rtl8169.c revision 1.161 1 /* $NetBSD: rtl8169.c,v 1.161 2019/12/17 10:42:06 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.161 2019/12/17 10:42:06 msaitoh Exp $");
37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
38
39 /*
40 * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
41 *
42 * Written by Bill Paul <wpaul (at) windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
45 */
46
47 /*
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51 * RTL8110S, the RTL8168 and the RTL8111.
52 *
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
57 *
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
61 *
62 * o 64-bit DMA
63 *
64 * o TCP/IP checksum offload for both RX and TX
65 *
66 * o High and normal priority transmit DMA rings
67 *
68 * o VLAN tag insertion and extraction
69 *
70 * o TCP large send (segmentation offload)
71 *
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
76 *
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
80 *
81 * o 1000Mbps mode
82 *
83 * o Jumbo frames
84 *
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
87 *
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
90 *
91 * o Slight differences in register layout from the 8139C+
92 *
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
98 *
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
104 *
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7.5K, so the max MTU possible with this
111 * driver is 7500 bytes.
112 */
113
114
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/kernel.h>
122 #include <sys/socket.h>
123 #include <sys/device.h>
124
125 #include <net/if.h>
126 #include <net/if_arp.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net/if_vlanvar.h>
131
132 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
133 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
135
136 #include <net/bpf.h>
137 #include <sys/rndsource.h>
138
139 #include <sys/bus.h>
140
141 #include <dev/mii/mii.h>
142 #include <dev/mii/miivar.h>
143
144 #include <dev/ic/rtl81x9reg.h>
145 #include <dev/ic/rtl81x9var.h>
146
147 #include <dev/ic/rtl8169var.h>
148
149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
150
151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
152 static int re_rx_list_init(struct rtk_softc *);
153 static int re_tx_list_init(struct rtk_softc *);
154 static void re_rxeof(struct rtk_softc *);
155 static void re_txeof(struct rtk_softc *);
156 static void re_tick(void *);
157 static void re_start(struct ifnet *);
158 static int re_ioctl(struct ifnet *, u_long, void *);
159 static int re_init(struct ifnet *);
160 static void re_stop(struct ifnet *, int);
161 static void re_watchdog(struct ifnet *);
162
163 static int re_enable(struct rtk_softc *);
164 static void re_disable(struct rtk_softc *);
165
166 static int re_gmii_readreg(device_t, int, int, uint16_t *);
167 static int re_gmii_writereg(device_t, int, int, uint16_t);
168
169 static int re_miibus_readreg(device_t, int, int, uint16_t *);
170 static int re_miibus_writereg(device_t, int, int, uint16_t);
171 static void re_miibus_statchg(struct ifnet *);
172
173 static void re_reset(struct rtk_softc *);
174
175 static inline void
176 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
177 {
178
179 d->re_bufaddr_lo = htole32((uint32_t)addr);
180 if (sizeof(bus_addr_t) == sizeof(uint64_t))
181 d->re_bufaddr_hi = htole32((uint64_t)addr >> 32);
182 else
183 d->re_bufaddr_hi = 0;
184 }
185
186 static int
187 re_gmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
188 {
189 struct rtk_softc *sc = device_private(dev);
190 uint32_t data;
191 int i;
192
193 if (phy != 7)
194 return -1;
195
196 /* Let the rgephy driver read the GMEDIASTAT register */
197
198 if (reg == RTK_GMEDIASTAT) {
199 *val = CSR_READ_1(sc, RTK_GMEDIASTAT);
200 return 0;
201 }
202
203 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
204 DELAY(1000);
205
206 for (i = 0; i < RTK_TIMEOUT; i++) {
207 data = CSR_READ_4(sc, RTK_PHYAR);
208 if (data & RTK_PHYAR_BUSY)
209 break;
210 DELAY(100);
211 }
212
213 if (i == RTK_TIMEOUT) {
214 printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
215 return ETIMEDOUT;
216 }
217
218 *val = data & RTK_PHYAR_PHYDATA;
219 return 0;
220 }
221
222 static int
223 re_gmii_writereg(device_t dev, int phy, int reg, uint16_t val)
224 {
225 struct rtk_softc *sc = device_private(dev);
226 uint32_t data;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (val & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 data = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(data & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 printf("%s: PHY write reg %x <- %hx failed\n",
242 device_xname(sc->sc_dev), reg, val);
243 return ETIMEDOUT;
244 }
245
246 return 0;
247 }
248
249 static int
250 re_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
251 {
252 struct rtk_softc *sc = device_private(dev);
253 uint16_t re8139_reg = 0;
254 int s, rv = 0;
255
256 s = splnet();
257
258 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
259 rv = re_gmii_readreg(dev, phy, reg, val);
260 splx(s);
261 return rv;
262 }
263
264 /* Pretend the internal PHY is only at address 0 */
265 if (phy) {
266 splx(s);
267 return -1;
268 }
269 switch (reg) {
270 case MII_BMCR:
271 re8139_reg = RTK_BMCR;
272 break;
273 case MII_BMSR:
274 re8139_reg = RTK_BMSR;
275 break;
276 case MII_ANAR:
277 re8139_reg = RTK_ANAR;
278 break;
279 case MII_ANER:
280 re8139_reg = RTK_ANER;
281 break;
282 case MII_ANLPAR:
283 re8139_reg = RTK_LPAR;
284 break;
285 case MII_PHYIDR1:
286 case MII_PHYIDR2:
287 *val = 0;
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 *val = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return 0;
300 default:
301 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
302 splx(s);
303 return -1;
304 }
305 *val = CSR_READ_2(sc, re8139_reg);
306 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
307 /* 8139C+ has different bit layout. */
308 *val &= ~(BMCR_LOOP | BMCR_ISO);
309 }
310 splx(s);
311 return 0;
312 }
313
314 static int
315 re_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
316 {
317 struct rtk_softc *sc = device_private(dev);
318 uint16_t re8139_reg = 0;
319 int s, rv;
320
321 s = splnet();
322
323 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
324 rv = re_gmii_writereg(dev, phy, reg, val);
325 splx(s);
326 return rv;
327 }
328
329 /* Pretend the internal PHY is only at address 0 */
330 if (phy) {
331 splx(s);
332 return -1;
333 }
334 switch (reg) {
335 case MII_BMCR:
336 re8139_reg = RTK_BMCR;
337 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
338 /* 8139C+ has different bit layout. */
339 val &= ~(BMCR_LOOP | BMCR_ISO);
340 }
341 break;
342 case MII_BMSR:
343 re8139_reg = RTK_BMSR;
344 break;
345 case MII_ANAR:
346 re8139_reg = RTK_ANAR;
347 break;
348 case MII_ANER:
349 re8139_reg = RTK_ANER;
350 break;
351 case MII_ANLPAR:
352 re8139_reg = RTK_LPAR;
353 break;
354 case MII_PHYIDR1:
355 case MII_PHYIDR2:
356 splx(s);
357 return 0;
358 break;
359 default:
360 printf("%s: bad phy register\n", device_xname(sc->sc_dev));
361 splx(s);
362 return -1;
363 }
364 CSR_WRITE_2(sc, re8139_reg, val);
365 splx(s);
366 return 0;
367 }
368
369 static void
370 re_miibus_statchg(struct ifnet *ifp)
371 {
372
373 return;
374 }
375
376 static void
377 re_reset(struct rtk_softc *sc)
378 {
379 int i;
380
381 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
382
383 for (i = 0; i < RTK_TIMEOUT; i++) {
384 DELAY(10);
385 if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
386 break;
387 }
388 if (i == RTK_TIMEOUT)
389 printf("%s: reset never completed!\n",
390 device_xname(sc->sc_dev));
391
392 /*
393 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
394 * but also says "Rtl8169s sigle chip detected".
395 */
396 if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
397 CSR_WRITE_1(sc, RTK_LDPS, 1);
398
399 }
400
401 /*
402 * The following routine is designed to test for a defect on some
403 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
404 * lines connected to the bus, however for a 32-bit only card, they
405 * should be pulled high. The result of this defect is that the
406 * NIC will not work right if you plug it into a 64-bit slot: DMA
407 * operations will be done with 64-bit transfers, which will fail
408 * because the 64-bit data lines aren't connected.
409 *
410 * There's no way to work around this (short of talking a soldering
411 * iron to the board), however we can detect it. The method we use
412 * here is to put the NIC into digital loopback mode, set the receiver
413 * to promiscuous mode, and then try to send a frame. We then compare
414 * the frame data we sent to what was received. If the data matches,
415 * then the NIC is working correctly, otherwise we know the user has
416 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
417 * slot. In the latter case, there's no way the NIC can work correctly,
418 * so we print out a message on the console and abort the device attach.
419 */
420
421 int
422 re_diag(struct rtk_softc *sc)
423 {
424 struct ifnet *ifp = &sc->ethercom.ec_if;
425 struct mbuf *m0;
426 struct ether_header *eh;
427 struct re_rxsoft *rxs;
428 struct re_desc *cur_rx;
429 bus_dmamap_t dmamap;
430 uint16_t status;
431 uint32_t rxstat;
432 int total_len, i, s, error = 0;
433 static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
434 static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
435
436 /* Allocate a single mbuf */
437
438 MGETHDR(m0, M_DONTWAIT, MT_DATA);
439 if (m0 == NULL)
440 return ENOBUFS;
441
442 /*
443 * Initialize the NIC in test mode. This sets the chip up
444 * so that it can send and receive frames, but performs the
445 * following special functions:
446 * - Puts receiver in promiscuous mode
447 * - Enables digital loopback mode
448 * - Leaves interrupts turned off
449 */
450
451 ifp->if_flags |= IFF_PROMISC;
452 sc->re_testmode = 1;
453 re_init(ifp);
454 re_stop(ifp, 0);
455 DELAY(100000);
456 re_init(ifp);
457
458 /* Put some data in the mbuf */
459
460 eh = mtod(m0, struct ether_header *);
461 memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
462 memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
463 eh->ether_type = htons(ETHERTYPE_IP);
464 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
465
466 /*
467 * Queue the packet, start transmission.
468 */
469
470 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
471 s = splnet();
472 IF_ENQUEUE(&ifp->if_snd, m0);
473 re_start(ifp);
474 splx(s);
475 m0 = NULL;
476
477 /* Wait for it to propagate through the chip */
478
479 DELAY(100000);
480 for (i = 0; i < RTK_TIMEOUT; i++) {
481 status = CSR_READ_2(sc, RTK_ISR);
482 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
483 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
484 break;
485 DELAY(10);
486 }
487 if (i == RTK_TIMEOUT) {
488 aprint_error_dev(sc->sc_dev,
489 "diagnostic failed, failed to receive packet "
490 "in loopback mode\n");
491 error = EIO;
492 goto done;
493 }
494
495 /*
496 * The packet should have been dumped into the first
497 * entry in the RX DMA ring. Grab it from there.
498 */
499
500 rxs = &sc->re_ldata.re_rxsoft[0];
501 dmamap = rxs->rxs_dmamap;
502 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
503 BUS_DMASYNC_POSTREAD);
504 bus_dmamap_unload(sc->sc_dmat, dmamap);
505
506 m0 = rxs->rxs_mbuf;
507 rxs->rxs_mbuf = NULL;
508 eh = mtod(m0, struct ether_header *);
509
510 RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
511 cur_rx = &sc->re_ldata.re_rx_list[0];
512 rxstat = le32toh(cur_rx->re_cmdstat);
513 total_len = rxstat & sc->re_rxlenmask;
514
515 if (total_len != ETHER_MIN_LEN) {
516 aprint_error_dev(sc->sc_dev,
517 "diagnostic failed, received short packet\n");
518 error = EIO;
519 goto done;
520 }
521
522 /* Test that the received packet data matches what we sent. */
523
524 if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
525 memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
526 ntohs(eh->ether_type) != ETHERTYPE_IP) {
527 aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
528 "expected TX data: %s/%s/0x%x\n"
529 "received RX data: %s/%s/0x%x\n"
530 "You may have a defective 32-bit NIC plugged "
531 "into a 64-bit PCI slot.\n"
532 "Please re-install the NIC in a 32-bit slot "
533 "for proper operation.\n"
534 "Read the re(4) man page for more details.\n" ,
535 ether_sprintf(dst), ether_sprintf(src), ETHERTYPE_IP,
536 ether_sprintf(eh->ether_dhost),
537 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
538 error = EIO;
539 }
540
541 done:
542 /* Turn interface off, release resources */
543
544 sc->re_testmode = 0;
545 ifp->if_flags &= ~IFF_PROMISC;
546 re_stop(ifp, 0);
547 if (m0 != NULL)
548 m_freem(m0);
549
550 return error;
551 }
552
553
554 /*
555 * Attach the interface. Allocate softc structures, do ifmedia
556 * setup and ethernet/BPF attach.
557 */
558 void
559 re_attach(struct rtk_softc *sc)
560 {
561 uint8_t eaddr[ETHER_ADDR_LEN];
562 struct ifnet *ifp;
563 struct mii_data *mii = &sc->mii;
564 int error = 0, i;
565
566 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
567 uint32_t hwrev;
568
569 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
570 hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
571 switch (hwrev) {
572 case RTK_HWREV_8169:
573 sc->sc_quirk |= RTKQ_8169NONS;
574 break;
575 case RTK_HWREV_8169S:
576 case RTK_HWREV_8110S:
577 case RTK_HWREV_8169_8110SB:
578 case RTK_HWREV_8169_8110SBL:
579 case RTK_HWREV_8169_8110SC:
580 sc->sc_quirk |= RTKQ_MACLDPS;
581 break;
582 case RTK_HWREV_8168_SPIN1:
583 case RTK_HWREV_8168_SPIN2:
584 case RTK_HWREV_8168_SPIN3:
585 sc->sc_quirk |= RTKQ_MACSTAT;
586 break;
587 case RTK_HWREV_8168C:
588 case RTK_HWREV_8168C_SPIN2:
589 case RTK_HWREV_8168CP:
590 case RTK_HWREV_8168D:
591 case RTK_HWREV_8168DP:
592 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
593 RTKQ_MACSTAT | RTKQ_CMDSTOP;
594 /*
595 * From FreeBSD driver:
596 *
597 * These (8168/8111) controllers support jumbo frame
598 * but it seems that enabling it requires touching
599 * additional magic registers. Depending on MAC
600 * revisions some controllers need to disable
601 * checksum offload. So disable jumbo frame until
602 * I have better idea what it really requires to
603 * make it support.
604 * RTL8168C/CP : supports up to 6KB jumbo frame.
605 * RTL8111C/CP : supports up to 9KB jumbo frame.
606 */
607 sc->sc_quirk |= RTKQ_NOJUMBO;
608 break;
609 case RTK_HWREV_8168E:
610 case RTK_HWREV_8168H_SPIN1:
611 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
612 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
613 RTKQ_NOJUMBO;
614 break;
615 case RTK_HWREV_8168H:
616 case RTK_HWREV_8168FP:
617 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
618 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
619 RTKQ_NOJUMBO | RTKQ_RXDV_GATED | RTKQ_TXRXEN_LATER;
620 break;
621 case RTK_HWREV_8168E_VL:
622 case RTK_HWREV_8168F:
623 case RTK_HWREV_8411:
624 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
625 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
626 break;
627 case RTK_HWREV_8168EP:
628 case RTK_HWREV_8168G:
629 case RTK_HWREV_8168G_SPIN1:
630 case RTK_HWREV_8168G_SPIN2:
631 case RTK_HWREV_8168G_SPIN4:
632 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
633 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO |
634 RTKQ_RXDV_GATED;
635 break;
636 case RTK_HWREV_8100E:
637 case RTK_HWREV_8100E_SPIN2:
638 case RTK_HWREV_8101E:
639 sc->sc_quirk |= RTKQ_NOJUMBO;
640 break;
641 case RTK_HWREV_8102E:
642 case RTK_HWREV_8102EL:
643 case RTK_HWREV_8102EL_SPIN1:
644 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
645 RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
646 break;
647 case RTK_HWREV_8103E:
648 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
649 RTKQ_MACSTAT | RTKQ_CMDSTOP;
650 break;
651 case RTK_HWREV_8401E:
652 case RTK_HWREV_8105E:
653 case RTK_HWREV_8105E_SPIN1:
654 case RTK_HWREV_8106E:
655 sc->sc_quirk |= RTKQ_PHYWAKE_PM |
656 RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
657 RTKQ_CMDSTOP;
658 break;
659 case RTK_HWREV_8402:
660 sc->sc_quirk |= RTKQ_PHYWAKE_PM |
661 RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
662 RTKQ_CMDSTOP; /* CMDSTOP_WAIT_TXQ */
663 break;
664 default:
665 aprint_normal_dev(sc->sc_dev,
666 "Unknown revision (0x%08x)\n", hwrev);
667 /* assume the latest features */
668 sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
669 sc->sc_quirk |= RTKQ_NOJUMBO;
670 }
671
672 /* Set RX length mask */
673 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
674 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
675 } else {
676 sc->sc_quirk |= RTKQ_NOJUMBO;
677
678 /* Set RX length mask */
679 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
680 sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
681 }
682
683 /* Reset the adapter. */
684 re_reset(sc);
685
686 /*
687 * RTL81x9 chips automatically read EEPROM to init MAC address,
688 * and some NAS override its MAC address per own configuration,
689 * so no need to explicitely read EEPROM and set ID registers.
690 */
691 #ifdef RE_USE_EECMD
692 if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
693 /*
694 * Get station address from ID registers.
695 */
696 for (i = 0; i < ETHER_ADDR_LEN; i++)
697 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
698 } else {
699 uint16_t val;
700 int addr_len;
701
702 /*
703 * Get station address from the EEPROM.
704 */
705 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
706 addr_len = RTK_EEADDR_LEN1;
707 else
708 addr_len = RTK_EEADDR_LEN0;
709
710 /*
711 * Get station address from the EEPROM.
712 */
713 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
714 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
715 eaddr[(i * 2) + 0] = val & 0xff;
716 eaddr[(i * 2) + 1] = val >> 8;
717 }
718 }
719 #else
720 /*
721 * Get station address from ID registers.
722 */
723 for (i = 0; i < ETHER_ADDR_LEN; i++)
724 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
725 #endif
726
727 /* Take PHY out of power down mode. */
728 if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
729 CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
730
731 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
732 ether_sprintf(eaddr));
733
734 if (sc->re_ldata.re_tx_desc_cnt >
735 PAGE_SIZE / sizeof(struct re_desc)) {
736 sc->re_ldata.re_tx_desc_cnt =
737 PAGE_SIZE / sizeof(struct re_desc);
738 }
739
740 aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
741 sc->re_ldata.re_tx_desc_cnt);
742 KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
743
744 /* Allocate DMA'able memory for the TX ring */
745 if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
746 RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
747 &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
748 aprint_error_dev(sc->sc_dev,
749 "can't allocate tx listseg, error = %d\n", error);
750 goto fail_0;
751 }
752
753 /* Load the map for the TX ring. */
754 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
755 sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
756 (void **)&sc->re_ldata.re_tx_list,
757 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
758 aprint_error_dev(sc->sc_dev,
759 "can't map tx list, error = %d\n", error);
760 goto fail_1;
761 }
762 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
763
764 if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
765 RE_TX_LIST_SZ(sc), 0, 0,
766 &sc->re_ldata.re_tx_list_map)) != 0) {
767 aprint_error_dev(sc->sc_dev,
768 "can't create tx list map, error = %d\n", error);
769 goto fail_2;
770 }
771
772
773 if ((error = bus_dmamap_load(sc->sc_dmat,
774 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
775 RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
776 aprint_error_dev(sc->sc_dev,
777 "can't load tx list, error = %d\n", error);
778 goto fail_3;
779 }
780
781 /* Create DMA maps for TX buffers */
782 for (i = 0; i < RE_TX_QLEN; i++) {
783 error = bus_dmamap_create(sc->sc_dmat,
784 round_page(IP_MAXPACKET),
785 RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
786 0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
787 if (error) {
788 aprint_error_dev(sc->sc_dev,
789 "can't create DMA map for TX\n");
790 goto fail_4;
791 }
792 }
793
794 /* Allocate DMA'able memory for the RX ring */
795 /* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
796 if ((error = bus_dmamem_alloc(sc->sc_dmat,
797 RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
798 &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
799 aprint_error_dev(sc->sc_dev,
800 "can't allocate rx listseg, error = %d\n", error);
801 goto fail_4;
802 }
803
804 /* Load the map for the RX ring. */
805 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
806 sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
807 (void **)&sc->re_ldata.re_rx_list,
808 BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
809 aprint_error_dev(sc->sc_dev,
810 "can't map rx list, error = %d\n", error);
811 goto fail_5;
812 }
813 memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
814
815 if ((error = bus_dmamap_create(sc->sc_dmat,
816 RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
817 &sc->re_ldata.re_rx_list_map)) != 0) {
818 aprint_error_dev(sc->sc_dev,
819 "can't create rx list map, error = %d\n", error);
820 goto fail_6;
821 }
822
823 if ((error = bus_dmamap_load(sc->sc_dmat,
824 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
825 RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
826 aprint_error_dev(sc->sc_dev,
827 "can't load rx list, error = %d\n", error);
828 goto fail_7;
829 }
830
831 /* Create DMA maps for RX buffers */
832 for (i = 0; i < RE_RX_DESC_CNT; i++) {
833 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
834 0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
835 if (error) {
836 aprint_error_dev(sc->sc_dev,
837 "can't create DMA map for RX\n");
838 goto fail_8;
839 }
840 }
841
842 /*
843 * Record interface as attached. From here, we should not fail.
844 */
845 sc->sc_flags |= RTK_ATTACHED;
846
847 ifp = &sc->ethercom.ec_if;
848 ifp->if_softc = sc;
849 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
850 ifp->if_mtu = ETHERMTU;
851 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
852 ifp->if_ioctl = re_ioctl;
853 sc->ethercom.ec_capabilities |=
854 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
855 ifp->if_start = re_start;
856 ifp->if_stop = re_stop;
857
858 /*
859 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
860 * so we have a workaround to handle the bug by padding
861 * such packets manually.
862 */
863 ifp->if_capabilities |=
864 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
865 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
866 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
867 IFCAP_TSOv4;
868
869 ifp->if_watchdog = re_watchdog;
870 ifp->if_init = re_init;
871 ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
872 ifp->if_capenable = ifp->if_capabilities;
873 IFQ_SET_READY(&ifp->if_snd);
874
875 callout_init(&sc->rtk_tick_ch, 0);
876
877 /* Do MII setup */
878 mii->mii_ifp = ifp;
879 mii->mii_readreg = re_miibus_readreg;
880 mii->mii_writereg = re_miibus_writereg;
881 mii->mii_statchg = re_miibus_statchg;
882 sc->ethercom.ec_mii = mii;
883 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
884 ether_mediastatus);
885 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
886 MII_OFFSET_ANY, 0);
887 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
888
889 /*
890 * Call MI attach routine.
891 */
892 if_attach(ifp);
893 if_deferred_start_init(ifp, NULL);
894 ether_ifattach(ifp, eaddr);
895
896 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
897 RND_TYPE_NET, RND_FLAG_DEFAULT);
898
899 if (pmf_device_register(sc->sc_dev, NULL, NULL))
900 pmf_class_network_register(sc->sc_dev, ifp);
901 else
902 aprint_error_dev(sc->sc_dev,
903 "couldn't establish power handler\n");
904
905 return;
906
907 fail_8:
908 /* Destroy DMA maps for RX buffers. */
909 for (i = 0; i < RE_RX_DESC_CNT; i++)
910 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
911 bus_dmamap_destroy(sc->sc_dmat,
912 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
913
914 /* Free DMA'able memory for the RX ring. */
915 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
916 fail_7:
917 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
918 fail_6:
919 bus_dmamem_unmap(sc->sc_dmat,
920 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
921 fail_5:
922 bus_dmamem_free(sc->sc_dmat,
923 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
924
925 fail_4:
926 /* Destroy DMA maps for TX buffers. */
927 for (i = 0; i < RE_TX_QLEN; i++)
928 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
929 bus_dmamap_destroy(sc->sc_dmat,
930 sc->re_ldata.re_txq[i].txq_dmamap);
931
932 /* Free DMA'able memory for the TX ring. */
933 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
934 fail_3:
935 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
936 fail_2:
937 bus_dmamem_unmap(sc->sc_dmat,
938 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
939 fail_1:
940 bus_dmamem_free(sc->sc_dmat,
941 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
942 fail_0:
943 return;
944 }
945
946
947 /*
948 * re_activate:
949 * Handle device activation/deactivation requests.
950 */
951 int
952 re_activate(device_t self, enum devact act)
953 {
954 struct rtk_softc *sc = device_private(self);
955
956 switch (act) {
957 case DVACT_DEACTIVATE:
958 if_deactivate(&sc->ethercom.ec_if);
959 return 0;
960 default:
961 return EOPNOTSUPP;
962 }
963 }
964
965 /*
966 * re_detach:
967 * Detach a rtk interface.
968 */
969 int
970 re_detach(struct rtk_softc *sc)
971 {
972 struct ifnet *ifp = &sc->ethercom.ec_if;
973 int i;
974
975 /*
976 * Succeed now if there isn't any work to do.
977 */
978 if ((sc->sc_flags & RTK_ATTACHED) == 0)
979 return 0;
980
981 /* Unhook our tick handler. */
982 callout_stop(&sc->rtk_tick_ch);
983
984 /* Detach all PHYs. */
985 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
986
987 /* Delete all remaining media. */
988 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
989
990 rnd_detach_source(&sc->rnd_source);
991 ether_ifdetach(ifp);
992 if_detach(ifp);
993
994 /* Destroy DMA maps for RX buffers. */
995 for (i = 0; i < RE_RX_DESC_CNT; i++)
996 if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
997 bus_dmamap_destroy(sc->sc_dmat,
998 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
999
1000 /* Free DMA'able memory for the RX ring. */
1001 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
1002 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
1003 bus_dmamem_unmap(sc->sc_dmat,
1004 (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
1005 bus_dmamem_free(sc->sc_dmat,
1006 &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
1007
1008 /* Destroy DMA maps for TX buffers. */
1009 for (i = 0; i < RE_TX_QLEN; i++)
1010 if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
1011 bus_dmamap_destroy(sc->sc_dmat,
1012 sc->re_ldata.re_txq[i].txq_dmamap);
1013
1014 /* Free DMA'able memory for the TX ring. */
1015 bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
1016 bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
1017 bus_dmamem_unmap(sc->sc_dmat,
1018 (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
1019 bus_dmamem_free(sc->sc_dmat,
1020 &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
1021
1022 pmf_device_deregister(sc->sc_dev);
1023
1024 /* we don't want to run again */
1025 sc->sc_flags &= ~RTK_ATTACHED;
1026
1027 return 0;
1028 }
1029
1030 /*
1031 * re_enable:
1032 * Enable the RTL81X9 chip.
1033 */
1034 static int
1035 re_enable(struct rtk_softc *sc)
1036 {
1037
1038 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
1039 if ((*sc->sc_enable)(sc) != 0) {
1040 printf("%s: device enable failed\n",
1041 device_xname(sc->sc_dev));
1042 return EIO;
1043 }
1044 sc->sc_flags |= RTK_ENABLED;
1045 }
1046 return 0;
1047 }
1048
1049 /*
1050 * re_disable:
1051 * Disable the RTL81X9 chip.
1052 */
1053 static void
1054 re_disable(struct rtk_softc *sc)
1055 {
1056
1057 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
1058 (*sc->sc_disable)(sc);
1059 sc->sc_flags &= ~RTK_ENABLED;
1060 }
1061 }
1062
1063 static int
1064 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1065 {
1066 struct mbuf *n = NULL;
1067 bus_dmamap_t map;
1068 struct re_desc *d;
1069 struct re_rxsoft *rxs;
1070 uint32_t cmdstat;
1071 int error;
1072
1073 if (m == NULL) {
1074 MGETHDR(n, M_DONTWAIT, MT_DATA);
1075 if (n == NULL)
1076 return ENOBUFS;
1077
1078 MCLGET(n, M_DONTWAIT);
1079 if ((n->m_flags & M_EXT) == 0) {
1080 m_freem(n);
1081 return ENOBUFS;
1082 }
1083 m = n;
1084 } else
1085 m->m_data = m->m_ext.ext_buf;
1086
1087 /*
1088 * Initialize mbuf length fields and fixup
1089 * alignment so that the frame payload is
1090 * longword aligned.
1091 */
1092 m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
1093 m->m_data += RE_ETHER_ALIGN;
1094
1095 rxs = &sc->re_ldata.re_rxsoft[idx];
1096 map = rxs->rxs_dmamap;
1097 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1098 BUS_DMA_READ|BUS_DMA_NOWAIT);
1099
1100 if (error)
1101 goto out;
1102
1103 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1104 BUS_DMASYNC_PREREAD);
1105
1106 d = &sc->re_ldata.re_rx_list[idx];
1107 #ifdef DIAGNOSTIC
1108 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1109 cmdstat = le32toh(d->re_cmdstat);
1110 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
1111 if (cmdstat & RE_RDESC_STAT_OWN) {
1112 panic("%s: tried to map busy RX descriptor",
1113 device_xname(sc->sc_dev));
1114 }
1115 #endif
1116
1117 rxs->rxs_mbuf = m;
1118
1119 d->re_vlanctl = 0;
1120 cmdstat = map->dm_segs[0].ds_len;
1121 if (idx == (RE_RX_DESC_CNT - 1))
1122 cmdstat |= RE_RDESC_CMD_EOR;
1123 re_set_bufaddr(d, map->dm_segs[0].ds_addr);
1124 d->re_cmdstat = htole32(cmdstat);
1125 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1126 cmdstat |= RE_RDESC_CMD_OWN;
1127 d->re_cmdstat = htole32(cmdstat);
1128 RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1129
1130 return 0;
1131 out:
1132 if (n != NULL)
1133 m_freem(n);
1134 return ENOMEM;
1135 }
1136
1137 static int
1138 re_tx_list_init(struct rtk_softc *sc)
1139 {
1140 int i;
1141
1142 memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
1143 for (i = 0; i < RE_TX_QLEN; i++) {
1144 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
1145 }
1146
1147 bus_dmamap_sync(sc->sc_dmat,
1148 sc->re_ldata.re_tx_list_map, 0,
1149 sc->re_ldata.re_tx_list_map->dm_mapsize,
1150 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1151 sc->re_ldata.re_txq_prodidx = 0;
1152 sc->re_ldata.re_txq_considx = 0;
1153 sc->re_ldata.re_txq_free = RE_TX_QLEN;
1154 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
1155 sc->re_ldata.re_tx_nextfree = 0;
1156
1157 return 0;
1158 }
1159
1160 static int
1161 re_rx_list_init(struct rtk_softc *sc)
1162 {
1163 int i;
1164
1165 memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
1166
1167 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1168 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1169 return ENOBUFS;
1170 }
1171
1172 sc->re_ldata.re_rx_prodidx = 0;
1173 sc->re_head = sc->re_tail = NULL;
1174
1175 return 0;
1176 }
1177
1178 /*
1179 * RX handler for C+ and 8169. For the gigE chips, we support
1180 * the reception of jumbo frames that have been fragmented
1181 * across multiple 2K mbuf cluster buffers.
1182 */
1183 static void
1184 re_rxeof(struct rtk_softc *sc)
1185 {
1186 struct mbuf *m;
1187 struct ifnet *ifp;
1188 int i, total_len;
1189 struct re_desc *cur_rx;
1190 struct re_rxsoft *rxs;
1191 uint32_t rxstat, rxvlan;
1192
1193 ifp = &sc->ethercom.ec_if;
1194
1195 for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
1196 cur_rx = &sc->re_ldata.re_rx_list[i];
1197 RE_RXDESCSYNC(sc, i,
1198 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1199 rxstat = le32toh(cur_rx->re_cmdstat);
1200 rxvlan = le32toh(cur_rx->re_vlanctl);
1201 RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
1202 if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
1203 break;
1204 }
1205 total_len = rxstat & sc->re_rxlenmask;
1206 rxs = &sc->re_ldata.re_rxsoft[i];
1207 m = rxs->rxs_mbuf;
1208
1209 /* Invalidate the RX mbuf and unload its map */
1210
1211 bus_dmamap_sync(sc->sc_dmat,
1212 rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
1213 BUS_DMASYNC_POSTREAD);
1214 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1215
1216 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1217 m->m_len = MCLBYTES - RE_ETHER_ALIGN;
1218 if (sc->re_head == NULL)
1219 sc->re_head = sc->re_tail = m;
1220 else {
1221 m_remove_pkthdr(m);
1222 sc->re_tail->m_next = m;
1223 sc->re_tail = m;
1224 }
1225 re_newbuf(sc, i, NULL);
1226 continue;
1227 }
1228
1229 /*
1230 * NOTE: for the 8139C+, the frame length field
1231 * is always 12 bits in size, but for the gigE chips,
1232 * it is 13 bits (since the max RX frame length is 16K).
1233 * Unfortunately, all 32 bits in the status word
1234 * were already used, so to make room for the extra
1235 * length bit, RealTek took out the 'frame alignment
1236 * error' bit and shifted the other status bits
1237 * over one slot. The OWN, EOR, FS and LS bits are
1238 * still in the same places. We have already extracted
1239 * the frame length and checked the OWN bit, so rather
1240 * than using an alternate bit mapping, we shift the
1241 * status bits one space to the right so we can evaluate
1242 * them using the 8169 status as though it was in the
1243 * same format as that of the 8139C+.
1244 */
1245 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
1246 rxstat >>= 1;
1247
1248 if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
1249 #ifdef RE_DEBUG
1250 printf("%s: RX error (rxstat = 0x%08x)",
1251 device_xname(sc->sc_dev), rxstat);
1252 if (rxstat & RE_RDESC_STAT_FRALIGN)
1253 printf(", frame alignment error");
1254 if (rxstat & RE_RDESC_STAT_BUFOFLOW)
1255 printf(", out of buffer space");
1256 if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
1257 printf(", FIFO overrun");
1258 if (rxstat & RE_RDESC_STAT_GIANT)
1259 printf(", giant packet");
1260 if (rxstat & RE_RDESC_STAT_RUNT)
1261 printf(", runt packet");
1262 if (rxstat & RE_RDESC_STAT_CRCERR)
1263 printf(", CRC error");
1264 printf("\n");
1265 #endif
1266 ifp->if_ierrors++;
1267 /*
1268 * If this is part of a multi-fragment packet,
1269 * discard all the pieces.
1270 */
1271 if (sc->re_head != NULL) {
1272 m_freem(sc->re_head);
1273 sc->re_head = sc->re_tail = NULL;
1274 }
1275 re_newbuf(sc, i, m);
1276 continue;
1277 }
1278
1279 /*
1280 * If allocating a replacement mbuf fails,
1281 * reload the current one.
1282 */
1283
1284 if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
1285 ifp->if_ierrors++;
1286 if (sc->re_head != NULL) {
1287 m_freem(sc->re_head);
1288 sc->re_head = sc->re_tail = NULL;
1289 }
1290 re_newbuf(sc, i, m);
1291 continue;
1292 }
1293
1294 if (sc->re_head != NULL) {
1295 m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
1296 /*
1297 * Special case: if there's 4 bytes or less
1298 * in this buffer, the mbuf can be discarded:
1299 * the last 4 bytes is the CRC, which we don't
1300 * care about anyway.
1301 */
1302 if (m->m_len <= ETHER_CRC_LEN) {
1303 sc->re_tail->m_len -=
1304 (ETHER_CRC_LEN - m->m_len);
1305 m_freem(m);
1306 } else {
1307 m->m_len -= ETHER_CRC_LEN;
1308 m_remove_pkthdr(m);
1309 sc->re_tail->m_next = m;
1310 }
1311 m = sc->re_head;
1312 sc->re_head = sc->re_tail = NULL;
1313 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1314 } else
1315 m->m_pkthdr.len = m->m_len =
1316 (total_len - ETHER_CRC_LEN);
1317
1318 m_set_rcvif(m, ifp);
1319
1320 /* Do RX checksumming */
1321 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1322 /* Check IP header checksum */
1323 if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
1324 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1325 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1326 m->m_pkthdr.csum_flags |=
1327 M_CSUM_IPv4_BAD;
1328
1329 /* Check TCP/UDP checksum */
1330 if (RE_TCPPKT(rxstat)) {
1331 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1332 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1333 m->m_pkthdr.csum_flags |=
1334 M_CSUM_TCP_UDP_BAD;
1335 } else if (RE_UDPPKT(rxstat)) {
1336 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1337 if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
1338 /*
1339 * XXX: 8139C+ thinks UDP csum
1340 * 0xFFFF is bad, force software
1341 * calculation.
1342 */
1343 if (sc->sc_quirk & RTKQ_8139CPLUS)
1344 m->m_pkthdr.csum_flags
1345 &= ~M_CSUM_UDPv4;
1346 else
1347 m->m_pkthdr.csum_flags
1348 |= M_CSUM_TCP_UDP_BAD;
1349 }
1350 }
1351 }
1352 } else {
1353 /* Check IPv4 header checksum */
1354 if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
1355 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1356 if (rxstat & RE_RDESC_STAT_IPSUMBAD)
1357 m->m_pkthdr.csum_flags |=
1358 M_CSUM_IPv4_BAD;
1359
1360 /* Check TCPv4/UDPv4 checksum */
1361 if (RE_TCPPKT(rxstat)) {
1362 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1363 if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
1364 m->m_pkthdr.csum_flags |=
1365 M_CSUM_TCP_UDP_BAD;
1366 } else if (RE_UDPPKT(rxstat)) {
1367 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1368 if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
1369 m->m_pkthdr.csum_flags |=
1370 M_CSUM_TCP_UDP_BAD;
1371 }
1372 }
1373 /* XXX Check TCPv6/UDPv6 checksum? */
1374 }
1375
1376 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1377 vlan_set_tag(m,
1378 bswap16(rxvlan & RE_RDESC_VLANCTL_DATA));
1379 }
1380 if_percpuq_enqueue(ifp->if_percpuq, m);
1381 }
1382
1383 sc->re_ldata.re_rx_prodidx = i;
1384 }
1385
1386 static void
1387 re_txeof(struct rtk_softc *sc)
1388 {
1389 struct ifnet *ifp;
1390 struct re_txq *txq;
1391 uint32_t txstat;
1392 int idx, descidx;
1393
1394 ifp = &sc->ethercom.ec_if;
1395
1396 for (idx = sc->re_ldata.re_txq_considx;
1397 sc->re_ldata.re_txq_free < RE_TX_QLEN;
1398 idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
1399 txq = &sc->re_ldata.re_txq[idx];
1400 KASSERT(txq->txq_mbuf != NULL);
1401
1402 descidx = txq->txq_descidx;
1403 RE_TXDESCSYNC(sc, descidx,
1404 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1405 txstat =
1406 le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
1407 RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
1408 KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
1409 if (txstat & RE_TDESC_CMD_OWN) {
1410 break;
1411 }
1412
1413 sc->re_ldata.re_tx_free += txq->txq_nsegs;
1414 KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
1415 bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
1416 0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1417 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1418 m_freem(txq->txq_mbuf);
1419 txq->txq_mbuf = NULL;
1420
1421 if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
1422 ifp->if_collisions++;
1423 if (txstat & RE_TDESC_STAT_TXERRSUM)
1424 ifp->if_oerrors++;
1425 else
1426 ifp->if_opackets++;
1427 }
1428
1429 sc->re_ldata.re_txq_considx = idx;
1430
1431 if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
1432 ifp->if_flags &= ~IFF_OACTIVE;
1433
1434 /*
1435 * If not all descriptors have been released reaped yet,
1436 * reload the timer so that we will eventually get another
1437 * interrupt that will cause us to re-enter this routine.
1438 * This is done in case the transmitter has gone idle.
1439 */
1440 if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
1441 if ((sc->sc_quirk & RTKQ_IM_HW) == 0)
1442 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1443 if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1444 /*
1445 * Some chips will ignore a second TX request
1446 * issued while an existing transmission is in
1447 * progress. If the transmitter goes idle but
1448 * there are still packets waiting to be sent,
1449 * we need to restart the channel here to flush
1450 * them out. This only seems to be required with
1451 * the PCIe devices.
1452 */
1453 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1454 }
1455 } else
1456 ifp->if_timer = 0;
1457 }
1458
1459 static void
1460 re_tick(void *arg)
1461 {
1462 struct rtk_softc *sc = arg;
1463 int s;
1464
1465 /* XXX: just return for 8169S/8110S with rev 2 or newer phy */
1466 s = splnet();
1467
1468 mii_tick(&sc->mii);
1469 splx(s);
1470
1471 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1472 }
1473
1474 int
1475 re_intr(void *arg)
1476 {
1477 struct rtk_softc *sc = arg;
1478 struct ifnet *ifp;
1479 uint16_t status;
1480 int handled = 0;
1481
1482 if (!device_has_power(sc->sc_dev))
1483 return 0;
1484
1485 ifp = &sc->ethercom.ec_if;
1486
1487 if ((ifp->if_flags & IFF_UP) == 0)
1488 return 0;
1489
1490 const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ?
1491 RTK_INTRS_IM_HW : RTK_INTRS_CPLUS;
1492
1493 for (;;) {
1494
1495 status = CSR_READ_2(sc, RTK_ISR);
1496 /* If the card has gone away the read returns 0xffff. */
1497 if (status == 0xffff)
1498 break;
1499 if (status) {
1500 handled = 1;
1501 CSR_WRITE_2(sc, RTK_ISR, status);
1502 }
1503
1504 if ((status & status_mask) == 0)
1505 break;
1506
1507 if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
1508 re_rxeof(sc);
1509
1510 if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
1511 RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK))
1512 re_txeof(sc);
1513
1514 if (status & RTK_ISR_SYSTEM_ERR) {
1515 re_init(ifp);
1516 }
1517
1518 if (status & RTK_ISR_LINKCHG) {
1519 callout_stop(&sc->rtk_tick_ch);
1520 re_tick(sc);
1521 }
1522 }
1523
1524 if (handled)
1525 if_schedule_deferred_start(ifp);
1526
1527 rnd_add_uint32(&sc->rnd_source, status);
1528
1529 return handled;
1530 }
1531
1532
1533
1534 /*
1535 * Main transmit routine for C+ and gigE NICs.
1536 */
1537
1538 static void
1539 re_start(struct ifnet *ifp)
1540 {
1541 struct rtk_softc *sc;
1542 struct mbuf *m;
1543 bus_dmamap_t map;
1544 struct re_txq *txq;
1545 struct re_desc *d;
1546 uint32_t cmdstat, re_flags, vlanctl;
1547 int ofree, idx, error, nsegs, seg;
1548 int startdesc, curdesc, lastdesc;
1549 bool pad;
1550
1551 sc = ifp->if_softc;
1552 ofree = sc->re_ldata.re_txq_free;
1553
1554 for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
1555
1556 IFQ_POLL(&ifp->if_snd, m);
1557 if (m == NULL)
1558 break;
1559
1560 if (sc->re_ldata.re_txq_free == 0 ||
1561 sc->re_ldata.re_tx_free == 0) {
1562 /* no more free slots left */
1563 ifp->if_flags |= IFF_OACTIVE;
1564 break;
1565 }
1566
1567 /*
1568 * Set up checksum offload. Note: checksum offload bits must
1569 * appear in all descriptors of a multi-descriptor transmit
1570 * attempt. (This is according to testing done with an 8169
1571 * chip. I'm not sure if this is a requirement or a bug.)
1572 */
1573
1574 vlanctl = 0;
1575 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1576 uint32_t segsz = m->m_pkthdr.segsz;
1577
1578 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1579 re_flags = RE_TDESC_CMD_LGSEND |
1580 (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
1581 } else {
1582 re_flags = RE_TDESC_CMD_LGSEND_V4;
1583 vlanctl |=
1584 (segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT);
1585 }
1586 } else {
1587 /*
1588 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
1589 * is requested. otherwise, RE_TDESC_CMD_TCPCSUM/
1590 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
1591 */
1592 re_flags = 0;
1593 if ((m->m_pkthdr.csum_flags &
1594 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
1595 != 0) {
1596 if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
1597 re_flags |= RE_TDESC_CMD_IPCSUM;
1598 if (m->m_pkthdr.csum_flags &
1599 M_CSUM_TCPv4) {
1600 re_flags |=
1601 RE_TDESC_CMD_TCPCSUM;
1602 } else if (m->m_pkthdr.csum_flags &
1603 M_CSUM_UDPv4) {
1604 re_flags |=
1605 RE_TDESC_CMD_UDPCSUM;
1606 }
1607 } else {
1608 vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
1609 if (m->m_pkthdr.csum_flags &
1610 M_CSUM_TCPv4) {
1611 vlanctl |=
1612 RE_TDESC_VLANCTL_TCPCSUM;
1613 } else if (m->m_pkthdr.csum_flags &
1614 M_CSUM_UDPv4) {
1615 vlanctl |=
1616 RE_TDESC_VLANCTL_UDPCSUM;
1617 }
1618 }
1619 }
1620 }
1621
1622 txq = &sc->re_ldata.re_txq[idx];
1623 map = txq->txq_dmamap;
1624 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1625 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1626
1627 if (__predict_false(error)) {
1628 /* XXX try to defrag if EFBIG? */
1629 printf("%s: can't map mbuf (error %d)\n",
1630 device_xname(sc->sc_dev), error);
1631
1632 IFQ_DEQUEUE(&ifp->if_snd, m);
1633 m_freem(m);
1634 ifp->if_oerrors++;
1635 continue;
1636 }
1637
1638 nsegs = map->dm_nsegs;
1639 pad = false;
1640 if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
1641 (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
1642 (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
1643 pad = true;
1644 nsegs++;
1645 }
1646
1647 if (nsegs > sc->re_ldata.re_tx_free) {
1648 /*
1649 * Not enough free descriptors to transmit this packet.
1650 */
1651 ifp->if_flags |= IFF_OACTIVE;
1652 bus_dmamap_unload(sc->sc_dmat, map);
1653 break;
1654 }
1655
1656 IFQ_DEQUEUE(&ifp->if_snd, m);
1657
1658 /*
1659 * Make sure that the caches are synchronized before we
1660 * ask the chip to start DMA for the packet data.
1661 */
1662 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1663 BUS_DMASYNC_PREWRITE);
1664
1665 /*
1666 * Set up hardware VLAN tagging. Note: vlan tag info must
1667 * appear in all descriptors of a multi-descriptor
1668 * transmission attempt.
1669 */
1670 if (vlan_has_tag(m))
1671 vlanctl |= bswap16(vlan_get_tag(m)) |
1672 RE_TDESC_VLANCTL_TAG;
1673
1674 /*
1675 * Map the segment array into descriptors.
1676 * Note that we set the start-of-frame and
1677 * end-of-frame markers for either TX or RX,
1678 * but they really only have meaning in the TX case.
1679 * (In the RX case, it's the chip that tells us
1680 * where packets begin and end.)
1681 * We also keep track of the end of the ring
1682 * and set the end-of-ring bits as needed,
1683 * and we set the ownership bits in all except
1684 * the very first descriptor. (The caller will
1685 * set this descriptor later when it start
1686 * transmission or reception.)
1687 */
1688 curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
1689 lastdesc = -1;
1690 for (seg = 0; seg < map->dm_nsegs;
1691 seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
1692 d = &sc->re_ldata.re_tx_list[curdesc];
1693 #ifdef DIAGNOSTIC
1694 RE_TXDESCSYNC(sc, curdesc,
1695 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1696 cmdstat = le32toh(d->re_cmdstat);
1697 RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
1698 if (cmdstat & RE_TDESC_STAT_OWN) {
1699 panic("%s: tried to map busy TX descriptor",
1700 device_xname(sc->sc_dev));
1701 }
1702 #endif
1703
1704 d->re_vlanctl = htole32(vlanctl);
1705 re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
1706 cmdstat = re_flags | map->dm_segs[seg].ds_len;
1707 if (seg == 0)
1708 cmdstat |= RE_TDESC_CMD_SOF;
1709 else
1710 cmdstat |= RE_TDESC_CMD_OWN;
1711 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1712 cmdstat |= RE_TDESC_CMD_EOR;
1713 if (seg == nsegs - 1) {
1714 cmdstat |= RE_TDESC_CMD_EOF;
1715 lastdesc = curdesc;
1716 }
1717 d->re_cmdstat = htole32(cmdstat);
1718 RE_TXDESCSYNC(sc, curdesc,
1719 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1720 }
1721 if (__predict_false(pad)) {
1722 d = &sc->re_ldata.re_tx_list[curdesc];
1723 d->re_vlanctl = htole32(vlanctl);
1724 re_set_bufaddr(d, RE_TXPADDADDR(sc));
1725 cmdstat = re_flags |
1726 RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
1727 (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
1728 if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
1729 cmdstat |= RE_TDESC_CMD_EOR;
1730 d->re_cmdstat = htole32(cmdstat);
1731 RE_TXDESCSYNC(sc, curdesc,
1732 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1733 lastdesc = curdesc;
1734 curdesc = RE_NEXT_TX_DESC(sc, curdesc);
1735 }
1736 KASSERT(lastdesc != -1);
1737
1738 /* Transfer ownership of packet to the chip. */
1739
1740 sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
1741 htole32(RE_TDESC_CMD_OWN);
1742 RE_TXDESCSYNC(sc, startdesc,
1743 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1744
1745 /* update info of TX queue and descriptors */
1746 txq->txq_mbuf = m;
1747 txq->txq_descidx = lastdesc;
1748 txq->txq_nsegs = nsegs;
1749
1750 sc->re_ldata.re_txq_free--;
1751 sc->re_ldata.re_tx_free -= nsegs;
1752 sc->re_ldata.re_tx_nextfree = curdesc;
1753
1754 /*
1755 * If there's a BPF listener, bounce a copy of this frame
1756 * to him.
1757 */
1758 bpf_mtap(ifp, m, BPF_D_OUT);
1759 }
1760
1761 if (sc->re_ldata.re_txq_free < ofree) {
1762 /*
1763 * TX packets are enqueued.
1764 */
1765 sc->re_ldata.re_txq_prodidx = idx;
1766
1767 /*
1768 * Start the transmitter to poll.
1769 *
1770 * RealTek put the TX poll request register in a different
1771 * location on the 8169 gigE chip. I don't know why.
1772 */
1773 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
1774 CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
1775 else
1776 CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
1777
1778 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
1779 /*
1780 * Use the countdown timer for interrupt moderation.
1781 * 'TX done' interrupts are disabled. Instead, we reset
1782 * the countdown timer, which will begin counting until
1783 * it hits the value in the TIMERINT register, and then
1784 * trigger an interrupt. Each time we write to the
1785 * TIMERCNT register, the timer count is reset to 0.
1786 */
1787 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1788 }
1789
1790 /*
1791 * Set a timeout in case the chip goes out to lunch.
1792 */
1793 ifp->if_timer = 5;
1794 }
1795 }
1796
1797 static int
1798 re_init(struct ifnet *ifp)
1799 {
1800 struct rtk_softc *sc = ifp->if_softc;
1801 uint32_t rxcfg = 0;
1802 uint16_t cfg;
1803 int error;
1804 #ifdef RE_USE_EECMD
1805 const uint8_t *enaddr;
1806 uint32_t reg;
1807 #endif
1808
1809 if ((error = re_enable(sc)) != 0)
1810 goto out;
1811
1812 /*
1813 * Cancel pending I/O and free all RX/TX buffers.
1814 */
1815 re_stop(ifp, 0);
1816
1817 re_reset(sc);
1818
1819 /*
1820 * Enable C+ RX and TX mode, as well as VLAN stripping and
1821 * RX checksum offload. We must configure the C+ register
1822 * before all others.
1823 */
1824 cfg = RE_CPLUSCMD_PCI_MRW;
1825
1826 /*
1827 * XXX: For old 8169 set bit 14.
1828 * For 8169S/8110S and above, do not set bit 14.
1829 */
1830 if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
1831 cfg |= (0x1 << 14);
1832
1833 if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
1834 cfg |= RE_CPLUSCMD_VLANSTRIP;
1835 if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
1836 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
1837 cfg |= RE_CPLUSCMD_RXCSUM_ENB;
1838 if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
1839 cfg |= RE_CPLUSCMD_MACSTAT_DIS;
1840 cfg |= RE_CPLUSCMD_TXENB;
1841 } else
1842 cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
1843
1844 CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
1845
1846 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1847 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
1848 if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
1849 CSR_WRITE_2(sc, RTK_IM, 0x0000);
1850 } else {
1851 CSR_WRITE_2(sc, RTK_IM, 0x5151);
1852 }
1853 }
1854
1855 DELAY(10000);
1856
1857 #ifdef RE_USE_EECMD
1858 /*
1859 * Init our MAC address. Even though the chipset
1860 * documentation doesn't mention it, we need to enter "Config
1861 * register write enable" mode to modify the ID registers.
1862 */
1863 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1864 enaddr = CLLADDR(ifp->if_sadl);
1865 reg = enaddr[0] | (enaddr[1] << 8) |
1866 (enaddr[2] << 16) | (enaddr[3] << 24);
1867 CSR_WRITE_4(sc, RTK_IDR0, reg);
1868 reg = enaddr[4] | (enaddr[5] << 8);
1869 CSR_WRITE_4(sc, RTK_IDR4, reg);
1870 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1871 #endif
1872
1873 /*
1874 * For C+ mode, initialize the RX descriptors and mbufs.
1875 */
1876 re_rx_list_init(sc);
1877 re_tx_list_init(sc);
1878
1879 /*
1880 * Load the addresses of the RX and TX lists into the chip.
1881 */
1882 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1883 RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1884 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1885 RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
1886
1887 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1888 RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1889 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1890 RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
1891
1892 if (sc->sc_quirk & RTKQ_RXDV_GATED) {
1893 CSR_WRITE_4(sc, RTK_MISC,
1894 CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
1895 }
1896
1897 /*
1898 * Enable transmit and receive.
1899 */
1900 if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) == 0)
1901 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1902
1903 /*
1904 * Set the initial TX and RX configuration.
1905 */
1906 if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
1907 /* test mode is needed only for old 8169 */
1908 CSR_WRITE_4(sc, RTK_TXCFG,
1909 RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1910 } else
1911 CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
1912
1913 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1914
1915 CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
1916
1917 /* Set the individual bit to receive frames for this host only. */
1918 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1919 rxcfg |= RTK_RXCFG_RX_INDIV;
1920
1921 /* If we want promiscuous mode, set the allframes bit. */
1922 if (ifp->if_flags & IFF_PROMISC)
1923 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1924 else
1925 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1926 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1927
1928 /*
1929 * Set capture broadcast bit to capture broadcast frames.
1930 */
1931 if (ifp->if_flags & IFF_BROADCAST)
1932 rxcfg |= RTK_RXCFG_RX_BROAD;
1933 else
1934 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1935 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1936
1937 /*
1938 * Program the multicast filter, if necessary.
1939 */
1940 rtk_setmulti(sc);
1941
1942 /*
1943 * some chips require to enable TX/RX *AFTER* TX/RX configuration
1944 */
1945 if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) != 0)
1946 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1947
1948 /*
1949 * Enable interrupts.
1950 */
1951 if (sc->re_testmode)
1952 CSR_WRITE_2(sc, RTK_IMR, 0);
1953 else if ((sc->sc_quirk & RTKQ_IM_HW) != 0)
1954 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW);
1955 else
1956 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1957
1958 /* Start RX/TX process. */
1959 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1960 #ifdef notdef
1961 /* Enable receiver and transmitter. */
1962 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1963 #endif
1964
1965 /*
1966 * Initialize the timer interrupt register so that
1967 * a timer interrupt will be generated once the timer
1968 * reaches a certain number of ticks. The timer is
1969 * reloaded on each transmit. This gives us TX interrupt
1970 * moderation, which dramatically improves TX frame rate.
1971 */
1972
1973 unsigned defer; /* timer interval / ns */
1974 unsigned period; /* busclock period / ns */
1975
1976 /*
1977 * Maximum frame rate
1978 * 1500 byte PDU -> 81274 Hz
1979 * 46 byte PDU -> 1488096 Hz
1980 *
1981 * Deferring interrupts by up to 128us needs descriptors for
1982 * 1500 byte PDU -> 10.4 frames
1983 * 46 byte PDU -> 190.4 frames
1984 *
1985 */
1986 defer = 128000;
1987
1988 if ((sc->sc_quirk & RTKQ_IM_HW) != 0) {
1989 period = 1;
1990 defer = 0;
1991 } else if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
1992 period = 8;
1993 } else {
1994 switch (CSR_READ_1(sc, RTK_CFG2_BUSFREQ) & 0x7) {
1995 case RTK_BUSFREQ_33MHZ:
1996 period = 30;
1997 break;
1998 case RTK_BUSFREQ_66MHZ:
1999 period = 15;
2000 break;
2001 default:
2002 /* lowest possible clock */
2003 period = 60;
2004 break;
2005 }
2006 }
2007
2008 /* Timer Interrupt register address varies */
2009 uint16_t re8139_reg;
2010 if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
2011 re8139_reg = RTK_TIMERINT;
2012 else
2013 re8139_reg = RTK_TIMERINT_8169;
2014 CSR_WRITE_4(sc, re8139_reg, defer / period);
2015
2016 if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
2017 /*
2018 * For 8169 gigE NICs, set the max allowed RX packet
2019 * size so we can receive jumbo frames.
2020 */
2021 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
2022 }
2023
2024 if (sc->re_testmode)
2025 return 0;
2026
2027 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
2028
2029 ifp->if_flags |= IFF_RUNNING;
2030 ifp->if_flags &= ~IFF_OACTIVE;
2031
2032 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
2033
2034 out:
2035 if (error) {
2036 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2037 ifp->if_timer = 0;
2038 printf("%s: interface not running\n",
2039 device_xname(sc->sc_dev));
2040 }
2041
2042 return error;
2043 }
2044
2045 static int
2046 re_ioctl(struct ifnet *ifp, u_long command, void *data)
2047 {
2048 struct rtk_softc *sc = ifp->if_softc;
2049 struct ifreq *ifr = data;
2050 int s, error = 0;
2051
2052 s = splnet();
2053
2054 switch (command) {
2055 case SIOCSIFMTU:
2056 /*
2057 * Disable jumbo frames if it's not supported.
2058 */
2059 if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
2060 ifr->ifr_mtu > ETHERMTU) {
2061 error = EINVAL;
2062 break;
2063 }
2064
2065 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2066 error = EINVAL;
2067 else if ((error = ifioctl_common(ifp, command, data)) ==
2068 ENETRESET)
2069 error = 0;
2070 break;
2071 default:
2072 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2073 break;
2074
2075 error = 0;
2076
2077 if (command == SIOCSIFCAP)
2078 error = (*ifp->if_init)(ifp);
2079 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2080 ;
2081 else if (ifp->if_flags & IFF_RUNNING)
2082 rtk_setmulti(sc);
2083 break;
2084 }
2085
2086 splx(s);
2087
2088 return error;
2089 }
2090
2091 static void
2092 re_watchdog(struct ifnet *ifp)
2093 {
2094 struct rtk_softc *sc;
2095 int s;
2096
2097 sc = ifp->if_softc;
2098 s = splnet();
2099 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2100 ifp->if_oerrors++;
2101
2102 re_txeof(sc);
2103 re_rxeof(sc);
2104
2105 re_init(ifp);
2106
2107 splx(s);
2108 }
2109
2110 /*
2111 * Stop the adapter and free any mbufs allocated to the
2112 * RX and TX lists.
2113 */
2114 static void
2115 re_stop(struct ifnet *ifp, int disable)
2116 {
2117 int i;
2118 struct rtk_softc *sc = ifp->if_softc;
2119
2120 callout_stop(&sc->rtk_tick_ch);
2121
2122 mii_down(&sc->mii);
2123
2124 if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
2125 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
2126 RTK_CMD_RX_ENB);
2127 else
2128 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2129 DELAY(1000);
2130 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2131 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
2132
2133 if (sc->re_head != NULL) {
2134 m_freem(sc->re_head);
2135 sc->re_head = sc->re_tail = NULL;
2136 }
2137
2138 /* Free the TX list buffers. */
2139 for (i = 0; i < RE_TX_QLEN; i++) {
2140 if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
2141 bus_dmamap_unload(sc->sc_dmat,
2142 sc->re_ldata.re_txq[i].txq_dmamap);
2143 m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
2144 sc->re_ldata.re_txq[i].txq_mbuf = NULL;
2145 }
2146 }
2147
2148 /* Free the RX list buffers. */
2149 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2150 if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
2151 bus_dmamap_unload(sc->sc_dmat,
2152 sc->re_ldata.re_rxsoft[i].rxs_dmamap);
2153 m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
2154 sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
2155 }
2156 }
2157
2158 if (disable)
2159 re_disable(sc);
2160
2161 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2162 ifp->if_timer = 0;
2163 }
2164