281 }
1282
1283 /*
1284 * NOTE: for the 8139C+, the frame length field
1285 * is always 12 bits in size, but for the gigE chips,
1286 * it is 13 bits (since the max RX frame length is 16K).
1287 * Unfortunately, all 32 bits in the status word
1288 * were already used, so to make room for the extra
1289 * length bit, RealTek took out the 'frame alignment
1290 * error' bit and shifted the other status bits
1291 * over one slot. The OWN, EOR, FS and LS bits are
1292 * still in the same places. We have already extracted
1293 * the frame length and checked the OWN bit, so rather
1294 * than using an alternate bit mapping, we shift the
1295 * status bits one space to the right so we can evaluate
1296 * them using the 8169 status as though it was in the
1297 * same format as that of the 8139C+.
1298 */
1299 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1300 rxstat >>= 1;
1301
1302 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1303 #ifdef RE_DEBUG
1304 printf("%s: RX error (rxstat = 0x%08x)",
1305 device_xname(sc->sc_dev), rxstat);
1306 if (rxstat & RE_RDESC_STAT_FRALIGN)
1307 printf(", frame alignment error");
1308 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1309 printf(", out of buffer space");
1310 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1311 printf(", FIFO overrun");
1312 if (rxstat & RE_RDESC_STAT_GIANT)
1313 printf(", giant packet");
1314 if (rxstat & RE_RDESC_STAT_RUNT)
1315 printf(", runt packet");
1316 if (rxstat & RE_RDESC_STAT_CRCERR)
1317 printf(", CRC error");
1318 printf("\n");
1319 #endif
1320 ifp->if_ierrors++;
1321 /*
1322 * If this is part of a multi-fragment packet,
1323 * discard all the pieces.
1324 */
1325 if (sc->re_head != NULL) {
1326 m_freem(sc->re_head);
1327 sc->re_head = sc->re_tail = NULL;
1328 }
1329 re_newbuf(sc, i, m);
1330 continue;
1331 }
1332
1333 /*
1334 * If allocating a replacement mbuf fails,
1335 * reload the current one.
1336 */
1337
1338 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1339 ifp->if_ierrors++;
1340 if (sc->re_head != NULL) {
1341 m_freem(sc->re_head);
1342 sc->re_head = sc->re_tail = NULL;
1343 }
1344 re_newbuf(sc, i, m);
1345 continue;
1346 }
1347
1348 if (sc->re_head != NULL) {
1349 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1350 /*
1351 * Special case: if there's 4 bytes or less
1352 * in this buffer, the mbuf can be discarded:
1353 * the last 4 bytes is the CRC, which we don't
1354 * care about anyway.
1355 */
1356 if (m->m_len <= ETHER_CRC_LEN) {
1357 sc->re_tail->m_len -=
1358 (ETHER_CRC_LEN - m->m_len);
1359 m_freem(m);
1360 } else {
1361 m->m_len -= ETHER_CRC_LEN;
1362 m_remove_pkthdr(m);
1363 sc->re_tail->m_next = m;
1364 }
1365 m = sc->re_head;
1366 sc->re_head = sc->re_tail = NULL;
1367 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1368 } else
1369 m->m_pkthdr.len = m->m_len =
1370 (total_len - ETHER_CRC_LEN);
1371
1372 m_set_rcvif(m, ifp);
1373
1374 /* Do RX checksumming */
1375 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1376 /* Check IP header checksum */
1377 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1378 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1379 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1380 m->m_pkthdr.csum_flags |=
1381 M_CSUM_IPv4_BAD;
1382
1383 /* Check TCP/UDP checksum */
1384 if (RE_TCPPKT(rxstat)) {
1385 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1386 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1387 m->m_pkthdr.csum_flags |=
1388 M_CSUM_TCP_UDP_BAD;
1389 } else if (RE_UDPPKT(rxstat)) {
1390 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1391 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
1392 /*
1393 * XXX: 8139C+ thinks UDP csum
1394 * 0xFFFF is bad, force software
1395 * calculation.
1396 */
1397 if (sc->sc_quirk & RTKQ_8139CPLUS)
1398 m->m_pkthdr.csum_flags
1399 &= ~M_CSUM_UDPv4;
1400 else
1401 m->m_pkthdr.csum_flags
1402 |= M_CSUM_TCP_UDP_BAD;
1403 }
1404 }
1405 }
1406 } else {
1407 /* Check IPv4 header checksum */
1408 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1409 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1410 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1411 m->m_pkthdr.csum_flags |=
1412 M_CSUM_IPv4_BAD;
1413
1414 /* Check TCPv4/UDPv4 checksum */
1415 if (RE_TCPPKT(rxstat)) {
1416 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1417 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1418 m->m_pkthdr.csum_flags |=
1419 M_CSUM_TCP_UDP_BAD;
1420 } else if (RE_UDPPKT(rxstat)) {
1421 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1422 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1423 m->m_pkthdr.csum_flags |=
1424 M_CSUM_TCP_UDP_BAD;
1425 }
1426 }
1427 /* XXX Check TCPv6/UDPv6 checksum? */
1428 }
1429
1430 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1431 vlan_set_tag(m,
1432 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA));
1433 }
1434 if_percpuq_enqueue(ifp->if_percpuq, m);
1435 }
1436
1437 sc->re_ldata.re_rx_prodidx = i;
1438 }
1439
1440 static void
1441 re_txeof(struct rtk_softc *sc)
1442 {
1443 struct ifnet *ifp;
1444 struct re_txq *txq;
1445 uint32_t txstat;
1446 int idx, descidx;
1447
1448 ifp = &sc->ethercom.ec_if;
1449
1450 for (idx = sc->re_ldata.re_txq_considx;
1451 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1452 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1453 txq = &sc->re_ldata.re_txq[idx];
1454 KASSERT(txq->txq_mbuf != NULL);
1455
1456 descidx = txq->txq_descidx;
1457 RE_TXDESCSYNC(sc, descidx,
1458 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1459 txstat =
1460 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1461 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1462 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1463 if (txstat & RE_TDESC_CMD_OWN) {
1464 break;
1465 }
1466
1467 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1468 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1469 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1470 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1471 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1472 m_freem(txq->txq_mbuf);
1473 txq->txq_mbuf = NULL;
1474
1475 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1476 ifp->if_collisions++;
1477 if (txstat & RE_TDESC_STAT_TXERRSUM)
1478 ifp->if_oerrors++;
1479 else
1480 ifp->if_opackets++;
1481 }
1482
1483 sc->re_ldata.re_txq_considx = idx;
1484
1485 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1486 ifp->if_flags &= ~IFF_OACTIVE;
1487
1488 /*
1489 * If not all descriptors have been released reaped yet,
1490 * reload the timer so that we will eventually get another
1491 * interrupt that will cause us to re-enter this routine.
1492 * This is done in case the transmitter has gone idle.
1493 */
1494 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1495 if ((sc->sc_quirk & RTKQ_IM_HW) == 0)
1496 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1497 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1498 /*
1499 * Some chips will ignore a second TX request
1500 * issued while an existing transmission is in
1501 * progress. If the transmitter goes idle but
1502 * there are still packets waiting to be sent,
1503 * we need to restart the channel here to flush
1504 * them out. This only seems to be required with
1505 * the PCIe devices.
1506 */
1507 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1508 }
1509 } else
1510 ifp->if_timer = 0;
1511 }
1512
1513 static void
1514 re_tick(void *arg)
1515 {
1516 struct rtk_softc *sc = arg;
1517 int s;
1518
1519 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1520 s = splnet();
1521
1522 mii_tick(&sc->mii);
1523 splx(s);
1524
1525 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1526 }
1527
1528 int
1529 re_intr(void *arg)
1530 {
1531 struct rtk_softc *sc = arg;
1532 struct ifnet *ifp;
1533 uint16_t status;
1534 int handled = 0;
1535
1536 if (!device_has_power(sc->sc_dev))
1537 return 0;
1538
1539 ifp = &sc->ethercom.ec_if;
1540
1541 if ((ifp->if_flags & IFF_UP) == 0)
1542 return 0;
1543
1544 const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ?
1545 RTK_INTRS_IM_HW : RTK_INTRS_CPLUS;
1546
1547 for (;;) {
1548
1549 status = CSR_READ_2(sc, RTK_ISR);
1550 /* If the card has gone away the read returns 0xffff. */
1551 if (status == 0xffff)
1552 break;
1553 if (status) {
1554 handled = 1;
1555 CSR_WRITE_2(sc, RTK_ISR, status);
1556 }
1557
1558 if ((status & status_mask) == 0)
1559 break;
1560
1561 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1562 re_rxeof(sc);
1563
1564 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1565 RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK))
1566 re_txeof(sc);
1567
1568 if (status & RTK_ISR_SYSTEM_ERR) {
1569 re_init(ifp);
1570 }
1571
1572 if (status & RTK_ISR_LINKCHG) {
1573 callout_stop(&sc->rtk_tick_ch);
1574 re_tick(sc);
1575 }
1576 }
1577
1578 if (handled)
1579 if_schedule_deferred_start(ifp);
1580
1581 rnd_add_uint32(&sc->rnd_source, status);
1582
1583 return handled;
1584 }
1585
1586
1587
1588 /*
1589 * Main transmit routine for C+ and gigE NICs.
1590 */
1591
1592 static void
1593 re_start(struct ifnet *ifp)
1594 {
1595 struct rtk_softc *sc;
1596 struct mbuf *m;
1597 bus_dmamap_t map;
1598 struct re_txq *txq;
1599 struct re_desc *d;
1600 uint32_t cmdstat, re_flags, vlanctl;
1601 int ofree, idx, error, nsegs, seg;
1602 int startdesc, curdesc, lastdesc;
1603 bool pad;
1604
1605 sc = ifp->if_softc;
1606 ofree = sc->re_ldata.re_txq_free;
1607
1608 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1609
1610 IFQ_POLL(&ifp->if_snd, m);
1611 if (m == NULL)
1612 break;
1613
1614 if (sc->re_ldata.re_txq_free == 0 ||
1615 sc->re_ldata.re_tx_free == 0) {
1616 /* no more free slots left */
1617 ifp->if_flags |= IFF_OACTIVE;
1618 break;
1619 }
1620
1621 /*
1622 * Set up checksum offload. Note: checksum offload bits must
1623 * appear in all descriptors of a multi-descriptor transmit
1624 * attempt. (This is according to testing done with an 8169
1625 * chip. I'm not sure if this is a requirement or a bug.)
1626 */
1627
1628 vlanctl = 0;
1629 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1630 uint32_t segsz = m->m_pkthdr.segsz;
1631
1632 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1633 re_flags = RE_TDESC_CMD_LGSEND |
1634 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1635 } else {
1636 re_flags = RE_TDESC_CMD_LGSEND_V4;
1637 vlanctl |=
1638 (segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT);
1639 }
1640 } else {
1641 /*
1642 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1643 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1644 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1645 */
1646 re_flags = 0;
1647 if ((m->m_pkthdr.csum_flags &
1648 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1649 != 0) {
1650 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1651 re_flags |= RE_TDESC_CMD_IPCSUM;
1652 if (m->m_pkthdr.csum_flags &
1653 M_CSUM_TCPv4) {
1654 re_flags |=
1655 RE_TDESC_CMD_TCPCSUM;
1656 } else if (m->m_pkthdr.csum_flags &
1657 M_CSUM_UDPv4) {
1658 re_flags |=
1659 RE_TDESC_CMD_UDPCSUM;
1660 }
1661 } else {
1662 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1663 if (m->m_pkthdr.csum_flags &
1664 M_CSUM_TCPv4) {
1665 vlanctl |=
1666 RE_TDESC_VLANCTL_TCPCSUM;
1667 } else if (m->m_pkthdr.csum_flags &
1668 M_CSUM_UDPv4) {
1669 vlanctl |=
1670 RE_TDESC_VLANCTL_UDPCSUM;
1671 }
1672 }
1673 }
1674 }
1675
1676 txq = &sc->re_ldata.re_txq[idx];
1677 map = txq->txq_dmamap;
1678 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1679 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1680
1681 if (__predict_false(error)) {
1682 /* XXX try to defrag if EFBIG? */
1683 printf("%s: can't map mbuf (error %d)\n",
1684 device_xname(sc->sc_dev), error);
1685
1686 IFQ_DEQUEUE(&ifp->if_snd, m);
1687 m_freem(m);
1688 ifp->if_oerrors++;
1689 continue;
1690 }
1691
1692 nsegs = map->dm_nsegs;
1693 pad = false;
1694 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1695 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1696 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1697 pad = true;
1698 nsegs++;
1699 }
1700
1701 if (nsegs > sc->re_ldata.re_tx_free) {
1702 /*
1703 * Not enough free descriptors to transmit this packet.
1704 */
1705 ifp->if_flags |= IFF_OACTIVE;
1706 bus_dmamap_unload(sc->sc_dmat, map);
1707 break;
1708 }
1709
1710 IFQ_DEQUEUE(&ifp->if_snd, m);
1711
1712 /*
1713 * Make sure that the caches are synchronized before we
1714 * ask the chip to start DMA for the packet data.
1715 */
1716 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1717 BUS_DMASYNC_PREWRITE);
1718
1719 /*
1720 * Set up hardware VLAN tagging. Note: vlan tag info must
1721 * appear in all descriptors of a multi-descriptor
1722 * transmission attempt.
1723 */
1724 if (vlan_has_tag(m))
1725 vlanctl |= bswap16(vlan_get_tag(m)) |
1726 RE_TDESC_VLANCTL_TAG;
1727
1728 /*
1729 * Map the segment array into descriptors.
1730 * Note that we set the start-of-frame and
1731 * end-of-frame markers for either TX or RX,
1732 * but they really only have meaning in the TX case.
1733 * (In the RX case, it's the chip that tells us
1734 * where packets begin and end.)
1735 * We also keep track of the end of the ring
1736 * and set the end-of-ring bits as needed,
1737 * and we set the ownership bits in all except
1738 * the very first descriptor. (The caller will
1739 * set this descriptor later when it start
1740 * transmission or reception.)
1741 */
1742 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1743 lastdesc = -1;
1744 for (seg = 0; seg < map->dm_nsegs;
1745 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1746 d = &sc->re_ldata.re_tx_list[curdesc];
1747 #ifdef DIAGNOSTIC
1748 RE_TXDESCSYNC(sc, curdesc,
1749 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1750 cmdstat = le32toh(d->re_cmdstat);
1751 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1752 if (cmdstat & RE_TDESC_STAT_OWN) {
1753 panic("%s: tried to map busy TX descriptor",
1754 device_xname(sc->sc_dev));
1755 }
1756 #endif
1757
1758 d->re_vlanctl = htole32(vlanctl);
1759 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1760 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1761 if (seg == 0)
1762 cmdstat |= RE_TDESC_CMD_SOF;
1763 else
1764 cmdstat |= RE_TDESC_CMD_OWN;
1765 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1766 cmdstat |= RE_TDESC_CMD_EOR;
1767 if (seg == nsegs - 1) {
1768 cmdstat |= RE_TDESC_CMD_EOF;
1769 lastdesc = curdesc;
1770 }
1771 d->re_cmdstat = htole32(cmdstat);
1772 RE_TXDESCSYNC(sc, curdesc,
1773 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1774 }
1775 if (__predict_false(pad)) {
1776 d = &sc->re_ldata.re_tx_list[curdesc];
1777 d->re_vlanctl = htole32(vlanctl);
1778 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1779 cmdstat = re_flags |
1780 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1781 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1782 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1783 cmdstat |= RE_TDESC_CMD_EOR;
1784 d->re_cmdstat = htole32(cmdstat);
1785 RE_TXDESCSYNC(sc, curdesc,
1786 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1787 lastdesc = curdesc;
1788 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1789 }
1790 KASSERT(lastdesc != -1);
1791
1792 /* Transfer ownership of packet to the chip. */
1793
1794 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1795 htole32(RE_TDESC_CMD_OWN);
1796 RE_TXDESCSYNC(sc, startdesc,
1797 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1798
1799 /* update info of TX queue and descriptors */
1800 txq->txq_mbuf = m;
1801 txq->txq_descidx = lastdesc;
1802 txq->txq_nsegs = nsegs;
1803
1804 sc->re_ldata.re_txq_free--;
1805 sc->re_ldata.re_tx_free -= nsegs;
1806 sc->re_ldata.re_tx_nextfree = curdesc;
1807
1808 /*
1809 * If there's a BPF listener, bounce a copy of this frame
1810 * to him.
1811 */
1812 bpf_mtap(ifp, m, BPF_D_OUT);
1813 }
1814
1815 if (sc->re_ldata.re_txq_free < ofree) {
1816 /*
1817 * TX packets are enqueued.
1818 */
1819 sc->re_ldata.re_txq_prodidx = idx;
1820
1821 /*
1822 * Start the transmitter to poll.
1823 *
1824 * RealTek put the TX poll request register in a different
1825 * location on the 8169 gigE chip. I don't know why.
1826 */
1827 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1828 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1829 else
1830 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1831
1832 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
1833 /*
1834 * Use the countdown timer for interrupt moderation.
1835 * 'TX done' interrupts are disabled. Instead, we reset
1836 * the countdown timer, which will begin counting until
1837 * it hits the value in the TIMERINT register, and then
1838 * trigger an interrupt. Each time we write to the
1839 * TIMERCNT register, the timer count is reset to 0.
1840 */
1841 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1842 }
1843
1844 /*
1845 * Set a timeout in case the chip goes out to lunch.
1846 */
1847 ifp->if_timer = 5;
1848 }
1849 }
1850
1851 static int
1852 re_init(struct ifnet *ifp)
1853 {
1854 struct rtk_softc *sc = ifp->if_softc;
1855 uint32_t rxcfg = 0;
1856 uint16_t cfg;
1857 int error;
1858 #ifdef RE_USE_EECMD
1859 const uint8_t *enaddr;
1860 uint32_t reg;
1861 #endif
1862
1863 if ((error = re_enable(sc)) != 0)
1864 goto out;
1865
1866 /*
1867 * Cancel pending I/O and free all RX/TX buffers.
1868 */
1869 re_stop(ifp, 0);
1870
1871 re_reset(sc);
1872
1873 /*
1874 * Enable C+ RX and TX mode, as well as VLAN stripping and
1875 * RX checksum offload. We must configure the C+ register
1876 * before all others.
1877 */
1878 cfg = RE_CPLUSCMD_PCI_MRW;
1879
1880 /*
1881 * XXX: For old 8169 set bit 14.
1882 * For 8169S/8110S and above, do not set bit 14.
1883 */
1884 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1885 cfg |= (0x1 << 14);
1886
1887 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1888 cfg |= RE_CPLUSCMD_VLANSTRIP;
1889 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1890 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1891 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1892 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1893 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1894 cfg |= RE_CPLUSCMD_TXENB;
1895 } else
1896 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1897
1898 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1899
1900 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1901 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
1902 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
1903 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1904 } else {
1905 CSR_WRITE_2(sc, RTK_IM, 0x5151);
1906 }
1907 }
1908
1909 DELAY(10000);
1910
1911 #ifdef RE_USE_EECMD
1912 /*
1913 * Init our MAC address. Even though the chipset
1914 * documentation doesn't mention it, we need to enter "Config
1915 * register write enable" mode to modify the ID registers.
1916 */
1917 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1918 enaddr = CLLADDR(ifp->if_sadl);
1919 reg = enaddr[0] | (enaddr[1] << 8) |
1920 (enaddr[2] << 16) | (enaddr[3] << 24);
1921 CSR_WRITE_4(sc, RTK_IDR0, reg);
1922 reg = enaddr[4] | (enaddr[5] << 8);
1923 CSR_WRITE_4(sc, RTK_IDR4, reg);
1924 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1925 #endif
1926
1927 /*
1928 * For C+ mode, initialize the RX descriptors and mbufs.
1929 */
1930 re_rx_list_init(sc);
1931 re_tx_list_init(sc);
1932
1933 /*
1934 * Load the addresses of the RX and TX lists into the chip.
1935 */
1936 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1937 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1938 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1939 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1940
1941 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1942 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1943 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1944 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1945
1946 if (sc->sc_quirk & RTKQ_RXDV_GATED) {
1947 CSR_WRITE_4(sc, RTK_MISC,
1948 CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
1949 }
1950
1951 /*
1952 * Enable transmit and receive.
1953 */
1954 if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) == 0)
1955 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1956
1957 /*
1958 * Set the initial TX and RX configuration.
1959 */
1960 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1961 /* test mode is needed only for old 8169 */
1962 CSR_WRITE_4(sc, RTK_TXCFG,
1963 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1964 } else
1965 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1966
1967 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1968
1969 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1970
1971 /* Set the individual bit to receive frames for this host only. */
1972 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1973 rxcfg |= RTK_RXCFG_RX_INDIV;
1974
1975 /* If we want promiscuous mode, set the allframes bit. */
1976 if (ifp->if_flags & IFF_PROMISC)
1977 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1978 else
1979 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1980 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1981
1982 /*
1983 * Set capture broadcast bit to capture broadcast frames.
1984 */
1985 if (ifp->if_flags & IFF_BROADCAST)
1986 rxcfg |= RTK_RXCFG_RX_BROAD;
1987 else
1988 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1989 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1990
1991 /*
1992 * Program the multicast filter, if necessary.
1993 */
1994 rtk_setmulti(sc);
1995
1996 /*
1997 * some chips require to enable TX/RX *AFTER* TX/RX configuration
1998 */
1999 if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) != 0)
2000 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
2001
2002 /*
2003 * Enable interrupts.
2004 */
2005 if (sc->re_testmode)
2006 CSR_WRITE_2(sc, RTK_IMR, 0);
2007 else if ((sc->sc_quirk & RTKQ_IM_HW) != 0)
2008 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW);
2009 else
2010 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
2011
2012 /* Start RX/TX process. */
2013 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
2014 #ifdef notdef
2015 /* Enable receiver and transmitter. */
2016 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
2017 #endif
2018
2019 /*
2020 * Initialize the timer interrupt register so that
2021 * a timer interrupt will be generated once the timer
2022 * reaches a certain number of ticks. The timer is
2023 * reloaded on each transmit. This gives us TX interrupt
2024 * moderation, which dramatically improves TX frame rate.
2025 */
2026
2027 unsigned defer; /* timer interval / ns */
2028 unsigned period; /* busclock period / ns */
2029
2030 /*
2031 * Maximum frame rate
2032 * 1500 byte PDU -> 81274 Hz
2033 * 46 byte PDU -> 1488096 Hz
2034 *
2035 * Deferring interrupts by up to 128us needs descriptors for
2036 * 1500 byte PDU -> 10.4 frames
2037 * 46 byte PDU -> 190.4 frames
2038 *
2039 */
2040 defer = 128000;
2041
2042 if ((sc->sc_quirk & RTKQ_IM_HW) != 0) {
2043 period = 1;
2044 defer = 0;
2045 } else if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
2046 period = 8;
2047 } else {
2048 switch (CSR_READ_1(sc, RTK_CFG2_BUSFREQ) & 0x7) {
2049 case RTK_BUSFREQ_33MHZ:
2050 period = 30;
2051 break;
2052 case RTK_BUSFREQ_66MHZ:
2053 period = 15;
2054 break;
2055 default:
2056 /* lowest possible clock */
2057 period = 60;
2058 break;
2059 }
2060 }
2061
2062 /* Timer Interrupt register address varies */
2063 uint16_t re8139_reg;
2064 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
2065 re8139_reg = RTK_TIMERINT;
2066 else
2067 re8139_reg = RTK_TIMERINT_8169;
2068 CSR_WRITE_4(sc, re8139_reg, defer / period);
2069
2070 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
2071 /*
2072 * For 8169 gigE NICs, set the max allowed RX packet
2073 * size so we can receive jumbo frames.
2074 */
2075 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
2076 }
2077
2078 if (sc->re_testmode)
2079 return 0;
2080
2081 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
2082
2083 ifp->if_flags |= IFF_RUNNING;
2084 ifp->if_flags &= ~IFF_OACTIVE;
2085
2086 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
2087
2088 out:
2089 if (error) {
2090 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2091 ifp->if_timer = 0;
2092 printf("%s: interface not running\n",
2093 device_xname(sc->sc_dev));
2094 }
2095
2096 return error;
2097 }
2098
2099 static int
2100 re_ioctl(struct ifnet *ifp, u_long command, void *data)
2101 {
2102 struct rtk_softc *sc = ifp->if_softc;
2103 struct ifreq *ifr = data;
2104 int s, error = 0;
2105
2106 s = splnet();
2107
2108 switch (command) {
2109 case SIOCSIFMTU:
2110 /*
2111 * Disable jumbo frames if it's not supported.
2112 */
2113 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
2114 ifr->ifr_mtu > ETHERMTU) {
2115 error = EINVAL;
2116 break;
2117 }
2118
2119 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2120 error = EINVAL;
2121 else if ((error = ifioctl_common(ifp, command, data)) ==
2122 ENETRESET)
2123 error = 0;
2124 break;
2125 default:
2126 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2127 break;
2128
2129 error = 0;
2130
2131 if (command == SIOCSIFCAP)
2132 error = (*ifp->if_init)(ifp);
2133 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2134 ;
2135 else if (ifp->if_flags & IFF_RUNNING)
2136 rtk_setmulti(sc);
2137 break;
2138 }
2139
2140 splx(s);
2141
2142 return error;
2143 }
2144
2145 static void
2146 re_watchdog(struct ifnet *ifp)
2147 {
2148 struct rtk_softc *sc;
2149 int s;
2150
2151 sc = ifp->if_softc;
2152 s = splnet();
2153 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2154 ifp->if_oerrors++;
2155
2156 re_txeof(sc);
2157 re_rxeof(sc);
2158
2159 re_init(ifp);
2160
2161 splx(s);
2162 }
2163
2164 /*
2165 * Stop the adapter and free any mbufs allocated to the
2166 * RX and TX lists.
2167 */
2168 static void
2169 re_stop(struct ifnet *ifp, int disable)
2170 {
2171 int i;
2172 struct rtk_softc *sc = ifp->if_softc;
2173
2174 callout_stop(&sc->rtk_tick_ch);
2175
2176 mii_down(&sc->mii);
2177
2178 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
2179 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
2180 RTK_CMD_RX_ENB);
2181 else
2182 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2183 DELAY(1000);
2184 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2185 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
2186
2187 if (sc->re_head != NULL) {
2188 m_freem(sc->re_head);
2189 sc->re_head = sc->re_tail = NULL;
2190 }
2191
2192 /* Free the TX list buffers. */
2193 for (i = 0; i < RE_TX_QLEN; i++) {
2194 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2195 bus_dmamap_unload(sc->sc_dmat,
2196 sc->re_ldata.re_txq[i].txq_dmamap);
2197 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2198 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2199 }
2200 }
2201
2202 /* Free the RX list buffers. */
2203 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2204 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2205 bus_dmamap_unload(sc->sc_dmat,
2206 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2207 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2208 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2209 }
2210 }
2211
2212 if (disable)
2213 re_disable(sc);
2214
2215 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2216 ifp->if_timer = 0;
2217 }
2218