rtl8169.c revision 1.17 1 /* $NetBSD: rtl8169.c,v 1.17 2005/03/30 11:38:06 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 u_int32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 u_int32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 u_int16_t rval = 0;
254 u_int16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 u_int16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 u_int16_t status;
423 u_int32_t rxstat;
424 int total_len, i, s, error = 0;
425 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_list_map;
492 bus_dmamap_sync(sc->sc_dmat,
493 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
495 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
496 BUS_DMASYNC_POSTWRITE);
497 bus_dmamap_unload(sc->sc_dmat,
498 sc->rtk_ldata.rtk_rx_dmamap[0]);
499
500 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
501 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
502 eh = mtod(m0, struct ether_header *);
503
504 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
505 total_len = RTK_RXBYTES(cur_rx);
506 rxstat = le32toh(cur_rx->rtk_cmdstat);
507
508 if (total_len != ETHER_MIN_LEN) {
509 aprint_error("%s: diagnostic failed, received short packet\n",
510 sc->sc_dev.dv_xname);
511 error = EIO;
512 goto done;
513 }
514
515 /* Test that the received packet data matches what we sent. */
516
517 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
518 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
519 ntohs(eh->ether_type) != ETHERTYPE_IP) {
520 aprint_error("%s: WARNING, DMA FAILURE!\n",
521 sc->sc_dev.dv_xname);
522 aprint_error("%s: expected TX data: %s",
523 sc->sc_dev.dv_xname, ether_sprintf(dst));
524 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
525 aprint_error("%s: received RX data: %s",
526 sc->sc_dev.dv_xname,
527 ether_sprintf(eh->ether_dhost));
528 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
529 ntohs(eh->ether_type));
530 aprint_error("%s: You may have a defective 32-bit NIC plugged "
531 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
533 "for proper operation.\n", sc->sc_dev.dv_xname);
534 aprint_error("%s: Read the re(4) man page for more details.\n",
535 sc->sc_dev.dv_xname);
536 error = EIO;
537 }
538
539 done:
540 /* Turn interface off, release resources */
541
542 sc->rtk_testmode = 0;
543 ifp->if_flags &= ~IFF_PROMISC;
544 re_stop(ifp, 0);
545 if (m0 != NULL)
546 m_freem(m0);
547
548 return error;
549 }
550
551
552 /*
553 * Attach the interface. Allocate softc structures, do ifmedia
554 * setup and ethernet/BPF attach.
555 */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 u_char eaddr[ETHER_ADDR_LEN];
560 u_int16_t val;
561 struct ifnet *ifp;
562 int error = 0, i, addr_len;
563
564
565 /* XXX JRS: bus-attach-independent code begins approximately here */
566
567 /* Reset the adapter. */
568 re_reset(sc);
569
570 if (sc->rtk_type == RTK_8169) {
571 uint32_t hwrev;
572
573 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
575 if (hwrev == (0x1 << 28)) {
576 sc->sc_rev = 4;
577 } else if (hwrev == (0x1 << 26)) {
578 sc->sc_rev = 3;
579 } else if (hwrev == (0x1 << 23)) {
580 sc->sc_rev = 2;
581 } else
582 sc->sc_rev = 1;
583
584 /* Set RX length mask */
585
586 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
587
588 /* Force station address autoload from the EEPROM */
589
590 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
591 for (i = 0; i < RTK_TIMEOUT; i++) {
592 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
593 break;
594 DELAY(100);
595 }
596 if (i == RTK_TIMEOUT)
597 aprint_error("%s: eeprom autoload timed out\n",
598 sc->sc_dev.dv_xname);
599
600 for (i = 0; i < ETHER_ADDR_LEN; i++)
601 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
602
603 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
604 } else {
605
606 /* Set RX length mask */
607
608 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
609
610 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
611 addr_len = RTK_EEADDR_LEN1;
612 else
613 addr_len = RTK_EEADDR_LEN0;
614
615 /*
616 * Get station address from the EEPROM.
617 */
618 for (i = 0; i < 3; i++) {
619 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
620 eaddr[(i * 2) + 0] = val & 0xff;
621 eaddr[(i * 2) + 1] = val >> 8;
622 }
623
624 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
625 }
626
627 aprint_normal("%s: Ethernet address %s\n",
628 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629
630 if (sc->rtk_ldata.rtk_tx_desc_cnt >
631 PAGE_SIZE / sizeof(struct rtk_desc)) {
632 sc->rtk_ldata.rtk_tx_desc_cnt =
633 PAGE_SIZE / sizeof(struct rtk_desc);
634 }
635
636 aprint_verbose("%s: using %d tx descriptors\n",
637 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
638
639 /* Allocate DMA'able memory for the TX ring */
640 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
641 RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
642 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
643 aprint_error("%s: can't allocate tx listseg, error = %d\n",
644 sc->sc_dev.dv_xname, error);
645 goto fail_0;
646 }
647
648 /* Load the map for the TX ring. */
649 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
650 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
651 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
652 BUS_DMA_NOWAIT)) != 0) {
653 aprint_error("%s: can't map tx list, error = %d\n",
654 sc->sc_dev.dv_xname, error);
655 goto fail_1;
656 }
657 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
658
659 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
660 RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
661 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
662 aprint_error("%s: can't create tx list map, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_2;
665 }
666
667
668 if ((error = bus_dmamap_load(sc->sc_dmat,
669 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
670 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
671 aprint_error("%s: can't load tx list, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_3;
674 }
675
676 /* Create DMA maps for TX buffers */
677 for (i = 0; i < RTK_TX_QLEN; i++) {
678 error = bus_dmamap_create(sc->sc_dmat,
679 round_page(IP_MAXPACKET),
680 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
681 0, BUS_DMA_ALLOCNOW,
682 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
683 if (error) {
684 aprint_error("%s: can't create DMA map for TX\n",
685 sc->sc_dev.dv_xname);
686 goto fail_4;
687 }
688 }
689
690 /* Allocate DMA'able memory for the RX ring */
691 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
692 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
693 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
694 aprint_error("%s: can't allocate rx listseg, error = %d\n",
695 sc->sc_dev.dv_xname, error);
696 goto fail_4;
697 }
698
699 /* Load the map for the RX ring. */
700 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
701 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
702 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
703 BUS_DMA_NOWAIT)) != 0) {
704 aprint_error("%s: can't map rx list, error = %d\n",
705 sc->sc_dev.dv_xname, error);
706 goto fail_5;
707 }
708 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
709
710 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
711 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
712 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
713 aprint_error("%s: can't create rx list map, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_6;
716 }
717
718 if ((error = bus_dmamap_load(sc->sc_dmat,
719 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
720 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
721 aprint_error("%s: can't load rx list, error = %d\n",
722 sc->sc_dev.dv_xname, error);
723 goto fail_7;
724 }
725
726 /* Create DMA maps for RX buffers */
727 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
728 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
729 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
730 if (error) {
731 aprint_error("%s: can't create DMA map for RX\n",
732 sc->sc_dev.dv_xname);
733 goto fail_8;
734 }
735 }
736
737 /*
738 * Record interface as attached. From here, we should not fail.
739 */
740 sc->sc_flags |= RTK_ATTACHED;
741
742 ifp = &sc->ethercom.ec_if;
743 ifp->if_softc = sc;
744 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
745 ifp->if_mtu = ETHERMTU;
746 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747 ifp->if_ioctl = re_ioctl;
748 sc->ethercom.ec_capabilities |=
749 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
750 ifp->if_start = re_start;
751 ifp->if_stop = re_stop;
752 ifp->if_capabilities |=
753 IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4 |
754 IFCAP_TSOv4;
755 ifp->if_watchdog = re_watchdog;
756 ifp->if_init = re_init;
757 if (sc->rtk_type == RTK_8169)
758 ifp->if_baudrate = 1000000000;
759 else
760 ifp->if_baudrate = 100000000;
761 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
762 ifp->if_capenable = ifp->if_capabilities;
763 IFQ_SET_READY(&ifp->if_snd);
764
765 callout_init(&sc->rtk_tick_ch);
766
767 /* Do MII setup */
768 sc->mii.mii_ifp = ifp;
769 sc->mii.mii_readreg = re_miibus_readreg;
770 sc->mii.mii_writereg = re_miibus_writereg;
771 sc->mii.mii_statchg = re_miibus_statchg;
772 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
773 re_ifmedia_sts);
774 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
775 MII_OFFSET_ANY, 0);
776 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
777
778 /*
779 * Call MI attach routine.
780 */
781 if_attach(ifp);
782 ether_ifattach(ifp, eaddr);
783
784
785 /*
786 * Make sure the interface is shutdown during reboot.
787 */
788 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
789 if (sc->sc_sdhook == NULL)
790 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
791 sc->sc_dev.dv_xname);
792 /*
793 * Add a suspend hook to make sure we come back up after a
794 * resume.
795 */
796 sc->sc_powerhook = powerhook_establish(re_power, sc);
797 if (sc->sc_powerhook == NULL)
798 aprint_error("%s: WARNING: unable to establish power hook\n",
799 sc->sc_dev.dv_xname);
800
801
802 return;
803
804 fail_8:
805 /* Destroy DMA maps for RX buffers. */
806 for (i = 0; i < RTK_RX_DESC_CNT; i++)
807 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
808 bus_dmamap_destroy(sc->sc_dmat,
809 sc->rtk_ldata.rtk_rx_dmamap[i]);
810
811 /* Free DMA'able memory for the RX ring. */
812 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
813 fail_7:
814 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
815 fail_6:
816 bus_dmamem_unmap(sc->sc_dmat,
817 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
818 fail_5:
819 bus_dmamem_free(sc->sc_dmat,
820 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
821
822 fail_4:
823 /* Destroy DMA maps for TX buffers. */
824 for (i = 0; i < RTK_TX_QLEN; i++)
825 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
826 bus_dmamap_destroy(sc->sc_dmat,
827 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
828
829 /* Free DMA'able memory for the TX ring. */
830 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
831 fail_3:
832 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
833 fail_2:
834 bus_dmamem_unmap(sc->sc_dmat,
835 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
836 fail_1:
837 bus_dmamem_free(sc->sc_dmat,
838 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
839 fail_0:
840 return;
841 }
842
843
844 /*
845 * re_activate:
846 * Handle device activation/deactivation requests.
847 */
848 int
849 re_activate(struct device *self, enum devact act)
850 {
851 struct rtk_softc *sc = (void *) self;
852 int s, error = 0;
853
854 s = splnet();
855 switch (act) {
856 case DVACT_ACTIVATE:
857 error = EOPNOTSUPP;
858 break;
859 case DVACT_DEACTIVATE:
860 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
861 if_deactivate(&sc->ethercom.ec_if);
862 break;
863 }
864 splx(s);
865
866 return error;
867 }
868
869 /*
870 * re_detach:
871 * Detach a rtk interface.
872 */
873 int
874 re_detach(struct rtk_softc *sc)
875 {
876 struct ifnet *ifp = &sc->ethercom.ec_if;
877 int i;
878
879 /*
880 * Succeed now if there isn't any work to do.
881 */
882 if ((sc->sc_flags & RTK_ATTACHED) == 0)
883 return 0;
884
885 /* Unhook our tick handler. */
886 callout_stop(&sc->rtk_tick_ch);
887
888 /* Detach all PHYs. */
889 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
890
891 /* Delete all remaining media. */
892 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
893
894 ether_ifdetach(ifp);
895 if_detach(ifp);
896
897 /* XXX undo re_allocmem() */
898
899 /* Destroy DMA maps for RX buffers. */
900 for (i = 0; i < RTK_RX_DESC_CNT; i++)
901 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
902 bus_dmamap_destroy(sc->sc_dmat,
903 sc->rtk_ldata.rtk_rx_dmamap[i]);
904
905 /* Free DMA'able memory for the RX ring. */
906 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
907 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
908 bus_dmamem_unmap(sc->sc_dmat,
909 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
910 bus_dmamem_free(sc->sc_dmat,
911 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
912
913 /* Destroy DMA maps for TX buffers. */
914 for (i = 0; i < RTK_TX_QLEN; i++)
915 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
916 bus_dmamap_destroy(sc->sc_dmat,
917 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
918
919 /* Free DMA'able memory for the TX ring. */
920 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
921 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
922 bus_dmamem_unmap(sc->sc_dmat,
923 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
924 bus_dmamem_free(sc->sc_dmat,
925 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
926
927
928 shutdownhook_disestablish(sc->sc_sdhook);
929 powerhook_disestablish(sc->sc_powerhook);
930
931 return 0;
932 }
933
934 /*
935 * re_enable:
936 * Enable the RTL81X9 chip.
937 */
938 static int
939 re_enable(struct rtk_softc *sc)
940 {
941 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
942 if ((*sc->sc_enable)(sc) != 0) {
943 aprint_error("%s: device enable failed\n",
944 sc->sc_dev.dv_xname);
945 return EIO;
946 }
947 sc->sc_flags |= RTK_ENABLED;
948 }
949 return 0;
950 }
951
952 /*
953 * re_disable:
954 * Disable the RTL81X9 chip.
955 */
956 static void
957 re_disable(struct rtk_softc *sc)
958 {
959
960 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
961 (*sc->sc_disable)(sc);
962 sc->sc_flags &= ~RTK_ENABLED;
963 }
964 }
965
966 /*
967 * re_power:
968 * Power management (suspend/resume) hook.
969 */
970 void
971 re_power(int why, void *arg)
972 {
973 struct rtk_softc *sc = (void *) arg;
974 struct ifnet *ifp = &sc->ethercom.ec_if;
975 int s;
976
977 s = splnet();
978 switch (why) {
979 case PWR_SUSPEND:
980 case PWR_STANDBY:
981 re_stop(ifp, 0);
982 if (sc->sc_power != NULL)
983 (*sc->sc_power)(sc, why);
984 break;
985 case PWR_RESUME:
986 if (ifp->if_flags & IFF_UP) {
987 if (sc->sc_power != NULL)
988 (*sc->sc_power)(sc, why);
989 re_init(ifp);
990 }
991 break;
992 case PWR_SOFTSUSPEND:
993 case PWR_SOFTSTANDBY:
994 case PWR_SOFTRESUME:
995 break;
996 }
997 splx(s);
998 }
999
1000
1001 static int
1002 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1003 {
1004 struct mbuf *n = NULL;
1005 bus_dmamap_t map;
1006 struct rtk_desc *d;
1007 u_int32_t cmdstat;
1008 int error;
1009
1010 if (m == NULL) {
1011 MGETHDR(n, M_DONTWAIT, MT_DATA);
1012 if (n == NULL)
1013 return ENOBUFS;
1014 m = n;
1015
1016 MCLGET(m, M_DONTWAIT);
1017 if (!(m->m_flags & M_EXT)) {
1018 m_freem(m);
1019 return ENOBUFS;
1020 }
1021 } else
1022 m->m_data = m->m_ext.ext_buf;
1023
1024 /*
1025 * Initialize mbuf length fields and fixup
1026 * alignment so that the frame payload is
1027 * longword aligned.
1028 */
1029 m->m_len = m->m_pkthdr.len = MCLBYTES;
1030 m_adj(m, RTK_ETHER_ALIGN);
1031
1032 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1033 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1034
1035 if (error)
1036 goto out;
1037
1038 d = &sc->rtk_ldata.rtk_rx_list[idx];
1039 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1040 goto out;
1041
1042 cmdstat = map->dm_segs[0].ds_len;
1043 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1044 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1045 if (idx == (RTK_RX_DESC_CNT - 1))
1046 cmdstat |= RTK_RDESC_CMD_EOR;
1047 d->rtk_cmdstat = htole32(cmdstat);
1048
1049 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1050 htole32(RTK_RDESC_CMD_OWN);
1051 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1052
1053 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1054 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1055 BUS_DMASYNC_PREREAD);
1056
1057 return 0;
1058 out:
1059 if (n != NULL)
1060 m_freem(n);
1061 return ENOMEM;
1062 }
1063
1064 static int
1065 re_tx_list_init(struct rtk_softc *sc)
1066 {
1067 int i;
1068
1069 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1070 for (i = 0; i < RTK_TX_QLEN; i++) {
1071 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1072 }
1073
1074 bus_dmamap_sync(sc->sc_dmat,
1075 sc->rtk_ldata.rtk_tx_list_map, 0,
1076 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1077 sc->rtk_ldata.rtk_txq_prodidx = 0;
1078 sc->rtk_ldata.rtk_txq_considx = 0;
1079 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1080 sc->rtk_ldata.rtk_tx_nextfree = 0;
1081
1082 return 0;
1083 }
1084
1085 static int
1086 re_rx_list_init(struct rtk_softc *sc)
1087 {
1088 int i;
1089
1090 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1091 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1092 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1093
1094 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1095 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1096 return ENOBUFS;
1097 }
1098
1099 /* Flush the RX descriptors */
1100
1101 bus_dmamap_sync(sc->sc_dmat,
1102 sc->rtk_ldata.rtk_rx_list_map,
1103 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1104 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1105
1106 sc->rtk_ldata.rtk_rx_prodidx = 0;
1107 sc->rtk_head = sc->rtk_tail = NULL;
1108
1109 return 0;
1110 }
1111
1112 /*
1113 * RX handler for C+ and 8169. For the gigE chips, we support
1114 * the reception of jumbo frames that have been fragmented
1115 * across multiple 2K mbuf cluster buffers.
1116 */
1117 static void
1118 re_rxeof(struct rtk_softc *sc)
1119 {
1120 struct mbuf *m;
1121 struct ifnet *ifp;
1122 int i, total_len;
1123 struct rtk_desc *cur_rx;
1124 u_int32_t rxstat, rxvlan;
1125
1126 ifp = &sc->ethercom.ec_if;
1127 i = sc->rtk_ldata.rtk_rx_prodidx;
1128
1129 /* Invalidate the descriptor memory */
1130
1131 bus_dmamap_sync(sc->sc_dmat,
1132 sc->rtk_ldata.rtk_rx_list_map,
1133 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1134 BUS_DMASYNC_POSTREAD);
1135
1136 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1137
1138 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1139 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1140 total_len = RTK_RXBYTES(cur_rx);
1141 rxstat = le32toh(cur_rx->rtk_cmdstat);
1142 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1143
1144 /* Invalidate the RX mbuf and unload its map */
1145
1146 bus_dmamap_sync(sc->sc_dmat,
1147 sc->rtk_ldata.rtk_rx_dmamap[i],
1148 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1149 BUS_DMASYNC_POSTWRITE);
1150 bus_dmamap_unload(sc->sc_dmat,
1151 sc->rtk_ldata.rtk_rx_dmamap[i]);
1152
1153 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1154 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1155 if (sc->rtk_head == NULL)
1156 sc->rtk_head = sc->rtk_tail = m;
1157 else {
1158 m->m_flags &= ~M_PKTHDR;
1159 sc->rtk_tail->m_next = m;
1160 sc->rtk_tail = m;
1161 }
1162 re_newbuf(sc, i, NULL);
1163 RTK_RX_DESC_INC(sc, i);
1164 continue;
1165 }
1166
1167 /*
1168 * NOTE: for the 8139C+, the frame length field
1169 * is always 12 bits in size, but for the gigE chips,
1170 * it is 13 bits (since the max RX frame length is 16K).
1171 * Unfortunately, all 32 bits in the status word
1172 * were already used, so to make room for the extra
1173 * length bit, RealTek took out the 'frame alignment
1174 * error' bit and shifted the other status bits
1175 * over one slot. The OWN, EOR, FS and LS bits are
1176 * still in the same places. We have already extracted
1177 * the frame length and checked the OWN bit, so rather
1178 * than using an alternate bit mapping, we shift the
1179 * status bits one space to the right so we can evaluate
1180 * them using the 8169 status as though it was in the
1181 * same format as that of the 8139C+.
1182 */
1183 if (sc->rtk_type == RTK_8169)
1184 rxstat >>= 1;
1185
1186 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1187 ifp->if_ierrors++;
1188 /*
1189 * If this is part of a multi-fragment packet,
1190 * discard all the pieces.
1191 */
1192 if (sc->rtk_head != NULL) {
1193 m_freem(sc->rtk_head);
1194 sc->rtk_head = sc->rtk_tail = NULL;
1195 }
1196 re_newbuf(sc, i, m);
1197 RTK_RX_DESC_INC(sc, i);
1198 continue;
1199 }
1200
1201 /*
1202 * If allocating a replacement mbuf fails,
1203 * reload the current one.
1204 */
1205
1206 if (re_newbuf(sc, i, NULL)) {
1207 ifp->if_ierrors++;
1208 if (sc->rtk_head != NULL) {
1209 m_freem(sc->rtk_head);
1210 sc->rtk_head = sc->rtk_tail = NULL;
1211 }
1212 re_newbuf(sc, i, m);
1213 RTK_RX_DESC_INC(sc, i);
1214 continue;
1215 }
1216
1217 RTK_RX_DESC_INC(sc, i);
1218
1219 if (sc->rtk_head != NULL) {
1220 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1221 /*
1222 * Special case: if there's 4 bytes or less
1223 * in this buffer, the mbuf can be discarded:
1224 * the last 4 bytes is the CRC, which we don't
1225 * care about anyway.
1226 */
1227 if (m->m_len <= ETHER_CRC_LEN) {
1228 sc->rtk_tail->m_len -=
1229 (ETHER_CRC_LEN - m->m_len);
1230 m_freem(m);
1231 } else {
1232 m->m_len -= ETHER_CRC_LEN;
1233 m->m_flags &= ~M_PKTHDR;
1234 sc->rtk_tail->m_next = m;
1235 }
1236 m = sc->rtk_head;
1237 sc->rtk_head = sc->rtk_tail = NULL;
1238 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1239 } else
1240 m->m_pkthdr.len = m->m_len =
1241 (total_len - ETHER_CRC_LEN);
1242
1243 ifp->if_ipackets++;
1244 m->m_pkthdr.rcvif = ifp;
1245
1246 /* Do RX checksumming if enabled */
1247
1248 if (ifp->if_capenable & IFCAP_CSUM_IPv4) {
1249
1250 /* Check IP header checksum */
1251 if (rxstat & RTK_RDESC_STAT_PROTOID)
1252 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1253 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1254 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1255 }
1256
1257 /* Check TCP/UDP checksum */
1258 if (RTK_TCPPKT(rxstat) &&
1259 (ifp->if_capenable & IFCAP_CSUM_TCPv4)) {
1260 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1261 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1262 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1263 }
1264 if (RTK_UDPPKT(rxstat) &&
1265 (ifp->if_capenable & IFCAP_CSUM_UDPv4)) {
1266 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1267 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1268 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1269 }
1270
1271 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1272 VLAN_INPUT_TAG(ifp, m,
1273 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1274 continue);
1275 }
1276 #if NBPFILTER > 0
1277 if (ifp->if_bpf)
1278 bpf_mtap(ifp->if_bpf, m);
1279 #endif
1280 (*ifp->if_input)(ifp, m);
1281 }
1282
1283 /* Flush the RX DMA ring */
1284
1285 bus_dmamap_sync(sc->sc_dmat,
1286 sc->rtk_ldata.rtk_rx_list_map,
1287 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1288 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1289
1290 sc->rtk_ldata.rtk_rx_prodidx = i;
1291
1292 return;
1293 }
1294
1295 static void
1296 re_txeof(struct rtk_softc *sc)
1297 {
1298 struct ifnet *ifp;
1299 int idx;
1300
1301 ifp = &sc->ethercom.ec_if;
1302 idx = sc->rtk_ldata.rtk_txq_considx;
1303
1304 /* Invalidate the TX descriptor list */
1305
1306 bus_dmamap_sync(sc->sc_dmat,
1307 sc->rtk_ldata.rtk_tx_list_map,
1308 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1309 BUS_DMASYNC_POSTREAD);
1310
1311 while (/* CONSTCOND */ 1) {
1312 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1313 int descidx;
1314 u_int32_t txstat;
1315
1316 if (txq->txq_mbuf == NULL) {
1317 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1318 break;
1319 }
1320
1321 descidx = txq->txq_descidx;
1322 txstat =
1323 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1324 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1325 if (txstat & RTK_TDESC_CMD_OWN)
1326 break;
1327
1328 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1329 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1330 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1331 m_freem(txq->txq_mbuf);
1332 txq->txq_mbuf = NULL;
1333
1334 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1335 ifp->if_collisions++;
1336 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1337 ifp->if_oerrors++;
1338 else
1339 ifp->if_opackets++;
1340
1341 idx = (idx + 1) % RTK_TX_QLEN;
1342 }
1343
1344 /* No changes made to the TX ring, so no flush needed */
1345
1346 if (idx != sc->rtk_ldata.rtk_txq_considx) {
1347 sc->rtk_ldata.rtk_txq_considx = idx;
1348 ifp->if_flags &= ~IFF_OACTIVE;
1349 ifp->if_timer = 0;
1350 }
1351
1352 /*
1353 * If not all descriptors have been released reaped yet,
1354 * reload the timer so that we will eventually get another
1355 * interrupt that will cause us to re-enter this routine.
1356 * This is done in case the transmitter has gone idle.
1357 */
1358 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1359 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1360
1361 return;
1362 }
1363
1364 /*
1365 * Stop all chip I/O so that the kernel's probe routines don't
1366 * get confused by errant DMAs when rebooting.
1367 */
1368 static void
1369 re_shutdown(void *vsc)
1370
1371 {
1372 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1373
1374 re_stop(&sc->ethercom.ec_if, 0);
1375 }
1376
1377
1378 static void
1379 re_tick(void *xsc)
1380 {
1381 struct rtk_softc *sc = xsc;
1382 int s;
1383
1384 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1385 s = splnet();
1386
1387 mii_tick(&sc->mii);
1388 splx(s);
1389
1390 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1391 }
1392
1393 #ifdef DEVICE_POLLING
1394 static void
1395 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1396 {
1397 struct rtk_softc *sc = ifp->if_softc;
1398
1399 RTK_LOCK(sc);
1400 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1401 ether_poll_deregister(ifp);
1402 cmd = POLL_DEREGISTER;
1403 }
1404 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1405 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1406 goto done;
1407 }
1408
1409 sc->rxcycles = count;
1410 re_rxeof(sc);
1411 re_txeof(sc);
1412
1413 if (ifp->if_snd.ifq_head != NULL)
1414 (*ifp->if_start)(ifp);
1415
1416 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1417 u_int16_t status;
1418
1419 status = CSR_READ_2(sc, RTK_ISR);
1420 if (status == 0xffff)
1421 goto done;
1422 if (status)
1423 CSR_WRITE_2(sc, RTK_ISR, status);
1424
1425 /*
1426 * XXX check behaviour on receiver stalls.
1427 */
1428
1429 if (status & RTK_ISR_SYSTEM_ERR) {
1430 re_reset(sc);
1431 re_init(sc);
1432 }
1433 }
1434 done:
1435 RTK_UNLOCK(sc);
1436 }
1437 #endif /* DEVICE_POLLING */
1438
1439 int
1440 re_intr(void *arg)
1441 {
1442 struct rtk_softc *sc = arg;
1443 struct ifnet *ifp;
1444 u_int16_t status;
1445 int handled = 0;
1446
1447 ifp = &sc->ethercom.ec_if;
1448
1449 if (!(ifp->if_flags & IFF_UP))
1450 return 0;
1451
1452 #ifdef DEVICE_POLLING
1453 if (ifp->if_flags & IFF_POLLING)
1454 goto done;
1455 if ((ifp->if_capenable & IFCAP_POLLING) &&
1456 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1457 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1458 re_poll(ifp, 0, 1);
1459 goto done;
1460 }
1461 #endif /* DEVICE_POLLING */
1462
1463 for (;;) {
1464
1465 status = CSR_READ_2(sc, RTK_ISR);
1466 /* If the card has gone away the read returns 0xffff. */
1467 if (status == 0xffff)
1468 break;
1469 if (status) {
1470 handled = 1;
1471 CSR_WRITE_2(sc, RTK_ISR, status);
1472 }
1473
1474 if ((status & RTK_INTRS_CPLUS) == 0)
1475 break;
1476
1477 if ((status & RTK_ISR_RX_OK) ||
1478 (status & RTK_ISR_RX_ERR))
1479 re_rxeof(sc);
1480
1481 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1482 (status & RTK_ISR_TX_ERR) ||
1483 (status & RTK_ISR_TX_DESC_UNAVAIL))
1484 re_txeof(sc);
1485
1486 if (status & RTK_ISR_SYSTEM_ERR) {
1487 re_reset(sc);
1488 re_init(ifp);
1489 }
1490
1491 if (status & RTK_ISR_LINKCHG) {
1492 callout_stop(&sc->rtk_tick_ch);
1493 re_tick(sc);
1494 }
1495 }
1496
1497 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1498 if (ifp->if_snd.ifq_head != NULL)
1499 (*ifp->if_start)(ifp);
1500
1501 #ifdef DEVICE_POLLING
1502 done:
1503 #endif
1504
1505 return handled;
1506 }
1507
1508 static int
1509 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1510 {
1511 bus_dmamap_t map;
1512 int error, i, startidx, curidx;
1513 struct m_tag *mtag;
1514 struct rtk_desc *d;
1515 u_int32_t cmdstat, rtk_flags;
1516 struct rtk_txq *txq;
1517
1518 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1519 return EFBIG;
1520 }
1521
1522 /*
1523 * Set up checksum offload. Note: checksum offload bits must
1524 * appear in all descriptors of a multi-descriptor transmit
1525 * attempt. (This is according to testing done with an 8169
1526 * chip. I'm not sure if this is a requirement or a bug.)
1527 */
1528
1529 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1530 u_int32_t segsz = m->m_pkthdr.segsz;
1531
1532 rtk_flags = RTK_TDESC_CMD_LGSEND |
1533 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1534 } else {
1535
1536 /*
1537 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1538 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1539 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1540 */
1541
1542 rtk_flags = 0;
1543 if ((m->m_pkthdr.csum_flags &
1544 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1545 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1546 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1547 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1548 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1549 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1550 }
1551 }
1552 }
1553
1554 txq = &sc->rtk_ldata.rtk_txq[*idx];
1555 map = txq->txq_dmamap;
1556 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1557
1558 if (error) {
1559 /* XXX try to defrag if EFBIG? */
1560
1561 aprint_error("%s: can't map mbuf (error %d)\n",
1562 sc->sc_dev.dv_xname, error);
1563
1564 return error;
1565 }
1566
1567 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1568 error = EFBIG;
1569 goto fail_unload;
1570 }
1571 /*
1572 * Map the segment array into descriptors. Note that we set the
1573 * start-of-frame and end-of-frame markers for either TX or RX, but
1574 * they really only have meaning in the TX case. (In the RX case,
1575 * it's the chip that tells us where packets begin and end.)
1576 * We also keep track of the end of the ring and set the
1577 * end-of-ring bits as needed, and we set the ownership bits
1578 * in all except the very first descriptor. (The caller will
1579 * set this descriptor later when it start transmission or
1580 * reception.)
1581 */
1582 i = 0;
1583 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1584 while (1) {
1585 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1586 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1587 while (i > 0) {
1588 sc->rtk_ldata.rtk_tx_list[
1589 (curidx + RTK_TX_DESC_CNT(sc) - i) %
1590 RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
1591 i--;
1592 }
1593 error = ENOBUFS;
1594 goto fail_unload;
1595 }
1596
1597 cmdstat = map->dm_segs[i].ds_len;
1598 d->rtk_bufaddr_lo =
1599 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1600 d->rtk_bufaddr_hi =
1601 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1602 if (i == 0)
1603 cmdstat |= RTK_TDESC_CMD_SOF;
1604 else
1605 cmdstat |= RTK_TDESC_CMD_OWN;
1606 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1607 cmdstat |= RTK_TDESC_CMD_EOR;
1608 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1609 i++;
1610 if (i == map->dm_nsegs)
1611 break;
1612 RTK_TX_DESC_INC(sc, curidx);
1613 }
1614
1615 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1616
1617 txq->txq_mbuf = m;
1618 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1619
1620 /*
1621 * Set up hardware VLAN tagging. Note: vlan tag info must
1622 * appear in the first descriptor of a multi-descriptor
1623 * transmission attempt.
1624 */
1625
1626 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1627 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1628 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1629 RTK_TDESC_VLANCTL_TAG);
1630 }
1631
1632 /* Transfer ownership of packet to the chip. */
1633
1634 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1635 htole32(RTK_TDESC_CMD_OWN);
1636 if (startidx != curidx)
1637 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1638 htole32(RTK_TDESC_CMD_OWN);
1639
1640 txq->txq_descidx = curidx;
1641 RTK_TX_DESC_INC(sc, curidx);
1642 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1643 *idx = (*idx + 1) % RTK_TX_QLEN;
1644
1645 return 0;
1646
1647 fail_unload:
1648 bus_dmamap_unload(sc->sc_dmat, map);
1649
1650 return error;
1651 }
1652
1653 /*
1654 * Main transmit routine for C+ and gigE NICs.
1655 */
1656
1657 static void
1658 re_start(struct ifnet *ifp)
1659 {
1660 struct rtk_softc *sc;
1661 int idx;
1662
1663 sc = ifp->if_softc;
1664
1665 idx = sc->rtk_ldata.rtk_txq_prodidx;
1666 while (/* CONSTCOND */ 1) {
1667 struct mbuf *m;
1668 int error;
1669
1670 IFQ_POLL(&ifp->if_snd, m);
1671 if (m == NULL)
1672 break;
1673
1674 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1675 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1676 ifp->if_flags |= IFF_OACTIVE;
1677 break;
1678 }
1679
1680 error = re_encap(sc, m, &idx);
1681 if (error == EFBIG &&
1682 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1683 IFQ_DEQUEUE(&ifp->if_snd, m);
1684 m_freem(m);
1685 ifp->if_oerrors++;
1686 continue;
1687 }
1688 if (error) {
1689 ifp->if_flags |= IFF_OACTIVE;
1690 break;
1691 }
1692
1693 IFQ_DEQUEUE(&ifp->if_snd, m);
1694
1695 #if NBPFILTER > 0
1696 /*
1697 * If there's a BPF listener, bounce a copy of this frame
1698 * to him.
1699 */
1700 if (ifp->if_bpf)
1701 bpf_mtap(ifp->if_bpf, m);
1702 #endif
1703 }
1704
1705 if (sc->rtk_ldata.rtk_txq_prodidx == idx) {
1706 return;
1707 }
1708 sc->rtk_ldata.rtk_txq_prodidx = idx;
1709
1710 /* Flush the TX descriptors */
1711
1712 bus_dmamap_sync(sc->sc_dmat,
1713 sc->rtk_ldata.rtk_tx_list_map,
1714 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1715 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1716
1717 /*
1718 * RealTek put the TX poll request register in a different
1719 * location on the 8169 gigE chip. I don't know why.
1720 */
1721
1722 if (sc->rtk_type == RTK_8169)
1723 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1724 else
1725 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1726
1727 /*
1728 * Use the countdown timer for interrupt moderation.
1729 * 'TX done' interrupts are disabled. Instead, we reset the
1730 * countdown timer, which will begin counting until it hits
1731 * the value in the TIMERINT register, and then trigger an
1732 * interrupt. Each time we write to the TIMERCNT register,
1733 * the timer count is reset to 0.
1734 */
1735 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1736
1737 /*
1738 * Set a timeout in case the chip goes out to lunch.
1739 */
1740 ifp->if_timer = 5;
1741
1742 return;
1743 }
1744
1745 static int
1746 re_init(struct ifnet *ifp)
1747 {
1748 struct rtk_softc *sc = ifp->if_softc;
1749 u_int32_t rxcfg = 0;
1750 u_int32_t reg;
1751 int error;
1752
1753 if ((error = re_enable(sc)) != 0)
1754 goto out;
1755
1756 /*
1757 * Cancel pending I/O and free all RX/TX buffers.
1758 */
1759 re_stop(ifp, 0);
1760
1761 /*
1762 * Enable C+ RX and TX mode, as well as VLAN stripping and
1763 * RX checksum offload. We must configure the C+ register
1764 * before all others.
1765 */
1766 reg = 0;
1767
1768 /*
1769 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1770 * FreeBSD drivers set these bits anyway (for 8139C+?).
1771 * So far, it works.
1772 */
1773
1774 /*
1775 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1776 * For 8169S/8110S rev 2 and above, do not set bit 14.
1777 */
1778 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1779 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1780
1781 if (1) {/* not for 8169S ? */
1782 reg |= RTK_CPLUSCMD_VLANSTRIP |
1783 (ifp->if_capenable &
1784 (IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4) ?
1785 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1786 }
1787
1788 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1789 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1790
1791 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1792 if (sc->rtk_type == RTK_8169)
1793 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1794
1795 DELAY(10000);
1796
1797 /*
1798 * Init our MAC address. Even though the chipset
1799 * documentation doesn't mention it, we need to enter "Config
1800 * register write enable" mode to modify the ID registers.
1801 */
1802 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1803 memcpy(®, LLADDR(ifp->if_sadl), 4);
1804 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1805 reg = 0;
1806 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1807 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1808 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1809
1810 /*
1811 * For C+ mode, initialize the RX descriptors and mbufs.
1812 */
1813 re_rx_list_init(sc);
1814 re_tx_list_init(sc);
1815
1816 /*
1817 * Enable transmit and receive.
1818 */
1819 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1820
1821 /*
1822 * Set the initial TX and RX configuration.
1823 */
1824 if (sc->rtk_testmode) {
1825 if (sc->rtk_type == RTK_8169)
1826 CSR_WRITE_4(sc, RTK_TXCFG,
1827 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1828 else
1829 CSR_WRITE_4(sc, RTK_TXCFG,
1830 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1831 } else
1832 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1833 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1834
1835 /* Set the individual bit to receive frames for this host only. */
1836 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1837 rxcfg |= RTK_RXCFG_RX_INDIV;
1838
1839 /* If we want promiscuous mode, set the allframes bit. */
1840 if (ifp->if_flags & IFF_PROMISC)
1841 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1842 else
1843 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1844 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1845
1846 /*
1847 * Set capture broadcast bit to capture broadcast frames.
1848 */
1849 if (ifp->if_flags & IFF_BROADCAST)
1850 rxcfg |= RTK_RXCFG_RX_BROAD;
1851 else
1852 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1853 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1854
1855 /*
1856 * Program the multicast filter, if necessary.
1857 */
1858 rtk_setmulti(sc);
1859
1860 #ifdef DEVICE_POLLING
1861 /*
1862 * Disable interrupts if we are polling.
1863 */
1864 if (ifp->if_flags & IFF_POLLING)
1865 CSR_WRITE_2(sc, RTK_IMR, 0);
1866 else /* otherwise ... */
1867 #endif /* DEVICE_POLLING */
1868 /*
1869 * Enable interrupts.
1870 */
1871 if (sc->rtk_testmode)
1872 CSR_WRITE_2(sc, RTK_IMR, 0);
1873 else
1874 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1875
1876 /* Start RX/TX process. */
1877 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1878 #ifdef notdef
1879 /* Enable receiver and transmitter. */
1880 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1881 #endif
1882 /*
1883 * Load the addresses of the RX and TX lists into the chip.
1884 */
1885
1886 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1887 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1888 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1889 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1890
1891 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1892 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1893 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1894 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1895
1896 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1897
1898 /*
1899 * Initialize the timer interrupt register so that
1900 * a timer interrupt will be generated once the timer
1901 * reaches a certain number of ticks. The timer is
1902 * reloaded on each transmit. This gives us TX interrupt
1903 * moderation, which dramatically improves TX frame rate.
1904 */
1905
1906 if (sc->rtk_type == RTK_8169)
1907 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1908 else
1909 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1910
1911 /*
1912 * For 8169 gigE NICs, set the max allowed RX packet
1913 * size so we can receive jumbo frames.
1914 */
1915 if (sc->rtk_type == RTK_8169)
1916 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1917
1918 if (sc->rtk_testmode)
1919 return 0;
1920
1921 mii_mediachg(&sc->mii);
1922
1923 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1924
1925 ifp->if_flags |= IFF_RUNNING;
1926 ifp->if_flags &= ~IFF_OACTIVE;
1927
1928 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1929
1930 out:
1931 if (error) {
1932 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1933 ifp->if_timer = 0;
1934 aprint_error("%s: interface not running\n",
1935 sc->sc_dev.dv_xname);
1936 }
1937
1938 return error;
1939
1940 }
1941
1942 /*
1943 * Set media options.
1944 */
1945 static int
1946 re_ifmedia_upd(struct ifnet *ifp)
1947 {
1948 struct rtk_softc *sc;
1949
1950 sc = ifp->if_softc;
1951
1952 return mii_mediachg(&sc->mii);
1953 }
1954
1955 /*
1956 * Report current media status.
1957 */
1958 static void
1959 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1960 {
1961 struct rtk_softc *sc;
1962
1963 sc = ifp->if_softc;
1964
1965 mii_pollstat(&sc->mii);
1966 ifmr->ifm_active = sc->mii.mii_media_active;
1967 ifmr->ifm_status = sc->mii.mii_media_status;
1968
1969 return;
1970 }
1971
1972 static int
1973 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1974 {
1975 struct rtk_softc *sc = ifp->if_softc;
1976 struct ifreq *ifr = (struct ifreq *) data;
1977 int s, error = 0;
1978
1979 s = splnet();
1980
1981 switch (command) {
1982 case SIOCSIFMTU:
1983 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1984 error = EINVAL;
1985 ifp->if_mtu = ifr->ifr_mtu;
1986 break;
1987 case SIOCGIFMEDIA:
1988 case SIOCSIFMEDIA:
1989 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1990 break;
1991 default:
1992 error = ether_ioctl(ifp, command, data);
1993 if (error == ENETRESET) {
1994 if (ifp->if_flags & IFF_RUNNING)
1995 rtk_setmulti(sc);
1996 error = 0;
1997 }
1998 break;
1999 }
2000
2001 splx(s);
2002
2003 return error;
2004 }
2005
2006 static void
2007 re_watchdog(struct ifnet *ifp)
2008 {
2009 struct rtk_softc *sc;
2010 int s;
2011
2012 sc = ifp->if_softc;
2013 s = splnet();
2014 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2015 ifp->if_oerrors++;
2016
2017 re_txeof(sc);
2018 re_rxeof(sc);
2019
2020 re_init(ifp);
2021
2022 splx(s);
2023 }
2024
2025 /*
2026 * Stop the adapter and free any mbufs allocated to the
2027 * RX and TX lists.
2028 */
2029 static void
2030 re_stop(struct ifnet *ifp, int disable)
2031 {
2032 register int i;
2033 struct rtk_softc *sc = ifp->if_softc;
2034
2035 callout_stop(&sc->rtk_tick_ch);
2036
2037 #ifdef DEVICE_POLLING
2038 ether_poll_deregister(ifp);
2039 #endif /* DEVICE_POLLING */
2040
2041 mii_down(&sc->mii);
2042
2043 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2044 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2045
2046 if (sc->rtk_head != NULL) {
2047 m_freem(sc->rtk_head);
2048 sc->rtk_head = sc->rtk_tail = NULL;
2049 }
2050
2051 /* Free the TX list buffers. */
2052 for (i = 0; i < RTK_TX_QLEN; i++) {
2053 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2054 bus_dmamap_unload(sc->sc_dmat,
2055 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2056 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2057 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2058 }
2059 }
2060
2061 /* Free the RX list buffers. */
2062 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2063 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2064 bus_dmamap_unload(sc->sc_dmat,
2065 sc->rtk_ldata.rtk_rx_dmamap[i]);
2066 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2067 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2068 }
2069 }
2070
2071 if (disable)
2072 re_disable(sc);
2073
2074 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2075 ifp->if_timer = 0;
2076
2077 return;
2078 }
2079