rtl8169.c revision 1.160 1 /* $NetBSD: rtl8169.c,v 1.160 2019/09/22 16:41:19 ryo Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.160 2019/09/22 16:41:19 ryo Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51 * RTL8110S, the RTL8168 and the RTL8111.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137 #include <sys/rndsource.h>
138
139 #include <sys/bus.h>
140
141 #include <dev/mii/mii.h>
142 #include <dev/mii/miivar.h>
143
144 #include <dev/ic/rtl81x9reg.h>
145 #include <dev/ic/rtl81x9var.h>
146
147 #include <dev/ic/rtl8169var.h>
148
149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
150
151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
152 static int re_rx_list_init(struct rtk_softc *);
153 static int re_tx_list_init(struct rtk_softc *);
154 static void re_rxeof(struct rtk_softc *);
155 static void re_txeof(struct rtk_softc *);
156 static void re_tick(void *);
157 static void re_start(struct ifnet *);
158 static int re_ioctl(struct ifnet *, u_long, void *);
159 static int re_init(struct ifnet *);
160 static void re_stop(struct ifnet *, int);
161 static void re_watchdog(struct ifnet *);
162
163 static int re_enable(struct rtk_softc *);
164 static void re_disable(struct rtk_softc *);
165
166 static int re_gmii_readreg(device_t, int, int, uint16_t *);
167 static int re_gmii_writereg(device_t, int, int, uint16_t);
168
169 static int re_miibus_readreg(device_t, int, int, uint16_t *);
170 static int re_miibus_writereg(device_t, int, int, uint16_t);
171 static void re_miibus_statchg(struct ifnet *);
172
173 static void re_reset(struct rtk_softc *);
174
175 static inline void
176 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
177 {
178
179 d->re_bufaddr_lo = htole32((uint32_t)addr);
180 if (sizeof(bus_addr_t) == sizeof(uint64_t))
181 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
182 else
183 d->re_bufaddr_hi = 0;
184 }
185
186 static int
187 re_gmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
188 {
189 struct rtk_softc *sc = device_private(dev);
190 uint32_t data;
191 int i;
192
193 if (phy != 7)
194 return -1;
195
196 /* Let the rgephy driver read the GMEDIASTAT register */
197
198 if (reg == RTK_GMEDIASTAT) {
199 *val = CSR_READ_1(sc, RTK_GMEDIASTAT);
200 return 0;
201 }
202
203 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
204 DELAY(1000);
205
206 for (i = 0; i < RTK_TIMEOUT; i++) {
207 data = CSR_READ_4(sc, RTK_PHYAR);
208 if (data & RTK_PHYAR_BUSY)
209 break;
210 DELAY(100);
211 }
212
213 if (i == RTK_TIMEOUT) {
214 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
215 return ETIMEDOUT;
216 }
217
218 *val = data & RTK_PHYAR_PHYDATA;
219 return 0;
220 }
221
222 static int
223 re_gmii_writereg(device_t dev, int phy, int reg, uint16_t val)
224 {
225 struct rtk_softc *sc = device_private(dev);
226 uint32_t data;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (val & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 data = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(data & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 printf("%s: PHY write reg %x <- %hx failed\n",
242 device_xname(sc->sc_dev), reg, val);
243 return ETIMEDOUT;
244 }
245
246 return 0;
247 }
248
249 static int
250 re_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
251 {
252 struct rtk_softc *sc = device_private(dev);
253 uint16_t re8139_reg = 0;
254 int s, rv = 0;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rv = re_gmii_readreg(dev, phy, reg, val);
260 splx(s);
261 return rv;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return -1;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 *val = 0;
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 *val = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return 0;
300 default:
301 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
302 splx(s);
303 return -1;
304 }
305 *val = CSR_READ_2(sc, re8139_reg);
306 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
307 /* 8139C+ has different bit layout. */
308 *val &= ~(BMCR_LOOP | BMCR_ISO);
309 }
310 splx(s);
311 return 0;
312 }
313
314 static int
315 re_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
316 {
317 struct rtk_softc *sc = device_private(dev);
318 uint16_t re8139_reg = 0;
319 int s, rv;
320
321 s = splnet();
322
323 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
324 rv = re_gmii_writereg(dev, phy, reg, val);
325 splx(s);
326 return rv;
327 }
328
329 /* Pretend the internal PHY is only at address 0 */
330 if (phy) {
331 splx(s);
332 return -1;
333 }
334 switch (reg) {
335 case MII_BMCR:
336 re8139_reg = RTK_BMCR;
337 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
338 /* 8139C+ has different bit layout. */
339 val &= ~(BMCR_LOOP | BMCR_ISO);
340 }
341 break;
342 case MII_BMSR:
343 re8139_reg = RTK_BMSR;
344 break;
345 case MII_ANAR:
346 re8139_reg = RTK_ANAR;
347 break;
348 case MII_ANER:
349 re8139_reg = RTK_ANER;
350 break;
351 case MII_ANLPAR:
352 re8139_reg = RTK_LPAR;
353 break;
354 case MII_PHYIDR1:
355 case MII_PHYIDR2:
356 splx(s);
357 return 0;
358 break;
359 default:
360 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
361 splx(s);
362 return -1;
363 }
364 CSR_WRITE_2(sc, re8139_reg, val);
365 splx(s);
366 return 0;
367 }
368
369 static void
370 re_miibus_statchg(struct ifnet *ifp)
371 {
372
373 return;
374 }
375
376 static void
377 re_reset(struct rtk_softc *sc)
378 {
379 int i;
380
381 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
382
383 for (i = 0; i < RTK_TIMEOUT; i++) {
384 DELAY(10);
385 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
386 break;
387 }
388 if (i == RTK_TIMEOUT)
389 printf("%s: reset never completed!\n",
390 device_xname(sc->sc_dev));
391
392 /*
393 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
394 * but also says "Rtl8169s sigle chip detected".
395 */
396 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
397 CSR_WRITE_1(sc, RTK_LDPS, 1);
398
399 }
400
401 /*
402 * The following routine is designed to test for a defect on some
403 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
404 * lines connected to the bus, however for a 32-bit only card, they
405 * should be pulled high. The result of this defect is that the
406 * NIC will not work right if you plug it into a 64-bit slot: DMA
407 * operations will be done with 64-bit transfers, which will fail
408 * because the 64-bit data lines aren't connected.
409 *
410 * There's no way to work around this (short of talking a soldering
411 * iron to the board), however we can detect it. The method we use
412 * here is to put the NIC into digital loopback mode, set the receiver
413 * to promiscuous mode, and then try to send a frame. We then compare
414 * the frame data we sent to what was received. If the data matches,
415 * then the NIC is working correctly, otherwise we know the user has
416 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
417 * slot. In the latter case, there's no way the NIC can work correctly,
418 * so we print out a message on the console and abort the device attach.
419 */
420
421 int
422 re_diag(struct rtk_softc *sc)
423 {
424 struct ifnet *ifp = &sc->ethercom.ec_if;
425 struct mbuf *m0;
426 struct ether_header *eh;
427 struct re_rxsoft *rxs;
428 struct re_desc *cur_rx;
429 bus_dmamap_t dmamap;
430 uint16_t status;
431 uint32_t rxstat;
432 int total_len, i, s, error = 0;
433 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
434 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
435
436 /* Allocate a single mbuf */
437
438 MGETHDR(m0, M_DONTWAIT, MT_DATA);
439 if (m0 == NULL)
440 return ENOBUFS;
441
442 /*
443 * Initialize the NIC in test mode. This sets the chip up
444 * so that it can send and receive frames, but performs the
445 * following special functions:
446 * - Puts receiver in promiscuous mode
447 * - Enables digital loopback mode
448 * - Leaves interrupts turned off
449 */
450
451 ifp->if_flags |= IFF_PROMISC;
452 sc->re_testmode = 1;
453 re_init(ifp);
454 re_stop(ifp, 0);
455 DELAY(100000);
456 re_init(ifp);
457
458 /* Put some data in the mbuf */
459
460 eh = mtod(m0, struct ether_header *);
461 memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
462 memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
463 eh->ether_type = htons(ETHERTYPE_IP);
464 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
465
466 /*
467 * Queue the packet, start transmission.
468 */
469
470 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
471 s = splnet();
472 IF_ENQUEUE(&ifp->if_snd, m0);
473 re_start(ifp);
474 splx(s);
475 m0 = NULL;
476
477 /* Wait for it to propagate through the chip */
478
479 DELAY(100000);
480 for (i = 0; i < RTK_TIMEOUT; i++) {
481 status = CSR_READ_2(sc, RTK_ISR);
482 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
483 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
484 break;
485 DELAY(10);
486 }
487 if (i == RTK_TIMEOUT) {
488 aprint_error_dev(sc->sc_dev,
489 "diagnostic failed, failed to receive packet "
490 "in loopback mode\n");
491 error = EIO;
492 goto done;
493 }
494
495 /*
496 * The packet should have been dumped into the first
497 * entry in the RX DMA ring. Grab it from there.
498 */
499
500 rxs = &sc->re_ldata.re_rxsoft[0];
501 dmamap = rxs->rxs_dmamap;
502 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
503 BUS_DMASYNC_POSTREAD);
504 bus_dmamap_unload(sc->sc_dmat, dmamap);
505
506 m0 = rxs->rxs_mbuf;
507 rxs->rxs_mbuf = NULL;
508 eh = mtod(m0, struct ether_header *);
509
510 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
511 cur_rx = &sc->re_ldata.re_rx_list[0];
512 rxstat = le32toh(cur_rx->re_cmdstat);
513 total_len = rxstat & sc->re_rxlenmask;
514
515 if (total_len != ETHER_MIN_LEN) {
516 aprint_error_dev(sc->sc_dev,
517 "diagnostic failed, received short packet\n");
518 error = EIO;
519 goto done;
520 }
521
522 /* Test that the received packet data matches what we sent. */
523
524 if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
525 memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
526 ntohs(eh->ether_type) != ETHERTYPE_IP) {
527 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
528 "expected TX data: %s/%s/0x%x\n"
529 "received RX data: %s/%s/0x%x\n"
530 "You may have a defective 32-bit NIC plugged "
531 "into a 64-bit PCI slot.\n"
532 "Please re-install the NIC in a 32-bit slot "
533 "for proper operation.\n"
534 "Read the re(4) man page for more details.\n" ,
535 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
536 ether_sprintf(eh->ether_dhost),
537 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
538 error = EIO;
539 }
540
541 done:
542 /* Turn interface off, release resources */
543
544 sc->re_testmode = 0;
545 ifp->if_flags &= ~IFF_PROMISC;
546 re_stop(ifp, 0);
547 if (m0 != NULL)
548 m_freem(m0);
549
550 return error;
551 }
552
553
554 /*
555 * Attach the interface. Allocate softc structures, do ifmedia
556 * setup and ethernet/BPF attach.
557 */
558 void
559 re_attach(struct rtk_softc *sc)
560 {
561 uint8_t eaddr[ETHER_ADDR_LEN];
562 struct ifnet *ifp;
563 struct mii_data *mii = &sc->mii;
564 int error = 0, i;
565
566 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
567 uint32_t hwrev;
568
569 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
570 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
571 switch (hwrev) {
572 case RTK_HWREV_8169:
573 sc->sc_quirk |= RTKQ_8169NONS;
574 break;
575 case RTK_HWREV_8169S:
576 case RTK_HWREV_8110S:
577 case RTK_HWREV_8169_8110SB:
578 case RTK_HWREV_8169_8110SBL:
579 case RTK_HWREV_8169_8110SC:
580 sc->sc_quirk |= RTKQ_MACLDPS;
581 break;
582 case RTK_HWREV_8168_SPIN1:
583 case RTK_HWREV_8168_SPIN2:
584 case RTK_HWREV_8168_SPIN3:
585 sc->sc_quirk |= RTKQ_MACSTAT;
586 break;
587 case RTK_HWREV_8168C:
588 case RTK_HWREV_8168C_SPIN2:
589 case RTK_HWREV_8168CP:
590 case RTK_HWREV_8168D:
591 case RTK_HWREV_8168DP:
592 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
593 RTKQ_MACSTAT | RTKQ_CMDSTOP;
594 /*
595 * From FreeBSD driver:
596 *
597 * These (8168/8111) controllers support jumbo frame
598 * but it seems that enabling it requires touching
599 * additional magic registers. Depending on MAC
600 * revisions some controllers need to disable
601 * checksum offload. So disable jumbo frame until
602 * I have better idea what it really requires to
603 * make it support.
604 * RTL8168C/CP : supports up to 6KB jumbo frame.
605 * RTL8111C/CP : supports up to 9KB jumbo frame.
606 */
607 sc->sc_quirk |= RTKQ_NOJUMBO;
608 break;
609 case RTK_HWREV_8168E:
610 case RTK_HWREV_8168H_SPIN1:
611 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
612 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
613 RTKQ_NOJUMBO;
614 break;
615 case RTK_HWREV_8168H:
616 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
617 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
618 RTKQ_NOJUMBO | RTKQ_RXDV_GATED | RTKQ_TXRXEN_LATER;
619 break;
620 case RTK_HWREV_8168E_VL:
621 case RTK_HWREV_8168F:
622 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
623 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
624 break;
625 case RTK_HWREV_8168G:
626 case RTK_HWREV_8168G_SPIN1:
627 case RTK_HWREV_8168G_SPIN2:
628 case RTK_HWREV_8168G_SPIN4:
629 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
630 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
631 RTKQ_RXDV_GATED;
632 break;
633 case RTK_HWREV_8100E:
634 case RTK_HWREV_8100E_SPIN2:
635 case RTK_HWREV_8101E:
636 sc->sc_quirk |= RTKQ_NOJUMBO;
637 break;
638 case RTK_HWREV_8102E:
639 case RTK_HWREV_8102EL:
640 case RTK_HWREV_8103E:
641 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
642 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
643 break;
644 default:
645 aprint_normal_dev(sc->sc_dev,
646 "Unknown revision (0x%08x)\n", hwrev);
647 /* assume the latest features */
648 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
649 sc->sc_quirk |= RTKQ_NOJUMBO;
650 }
651
652 /* Set RX length mask */
653 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
654 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
655 } else {
656 sc->sc_quirk |= RTKQ_NOJUMBO;
657
658 /* Set RX length mask */
659 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
660 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
661 }
662
663 /* Reset the adapter. */
664 re_reset(sc);
665
666 /*
667 * RTL81x9 chips automatically read EEPROM to init MAC address,
668 * and some NAS override its MAC address per own configuration,
669 * so no need to explicitely read EEPROM and set ID registers.
670 */
671 #ifdef RE_USE_EECMD
672 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
673 /*
674 * Get station address from ID registers.
675 */
676 for (i = 0; i < ETHER_ADDR_LEN; i++)
677 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
678 } else {
679 uint16_t val;
680 int addr_len;
681
682 /*
683 * Get station address from the EEPROM.
684 */
685 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
686 addr_len = RTK_EEADDR_LEN1;
687 else
688 addr_len = RTK_EEADDR_LEN0;
689
690 /*
691 * Get station address from the EEPROM.
692 */
693 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
694 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
695 eaddr[(i * 2) + 0] = val & 0xff;
696 eaddr[(i * 2) + 1] = val >> 8;
697 }
698 }
699 #else
700 /*
701 * Get station address from ID registers.
702 */
703 for (i = 0; i < ETHER_ADDR_LEN; i++)
704 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
705 #endif
706
707 /* Take PHY out of power down mode. */
708 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
709 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
710
711 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
712 ether_sprintf(eaddr));
713
714 if (sc->re_ldata.re_tx_desc_cnt >
715 PAGE_SIZE / sizeof(struct re_desc)) {
716 sc->re_ldata.re_tx_desc_cnt =
717 PAGE_SIZE / sizeof(struct re_desc);
718 }
719
720 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
721 sc->re_ldata.re_tx_desc_cnt);
722 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
723
724 /* Allocate DMA'able memory for the TX ring */
725 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
726 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
727 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
728 aprint_error_dev(sc->sc_dev,
729 "can't allocate tx listseg, error = %d\n", error);
730 goto fail_0;
731 }
732
733 /* Load the map for the TX ring. */
734 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
735 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
736 (void **)&sc->re_ldata.re_tx_list,
737 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
738 aprint_error_dev(sc->sc_dev,
739 "can't map tx list, error = %d\n", error);
740 goto fail_1;
741 }
742 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
743
744 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
745 RE_TX_LIST_SZ(sc), 0, 0,
746 &sc->re_ldata.re_tx_list_map)) != 0) {
747 aprint_error_dev(sc->sc_dev,
748 "can't create tx list map, error = %d\n", error);
749 goto fail_2;
750 }
751
752
753 if ((error = bus_dmamap_load(sc->sc_dmat,
754 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
755 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
756 aprint_error_dev(sc->sc_dev,
757 "can't load tx list, error = %d\n", error);
758 goto fail_3;
759 }
760
761 /* Create DMA maps for TX buffers */
762 for (i = 0; i < RE_TX_QLEN; i++) {
763 error = bus_dmamap_create(sc->sc_dmat,
764 round_page(IP_MAXPACKET),
765 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
766 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
767 if (error) {
768 aprint_error_dev(sc->sc_dev,
769 "can't create DMA map for TX\n");
770 goto fail_4;
771 }
772 }
773
774 /* Allocate DMA'able memory for the RX ring */
775 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
776 if ((error = bus_dmamem_alloc(sc->sc_dmat,
777 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
778 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
779 aprint_error_dev(sc->sc_dev,
780 "can't allocate rx listseg, error = %d\n", error);
781 goto fail_4;
782 }
783
784 /* Load the map for the RX ring. */
785 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
786 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
787 (void **)&sc->re_ldata.re_rx_list,
788 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
789 aprint_error_dev(sc->sc_dev,
790 "can't map rx list, error = %d\n", error);
791 goto fail_5;
792 }
793 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
794
795 if ((error = bus_dmamap_create(sc->sc_dmat,
796 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
797 &sc->re_ldata.re_rx_list_map)) != 0) {
798 aprint_error_dev(sc->sc_dev,
799 "can't create rx list map, error = %d\n", error);
800 goto fail_6;
801 }
802
803 if ((error = bus_dmamap_load(sc->sc_dmat,
804 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
805 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
806 aprint_error_dev(sc->sc_dev,
807 "can't load rx list, error = %d\n", error);
808 goto fail_7;
809 }
810
811 /* Create DMA maps for RX buffers */
812 for (i = 0; i < RE_RX_DESC_CNT; i++) {
813 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
814 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
815 if (error) {
816 aprint_error_dev(sc->sc_dev,
817 "can't create DMA map for RX\n");
818 goto fail_8;
819 }
820 }
821
822 /*
823 * Record interface as attached. From here, we should not fail.
824 */
825 sc->sc_flags |= RTK_ATTACHED;
826
827 ifp = &sc->ethercom.ec_if;
828 ifp->if_softc = sc;
829 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
830 ifp->if_mtu = ETHERMTU;
831 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
832 ifp->if_ioctl = re_ioctl;
833 sc->ethercom.ec_capabilities |=
834 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
835 ifp->if_start = re_start;
836 ifp->if_stop = re_stop;
837
838 /*
839 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
840 * so we have a workaround to handle the bug by padding
841 * such packets manually.
842 */
843 ifp->if_capabilities |=
844 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
845 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
846 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
847 IFCAP_TSOv4;
848
849 ifp->if_watchdog = re_watchdog;
850 ifp->if_init = re_init;
851 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
852 ifp->if_capenable = ifp->if_capabilities;
853 IFQ_SET_READY(&ifp->if_snd);
854
855 callout_init(&sc->rtk_tick_ch, 0);
856
857 /* Do MII setup */
858 mii->mii_ifp = ifp;
859 mii->mii_readreg = re_miibus_readreg;
860 mii->mii_writereg = re_miibus_writereg;
861 mii->mii_statchg = re_miibus_statchg;
862 sc->ethercom.ec_mii = mii;
863 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
864 ether_mediastatus);
865 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
866 MII_OFFSET_ANY, 0);
867 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
868
869 /*
870 * Call MI attach routine.
871 */
872 if_attach(ifp);
873 if_deferred_start_init(ifp, NULL);
874 ether_ifattach(ifp, eaddr);
875
876 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
877 RND_TYPE_NET, RND_FLAG_DEFAULT);
878
879 if (pmf_device_register(sc->sc_dev, NULL, NULL))
880 pmf_class_network_register(sc->sc_dev, ifp);
881 else
882 aprint_error_dev(sc->sc_dev,
883 "couldn't establish power handler\n");
884
885 return;
886
887 fail_8:
888 /* Destroy DMA maps for RX buffers. */
889 for (i = 0; i < RE_RX_DESC_CNT; i++)
890 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
891 bus_dmamap_destroy(sc->sc_dmat,
892 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
893
894 /* Free DMA'able memory for the RX ring. */
895 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
896 fail_7:
897 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
898 fail_6:
899 bus_dmamem_unmap(sc->sc_dmat,
900 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
901 fail_5:
902 bus_dmamem_free(sc->sc_dmat,
903 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
904
905 fail_4:
906 /* Destroy DMA maps for TX buffers. */
907 for (i = 0; i < RE_TX_QLEN; i++)
908 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
909 bus_dmamap_destroy(sc->sc_dmat,
910 sc->re_ldata.re_txq[i].txq_dmamap);
911
912 /* Free DMA'able memory for the TX ring. */
913 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
914 fail_3:
915 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
916 fail_2:
917 bus_dmamem_unmap(sc->sc_dmat,
918 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
919 fail_1:
920 bus_dmamem_free(sc->sc_dmat,
921 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
922 fail_0:
923 return;
924 }
925
926
927 /*
928 * re_activate:
929 * Handle device activation/deactivation requests.
930 */
931 int
932 re_activate(device_t self, enum devact act)
933 {
934 struct rtk_softc *sc = device_private(self);
935
936 switch (act) {
937 case DVACT_DEACTIVATE:
938 if_deactivate(&sc->ethercom.ec_if);
939 return 0;
940 default:
941 return EOPNOTSUPP;
942 }
943 }
944
945 /*
946 * re_detach:
947 * Detach a rtk interface.
948 */
949 int
950 re_detach(struct rtk_softc *sc)
951 {
952 struct ifnet *ifp = &sc->ethercom.ec_if;
953 int i;
954
955 /*
956 * Succeed now if there isn't any work to do.
957 */
958 if ((sc->sc_flags & RTK_ATTACHED) == 0)
959 return 0;
960
961 /* Unhook our tick handler. */
962 callout_stop(&sc->rtk_tick_ch);
963
964 /* Detach all PHYs. */
965 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
966
967 /* Delete all remaining media. */
968 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
969
970 rnd_detach_source(&sc->rnd_source);
971 ether_ifdetach(ifp);
972 if_detach(ifp);
973
974 /* Destroy DMA maps for RX buffers. */
975 for (i = 0; i < RE_RX_DESC_CNT; i++)
976 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
977 bus_dmamap_destroy(sc->sc_dmat,
978 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
979
980 /* Free DMA'able memory for the RX ring. */
981 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
982 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
983 bus_dmamem_unmap(sc->sc_dmat,
984 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
985 bus_dmamem_free(sc->sc_dmat,
986 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
987
988 /* Destroy DMA maps for TX buffers. */
989 for (i = 0; i < RE_TX_QLEN; i++)
990 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
991 bus_dmamap_destroy(sc->sc_dmat,
992 sc->re_ldata.re_txq[i].txq_dmamap);
993
994 /* Free DMA'able memory for the TX ring. */
995 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
996 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
997 bus_dmamem_unmap(sc->sc_dmat,
998 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
999 bus_dmamem_free(sc->sc_dmat,
1000 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
1001
1002 pmf_device_deregister(sc->sc_dev);
1003
1004 /* we don't want to run again */
1005 sc->sc_flags &= ~RTK_ATTACHED;
1006
1007 return 0;
1008 }
1009
1010 /*
1011 * re_enable:
1012 * Enable the RTL81X9 chip.
1013 */
1014 static int
1015 re_enable(struct rtk_softc *sc)
1016 {
1017
1018 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
1019 if ((*sc->sc_enable)(sc) != 0) {
1020 printf("%s: device enable failed\n",
1021 device_xname(sc->sc_dev));
1022 return EIO;
1023 }
1024 sc->sc_flags |= RTK_ENABLED;
1025 }
1026 return 0;
1027 }
1028
1029 /*
1030 * re_disable:
1031 * Disable the RTL81X9 chip.
1032 */
1033 static void
1034 re_disable(struct rtk_softc *sc)
1035 {
1036
1037 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1038 (*sc->sc_disable)(sc);
1039 sc->sc_flags &= ~RTK_ENABLED;
1040 }
1041 }
1042
1043 static int
1044 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1045 {
1046 struct mbuf *n = NULL;
1047 bus_dmamap_t map;
1048 struct re_desc *d;
1049 struct re_rxsoft *rxs;
1050 uint32_t cmdstat;
1051 int error;
1052
1053 if (m == NULL) {
1054 MGETHDR(n, M_DONTWAIT, MT_DATA);
1055 if (n == NULL)
1056 return ENOBUFS;
1057
1058 MCLGET(n, M_DONTWAIT);
1059 if ((n->m_flags & M_EXT) == 0) {
1060 m_freem(n);
1061 return ENOBUFS;
1062 }
1063 m = n;
1064 } else
1065 m->m_data = m->m_ext.ext_buf;
1066
1067 /*
1068 * Initialize mbuf length fields and fixup
1069 * alignment so that the frame payload is
1070 * longword aligned.
1071 */
1072 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1073 m->m_data += RE_ETHER_ALIGN;
1074
1075 rxs = &sc->re_ldata.re_rxsoft[idx];
1076 map = rxs->rxs_dmamap;
1077 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1078 BUS_DMA_READ|BUS_DMA_NOWAIT);
1079
1080 if (error)
1081 goto out;
1082
1083 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1084 BUS_DMASYNC_PREREAD);
1085
1086 d = &sc->re_ldata.re_rx_list[idx];
1087 #ifdef DIAGNOSTIC
1088 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1089 cmdstat = le32toh(d->re_cmdstat);
1090 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1091 if (cmdstat & RE_RDESC_STAT_OWN) {
1092 panic("%s: tried to map busy RX descriptor",
1093 device_xname(sc->sc_dev));
1094 }
1095 #endif
1096
1097 rxs->rxs_mbuf = m;
1098
1099 d->re_vlanctl = 0;
1100 cmdstat = map->dm_segs[0].ds_len;
1101 if (idx == (RE_RX_DESC_CNT - 1))
1102 cmdstat |= RE_RDESC_CMD_EOR;
1103 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1104 d->re_cmdstat = htole32(cmdstat);
1105 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1106 cmdstat |= RE_RDESC_CMD_OWN;
1107 d->re_cmdstat = htole32(cmdstat);
1108 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1109
1110 return 0;
1111 out:
1112 if (n != NULL)
1113 m_freem(n);
1114 return ENOMEM;
1115 }
1116
1117 static int
1118 re_tx_list_init(struct rtk_softc *sc)
1119 {
1120 int i;
1121
1122 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1123 for (i = 0; i < RE_TX_QLEN; i++) {
1124 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1125 }
1126
1127 bus_dmamap_sync(sc->sc_dmat,
1128 sc->re_ldata.re_tx_list_map, 0,
1129 sc->re_ldata.re_tx_list_map->dm_mapsize,
1130 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1131 sc->re_ldata.re_txq_prodidx = 0;
1132 sc->re_ldata.re_txq_considx = 0;
1133 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1134 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1135 sc->re_ldata.re_tx_nextfree = 0;
1136
1137 return 0;
1138 }
1139
1140 static int
1141 re_rx_list_init(struct rtk_softc *sc)
1142 {
1143 int i;
1144
1145 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1146
1147 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1148 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1149 return ENOBUFS;
1150 }
1151
1152 sc->re_ldata.re_rx_prodidx = 0;
1153 sc->re_head = sc->re_tail = NULL;
1154
1155 return 0;
1156 }
1157
1158 /*
1159 * RX handler for C+ and 8169. For the gigE chips, we support
1160 * the reception of jumbo frames that have been fragmented
1161 * across multiple 2K mbuf cluster buffers.
1162 */
1163 static void
1164 re_rxeof(struct rtk_softc *sc)
1165 {
1166 struct mbuf *m;
1167 struct ifnet *ifp;
1168 int i, total_len;
1169 struct re_desc *cur_rx;
1170 struct re_rxsoft *rxs;
1171 uint32_t rxstat, rxvlan;
1172
1173 ifp = &sc->ethercom.ec_if;
1174
1175 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1176 cur_rx = &sc->re_ldata.re_rx_list[i];
1177 RE_RXDESCSYNC(sc, i,
1178 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1179 rxstat = le32toh(cur_rx->re_cmdstat);
1180 rxvlan = le32toh(cur_rx->re_vlanctl);
1181 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1182 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1183 break;
1184 }
1185 total_len = rxstat & sc->re_rxlenmask;
1186 rxs = &sc->re_ldata.re_rxsoft[i];
1187 m = rxs->rxs_mbuf;
1188
1189 /* Invalidate the RX mbuf and unload its map */
1190
1191 bus_dmamap_sync(sc->sc_dmat,
1192 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1193 BUS_DMASYNC_POSTREAD);
1194 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1195
1196 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1197 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1198 if (sc->re_head == NULL)
1199 sc->re_head = sc->re_tail = m;
1200 else {
1201 m_remove_pkthdr(m);
1202 sc->re_tail->m_next = m;
1203 sc->re_tail = m;
1204 }
1205 re_newbuf(sc, i, NULL);
1206 continue;
1207 }
1208
1209 /*
1210 * NOTE: for the 8139C+, the frame length field
1211 * is always 12 bits in size, but for the gigE chips,
1212 * it is 13 bits (since the max RX frame length is 16K).
1213 * Unfortunately, all 32 bits in the status word
1214 * were already used, so to make room for the extra
1215 * length bit, RealTek took out the 'frame alignment
1216 * error' bit and shifted the other status bits
1217 * over one slot. The OWN, EOR, FS and LS bits are
1218 * still in the same places. We have already extracted
1219 * the frame length and checked the OWN bit, so rather
1220 * than using an alternate bit mapping, we shift the
1221 * status bits one space to the right so we can evaluate
1222 * them using the 8169 status as though it was in the
1223 * same format as that of the 8139C+.
1224 */
1225 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1226 rxstat >>= 1;
1227
1228 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1229 #ifdef RE_DEBUG
1230 printf("%s: RX error (rxstat = 0x%08x)",
1231 device_xname(sc->sc_dev), rxstat);
1232 if (rxstat & RE_RDESC_STAT_FRALIGN)
1233 printf(", frame alignment error");
1234 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1235 printf(", out of buffer space");
1236 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1237 printf(", FIFO overrun");
1238 if (rxstat & RE_RDESC_STAT_GIANT)
1239 printf(", giant packet");
1240 if (rxstat & RE_RDESC_STAT_RUNT)
1241 printf(", runt packet");
1242 if (rxstat & RE_RDESC_STAT_CRCERR)
1243 printf(", CRC error");
1244 printf("\n");
1245 #endif
1246 ifp->if_ierrors++;
1247 /*
1248 * If this is part of a multi-fragment packet,
1249 * discard all the pieces.
1250 */
1251 if (sc->re_head != NULL) {
1252 m_freem(sc->re_head);
1253 sc->re_head = sc->re_tail = NULL;
1254 }
1255 re_newbuf(sc, i, m);
1256 continue;
1257 }
1258
1259 /*
1260 * If allocating a replacement mbuf fails,
1261 * reload the current one.
1262 */
1263
1264 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1265 ifp->if_ierrors++;
1266 if (sc->re_head != NULL) {
1267 m_freem(sc->re_head);
1268 sc->re_head = sc->re_tail = NULL;
1269 }
1270 re_newbuf(sc, i, m);
1271 continue;
1272 }
1273
1274 if (sc->re_head != NULL) {
1275 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1276 /*
1277 * Special case: if there's 4 bytes or less
1278 * in this buffer, the mbuf can be discarded:
1279 * the last 4 bytes is the CRC, which we don't
1280 * care about anyway.
1281 */
1282 if (m->m_len <= ETHER_CRC_LEN) {
1283 sc->re_tail->m_len -=
1284 (ETHER_CRC_LEN - m->m_len);
1285 m_freem(m);
1286 } else {
1287 m->m_len -= ETHER_CRC_LEN;
1288 m_remove_pkthdr(m);
1289 sc->re_tail->m_next = m;
1290 }
1291 m = sc->re_head;
1292 sc->re_head = sc->re_tail = NULL;
1293 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1294 } else
1295 m->m_pkthdr.len = m->m_len =
1296 (total_len - ETHER_CRC_LEN);
1297
1298 m_set_rcvif(m, ifp);
1299
1300 /* Do RX checksumming */
1301 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1302 /* Check IP header checksum */
1303 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1304 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1305 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1306 m->m_pkthdr.csum_flags |=
1307 M_CSUM_IPv4_BAD;
1308
1309 /* Check TCP/UDP checksum */
1310 if (RE_TCPPKT(rxstat)) {
1311 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1312 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1313 m->m_pkthdr.csum_flags |=
1314 M_CSUM_TCP_UDP_BAD;
1315 } else if (RE_UDPPKT(rxstat)) {
1316 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1317 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
1318 /*
1319 * XXX: 8139C+ thinks UDP csum
1320 * 0xFFFF is bad, force software
1321 * calculation.
1322 */
1323 if (sc->sc_quirk & RTKQ_8139CPLUS)
1324 m->m_pkthdr.csum_flags
1325 &= ~M_CSUM_UDPv4;
1326 else
1327 m->m_pkthdr.csum_flags
1328 |= M_CSUM_TCP_UDP_BAD;
1329 }
1330 }
1331 }
1332 } else {
1333 /* Check IPv4 header checksum */
1334 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1335 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1336 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1337 m->m_pkthdr.csum_flags |=
1338 M_CSUM_IPv4_BAD;
1339
1340 /* Check TCPv4/UDPv4 checksum */
1341 if (RE_TCPPKT(rxstat)) {
1342 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1343 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1344 m->m_pkthdr.csum_flags |=
1345 M_CSUM_TCP_UDP_BAD;
1346 } else if (RE_UDPPKT(rxstat)) {
1347 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1348 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1349 m->m_pkthdr.csum_flags |=
1350 M_CSUM_TCP_UDP_BAD;
1351 }
1352 }
1353 /* XXX Check TCPv6/UDPv6 checksum? */
1354 }
1355
1356 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1357 vlan_set_tag(m,
1358 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA));
1359 }
1360 if_percpuq_enqueue(ifp->if_percpuq, m);
1361 }
1362
1363 sc->re_ldata.re_rx_prodidx = i;
1364 }
1365
1366 static void
1367 re_txeof(struct rtk_softc *sc)
1368 {
1369 struct ifnet *ifp;
1370 struct re_txq *txq;
1371 uint32_t txstat;
1372 int idx, descidx;
1373
1374 ifp = &sc->ethercom.ec_if;
1375
1376 for (idx = sc->re_ldata.re_txq_considx;
1377 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1378 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1379 txq = &sc->re_ldata.re_txq[idx];
1380 KASSERT(txq->txq_mbuf != NULL);
1381
1382 descidx = txq->txq_descidx;
1383 RE_TXDESCSYNC(sc, descidx,
1384 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1385 txstat =
1386 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1387 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1388 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1389 if (txstat & RE_TDESC_CMD_OWN) {
1390 break;
1391 }
1392
1393 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1394 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1395 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1396 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1397 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1398 m_freem(txq->txq_mbuf);
1399 txq->txq_mbuf = NULL;
1400
1401 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1402 ifp->if_collisions++;
1403 if (txstat & RE_TDESC_STAT_TXERRSUM)
1404 ifp->if_oerrors++;
1405 else
1406 ifp->if_opackets++;
1407 }
1408
1409 sc->re_ldata.re_txq_considx = idx;
1410
1411 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1412 ifp->if_flags &= ~IFF_OACTIVE;
1413
1414 /*
1415 * If not all descriptors have been released reaped yet,
1416 * reload the timer so that we will eventually get another
1417 * interrupt that will cause us to re-enter this routine.
1418 * This is done in case the transmitter has gone idle.
1419 */
1420 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1421 if ((sc->sc_quirk & RTKQ_IM_HW) == 0)
1422 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1423 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1424 /*
1425 * Some chips will ignore a second TX request
1426 * issued while an existing transmission is in
1427 * progress. If the transmitter goes idle but
1428 * there are still packets waiting to be sent,
1429 * we need to restart the channel here to flush
1430 * them out. This only seems to be required with
1431 * the PCIe devices.
1432 */
1433 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1434 }
1435 } else
1436 ifp->if_timer = 0;
1437 }
1438
1439 static void
1440 re_tick(void *arg)
1441 {
1442 struct rtk_softc *sc = arg;
1443 int s;
1444
1445 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1446 s = splnet();
1447
1448 mii_tick(&sc->mii);
1449 splx(s);
1450
1451 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1452 }
1453
1454 int
1455 re_intr(void *arg)
1456 {
1457 struct rtk_softc *sc = arg;
1458 struct ifnet *ifp;
1459 uint16_t status;
1460 int handled = 0;
1461
1462 if (!device_has_power(sc->sc_dev))
1463 return 0;
1464
1465 ifp = &sc->ethercom.ec_if;
1466
1467 if ((ifp->if_flags & IFF_UP) == 0)
1468 return 0;
1469
1470 const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ?
1471 RTK_INTRS_IM_HW : RTK_INTRS_CPLUS;
1472
1473 for (;;) {
1474
1475 status = CSR_READ_2(sc, RTK_ISR);
1476 /* If the card has gone away the read returns 0xffff. */
1477 if (status == 0xffff)
1478 break;
1479 if (status) {
1480 handled = 1;
1481 CSR_WRITE_2(sc, RTK_ISR, status);
1482 }
1483
1484 if ((status & status_mask) == 0)
1485 break;
1486
1487 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1488 re_rxeof(sc);
1489
1490 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1491 RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK))
1492 re_txeof(sc);
1493
1494 if (status & RTK_ISR_SYSTEM_ERR) {
1495 re_init(ifp);
1496 }
1497
1498 if (status & RTK_ISR_LINKCHG) {
1499 callout_stop(&sc->rtk_tick_ch);
1500 re_tick(sc);
1501 }
1502 }
1503
1504 if (handled)
1505 if_schedule_deferred_start(ifp);
1506
1507 rnd_add_uint32(&sc->rnd_source, status);
1508
1509 return handled;
1510 }
1511
1512
1513
1514 /*
1515 * Main transmit routine for C+ and gigE NICs.
1516 */
1517
1518 static void
1519 re_start(struct ifnet *ifp)
1520 {
1521 struct rtk_softc *sc;
1522 struct mbuf *m;
1523 bus_dmamap_t map;
1524 struct re_txq *txq;
1525 struct re_desc *d;
1526 uint32_t cmdstat, re_flags, vlanctl;
1527 int ofree, idx, error, nsegs, seg;
1528 int startdesc, curdesc, lastdesc;
1529 bool pad;
1530
1531 sc = ifp->if_softc;
1532 ofree = sc->re_ldata.re_txq_free;
1533
1534 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1535
1536 IFQ_POLL(&ifp->if_snd, m);
1537 if (m == NULL)
1538 break;
1539
1540 if (sc->re_ldata.re_txq_free == 0 ||
1541 sc->re_ldata.re_tx_free == 0) {
1542 /* no more free slots left */
1543 ifp->if_flags |= IFF_OACTIVE;
1544 break;
1545 }
1546
1547 /*
1548 * Set up checksum offload. Note: checksum offload bits must
1549 * appear in all descriptors of a multi-descriptor transmit
1550 * attempt. (This is according to testing done with an 8169
1551 * chip. I'm not sure if this is a requirement or a bug.)
1552 */
1553
1554 vlanctl = 0;
1555 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1556 uint32_t segsz = m->m_pkthdr.segsz;
1557
1558 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1559 re_flags = RE_TDESC_CMD_LGSEND |
1560 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1561 } else {
1562 re_flags = RE_TDESC_CMD_LGSEND_V4;
1563 vlanctl |=
1564 (segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT);
1565 }
1566 } else {
1567 /*
1568 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1569 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1570 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1571 */
1572 re_flags = 0;
1573 if ((m->m_pkthdr.csum_flags &
1574 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1575 != 0) {
1576 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1577 re_flags |= RE_TDESC_CMD_IPCSUM;
1578 if (m->m_pkthdr.csum_flags &
1579 M_CSUM_TCPv4) {
1580 re_flags |=
1581 RE_TDESC_CMD_TCPCSUM;
1582 } else if (m->m_pkthdr.csum_flags &
1583 M_CSUM_UDPv4) {
1584 re_flags |=
1585 RE_TDESC_CMD_UDPCSUM;
1586 }
1587 } else {
1588 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1589 if (m->m_pkthdr.csum_flags &
1590 M_CSUM_TCPv4) {
1591 vlanctl |=
1592 RE_TDESC_VLANCTL_TCPCSUM;
1593 } else if (m->m_pkthdr.csum_flags &
1594 M_CSUM_UDPv4) {
1595 vlanctl |=
1596 RE_TDESC_VLANCTL_UDPCSUM;
1597 }
1598 }
1599 }
1600 }
1601
1602 txq = &sc->re_ldata.re_txq[idx];
1603 map = txq->txq_dmamap;
1604 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1605 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1606
1607 if (__predict_false(error)) {
1608 /* XXX try to defrag if EFBIG? */
1609 printf("%s: can't map mbuf (error %d)\n",
1610 device_xname(sc->sc_dev), error);
1611
1612 IFQ_DEQUEUE(&ifp->if_snd, m);
1613 m_freem(m);
1614 ifp->if_oerrors++;
1615 continue;
1616 }
1617
1618 nsegs = map->dm_nsegs;
1619 pad = false;
1620 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1621 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1622 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1623 pad = true;
1624 nsegs++;
1625 }
1626
1627 if (nsegs > sc->re_ldata.re_tx_free) {
1628 /*
1629 * Not enough free descriptors to transmit this packet.
1630 */
1631 ifp->if_flags |= IFF_OACTIVE;
1632 bus_dmamap_unload(sc->sc_dmat, map);
1633 break;
1634 }
1635
1636 IFQ_DEQUEUE(&ifp->if_snd, m);
1637
1638 /*
1639 * Make sure that the caches are synchronized before we
1640 * ask the chip to start DMA for the packet data.
1641 */
1642 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1643 BUS_DMASYNC_PREWRITE);
1644
1645 /*
1646 * Set up hardware VLAN tagging. Note: vlan tag info must
1647 * appear in all descriptors of a multi-descriptor
1648 * transmission attempt.
1649 */
1650 if (vlan_has_tag(m))
1651 vlanctl |= bswap16(vlan_get_tag(m)) |
1652 RE_TDESC_VLANCTL_TAG;
1653
1654 /*
1655 * Map the segment array into descriptors.
1656 * Note that we set the start-of-frame and
1657 * end-of-frame markers for either TX or RX,
1658 * but they really only have meaning in the TX case.
1659 * (In the RX case, it's the chip that tells us
1660 * where packets begin and end.)
1661 * We also keep track of the end of the ring
1662 * and set the end-of-ring bits as needed,
1663 * and we set the ownership bits in all except
1664 * the very first descriptor. (The caller will
1665 * set this descriptor later when it start
1666 * transmission or reception.)
1667 */
1668 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1669 lastdesc = -1;
1670 for (seg = 0; seg < map->dm_nsegs;
1671 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1672 d = &sc->re_ldata.re_tx_list[curdesc];
1673 #ifdef DIAGNOSTIC
1674 RE_TXDESCSYNC(sc, curdesc,
1675 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1676 cmdstat = le32toh(d->re_cmdstat);
1677 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1678 if (cmdstat & RE_TDESC_STAT_OWN) {
1679 panic("%s: tried to map busy TX descriptor",
1680 device_xname(sc->sc_dev));
1681 }
1682 #endif
1683
1684 d->re_vlanctl = htole32(vlanctl);
1685 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1686 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1687 if (seg == 0)
1688 cmdstat |= RE_TDESC_CMD_SOF;
1689 else
1690 cmdstat |= RE_TDESC_CMD_OWN;
1691 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1692 cmdstat |= RE_TDESC_CMD_EOR;
1693 if (seg == nsegs - 1) {
1694 cmdstat |= RE_TDESC_CMD_EOF;
1695 lastdesc = curdesc;
1696 }
1697 d->re_cmdstat = htole32(cmdstat);
1698 RE_TXDESCSYNC(sc, curdesc,
1699 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1700 }
1701 if (__predict_false(pad)) {
1702 d = &sc->re_ldata.re_tx_list[curdesc];
1703 d->re_vlanctl = htole32(vlanctl);
1704 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1705 cmdstat = re_flags |
1706 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1707 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1708 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1709 cmdstat |= RE_TDESC_CMD_EOR;
1710 d->re_cmdstat = htole32(cmdstat);
1711 RE_TXDESCSYNC(sc, curdesc,
1712 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1713 lastdesc = curdesc;
1714 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1715 }
1716 KASSERT(lastdesc != -1);
1717
1718 /* Transfer ownership of packet to the chip. */
1719
1720 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1721 htole32(RE_TDESC_CMD_OWN);
1722 RE_TXDESCSYNC(sc, startdesc,
1723 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1724
1725 /* update info of TX queue and descriptors */
1726 txq->txq_mbuf = m;
1727 txq->txq_descidx = lastdesc;
1728 txq->txq_nsegs = nsegs;
1729
1730 sc->re_ldata.re_txq_free--;
1731 sc->re_ldata.re_tx_free -= nsegs;
1732 sc->re_ldata.re_tx_nextfree = curdesc;
1733
1734 /*
1735 * If there's a BPF listener, bounce a copy of this frame
1736 * to him.
1737 */
1738 bpf_mtap(ifp, m, BPF_D_OUT);
1739 }
1740
1741 if (sc->re_ldata.re_txq_free < ofree) {
1742 /*
1743 * TX packets are enqueued.
1744 */
1745 sc->re_ldata.re_txq_prodidx = idx;
1746
1747 /*
1748 * Start the transmitter to poll.
1749 *
1750 * RealTek put the TX poll request register in a different
1751 * location on the 8169 gigE chip. I don't know why.
1752 */
1753 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1754 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1755 else
1756 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1757
1758 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
1759 /*
1760 * Use the countdown timer for interrupt moderation.
1761 * 'TX done' interrupts are disabled. Instead, we reset
1762 * the countdown timer, which will begin counting until
1763 * it hits the value in the TIMERINT register, and then
1764 * trigger an interrupt. Each time we write to the
1765 * TIMERCNT register, the timer count is reset to 0.
1766 */
1767 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1768 }
1769
1770 /*
1771 * Set a timeout in case the chip goes out to lunch.
1772 */
1773 ifp->if_timer = 5;
1774 }
1775 }
1776
1777 static int
1778 re_init(struct ifnet *ifp)
1779 {
1780 struct rtk_softc *sc = ifp->if_softc;
1781 uint32_t rxcfg = 0;
1782 uint16_t cfg;
1783 int error;
1784 #ifdef RE_USE_EECMD
1785 const uint8_t *enaddr;
1786 uint32_t reg;
1787 #endif
1788
1789 if ((error = re_enable(sc)) != 0)
1790 goto out;
1791
1792 /*
1793 * Cancel pending I/O and free all RX/TX buffers.
1794 */
1795 re_stop(ifp, 0);
1796
1797 re_reset(sc);
1798
1799 /*
1800 * Enable C+ RX and TX mode, as well as VLAN stripping and
1801 * RX checksum offload. We must configure the C+ register
1802 * before all others.
1803 */
1804 cfg = RE_CPLUSCMD_PCI_MRW;
1805
1806 /*
1807 * XXX: For old 8169 set bit 14.
1808 * For 8169S/8110S and above, do not set bit 14.
1809 */
1810 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1811 cfg |= (0x1 << 14);
1812
1813 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1814 cfg |= RE_CPLUSCMD_VLANSTRIP;
1815 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1816 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1817 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1818 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1819 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1820 cfg |= RE_CPLUSCMD_TXENB;
1821 } else
1822 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1823
1824 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1825
1826 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1827 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
1828 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
1829 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1830 } else {
1831 CSR_WRITE_2(sc, RTK_IM, 0x5151);
1832 }
1833 }
1834
1835 DELAY(10000);
1836
1837 #ifdef RE_USE_EECMD
1838 /*
1839 * Init our MAC address. Even though the chipset
1840 * documentation doesn't mention it, we need to enter "Config
1841 * register write enable" mode to modify the ID registers.
1842 */
1843 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1844 enaddr = CLLADDR(ifp->if_sadl);
1845 reg = enaddr[0] | (enaddr[1] << 8) |
1846 (enaddr[2] << 16) | (enaddr[3] << 24);
1847 CSR_WRITE_4(sc, RTK_IDR0, reg);
1848 reg = enaddr[4] | (enaddr[5] << 8);
1849 CSR_WRITE_4(sc, RTK_IDR4, reg);
1850 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1851 #endif
1852
1853 /*
1854 * For C+ mode, initialize the RX descriptors and mbufs.
1855 */
1856 re_rx_list_init(sc);
1857 re_tx_list_init(sc);
1858
1859 /*
1860 * Load the addresses of the RX and TX lists into the chip.
1861 */
1862 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1863 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1864 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1865 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1866
1867 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1868 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1869 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1870 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1871
1872 if (sc->sc_quirk & RTKQ_RXDV_GATED) {
1873 CSR_WRITE_4(sc, RTK_MISC,
1874 CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
1875 }
1876
1877 /*
1878 * Enable transmit and receive.
1879 */
1880 if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) == 0)
1881 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1882
1883 /*
1884 * Set the initial TX and RX configuration.
1885 */
1886 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1887 /* test mode is needed only for old 8169 */
1888 CSR_WRITE_4(sc, RTK_TXCFG,
1889 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1890 } else
1891 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1892
1893 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1894
1895 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1896
1897 /* Set the individual bit to receive frames for this host only. */
1898 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1899 rxcfg |= RTK_RXCFG_RX_INDIV;
1900
1901 /* If we want promiscuous mode, set the allframes bit. */
1902 if (ifp->if_flags & IFF_PROMISC)
1903 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1904 else
1905 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1906 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1907
1908 /*
1909 * Set capture broadcast bit to capture broadcast frames.
1910 */
1911 if (ifp->if_flags & IFF_BROADCAST)
1912 rxcfg |= RTK_RXCFG_RX_BROAD;
1913 else
1914 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1915 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1916
1917 /*
1918 * Program the multicast filter, if necessary.
1919 */
1920 rtk_setmulti(sc);
1921
1922 /*
1923 * some chips require to enable TX/RX *AFTER* TX/RX configuration
1924 */
1925 if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) != 0)
1926 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1927
1928 /*
1929 * Enable interrupts.
1930 */
1931 if (sc->re_testmode)
1932 CSR_WRITE_2(sc, RTK_IMR, 0);
1933 else if ((sc->sc_quirk & RTKQ_IM_HW) != 0)
1934 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW);
1935 else
1936 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1937
1938 /* Start RX/TX process. */
1939 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1940 #ifdef notdef
1941 /* Enable receiver and transmitter. */
1942 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1943 #endif
1944
1945 /*
1946 * Initialize the timer interrupt register so that
1947 * a timer interrupt will be generated once the timer
1948 * reaches a certain number of ticks. The timer is
1949 * reloaded on each transmit. This gives us TX interrupt
1950 * moderation, which dramatically improves TX frame rate.
1951 */
1952
1953 unsigned defer; /* timer interval / ns */
1954 unsigned period; /* busclock period / ns */
1955
1956 /*
1957 * Maximum frame rate
1958 * 1500 byte PDU -> 81274 Hz
1959 * 46 byte PDU -> 1488096 Hz
1960 *
1961 * Deferring interrupts by up to 128us needs descriptors for
1962 * 1500 byte PDU -> 10.4 frames
1963 * 46 byte PDU -> 190.4 frames
1964 *
1965 */
1966 defer = 128000;
1967
1968 if ((sc->sc_quirk & RTKQ_IM_HW) != 0) {
1969 period = 1;
1970 defer = 0;
1971 } else if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1972 period = 8;
1973 } else {
1974 switch (CSR_READ_1(sc, RTK_CFG2_BUSFREQ) & 0x7) {
1975 case RTK_BUSFREQ_33MHZ:
1976 period = 30;
1977 break;
1978 case RTK_BUSFREQ_66MHZ:
1979 period = 15;
1980 break;
1981 default:
1982 /* lowest possible clock */
1983 period = 60;
1984 break;
1985 }
1986 }
1987
1988 /* Timer Interrupt register address varies */
1989 uint16_t re8139_reg;
1990 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1991 re8139_reg = RTK_TIMERINT;
1992 else
1993 re8139_reg = RTK_TIMERINT_8169;
1994 CSR_WRITE_4(sc, re8139_reg, defer / period);
1995
1996 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
1997 /*
1998 * For 8169 gigE NICs, set the max allowed RX packet
1999 * size so we can receive jumbo frames.
2000 */
2001 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
2002 }
2003
2004 if (sc->re_testmode)
2005 return 0;
2006
2007 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
2008
2009 ifp->if_flags |= IFF_RUNNING;
2010 ifp->if_flags &= ~IFF_OACTIVE;
2011
2012 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
2013
2014 out:
2015 if (error) {
2016 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2017 ifp->if_timer = 0;
2018 printf("%s: interface not running\n",
2019 device_xname(sc->sc_dev));
2020 }
2021
2022 return error;
2023 }
2024
2025 static int
2026 re_ioctl(struct ifnet *ifp, u_long command, void *data)
2027 {
2028 struct rtk_softc *sc = ifp->if_softc;
2029 struct ifreq *ifr = data;
2030 int s, error = 0;
2031
2032 s = splnet();
2033
2034 switch (command) {
2035 case SIOCSIFMTU:
2036 /*
2037 * Disable jumbo frames if it's not supported.
2038 */
2039 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
2040 ifr->ifr_mtu > ETHERMTU) {
2041 error = EINVAL;
2042 break;
2043 }
2044
2045 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2046 error = EINVAL;
2047 else if ((error = ifioctl_common(ifp, command, data)) ==
2048 ENETRESET)
2049 error = 0;
2050 break;
2051 default:
2052 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2053 break;
2054
2055 error = 0;
2056
2057 if (command == SIOCSIFCAP)
2058 error = (*ifp->if_init)(ifp);
2059 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2060 ;
2061 else if (ifp->if_flags & IFF_RUNNING)
2062 rtk_setmulti(sc);
2063 break;
2064 }
2065
2066 splx(s);
2067
2068 return error;
2069 }
2070
2071 static void
2072 re_watchdog(struct ifnet *ifp)
2073 {
2074 struct rtk_softc *sc;
2075 int s;
2076
2077 sc = ifp->if_softc;
2078 s = splnet();
2079 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2080 ifp->if_oerrors++;
2081
2082 re_txeof(sc);
2083 re_rxeof(sc);
2084
2085 re_init(ifp);
2086
2087 splx(s);
2088 }
2089
2090 /*
2091 * Stop the adapter and free any mbufs allocated to the
2092 * RX and TX lists.
2093 */
2094 static void
2095 re_stop(struct ifnet *ifp, int disable)
2096 {
2097 int i;
2098 struct rtk_softc *sc = ifp->if_softc;
2099
2100 callout_stop(&sc->rtk_tick_ch);
2101
2102 mii_down(&sc->mii);
2103
2104 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
2105 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
2106 RTK_CMD_RX_ENB);
2107 else
2108 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2109 DELAY(1000);
2110 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2111 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
2112
2113 if (sc->re_head != NULL) {
2114 m_freem(sc->re_head);
2115 sc->re_head = sc->re_tail = NULL;
2116 }
2117
2118 /* Free the TX list buffers. */
2119 for (i = 0; i < RE_TX_QLEN; i++) {
2120 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2121 bus_dmamap_unload(sc->sc_dmat,
2122 sc->re_ldata.re_txq[i].txq_dmamap);
2123 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2124 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2125 }
2126 }
2127
2128 /* Free the RX list buffers. */
2129 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2130 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2131 bus_dmamap_unload(sc->sc_dmat,
2132 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2133 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2134 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2135 }
2136 }
2137
2138 if (disable)
2139 re_disable(sc);
2140
2141 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2142 ifp->if_timer = 0;
2143 }
2144