Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.16
      1 /*	$NetBSD: rtl8169.c,v 1.16 2005/03/29 09:52:31 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     37 
     38 /*
     39  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
     40  *
     41  * Written by Bill Paul <wpaul (at) windriver.com>
     42  * Senior Networking Software Engineer
     43  * Wind River Systems
     44  */
     45 
     46 /*
     47  * This driver is designed to support RealTek's next generation of
     48  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     49  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
     50  * and the RTL8110S.
     51  *
     52  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     53  * with the older 8139 family, however it also supports a special
     54  * C+ mode of operation that provides several new performance enhancing
     55  * features. These include:
     56  *
     57  *	o Descriptor based DMA mechanism. Each descriptor represents
     58  *	  a single packet fragment. Data buffers may be aligned on
     59  *	  any byte boundary.
     60  *
     61  *	o 64-bit DMA
     62  *
     63  *	o TCP/IP checksum offload for both RX and TX
     64  *
     65  *	o High and normal priority transmit DMA rings
     66  *
     67  *	o VLAN tag insertion and extraction
     68  *
     69  *	o TCP large send (segmentation offload)
     70  *
     71  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     72  * programming API is fairly straightforward. The RX filtering, EEPROM
     73  * access and PHY access is the same as it is on the older 8139 series
     74  * chips.
     75  *
     76  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     77  * same programming API and feature set as the 8139C+ with the following
     78  * differences and additions:
     79  *
     80  *	o 1000Mbps mode
     81  *
     82  *	o Jumbo frames
     83  *
     84  * 	o GMII and TBI ports/registers for interfacing with copper
     85  *	  or fiber PHYs
     86  *
     87  *      o RX and TX DMA rings can have up to 1024 descriptors
     88  *        (the 8139C+ allows a maximum of 64)
     89  *
     90  *	o Slight differences in register layout from the 8139C+
     91  *
     92  * The TX start and timer interrupt registers are at different locations
     93  * on the 8169 than they are on the 8139C+. Also, the status word in the
     94  * RX descriptor has a slightly different bit layout. The 8169 does not
     95  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     96  * copper gigE PHY.
     97  *
     98  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
     99  * (the 'S' stands for 'single-chip'). These devices have the same
    100  * programming API as the older 8169, but also have some vendor-specific
    101  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    102  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    103  *
    104  * This driver takes advantage of the RX and TX checksum offload and
    105  * VLAN tag insertion/extraction features. It also implements TX
    106  * interrupt moderation using the timer interrupt registers, which
    107  * significantly reduces TX interrupt load. There is also support
    108  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    109  * jumbo frames larger than 7.5K, so the max MTU possible with this
    110  * driver is 7500 bytes.
    111  */
    112 
    113 #include "bpfilter.h"
    114 #include "vlan.h"
    115 
    116 #include <sys/param.h>
    117 #include <sys/endian.h>
    118 #include <sys/systm.h>
    119 #include <sys/sockio.h>
    120 #include <sys/mbuf.h>
    121 #include <sys/malloc.h>
    122 #include <sys/kernel.h>
    123 #include <sys/socket.h>
    124 #include <sys/device.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_arp.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net/if_vlanvar.h>
    132 
    133 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    134 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    135 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    136 
    137 #if NBPFILTER > 0
    138 #include <net/bpf.h>
    139 #endif
    140 
    141 #include <machine/bus.h>
    142 
    143 #include <dev/mii/mii.h>
    144 #include <dev/mii/miivar.h>
    145 
    146 #include <dev/pci/pcireg.h>
    147 #include <dev/pci/pcivar.h>
    148 #include <dev/pci/pcidevs.h>
    149 
    150 #include <dev/ic/rtl81x9reg.h>
    151 #include <dev/ic/rtl81x9var.h>
    152 
    153 #include <dev/ic/rtl8169var.h>
    154 
    155 
    156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
    157 
    158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    159 static int re_rx_list_init(struct rtk_softc *);
    160 static int re_tx_list_init(struct rtk_softc *);
    161 static void re_rxeof(struct rtk_softc *);
    162 static void re_txeof(struct rtk_softc *);
    163 static void re_tick(void *);
    164 static void re_start(struct ifnet *);
    165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
    166 static int re_init(struct ifnet *);
    167 static void re_stop(struct ifnet *, int);
    168 static void re_watchdog(struct ifnet *);
    169 
    170 static void re_shutdown(void *);
    171 static int re_enable(struct rtk_softc *);
    172 static void re_disable(struct rtk_softc *);
    173 static void re_power(int, void *);
    174 
    175 static int re_ifmedia_upd(struct ifnet *);
    176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    177 
    178 static int re_gmii_readreg(struct device *, int, int);
    179 static void re_gmii_writereg(struct device *, int, int, int);
    180 
    181 static int re_miibus_readreg(struct device *, int, int);
    182 static void re_miibus_writereg(struct device *, int, int, int);
    183 static void re_miibus_statchg(struct device *);
    184 
    185 static void re_reset(struct rtk_softc *);
    186 
    187 static int
    188 re_gmii_readreg(struct device *self, int phy, int reg)
    189 {
    190 	struct rtk_softc	*sc = (void *)self;
    191 	u_int32_t		rval;
    192 	int			i;
    193 
    194 	if (phy != 7)
    195 		return 0;
    196 
    197 	/* Let the rgephy driver read the GMEDIASTAT register */
    198 
    199 	if (reg == RTK_GMEDIASTAT) {
    200 		rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
    201 		return rval;
    202 	}
    203 
    204 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    205 	DELAY(1000);
    206 
    207 	for (i = 0; i < RTK_TIMEOUT; i++) {
    208 		rval = CSR_READ_4(sc, RTK_PHYAR);
    209 		if (rval & RTK_PHYAR_BUSY)
    210 			break;
    211 		DELAY(100);
    212 	}
    213 
    214 	if (i == RTK_TIMEOUT) {
    215 		aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
    216 		return 0;
    217 	}
    218 
    219 	return rval & RTK_PHYAR_PHYDATA;
    220 }
    221 
    222 static void
    223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
    224 {
    225 	struct rtk_softc	*sc = (void *)dev;
    226 	u_int32_t		rval;
    227 	int			i;
    228 
    229 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    230 	    (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    231 	DELAY(1000);
    232 
    233 	for (i = 0; i < RTK_TIMEOUT; i++) {
    234 		rval = CSR_READ_4(sc, RTK_PHYAR);
    235 		if (!(rval & RTK_PHYAR_BUSY))
    236 			break;
    237 		DELAY(100);
    238 	}
    239 
    240 	if (i == RTK_TIMEOUT) {
    241 		aprint_error("%s: PHY write reg %x <- %x failed\n",
    242 		    sc->sc_dev.dv_xname, reg, data);
    243 		return;
    244 	}
    245 
    246 	return;
    247 }
    248 
    249 static int
    250 re_miibus_readreg(struct device *dev, int phy, int reg)
    251 {
    252 	struct rtk_softc	*sc = (void *)dev;
    253 	u_int16_t		rval = 0;
    254 	u_int16_t		re8139_reg = 0;
    255 	int			s;
    256 
    257 	s = splnet();
    258 
    259 	if (sc->rtk_type == RTK_8169) {
    260 		rval = re_gmii_readreg(dev, phy, reg);
    261 		splx(s);
    262 		return rval;
    263 	}
    264 
    265 	/* Pretend the internal PHY is only at address 0 */
    266 	if (phy) {
    267 		splx(s);
    268 		return 0;
    269 	}
    270 	switch (reg) {
    271 	case MII_BMCR:
    272 		re8139_reg = RTK_BMCR;
    273 		break;
    274 	case MII_BMSR:
    275 		re8139_reg = RTK_BMSR;
    276 		break;
    277 	case MII_ANAR:
    278 		re8139_reg = RTK_ANAR;
    279 		break;
    280 	case MII_ANER:
    281 		re8139_reg = RTK_ANER;
    282 		break;
    283 	case MII_ANLPAR:
    284 		re8139_reg = RTK_LPAR;
    285 		break;
    286 	case MII_PHYIDR1:
    287 	case MII_PHYIDR2:
    288 		splx(s);
    289 		return 0;
    290 	/*
    291 	 * Allow the rlphy driver to read the media status
    292 	 * register. If we have a link partner which does not
    293 	 * support NWAY, this is the register which will tell
    294 	 * us the results of parallel detection.
    295 	 */
    296 	case RTK_MEDIASTAT:
    297 		rval = CSR_READ_1(sc, RTK_MEDIASTAT);
    298 		splx(s);
    299 		return rval;
    300 	default:
    301 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    302 		splx(s);
    303 		return 0;
    304 	}
    305 	rval = CSR_READ_2(sc, re8139_reg);
    306 	splx(s);
    307 	return rval;
    308 }
    309 
    310 static void
    311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
    312 {
    313 	struct rtk_softc	*sc = (void *)dev;
    314 	u_int16_t		re8139_reg = 0;
    315 	int			s;
    316 
    317 	s = splnet();
    318 
    319 	if (sc->rtk_type == RTK_8169) {
    320 		re_gmii_writereg(dev, phy, reg, data);
    321 		splx(s);
    322 		return;
    323 	}
    324 
    325 	/* Pretend the internal PHY is only at address 0 */
    326 	if (phy) {
    327 		splx(s);
    328 		return;
    329 	}
    330 	switch (reg) {
    331 	case MII_BMCR:
    332 		re8139_reg = RTK_BMCR;
    333 		break;
    334 	case MII_BMSR:
    335 		re8139_reg = RTK_BMSR;
    336 		break;
    337 	case MII_ANAR:
    338 		re8139_reg = RTK_ANAR;
    339 		break;
    340 	case MII_ANER:
    341 		re8139_reg = RTK_ANER;
    342 		break;
    343 	case MII_ANLPAR:
    344 		re8139_reg = RTK_LPAR;
    345 		break;
    346 	case MII_PHYIDR1:
    347 	case MII_PHYIDR2:
    348 		splx(s);
    349 		return;
    350 		break;
    351 	default:
    352 		aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
    353 		splx(s);
    354 		return;
    355 	}
    356 	CSR_WRITE_2(sc, re8139_reg, data);
    357 	splx(s);
    358 	return;
    359 }
    360 
    361 static void
    362 re_miibus_statchg(struct device *dev)
    363 {
    364 
    365 	return;
    366 }
    367 
    368 static void
    369 re_reset(struct rtk_softc *sc)
    370 {
    371 	register int		i;
    372 
    373 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    374 
    375 	for (i = 0; i < RTK_TIMEOUT; i++) {
    376 		DELAY(10);
    377 		if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
    378 			break;
    379 	}
    380 	if (i == RTK_TIMEOUT)
    381 		aprint_error("%s: reset never completed!\n",
    382 		    sc->sc_dev.dv_xname);
    383 
    384 	/*
    385 	 * NB: Realtek-supplied Linux driver does this only for
    386 	 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
    387 	 */
    388 	if (1) /* XXX check softc flag for 8169s version */
    389 		CSR_WRITE_1(sc, 0x82, 1);
    390 
    391 	return;
    392 }
    393 
    394 /*
    395  * The following routine is designed to test for a defect on some
    396  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    397  * lines connected to the bus, however for a 32-bit only card, they
    398  * should be pulled high. The result of this defect is that the
    399  * NIC will not work right if you plug it into a 64-bit slot: DMA
    400  * operations will be done with 64-bit transfers, which will fail
    401  * because the 64-bit data lines aren't connected.
    402  *
    403  * There's no way to work around this (short of talking a soldering
    404  * iron to the board), however we can detect it. The method we use
    405  * here is to put the NIC into digital loopback mode, set the receiver
    406  * to promiscuous mode, and then try to send a frame. We then compare
    407  * the frame data we sent to what was received. If the data matches,
    408  * then the NIC is working correctly, otherwise we know the user has
    409  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    410  * slot. In the latter case, there's no way the NIC can work correctly,
    411  * so we print out a message on the console and abort the device attach.
    412  */
    413 
    414 int
    415 re_diag(struct rtk_softc *sc)
    416 {
    417 	struct ifnet		*ifp = &sc->ethercom.ec_if;
    418 	struct mbuf		*m0;
    419 	struct ether_header	*eh;
    420 	struct rtk_desc		*cur_rx;
    421 	bus_dmamap_t		dmamap;
    422 	u_int16_t		status;
    423 	u_int32_t		rxstat;
    424 	int			total_len, i, s, error = 0;
    425 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    426 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    427 
    428 	/* Allocate a single mbuf */
    429 
    430 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    431 	if (m0 == NULL)
    432 		return ENOBUFS;
    433 
    434 	/*
    435 	 * Initialize the NIC in test mode. This sets the chip up
    436 	 * so that it can send and receive frames, but performs the
    437 	 * following special functions:
    438 	 * - Puts receiver in promiscuous mode
    439 	 * - Enables digital loopback mode
    440 	 * - Leaves interrupts turned off
    441 	 */
    442 
    443 	ifp->if_flags |= IFF_PROMISC;
    444 	sc->rtk_testmode = 1;
    445 	re_init(ifp);
    446 	re_stop(ifp, 0);
    447 	DELAY(100000);
    448 	re_init(ifp);
    449 
    450 	/* Put some data in the mbuf */
    451 
    452 	eh = mtod(m0, struct ether_header *);
    453 	bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
    454 	bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
    455 	eh->ether_type = htons(ETHERTYPE_IP);
    456 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    457 
    458 	/*
    459 	 * Queue the packet, start transmission.
    460 	 */
    461 
    462 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    463 	s = splnet();
    464 	IF_ENQUEUE(&ifp->if_snd, m0);
    465 	re_start(ifp);
    466 	splx(s);
    467 	m0 = NULL;
    468 
    469 	/* Wait for it to propagate through the chip */
    470 
    471 	DELAY(100000);
    472 	for (i = 0; i < RTK_TIMEOUT; i++) {
    473 		status = CSR_READ_2(sc, RTK_ISR);
    474 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    475 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    476 			break;
    477 		DELAY(10);
    478 	}
    479 	if (i == RTK_TIMEOUT) {
    480 		aprint_error("%s: diagnostic failed, failed to receive packet "
    481 		    "in loopback mode\n", sc->sc_dev.dv_xname);
    482 		error = EIO;
    483 		goto done;
    484 	}
    485 
    486 	/*
    487 	 * The packet should have been dumped into the first
    488 	 * entry in the RX DMA ring. Grab it from there.
    489 	 */
    490 
    491 	dmamap = sc->rtk_ldata.rtk_rx_list_map;
    492 	bus_dmamap_sync(sc->sc_dmat,
    493 	    dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
    494 	dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
    495 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    496 	    BUS_DMASYNC_POSTWRITE);
    497 	bus_dmamap_unload(sc->sc_dmat,
    498 	    sc->rtk_ldata.rtk_rx_dmamap[0]);
    499 
    500 	m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
    501 	sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
    502 	eh = mtod(m0, struct ether_header *);
    503 
    504 	cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
    505 	total_len = RTK_RXBYTES(cur_rx);
    506 	rxstat = le32toh(cur_rx->rtk_cmdstat);
    507 
    508 	if (total_len != ETHER_MIN_LEN) {
    509 		aprint_error("%s: diagnostic failed, received short packet\n",
    510 		    sc->sc_dev.dv_xname);
    511 		error = EIO;
    512 		goto done;
    513 	}
    514 
    515 	/* Test that the received packet data matches what we sent. */
    516 
    517 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
    518 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
    519 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    520 		aprint_error("%s: WARNING, DMA FAILURE!\n",
    521 		    sc->sc_dev.dv_xname);
    522 		aprint_error("%s: expected TX data: %s",
    523 		    sc->sc_dev.dv_xname, ether_sprintf(dst));
    524 		aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
    525 		aprint_error("%s: received RX data: %s",
    526 		    sc->sc_dev.dv_xname,
    527 		    ether_sprintf(eh->ether_dhost));
    528 		aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
    529 		    ntohs(eh->ether_type));
    530 		aprint_error("%s: You may have a defective 32-bit NIC plugged "
    531 		    "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
    532 		aprint_error("%s: Please re-install the NIC in a 32-bit slot "
    533 		    "for proper operation.\n", sc->sc_dev.dv_xname);
    534 		aprint_error("%s: Read the re(4) man page for more details.\n",
    535 		    sc->sc_dev.dv_xname);
    536 		error = EIO;
    537 	}
    538 
    539 done:
    540 	/* Turn interface off, release resources */
    541 
    542 	sc->rtk_testmode = 0;
    543 	ifp->if_flags &= ~IFF_PROMISC;
    544 	re_stop(ifp, 0);
    545 	if (m0 != NULL)
    546 		m_freem(m0);
    547 
    548 	return error;
    549 }
    550 
    551 
    552 /*
    553  * Attach the interface. Allocate softc structures, do ifmedia
    554  * setup and ethernet/BPF attach.
    555  */
    556 void
    557 re_attach(struct rtk_softc *sc)
    558 {
    559 	u_char			eaddr[ETHER_ADDR_LEN];
    560 	u_int16_t		val;
    561 	struct ifnet		*ifp;
    562 	int			error = 0, i, addr_len;
    563 
    564 
    565 	/* XXX JRS: bus-attach-independent code begins approximately here */
    566 
    567 	/* Reset the adapter. */
    568 	re_reset(sc);
    569 
    570 	if (sc->rtk_type == RTK_8169) {
    571 		uint32_t hwrev;
    572 
    573 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    574 		hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
    575 		if (hwrev == (0x1 << 28)) {
    576 			sc->sc_rev = 4;
    577 		} else if (hwrev == (0x1 << 26)) {
    578 			sc->sc_rev = 3;
    579 		} else if (hwrev == (0x1 << 23)) {
    580 			sc->sc_rev = 2;
    581 		} else
    582 			sc->sc_rev = 1;
    583 
    584 		/* Set RX length mask */
    585 
    586 		sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
    587 
    588 		/* Force station address autoload from the EEPROM */
    589 
    590 		CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
    591 		for (i = 0; i < RTK_TIMEOUT; i++) {
    592 			if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
    593 				break;
    594 			DELAY(100);
    595 		}
    596 		if (i == RTK_TIMEOUT)
    597 			aprint_error("%s: eeprom autoload timed out\n",
    598 			    sc->sc_dev.dv_xname);
    599 
    600 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    601 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    602 
    603 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
    604 	} else {
    605 
    606 		/* Set RX length mask */
    607 
    608 		sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
    609 
    610 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    611 			addr_len = RTK_EEADDR_LEN1;
    612 		else
    613 			addr_len = RTK_EEADDR_LEN0;
    614 
    615 		/*
    616 		 * Get station address from the EEPROM.
    617 		 */
    618 		for (i = 0; i < 3; i++) {
    619 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    620 			eaddr[(i * 2) + 0] = val & 0xff;
    621 			eaddr[(i * 2) + 1] = val >> 8;
    622 		}
    623 
    624 		sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
    625 	}
    626 
    627 	aprint_normal("%s: Ethernet address %s\n",
    628 	    sc->sc_dev.dv_xname, ether_sprintf(eaddr));
    629 
    630 	if (sc->rtk_ldata.rtk_tx_desc_cnt >
    631 	    PAGE_SIZE / sizeof(struct rtk_desc)) {
    632 		sc->rtk_ldata.rtk_tx_desc_cnt =
    633 		    PAGE_SIZE / sizeof(struct rtk_desc);
    634 	}
    635 
    636 	aprint_verbose("%s: using %d tx descriptors\n",
    637 	    sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
    638 
    639 	/* Allocate DMA'able memory for the TX ring */
    640 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
    641 		    RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
    642 		    1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    643 		aprint_error("%s: can't allocate tx listseg, error = %d\n",
    644 		    sc->sc_dev.dv_xname, error);
    645 		goto fail_0;
    646 	}
    647 
    648 	/* Load the map for the TX ring. */
    649 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
    650 		    sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
    651 		    (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
    652 		    BUS_DMA_NOWAIT)) != 0) {
    653 		aprint_error("%s: can't map tx list, error = %d\n",
    654 		    sc->sc_dev.dv_xname, error);
    655 	  	goto fail_1;
    656 	}
    657 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
    658 
    659 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
    660 		    RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
    661 		    &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
    662 		aprint_error("%s: can't create tx list map, error = %d\n",
    663 		    sc->sc_dev.dv_xname, error);
    664 		goto fail_2;
    665 	}
    666 
    667 
    668 	if ((error = bus_dmamap_load(sc->sc_dmat,
    669 		    sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
    670 		    RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    671 		aprint_error("%s: can't load tx list, error = %d\n",
    672 		    sc->sc_dev.dv_xname, error);
    673 		goto fail_3;
    674 	}
    675 
    676 	/* Create DMA maps for TX buffers */
    677 	for (i = 0; i < RTK_TX_QLEN; i++) {
    678 		error = bus_dmamap_create(sc->sc_dmat,
    679 		    round_page(IP_MAXPACKET),
    680 		    RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
    681 		    0, BUS_DMA_ALLOCNOW,
    682 		    &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    683 		if (error) {
    684 			aprint_error("%s: can't create DMA map for TX\n",
    685 			    sc->sc_dev.dv_xname);
    686 			goto fail_4;
    687 		}
    688 	}
    689 
    690 	/* Allocate DMA'able memory for the RX ring */
    691         if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
    692 		    RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
    693 		    &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    694 		aprint_error("%s: can't allocate rx listseg, error = %d\n",
    695 		    sc->sc_dev.dv_xname, error);
    696 		goto fail_4;
    697 	}
    698 
    699 	/* Load the map for the RX ring. */
    700 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
    701 		    sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
    702 		    (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
    703 		    BUS_DMA_NOWAIT)) != 0) {
    704 		aprint_error("%s: can't map rx list, error = %d\n",
    705 		    sc->sc_dev.dv_xname, error);
    706 		goto fail_5;
    707 	}
    708 	memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
    709 
    710 	if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
    711 		    RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
    712 		    &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
    713 		aprint_error("%s: can't create rx list map, error = %d\n",
    714 		    sc->sc_dev.dv_xname, error);
    715 		goto fail_6;
    716 	}
    717 
    718 	if ((error = bus_dmamap_load(sc->sc_dmat,
    719 		    sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
    720 		    RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    721 		aprint_error("%s: can't load rx list, error = %d\n",
    722 		    sc->sc_dev.dv_xname, error);
    723 		goto fail_7;
    724 	}
    725 
    726 	/* Create DMA maps for RX buffers */
    727 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
    728 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    729 		    0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
    730 		if (error) {
    731 			aprint_error("%s: can't create DMA map for RX\n",
    732 			    sc->sc_dev.dv_xname);
    733 			goto fail_8;
    734 		}
    735 	}
    736 
    737 	/*
    738 	 * Record interface as attached. From here, we should not fail.
    739 	 */
    740 	sc->sc_flags |= RTK_ATTACHED;
    741 
    742 	ifp = &sc->ethercom.ec_if;
    743 	ifp->if_softc = sc;
    744 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    745 	ifp->if_mtu = ETHERMTU;
    746 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    747 	ifp->if_ioctl = re_ioctl;
    748 	sc->ethercom.ec_capabilities |=
    749 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    750 	ifp->if_start = re_start;
    751 	ifp->if_stop = re_stop;
    752 	ifp->if_capabilities |=
    753 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4 |
    754 	    IFCAP_TSOv4;
    755 	ifp->if_watchdog = re_watchdog;
    756 	ifp->if_init = re_init;
    757 	if (sc->rtk_type == RTK_8169)
    758 		ifp->if_baudrate = 1000000000;
    759 	else
    760 		ifp->if_baudrate = 100000000;
    761 	ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
    762 	ifp->if_capenable = ifp->if_capabilities;
    763 	IFQ_SET_READY(&ifp->if_snd);
    764 
    765 	callout_init(&sc->rtk_tick_ch);
    766 
    767 	/* Do MII setup */
    768 	sc->mii.mii_ifp = ifp;
    769 	sc->mii.mii_readreg = re_miibus_readreg;
    770 	sc->mii.mii_writereg = re_miibus_writereg;
    771 	sc->mii.mii_statchg = re_miibus_statchg;
    772 	ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
    773 	    re_ifmedia_sts);
    774 	mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
    775 	    MII_OFFSET_ANY, 0);
    776 	ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
    777 
    778 	/*
    779 	 * Call MI attach routine.
    780 	 */
    781 	if_attach(ifp);
    782 	ether_ifattach(ifp, eaddr);
    783 
    784 
    785 	/*
    786 	 * Make sure the interface is shutdown during reboot.
    787 	 */
    788 	sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
    789 	if (sc->sc_sdhook == NULL)
    790 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    791 		    sc->sc_dev.dv_xname);
    792 	/*
    793 	 * Add a suspend hook to make sure we come back up after a
    794 	 * resume.
    795 	 */
    796 	sc->sc_powerhook = powerhook_establish(re_power, sc);
    797 	if (sc->sc_powerhook == NULL)
    798 		aprint_error("%s: WARNING: unable to establish power hook\n",
    799 		    sc->sc_dev.dv_xname);
    800 
    801 
    802 	return;
    803 
    804 fail_8:
    805 	/* Destroy DMA maps for RX buffers. */
    806 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    807 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    808 			bus_dmamap_destroy(sc->sc_dmat,
    809 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    810 
    811 	/* Free DMA'able memory for the RX ring. */
    812 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    813 fail_7:
    814 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    815 fail_6:
    816 	bus_dmamem_unmap(sc->sc_dmat,
    817 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    818 fail_5:
    819 	bus_dmamem_free(sc->sc_dmat,
    820 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    821 
    822 fail_4:
    823 	/* Destroy DMA maps for TX buffers. */
    824 	for (i = 0; i < RTK_TX_QLEN; i++)
    825 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
    826 			bus_dmamap_destroy(sc->sc_dmat,
    827 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    828 
    829 	/* Free DMA'able memory for the TX ring. */
    830 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    831 fail_3:
    832 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    833 fail_2:
    834 	bus_dmamem_unmap(sc->sc_dmat,
    835 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
    836 fail_1:
    837 	bus_dmamem_free(sc->sc_dmat,
    838 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    839 fail_0:
    840 	return;
    841 }
    842 
    843 
    844 /*
    845  * re_activate:
    846  *     Handle device activation/deactivation requests.
    847  */
    848 int
    849 re_activate(struct device *self, enum devact act)
    850 {
    851 	struct rtk_softc *sc = (void *) self;
    852 	int s, error = 0;
    853 
    854 	s = splnet();
    855 	switch (act) {
    856 	case DVACT_ACTIVATE:
    857 		error = EOPNOTSUPP;
    858 		break;
    859 	case DVACT_DEACTIVATE:
    860 		mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
    861 		if_deactivate(&sc->ethercom.ec_if);
    862 		break;
    863 	}
    864 	splx(s);
    865 
    866 	return error;
    867 }
    868 
    869 /*
    870  * re_detach:
    871  *     Detach a rtk interface.
    872  */
    873 int
    874 re_detach(struct rtk_softc *sc)
    875 {
    876 	struct ifnet *ifp = &sc->ethercom.ec_if;
    877 	int i;
    878 
    879 	/*
    880 	 * Succeed now if there isn't any work to do.
    881 	 */
    882 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
    883 		return 0;
    884 
    885 	/* Unhook our tick handler. */
    886 	callout_stop(&sc->rtk_tick_ch);
    887 
    888 	/* Detach all PHYs. */
    889 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
    890 
    891 	/* Delete all remaining media. */
    892 	ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
    893 
    894 	ether_ifdetach(ifp);
    895 	if_detach(ifp);
    896 
    897 	/* XXX undo re_allocmem() */
    898 
    899 	/* Destroy DMA maps for RX buffers. */
    900 	for (i = 0; i < RTK_RX_DESC_CNT; i++)
    901 		if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
    902 			bus_dmamap_destroy(sc->sc_dmat,
    903 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
    904 
    905 	/* Free DMA'able memory for the RX ring. */
    906 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    907 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
    908 	bus_dmamem_unmap(sc->sc_dmat,
    909 	    (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
    910 	bus_dmamem_free(sc->sc_dmat,
    911 	    &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
    912 
    913 	/* Destroy DMA maps for TX buffers. */
    914 	for (i = 0; i < RTK_TX_QLEN; i++)
    915 		if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
    916 			bus_dmamap_destroy(sc->sc_dmat,
    917 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
    918 
    919 	/* Free DMA'able memory for the TX ring. */
    920 	bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    921 	bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
    922 	bus_dmamem_unmap(sc->sc_dmat,
    923 	    (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
    924 	bus_dmamem_free(sc->sc_dmat,
    925 	    &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
    926 
    927 
    928 	shutdownhook_disestablish(sc->sc_sdhook);
    929 	powerhook_disestablish(sc->sc_powerhook);
    930 
    931 	return 0;
    932 }
    933 
    934 /*
    935  * re_enable:
    936  *     Enable the RTL81X9 chip.
    937  */
    938 static int
    939 re_enable(struct rtk_softc *sc)
    940 {
    941 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
    942 		if ((*sc->sc_enable)(sc) != 0) {
    943 			aprint_error("%s: device enable failed\n",
    944 			    sc->sc_dev.dv_xname);
    945 			return EIO;
    946 		}
    947 		sc->sc_flags |= RTK_ENABLED;
    948 	}
    949 	return 0;
    950 }
    951 
    952 /*
    953  * re_disable:
    954  *     Disable the RTL81X9 chip.
    955  */
    956 static void
    957 re_disable(struct rtk_softc *sc)
    958 {
    959 
    960 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
    961 		(*sc->sc_disable)(sc);
    962 		sc->sc_flags &= ~RTK_ENABLED;
    963 	}
    964 }
    965 
    966 /*
    967  * re_power:
    968  *     Power management (suspend/resume) hook.
    969  */
    970 void
    971 re_power(int why, void *arg)
    972 {
    973 	struct rtk_softc *sc = (void *) arg;
    974 	struct ifnet *ifp = &sc->ethercom.ec_if;
    975 	int s;
    976 
    977 	s = splnet();
    978 	switch (why) {
    979 	case PWR_SUSPEND:
    980 	case PWR_STANDBY:
    981 		re_stop(ifp, 0);
    982 		if (sc->sc_power != NULL)
    983 			(*sc->sc_power)(sc, why);
    984 		break;
    985 	case PWR_RESUME:
    986 		if (ifp->if_flags & IFF_UP) {
    987 			if (sc->sc_power != NULL)
    988 				(*sc->sc_power)(sc, why);
    989 			re_init(ifp);
    990 		}
    991 		break;
    992 	case PWR_SOFTSUSPEND:
    993 	case PWR_SOFTSTANDBY:
    994 	case PWR_SOFTRESUME:
    995 		break;
    996 	}
    997 	splx(s);
    998 }
    999 
   1000 
   1001 static int
   1002 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1003 {
   1004 	struct mbuf		*n = NULL;
   1005 	bus_dmamap_t		map;
   1006 	struct rtk_desc		*d;
   1007 	u_int32_t		cmdstat;
   1008 	int			error;
   1009 
   1010 	if (m == NULL) {
   1011 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1012 		if (n == NULL)
   1013 			return ENOBUFS;
   1014 		m = n;
   1015 
   1016 		MCLGET(m, M_DONTWAIT);
   1017 		if (!(m->m_flags & M_EXT)) {
   1018 			m_freem(m);
   1019 			return ENOBUFS;
   1020 		}
   1021 	} else
   1022 		m->m_data = m->m_ext.ext_buf;
   1023 
   1024 	/*
   1025 	 * Initialize mbuf length fields and fixup
   1026 	 * alignment so that the frame payload is
   1027 	 * longword aligned.
   1028 	 */
   1029 	m->m_len = m->m_pkthdr.len = MCLBYTES;
   1030 	m_adj(m, RTK_ETHER_ALIGN);
   1031 
   1032 	map = sc->rtk_ldata.rtk_rx_dmamap[idx];
   1033 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
   1034 
   1035 	if (error)
   1036 		goto out;
   1037 
   1038 	d = &sc->rtk_ldata.rtk_rx_list[idx];
   1039 	if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
   1040 		goto out;
   1041 
   1042 	cmdstat = map->dm_segs[0].ds_len;
   1043 	d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
   1044 	d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
   1045 	if (idx == (RTK_RX_DESC_CNT - 1))
   1046 		cmdstat |= RTK_RDESC_CMD_EOR;
   1047 	d->rtk_cmdstat = htole32(cmdstat);
   1048 
   1049 	sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
   1050 	    htole32(RTK_RDESC_CMD_OWN);
   1051 	sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
   1052 
   1053 	bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
   1054 	    sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
   1055 	    BUS_DMASYNC_PREREAD);
   1056 
   1057 	return 0;
   1058 out:
   1059 	if (n != NULL)
   1060 		m_freem(n);
   1061 	return ENOMEM;
   1062 }
   1063 
   1064 static int
   1065 re_tx_list_init(struct rtk_softc *sc)
   1066 {
   1067 	int i;
   1068 
   1069 	memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
   1070 	for (i = 0; i < RTK_TX_QLEN; i++) {
   1071 		sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
   1072 	}
   1073 
   1074 	bus_dmamap_sync(sc->sc_dmat,
   1075 	    sc->rtk_ldata.rtk_tx_list_map, 0,
   1076 	    sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   1077 	sc->rtk_ldata.rtk_txq_prodidx = 0;
   1078 	sc->rtk_ldata.rtk_txq_considx = 0;
   1079 	sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
   1080 	sc->rtk_ldata.rtk_tx_nextfree = 0;
   1081 
   1082 	return 0;
   1083 }
   1084 
   1085 static int
   1086 re_rx_list_init(struct rtk_softc *sc)
   1087 {
   1088 	int			i;
   1089 
   1090 	memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
   1091 	memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
   1092 	    (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
   1093 
   1094 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   1095 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1096 			return ENOBUFS;
   1097 	}
   1098 
   1099 	/* Flush the RX descriptors */
   1100 
   1101 	bus_dmamap_sync(sc->sc_dmat,
   1102 	    sc->rtk_ldata.rtk_rx_list_map,
   1103 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1104 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1105 
   1106 	sc->rtk_ldata.rtk_rx_prodidx = 0;
   1107 	sc->rtk_head = sc->rtk_tail = NULL;
   1108 
   1109 	return 0;
   1110 }
   1111 
   1112 /*
   1113  * RX handler for C+ and 8169. For the gigE chips, we support
   1114  * the reception of jumbo frames that have been fragmented
   1115  * across multiple 2K mbuf cluster buffers.
   1116  */
   1117 static void
   1118 re_rxeof(struct rtk_softc *sc)
   1119 {
   1120 	struct mbuf		*m;
   1121 	struct ifnet		*ifp;
   1122 	int			i, total_len;
   1123 	struct rtk_desc		*cur_rx;
   1124 	u_int32_t		rxstat, rxvlan;
   1125 
   1126 	ifp = &sc->ethercom.ec_if;
   1127 	i = sc->rtk_ldata.rtk_rx_prodidx;
   1128 
   1129 	/* Invalidate the descriptor memory */
   1130 
   1131 	bus_dmamap_sync(sc->sc_dmat,
   1132 	    sc->rtk_ldata.rtk_rx_list_map,
   1133 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1134 	    BUS_DMASYNC_POSTREAD);
   1135 
   1136 	while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
   1137 
   1138 		cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
   1139 		m = sc->rtk_ldata.rtk_rx_mbuf[i];
   1140 		total_len = RTK_RXBYTES(cur_rx);
   1141 		rxstat = le32toh(cur_rx->rtk_cmdstat);
   1142 		rxvlan = le32toh(cur_rx->rtk_vlanctl);
   1143 
   1144 		/* Invalidate the RX mbuf and unload its map */
   1145 
   1146 		bus_dmamap_sync(sc->sc_dmat,
   1147 		    sc->rtk_ldata.rtk_rx_dmamap[i],
   1148 		    0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
   1149 		    BUS_DMASYNC_POSTWRITE);
   1150 		bus_dmamap_unload(sc->sc_dmat,
   1151 		    sc->rtk_ldata.rtk_rx_dmamap[i]);
   1152 
   1153 		if (!(rxstat & RTK_RDESC_STAT_EOF)) {
   1154 			m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
   1155 			if (sc->rtk_head == NULL)
   1156 				sc->rtk_head = sc->rtk_tail = m;
   1157 			else {
   1158 				m->m_flags &= ~M_PKTHDR;
   1159 				sc->rtk_tail->m_next = m;
   1160 				sc->rtk_tail = m;
   1161 			}
   1162 			re_newbuf(sc, i, NULL);
   1163 			RTK_RX_DESC_INC(sc, i);
   1164 			continue;
   1165 		}
   1166 
   1167 		/*
   1168 		 * NOTE: for the 8139C+, the frame length field
   1169 		 * is always 12 bits in size, but for the gigE chips,
   1170 		 * it is 13 bits (since the max RX frame length is 16K).
   1171 		 * Unfortunately, all 32 bits in the status word
   1172 		 * were already used, so to make room for the extra
   1173 		 * length bit, RealTek took out the 'frame alignment
   1174 		 * error' bit and shifted the other status bits
   1175 		 * over one slot. The OWN, EOR, FS and LS bits are
   1176 		 * still in the same places. We have already extracted
   1177 		 * the frame length and checked the OWN bit, so rather
   1178 		 * than using an alternate bit mapping, we shift the
   1179 		 * status bits one space to the right so we can evaluate
   1180 		 * them using the 8169 status as though it was in the
   1181 		 * same format as that of the 8139C+.
   1182 		 */
   1183 		if (sc->rtk_type == RTK_8169)
   1184 			rxstat >>= 1;
   1185 
   1186 		if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
   1187 			ifp->if_ierrors++;
   1188 			/*
   1189 			 * If this is part of a multi-fragment packet,
   1190 			 * discard all the pieces.
   1191 			 */
   1192 			if (sc->rtk_head != NULL) {
   1193 				m_freem(sc->rtk_head);
   1194 				sc->rtk_head = sc->rtk_tail = NULL;
   1195 			}
   1196 			re_newbuf(sc, i, m);
   1197 			RTK_RX_DESC_INC(sc, i);
   1198 			continue;
   1199 		}
   1200 
   1201 		/*
   1202 		 * If allocating a replacement mbuf fails,
   1203 		 * reload the current one.
   1204 		 */
   1205 
   1206 		if (re_newbuf(sc, i, NULL)) {
   1207 			ifp->if_ierrors++;
   1208 			if (sc->rtk_head != NULL) {
   1209 				m_freem(sc->rtk_head);
   1210 				sc->rtk_head = sc->rtk_tail = NULL;
   1211 			}
   1212 			re_newbuf(sc, i, m);
   1213 			RTK_RX_DESC_INC(sc, i);
   1214 			continue;
   1215 		}
   1216 
   1217 		RTK_RX_DESC_INC(sc, i);
   1218 
   1219 		if (sc->rtk_head != NULL) {
   1220 			m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
   1221 			/*
   1222 			 * Special case: if there's 4 bytes or less
   1223 			 * in this buffer, the mbuf can be discarded:
   1224 			 * the last 4 bytes is the CRC, which we don't
   1225 			 * care about anyway.
   1226 			 */
   1227 			if (m->m_len <= ETHER_CRC_LEN) {
   1228 				sc->rtk_tail->m_len -=
   1229 				    (ETHER_CRC_LEN - m->m_len);
   1230 				m_freem(m);
   1231 			} else {
   1232 				m->m_len -= ETHER_CRC_LEN;
   1233 				m->m_flags &= ~M_PKTHDR;
   1234 				sc->rtk_tail->m_next = m;
   1235 			}
   1236 			m = sc->rtk_head;
   1237 			sc->rtk_head = sc->rtk_tail = NULL;
   1238 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1239 		} else
   1240 			m->m_pkthdr.len = m->m_len =
   1241 			    (total_len - ETHER_CRC_LEN);
   1242 
   1243 		ifp->if_ipackets++;
   1244 		m->m_pkthdr.rcvif = ifp;
   1245 
   1246 		/* Do RX checksumming if enabled */
   1247 
   1248 		if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
   1249 
   1250 			/* Check IP header checksum */
   1251 			if (rxstat & RTK_RDESC_STAT_PROTOID)
   1252 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
   1253 			if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
   1254 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1255 		}
   1256 
   1257 		/* Check TCP/UDP checksum */
   1258 		if (RTK_TCPPKT(rxstat) &&
   1259 		    (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
   1260 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1261 			if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
   1262 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1263 		}
   1264 		if (RTK_UDPPKT(rxstat) &&
   1265 		    (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
   1266 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1267 			if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
   1268 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1269 		}
   1270 
   1271 		if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
   1272 			VLAN_INPUT_TAG(ifp, m,
   1273 			     be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
   1274 			     continue);
   1275 		}
   1276 #if NBPFILTER > 0
   1277 		if (ifp->if_bpf)
   1278 			bpf_mtap(ifp->if_bpf, m);
   1279 #endif
   1280 		(*ifp->if_input)(ifp, m);
   1281 	}
   1282 
   1283 	/* Flush the RX DMA ring */
   1284 
   1285 	bus_dmamap_sync(sc->sc_dmat,
   1286 	    sc->rtk_ldata.rtk_rx_list_map,
   1287 	    0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
   1288 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1289 
   1290 	sc->rtk_ldata.rtk_rx_prodidx = i;
   1291 
   1292 	return;
   1293 }
   1294 
   1295 static void
   1296 re_txeof(struct rtk_softc *sc)
   1297 {
   1298 	struct ifnet		*ifp;
   1299 	int			idx;
   1300 
   1301 	ifp = &sc->ethercom.ec_if;
   1302 	idx = sc->rtk_ldata.rtk_txq_considx;
   1303 
   1304 	/* Invalidate the TX descriptor list */
   1305 
   1306 	bus_dmamap_sync(sc->sc_dmat,
   1307 	    sc->rtk_ldata.rtk_tx_list_map,
   1308 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1309 	    BUS_DMASYNC_POSTREAD);
   1310 
   1311 	while (idx != sc->rtk_ldata.rtk_txq_prodidx) {
   1312 		struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
   1313 		int descidx = txq->txq_descidx;
   1314 		u_int32_t txstat;
   1315 
   1316 		KASSERT(txq->txq_mbuf != NULL);
   1317 
   1318 		txstat =
   1319 		    le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
   1320 		KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
   1321 		if (txstat & RTK_TDESC_CMD_OWN)
   1322 			break;
   1323 
   1324 		sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
   1325 		KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
   1326 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1327 		m_freem(txq->txq_mbuf);
   1328 		txq->txq_mbuf = NULL;
   1329 
   1330 		if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
   1331 			ifp->if_collisions++;
   1332 		if (txstat & RTK_TDESC_STAT_TXERRSUM)
   1333 			ifp->if_oerrors++;
   1334 		else
   1335 			ifp->if_opackets++;
   1336 
   1337 		idx = (idx + 1) % RTK_TX_QLEN;
   1338 	}
   1339 
   1340 	/* No changes made to the TX ring, so no flush needed */
   1341 
   1342 	if (idx != sc->rtk_ldata.rtk_txq_considx) {
   1343 		sc->rtk_ldata.rtk_txq_considx = idx;
   1344 		ifp->if_flags &= ~IFF_OACTIVE;
   1345 		ifp->if_timer = 0;
   1346 	}
   1347 
   1348 	/*
   1349 	 * If not all descriptors have been released reaped yet,
   1350 	 * reload the timer so that we will eventually get another
   1351 	 * interrupt that will cause us to re-enter this routine.
   1352 	 * This is done in case the transmitter has gone idle.
   1353 	 */
   1354 	if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
   1355 		CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1356 
   1357 	return;
   1358 }
   1359 
   1360 /*
   1361  * Stop all chip I/O so that the kernel's probe routines don't
   1362  * get confused by errant DMAs when rebooting.
   1363  */
   1364 static void
   1365 re_shutdown(void *vsc)
   1366 
   1367 {
   1368 	struct rtk_softc	*sc = (struct rtk_softc *)vsc;
   1369 
   1370 	re_stop(&sc->ethercom.ec_if, 0);
   1371 }
   1372 
   1373 
   1374 static void
   1375 re_tick(void *xsc)
   1376 {
   1377 	struct rtk_softc	*sc = xsc;
   1378 	int s;
   1379 
   1380 	/*XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1381 	s = splnet();
   1382 
   1383 	mii_tick(&sc->mii);
   1384 	splx(s);
   1385 
   1386 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1387 }
   1388 
   1389 #ifdef DEVICE_POLLING
   1390 static void
   1391 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
   1392 {
   1393 	struct rtk_softc *sc = ifp->if_softc;
   1394 
   1395 	RTK_LOCK(sc);
   1396 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
   1397 		ether_poll_deregister(ifp);
   1398 		cmd = POLL_DEREGISTER;
   1399 	}
   1400 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
   1401 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1402 		goto done;
   1403 	}
   1404 
   1405 	sc->rxcycles = count;
   1406 	re_rxeof(sc);
   1407 	re_txeof(sc);
   1408 
   1409 	if (ifp->if_snd.ifq_head != NULL)
   1410 		(*ifp->if_start)(ifp);
   1411 
   1412 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
   1413 		u_int16_t       status;
   1414 
   1415 		status = CSR_READ_2(sc, RTK_ISR);
   1416 		if (status == 0xffff)
   1417 			goto done;
   1418 		if (status)
   1419 			CSR_WRITE_2(sc, RTK_ISR, status);
   1420 
   1421 		/*
   1422 		 * XXX check behaviour on receiver stalls.
   1423 		 */
   1424 
   1425 		if (status & RTK_ISR_SYSTEM_ERR) {
   1426 			re_reset(sc);
   1427 			re_init(sc);
   1428 		}
   1429 	}
   1430 done:
   1431 	RTK_UNLOCK(sc);
   1432 }
   1433 #endif /* DEVICE_POLLING */
   1434 
   1435 int
   1436 re_intr(void *arg)
   1437 {
   1438 	struct rtk_softc	*sc = arg;
   1439 	struct ifnet		*ifp;
   1440 	u_int16_t		status;
   1441 	int			handled = 0;
   1442 
   1443 	ifp = &sc->ethercom.ec_if;
   1444 
   1445 	if (!(ifp->if_flags & IFF_UP))
   1446 		return 0;
   1447 
   1448 #ifdef DEVICE_POLLING
   1449 	if (ifp->if_flags & IFF_POLLING)
   1450 		goto done;
   1451 	if ((ifp->if_capenable & IFCAP_POLLING) &&
   1452 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
   1453 		CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   1454 		re_poll(ifp, 0, 1);
   1455 		goto done;
   1456 	}
   1457 #endif /* DEVICE_POLLING */
   1458 
   1459 	for (;;) {
   1460 
   1461 		status = CSR_READ_2(sc, RTK_ISR);
   1462 		/* If the card has gone away the read returns 0xffff. */
   1463 		if (status == 0xffff)
   1464 			break;
   1465 		if (status) {
   1466 			handled = 1;
   1467 			CSR_WRITE_2(sc, RTK_ISR, status);
   1468 		}
   1469 
   1470 		if ((status & RTK_INTRS_CPLUS) == 0)
   1471 			break;
   1472 
   1473 		if ((status & RTK_ISR_RX_OK) ||
   1474 		    (status & RTK_ISR_RX_ERR))
   1475 			re_rxeof(sc);
   1476 
   1477 		if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
   1478 		    (status & RTK_ISR_TX_ERR) ||
   1479 		    (status & RTK_ISR_TX_DESC_UNAVAIL))
   1480 			re_txeof(sc);
   1481 
   1482 		if (status & RTK_ISR_SYSTEM_ERR) {
   1483 			re_reset(sc);
   1484 			re_init(ifp);
   1485 		}
   1486 
   1487 		if (status & RTK_ISR_LINKCHG) {
   1488 			callout_stop(&sc->rtk_tick_ch);
   1489 			re_tick(sc);
   1490 		}
   1491 	}
   1492 
   1493 	if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
   1494 		if (ifp->if_snd.ifq_head != NULL)
   1495 			(*ifp->if_start)(ifp);
   1496 
   1497 #ifdef DEVICE_POLLING
   1498 done:
   1499 #endif
   1500 
   1501 	return handled;
   1502 }
   1503 
   1504 static int
   1505 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
   1506 {
   1507 	bus_dmamap_t		map;
   1508 	int			error, i, startidx, curidx;
   1509 	struct m_tag		*mtag;
   1510 	struct rtk_desc		*d;
   1511 	u_int32_t		cmdstat, rtk_flags;
   1512 	struct rtk_txq		*txq;
   1513 
   1514 	if (sc->rtk_ldata.rtk_tx_free <= 4)
   1515 		return EFBIG;
   1516 
   1517 	/*
   1518 	 * Set up checksum offload. Note: checksum offload bits must
   1519 	 * appear in all descriptors of a multi-descriptor transmit
   1520 	 * attempt. (This is according to testing done with an 8169
   1521 	 * chip. I'm not sure if this is a requirement or a bug.)
   1522 	 */
   1523 
   1524 	if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1525 		u_int32_t segsz = m->m_pkthdr.segsz;
   1526 
   1527 		rtk_flags = RTK_TDESC_CMD_LGSEND |
   1528 		    (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
   1529 	} else {
   1530 
   1531 		/*
   1532 		 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
   1533 		 * is requested.  otherwise, RTK_TDESC_CMD_TCPCSUM/
   1534 		 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
   1535 		 */
   1536 
   1537 		rtk_flags = 0;
   1538 		if ((m->m_pkthdr.csum_flags &
   1539 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
   1540 			rtk_flags |= RTK_TDESC_CMD_IPCSUM;
   1541 			if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
   1542 				rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
   1543 			} else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
   1544 				rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
   1545 			}
   1546 		}
   1547 	}
   1548 
   1549 	txq = &sc->rtk_ldata.rtk_txq[*idx];
   1550 	map = txq->txq_dmamap;
   1551 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
   1552 
   1553 	if (error) {
   1554 		/* XXX try to defrag if EFBIG? */
   1555 
   1556 		aprint_error("%s: can't map mbuf (error %d)\n",
   1557 		    sc->sc_dev.dv_xname, error);
   1558 
   1559 		return error;
   1560 	}
   1561 
   1562 	if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
   1563 		error = EFBIG;
   1564 		goto fail_unload;
   1565 	}
   1566 	/*
   1567 	 * Map the segment array into descriptors. Note that we set the
   1568 	 * start-of-frame and end-of-frame markers for either TX or RX, but
   1569 	 * they really only have meaning in the TX case. (In the RX case,
   1570 	 * it's the chip that tells us where packets begin and end.)
   1571 	 * We also keep track of the end of the ring and set the
   1572 	 * end-of-ring bits as needed, and we set the ownership bits
   1573 	 * in all except the very first descriptor. (The caller will
   1574 	 * set this descriptor later when it start transmission or
   1575 	 * reception.)
   1576 	 */
   1577 	i = 0;
   1578 	curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
   1579 	while (1) {
   1580 		d = &sc->rtk_ldata.rtk_tx_list[curidx];
   1581 		if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
   1582 			while (i > 0) {
   1583 				sc->rtk_ldata.rtk_tx_list[
   1584 				    (curidx + RTK_TX_DESC_CNT(sc) - i) %
   1585 				    RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
   1586 				i--;
   1587 			}
   1588 			error = ENOBUFS;
   1589 			goto fail_unload;
   1590 		}
   1591 
   1592 		cmdstat = map->dm_segs[i].ds_len;
   1593 		d->rtk_bufaddr_lo =
   1594 		    htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
   1595 		d->rtk_bufaddr_hi =
   1596 		    htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
   1597 		if (i == 0)
   1598 			cmdstat |= RTK_TDESC_CMD_SOF;
   1599 		else
   1600 			cmdstat |= RTK_TDESC_CMD_OWN;
   1601 		if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
   1602 			cmdstat |= RTK_TDESC_CMD_EOR;
   1603 		d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
   1604 		i++;
   1605 		if (i == map->dm_nsegs)
   1606 			break;
   1607 		RTK_TX_DESC_INC(sc, curidx);
   1608 	}
   1609 
   1610 	d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
   1611 
   1612 	txq->txq_mbuf = m;
   1613 	sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
   1614 
   1615 	/*
   1616 	 * Set up hardware VLAN tagging. Note: vlan tag info must
   1617 	 * appear in the first descriptor of a multi-descriptor
   1618 	 * transmission attempt.
   1619 	 */
   1620 
   1621 	if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
   1622 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
   1623 		    htole32(htons(VLAN_TAG_VALUE(mtag)) |
   1624 		    RTK_TDESC_VLANCTL_TAG);
   1625 	}
   1626 
   1627 	/* Transfer ownership of packet to the chip. */
   1628 
   1629 	sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
   1630 	    htole32(RTK_TDESC_CMD_OWN);
   1631 	if (startidx != curidx)
   1632 		sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
   1633 		    htole32(RTK_TDESC_CMD_OWN);
   1634 
   1635 	txq->txq_descidx = curidx;
   1636 	RTK_TX_DESC_INC(sc, curidx);
   1637 	sc->rtk_ldata.rtk_tx_nextfree = curidx;
   1638 	*idx = (*idx + 1) % RTK_TX_QLEN;
   1639 
   1640 	return 0;
   1641 
   1642 fail_unload:
   1643 	bus_dmamap_unload(sc->sc_dmat, map);
   1644 
   1645 	return error;
   1646 }
   1647 
   1648 /*
   1649  * Main transmit routine for C+ and gigE NICs.
   1650  */
   1651 
   1652 static void
   1653 re_start(struct ifnet *ifp)
   1654 {
   1655 	struct rtk_softc	*sc;
   1656 	struct mbuf		*m_head = NULL;
   1657 	int			idx;
   1658 
   1659 	sc = ifp->if_softc;
   1660 
   1661 	idx = sc->rtk_ldata.rtk_txq_prodidx;
   1662 	while (sc->rtk_ldata.rtk_txq[idx].txq_mbuf == NULL) {
   1663 		int error;
   1664 
   1665 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1666 		if (m_head == NULL)
   1667 			break;
   1668 
   1669 		error = re_encap(sc, m_head, &idx);
   1670 		if (error == EFBIG &&
   1671 		    sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
   1672 			ifp->if_oerrors++;
   1673 			m_freem(m_head);
   1674 			continue;
   1675 		}
   1676 		if (error) {
   1677 			IF_PREPEND(&ifp->if_snd, m_head);
   1678 			ifp->if_flags |= IFF_OACTIVE;
   1679 			break;
   1680 		}
   1681 #if NBPFILTER > 0
   1682 		/*
   1683 		 * If there's a BPF listener, bounce a copy of this frame
   1684 		 * to him.
   1685 		 */
   1686 		if (ifp->if_bpf)
   1687 			bpf_mtap(ifp->if_bpf, m_head);
   1688 #endif
   1689 	}
   1690 
   1691 	/* Flush the TX descriptors */
   1692 
   1693 	bus_dmamap_sync(sc->sc_dmat,
   1694 	    sc->rtk_ldata.rtk_tx_list_map,
   1695 	    0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
   1696 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
   1697 
   1698 	sc->rtk_ldata.rtk_txq_prodidx = idx;
   1699 
   1700 	/*
   1701 	 * RealTek put the TX poll request register in a different
   1702 	 * location on the 8169 gigE chip. I don't know why.
   1703 	 */
   1704 
   1705 	if (sc->rtk_type == RTK_8169)
   1706 		CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1707 	else
   1708 		CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
   1709 
   1710 	/*
   1711 	 * Use the countdown timer for interrupt moderation.
   1712 	 * 'TX done' interrupts are disabled. Instead, we reset the
   1713 	 * countdown timer, which will begin counting until it hits
   1714 	 * the value in the TIMERINT register, and then trigger an
   1715 	 * interrupt. Each time we write to the TIMERCNT register,
   1716 	 * the timer count is reset to 0.
   1717 	 */
   1718 	CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1719 
   1720 	/*
   1721 	 * Set a timeout in case the chip goes out to lunch.
   1722 	 */
   1723 	ifp->if_timer = 5;
   1724 
   1725 	return;
   1726 }
   1727 
   1728 static int
   1729 re_init(struct ifnet *ifp)
   1730 {
   1731 	struct rtk_softc	*sc = ifp->if_softc;
   1732 	u_int32_t		rxcfg = 0;
   1733 	u_int32_t		reg;
   1734 	int error;
   1735 
   1736 	if ((error = re_enable(sc)) != 0)
   1737 		goto out;
   1738 
   1739 	/*
   1740 	 * Cancel pending I/O and free all RX/TX buffers.
   1741 	 */
   1742 	re_stop(ifp, 0);
   1743 
   1744 	/*
   1745 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1746 	 * RX checksum offload. We must configure the C+ register
   1747 	 * before all others.
   1748 	 */
   1749 	reg = 0;
   1750 
   1751 	/*
   1752 	 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
   1753 	 * FreeBSD  drivers set these bits anyway (for 8139C+?).
   1754 	 * So far, it works.
   1755 	 */
   1756 
   1757 	/*
   1758 	 * XXX: For 8169 and 8196S revs below 2, set bit 14.
   1759 	 * For 8169S/8110S rev 2 and above, do not set bit 14.
   1760 	 */
   1761 	if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
   1762 		reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
   1763 
   1764 	if (1)  {/* not for 8169S ? */
   1765 		reg |= RTK_CPLUSCMD_VLANSTRIP |
   1766 		    (ifp->if_capenable &
   1767 		    (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
   1768 		    RTK_CPLUSCMD_RXCSUM_ENB : 0);
   1769 	}
   1770 
   1771 	CSR_WRITE_2(sc, RTK_CPLUS_CMD,
   1772 	    reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
   1773 
   1774 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1775 	if (sc->rtk_type == RTK_8169)
   1776 		CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
   1777 
   1778 	DELAY(10000);
   1779 
   1780 	/*
   1781 	 * Init our MAC address.  Even though the chipset
   1782 	 * documentation doesn't mention it, we need to enter "Config
   1783 	 * register write enable" mode to modify the ID registers.
   1784 	 */
   1785 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1786 	memcpy(&reg, LLADDR(ifp->if_sadl), 4);
   1787 	CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
   1788 	reg = 0;
   1789 	memcpy(&reg, LLADDR(ifp->if_sadl) + 4, 4);
   1790 	CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
   1791 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1792 
   1793 	/*
   1794 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1795 	 */
   1796 	re_rx_list_init(sc);
   1797 	re_tx_list_init(sc);
   1798 
   1799 	/*
   1800 	 * Enable transmit and receive.
   1801 	 */
   1802 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1803 
   1804 	/*
   1805 	 * Set the initial TX and RX configuration.
   1806 	 */
   1807 	if (sc->rtk_testmode) {
   1808 		if (sc->rtk_type == RTK_8169)
   1809 			CSR_WRITE_4(sc, RTK_TXCFG,
   1810 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1811 		else
   1812 			CSR_WRITE_4(sc, RTK_TXCFG,
   1813 			    RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
   1814 	} else
   1815 		CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
   1816 	CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
   1817 
   1818 	/* Set the individual bit to receive frames for this host only. */
   1819 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1820 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1821 
   1822 	/* If we want promiscuous mode, set the allframes bit. */
   1823 	if (ifp->if_flags & IFF_PROMISC)
   1824 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1825 	else
   1826 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1827 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1828 
   1829 	/*
   1830 	 * Set capture broadcast bit to capture broadcast frames.
   1831 	 */
   1832 	if (ifp->if_flags & IFF_BROADCAST)
   1833 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1834 	else
   1835 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1836 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1837 
   1838 	/*
   1839 	 * Program the multicast filter, if necessary.
   1840 	 */
   1841 	rtk_setmulti(sc);
   1842 
   1843 #ifdef DEVICE_POLLING
   1844 	/*
   1845 	 * Disable interrupts if we are polling.
   1846 	 */
   1847 	if (ifp->if_flags & IFF_POLLING)
   1848 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1849 	else	/* otherwise ... */
   1850 #endif /* DEVICE_POLLING */
   1851 	/*
   1852 	 * Enable interrupts.
   1853 	 */
   1854 	if (sc->rtk_testmode)
   1855 		CSR_WRITE_2(sc, RTK_IMR, 0);
   1856 	else
   1857 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   1858 
   1859 	/* Start RX/TX process. */
   1860 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   1861 #ifdef notdef
   1862 	/* Enable receiver and transmitter. */
   1863 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1864 #endif
   1865 	/*
   1866 	 * Load the addresses of the RX and TX lists into the chip.
   1867 	 */
   1868 
   1869 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1870 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1871 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1872 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
   1873 
   1874 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1875 	    RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1876 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1877 	    RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
   1878 
   1879 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1880 
   1881 	/*
   1882 	 * Initialize the timer interrupt register so that
   1883 	 * a timer interrupt will be generated once the timer
   1884 	 * reaches a certain number of ticks. The timer is
   1885 	 * reloaded on each transmit. This gives us TX interrupt
   1886 	 * moderation, which dramatically improves TX frame rate.
   1887 	 */
   1888 
   1889 	if (sc->rtk_type == RTK_8169)
   1890 		CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
   1891 	else
   1892 		CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
   1893 
   1894 	/*
   1895 	 * For 8169 gigE NICs, set the max allowed RX packet
   1896 	 * size so we can receive jumbo frames.
   1897 	 */
   1898 	if (sc->rtk_type == RTK_8169)
   1899 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   1900 
   1901 	if (sc->rtk_testmode)
   1902 		return 0;
   1903 
   1904 	mii_mediachg(&sc->mii);
   1905 
   1906 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
   1907 
   1908 	ifp->if_flags |= IFF_RUNNING;
   1909 	ifp->if_flags &= ~IFF_OACTIVE;
   1910 
   1911 	callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
   1912 
   1913 out:
   1914 	if (error) {
   1915 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1916 		ifp->if_timer = 0;
   1917 		aprint_error("%s: interface not running\n",
   1918 		    sc->sc_dev.dv_xname);
   1919 	}
   1920 
   1921 	return error;
   1922 
   1923 }
   1924 
   1925 /*
   1926  * Set media options.
   1927  */
   1928 static int
   1929 re_ifmedia_upd(struct ifnet *ifp)
   1930 {
   1931 	struct rtk_softc	*sc;
   1932 
   1933 	sc = ifp->if_softc;
   1934 
   1935 	return mii_mediachg(&sc->mii);
   1936 }
   1937 
   1938 /*
   1939  * Report current media status.
   1940  */
   1941 static void
   1942 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   1943 {
   1944 	struct rtk_softc	*sc;
   1945 
   1946 	sc = ifp->if_softc;
   1947 
   1948 	mii_pollstat(&sc->mii);
   1949 	ifmr->ifm_active = sc->mii.mii_media_active;
   1950 	ifmr->ifm_status = sc->mii.mii_media_status;
   1951 
   1952 	return;
   1953 }
   1954 
   1955 static int
   1956 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1957 {
   1958 	struct rtk_softc	*sc = ifp->if_softc;
   1959 	struct ifreq		*ifr = (struct ifreq *) data;
   1960 	int			s, error = 0;
   1961 
   1962 	s = splnet();
   1963 
   1964 	switch (command) {
   1965 	case SIOCSIFMTU:
   1966 		if (ifr->ifr_mtu > RTK_JUMBO_MTU)
   1967 			error = EINVAL;
   1968 		ifp->if_mtu = ifr->ifr_mtu;
   1969 		break;
   1970 	case SIOCGIFMEDIA:
   1971 	case SIOCSIFMEDIA:
   1972 		error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
   1973 		break;
   1974 	default:
   1975 		error = ether_ioctl(ifp, command, data);
   1976 		if (error == ENETRESET) {
   1977 			if (ifp->if_flags & IFF_RUNNING)
   1978 				rtk_setmulti(sc);
   1979 			error = 0;
   1980 		}
   1981 		break;
   1982 	}
   1983 
   1984 	splx(s);
   1985 
   1986 	return error;
   1987 }
   1988 
   1989 static void
   1990 re_watchdog(struct ifnet *ifp)
   1991 {
   1992 	struct rtk_softc	*sc;
   1993 	int			s;
   1994 
   1995 	sc = ifp->if_softc;
   1996 	s = splnet();
   1997 	aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
   1998 	ifp->if_oerrors++;
   1999 
   2000 	re_txeof(sc);
   2001 	re_rxeof(sc);
   2002 
   2003 	re_init(ifp);
   2004 
   2005 	splx(s);
   2006 }
   2007 
   2008 /*
   2009  * Stop the adapter and free any mbufs allocated to the
   2010  * RX and TX lists.
   2011  */
   2012 static void
   2013 re_stop(struct ifnet *ifp, int disable)
   2014 {
   2015 	register int		i;
   2016 	struct rtk_softc *sc = ifp->if_softc;
   2017 
   2018 	callout_stop(&sc->rtk_tick_ch);
   2019 
   2020 #ifdef DEVICE_POLLING
   2021 	ether_poll_deregister(ifp);
   2022 #endif /* DEVICE_POLLING */
   2023 
   2024 	mii_down(&sc->mii);
   2025 
   2026 	CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2027 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2028 
   2029 	if (sc->rtk_head != NULL) {
   2030 		m_freem(sc->rtk_head);
   2031 		sc->rtk_head = sc->rtk_tail = NULL;
   2032 	}
   2033 
   2034 	/* Free the TX list buffers. */
   2035 	for (i = 0; i < RTK_TX_QLEN; i++) {
   2036 		if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
   2037 			bus_dmamap_unload(sc->sc_dmat,
   2038 			    sc->rtk_ldata.rtk_txq[i].txq_dmamap);
   2039 			m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
   2040 			sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
   2041 		}
   2042 	}
   2043 
   2044 	/* Free the RX list buffers. */
   2045 	for (i = 0; i < RTK_RX_DESC_CNT; i++) {
   2046 		if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
   2047 			bus_dmamap_unload(sc->sc_dmat,
   2048 			    sc->rtk_ldata.rtk_rx_dmamap[i]);
   2049 			m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
   2050 			sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
   2051 		}
   2052 	}
   2053 
   2054 	if (disable)
   2055 		re_disable(sc);
   2056 
   2057 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2058 	ifp->if_timer = 0;
   2059 
   2060 	return;
   2061 }
   2062