Home | History | Annotate | Line # | Download | only in ic
rtl8169.c revision 1.173
      1 /*	$NetBSD: rtl8169.c,v 1.173 2022/08/01 07:34:28 mlelstv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997, 1998-2003
      5  *	Bill Paul <wpaul (at) windriver.com>.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by Bill Paul.
     18  * 4. Neither the name of the author nor the names of any co-contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     32  * THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rtl8169.c,v 1.173 2022/08/01 07:34:28 mlelstv Exp $");
     37 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
     38 
     39 /*
     40  * RealTek 8139C+/8169/8169S/8168/8110S PCI NIC driver
     41  *
     42  * Written by Bill Paul <wpaul (at) windriver.com>
     43  * Senior Networking Software Engineer
     44  * Wind River Systems
     45  */
     46 
     47 /*
     48  * This driver is designed to support RealTek's next generation of
     49  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
     50  * six devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
     51  * RTL8110S, the RTL8168 and the RTL8111.
     52  *
     53  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
     54  * with the older 8139 family, however it also supports a special
     55  * C+ mode of operation that provides several new performance enhancing
     56  * features. These include:
     57  *
     58  *	o Descriptor based DMA mechanism. Each descriptor represents
     59  *	  a single packet fragment. Data buffers may be aligned on
     60  *	  any byte boundary.
     61  *
     62  *	o 64-bit DMA
     63  *
     64  *	o TCP/IP checksum offload for both RX and TX
     65  *
     66  *	o High and normal priority transmit DMA rings
     67  *
     68  *	o VLAN tag insertion and extraction
     69  *
     70  *	o TCP large send (segmentation offload)
     71  *
     72  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
     73  * programming API is fairly straightforward. The RX filtering, EEPROM
     74  * access and PHY access is the same as it is on the older 8139 series
     75  * chips.
     76  *
     77  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
     78  * same programming API and feature set as the 8139C+ with the following
     79  * differences and additions:
     80  *
     81  *	o 1000Mbps mode
     82  *
     83  *	o Jumbo frames
     84  *
     85  *	o GMII and TBI ports/registers for interfacing with copper
     86  *	  or fiber PHYs
     87  *
     88  *      o RX and TX DMA rings can have up to 1024 descriptors
     89  *        (the 8139C+ allows a maximum of 64)
     90  *
     91  *	o Slight differences in register layout from the 8139C+
     92  *
     93  * The TX start and timer interrupt registers are at different locations
     94  * on the 8169 than they are on the 8139C+. Also, the status word in the
     95  * RX descriptor has a slightly different bit layout. The 8169 does not
     96  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
     97  * copper gigE PHY.
     98  *
     99  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
    100  * (the 'S' stands for 'single-chip'). These devices have the same
    101  * programming API as the older 8169, but also have some vendor-specific
    102  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
    103  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
    104  *
    105  * This driver takes advantage of the RX and TX checksum offload and
    106  * VLAN tag insertion/extraction features. It also implements TX
    107  * interrupt moderation using the timer interrupt registers, which
    108  * significantly reduces TX interrupt load. There is also support
    109  * for jumbo frames, however the 8169/8169S/8110S can not transmit
    110  * jumbo frames larger than 7.5K, so the max MTU possible with this
    111  * driver is 7500 bytes.
    112  */
    113 
    114 
    115 #include <sys/param.h>
    116 #include <sys/endian.h>
    117 #include <sys/systm.h>
    118 #include <sys/sockio.h>
    119 #include <sys/mbuf.h>
    120 #include <sys/malloc.h>
    121 #include <sys/kernel.h>
    122 #include <sys/socket.h>
    123 #include <sys/device.h>
    124 
    125 #include <net/if.h>
    126 #include <net/if_arp.h>
    127 #include <net/if_dl.h>
    128 #include <net/if_ether.h>
    129 #include <net/if_media.h>
    130 #include <net/if_vlanvar.h>
    131 
    132 #include <netinet/in_systm.h>	/* XXX for IP_MAXPACKET */
    133 #include <netinet/in.h>		/* XXX for IP_MAXPACKET */
    134 #include <netinet/ip.h>		/* XXX for IP_MAXPACKET */
    135 
    136 #include <net/bpf.h>
    137 #include <sys/rndsource.h>
    138 
    139 #include <sys/bus.h>
    140 
    141 #include <dev/mii/mii.h>
    142 #include <dev/mii/miivar.h>
    143 
    144 #include <dev/ic/rtl81x9reg.h>
    145 #include <dev/ic/rtl81x9var.h>
    146 
    147 #include <dev/ic/rtl8169var.h>
    148 
    149 static inline void re_set_bufaddr(struct re_desc *, bus_addr_t);
    150 
    151 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
    152 static int re_rx_list_init(struct rtk_softc *);
    153 static int re_tx_list_init(struct rtk_softc *);
    154 static void re_rxeof(struct rtk_softc *);
    155 static void re_txeof(struct rtk_softc *);
    156 static void re_tick(void *);
    157 static void re_start(struct ifnet *);
    158 static int re_ioctl(struct ifnet *, u_long, void *);
    159 static int re_init(struct ifnet *);
    160 static void re_stop(struct ifnet *, int);
    161 static void re_watchdog(struct ifnet *);
    162 
    163 static int re_enable(struct rtk_softc *);
    164 static void re_disable(struct rtk_softc *);
    165 
    166 static int re_gmii_readreg(device_t, int, int, uint16_t *);
    167 static int re_gmii_writereg(device_t, int, int, uint16_t);
    168 
    169 static int re_miibus_readreg(device_t, int, int, uint16_t *);
    170 static int re_miibus_writereg(device_t, int, int, uint16_t);
    171 static void re_miibus_statchg(struct ifnet *);
    172 
    173 static void re_reset(struct rtk_softc *);
    174 
    175 static const struct re_revision {
    176 	uint32_t		re_chipid;
    177 	const char		*re_name;
    178 } re_revisions[] = {
    179 	{ RTK_HWREV_8100,	"RTL8100" },
    180 	{ RTK_HWREV_8100E,	"RTL8100E" },
    181 	{ RTK_HWREV_8100E_SPIN2, "RTL8100E 2" },
    182 	{ RTK_HWREV_8101,	"RTL8101" },
    183 	{ RTK_HWREV_8101E,	"RTL8101E" },
    184 	{ RTK_HWREV_8102E,	"RTL8102E" },
    185 	{ RTK_HWREV_8106E,	"RTL8106E" },
    186 	{ RTK_HWREV_8401E,	"RTL8401E" },
    187 	{ RTK_HWREV_8402,	"RTL8402" },
    188 	{ RTK_HWREV_8411,	"RTL8411" },
    189 	{ RTK_HWREV_8411B,	"RTL8411B" },
    190 	{ RTK_HWREV_8102EL,	"RTL8102EL" },
    191 	{ RTK_HWREV_8102EL_SPIN1, "RTL8102EL 1" },
    192 	{ RTK_HWREV_8103E,       "RTL8103E" },
    193 	{ RTK_HWREV_8110S,	"RTL8110S" },
    194 	{ RTK_HWREV_8139CPLUS,	"RTL8139C+" },
    195 	{ RTK_HWREV_8168B_SPIN1, "RTL8168 1" },
    196 	{ RTK_HWREV_8168B_SPIN2, "RTL8168 2" },
    197 	{ RTK_HWREV_8168B_SPIN3, "RTL8168 3" },
    198 	{ RTK_HWREV_8168C,	"RTL8168C/8111C" },
    199 	{ RTK_HWREV_8168C_SPIN2, "RTL8168C/8111C" },
    200 	{ RTK_HWREV_8168CP,	"RTL8168CP/8111CP" },
    201 	{ RTK_HWREV_8168F,	"RTL8168F/8111F" },
    202 	{ RTK_HWREV_8168G,	"RTL8168G/8111G" },
    203 	{ RTK_HWREV_8168GU,	"RTL8168GU/8111GU" },
    204 	{ RTK_HWREV_8168H,	"RTL8168H/8111H" },
    205 	{ RTK_HWREV_8105E,	"RTL8105E" },
    206 	{ RTK_HWREV_8105E_SPIN1, "RTL8105E" },
    207 	{ RTK_HWREV_8168D,	"RTL8168D/8111D" },
    208 	{ RTK_HWREV_8168DP,	"RTL8168DP/8111DP" },
    209 	{ RTK_HWREV_8168E,	"RTL8168E/8111E" },
    210 	{ RTK_HWREV_8168E_VL,	"RTL8168E/8111E-VL" },
    211 	{ RTK_HWREV_8168EP,	"RTL8168EP/8111EP" },
    212 	{ RTK_HWREV_8168FP,	"RTL8168FP/8117" },
    213 	{ RTK_HWREV_8169,	"RTL8169" },
    214 	{ RTK_HWREV_8169_8110SB, "RTL8169/8110SB" },
    215 	{ RTK_HWREV_8169_8110SBL, "RTL8169SBL" },
    216 	{ RTK_HWREV_8169_8110SC, "RTL8169/8110SCd" },
    217 	{ RTK_HWREV_8169_8110SCE, "RTL8169/8110SCe" },
    218 	{ RTK_HWREV_8169S,	"RTL8169S" },
    219 
    220 	{ 0, NULL }
    221 };
    222 
    223 static inline void
    224 re_set_bufaddr(struct re_desc *d, bus_addr_t addr)
    225 {
    226 
    227 	d->re_bufaddr_lo = htole32(RE_ADDR_LO(addr));
    228 	d->re_bufaddr_hi = htole32(RE_ADDR_HI(addr));
    229 }
    230 
    231 static int
    232 re_gmii_readreg(device_t dev, int phy, int reg, uint16_t *val)
    233 {
    234 	struct rtk_softc *sc = device_private(dev);
    235 	uint32_t data;
    236 	int i;
    237 
    238 	if (phy != 7)
    239 		return -1;
    240 
    241 	/* Let the rgephy driver read the GMEDIASTAT register */
    242 
    243 	if (reg == RTK_GMEDIASTAT) {
    244 		*val = CSR_READ_1(sc, RTK_GMEDIASTAT);
    245 		return 0;
    246 	}
    247 
    248 	CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
    249 	DELAY(1000);
    250 
    251 	for (i = 0; i < RTK_TIMEOUT; i++) {
    252 		data = CSR_READ_4(sc, RTK_PHYAR);
    253 		if (data & RTK_PHYAR_BUSY)
    254 			break;
    255 		DELAY(100);
    256 	}
    257 
    258 	if (i == RTK_TIMEOUT) {
    259 		printf("%s: PHY read failed\n", device_xname(sc->sc_dev));
    260 		return ETIMEDOUT;
    261 	}
    262 
    263 	*val = data & RTK_PHYAR_PHYDATA;
    264 	return 0;
    265 }
    266 
    267 static int
    268 re_gmii_writereg(device_t dev, int phy, int reg, uint16_t val)
    269 {
    270 	struct rtk_softc *sc = device_private(dev);
    271 	uint32_t data;
    272 	int i;
    273 
    274 	CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
    275 	    (val & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
    276 	DELAY(1000);
    277 
    278 	for (i = 0; i < RTK_TIMEOUT; i++) {
    279 		data = CSR_READ_4(sc, RTK_PHYAR);
    280 		if (!(data & RTK_PHYAR_BUSY))
    281 			break;
    282 		DELAY(100);
    283 	}
    284 
    285 	if (i == RTK_TIMEOUT) {
    286 		printf("%s: PHY write reg %x <- %hx failed\n",
    287 		    device_xname(sc->sc_dev), reg, val);
    288 		return ETIMEDOUT;
    289 	}
    290 
    291 	return 0;
    292 }
    293 
    294 static int
    295 re_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    296 {
    297 	struct rtk_softc *sc = device_private(dev);
    298 	uint16_t re8139_reg = 0;
    299 	int s, rv = 0;
    300 
    301 	s = splnet();
    302 
    303 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    304 		rv = re_gmii_readreg(dev, phy, reg, val);
    305 		splx(s);
    306 		return rv;
    307 	}
    308 
    309 	/* Pretend the internal PHY is only at address 0 */
    310 	if (phy) {
    311 		splx(s);
    312 		return -1;
    313 	}
    314 	switch (reg) {
    315 	case MII_BMCR:
    316 		re8139_reg = RTK_BMCR;
    317 		break;
    318 	case MII_BMSR:
    319 		re8139_reg = RTK_BMSR;
    320 		break;
    321 	case MII_ANAR:
    322 		re8139_reg = RTK_ANAR;
    323 		break;
    324 	case MII_ANER:
    325 		re8139_reg = RTK_ANER;
    326 		break;
    327 	case MII_ANLPAR:
    328 		re8139_reg = RTK_LPAR;
    329 		break;
    330 	case MII_PHYIDR1:
    331 	case MII_PHYIDR2:
    332 		*val = 0;
    333 		splx(s);
    334 		return 0;
    335 	/*
    336 	 * Allow the rlphy driver to read the media status
    337 	 * register. If we have a link partner which does not
    338 	 * support NWAY, this is the register which will tell
    339 	 * us the results of parallel detection.
    340 	 */
    341 	case RTK_MEDIASTAT:
    342 		*val = CSR_READ_1(sc, RTK_MEDIASTAT);
    343 		splx(s);
    344 		return 0;
    345 	default:
    346 		printf("%s: bad phy register\n", device_xname(sc->sc_dev));
    347 		splx(s);
    348 		return -1;
    349 	}
    350 	*val = CSR_READ_2(sc, re8139_reg);
    351 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0 && re8139_reg == RTK_BMCR) {
    352 		/* 8139C+ has different bit layout. */
    353 		*val &= ~(BMCR_LOOP | BMCR_ISO);
    354 	}
    355 	splx(s);
    356 	return 0;
    357 }
    358 
    359 static int
    360 re_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    361 {
    362 	struct rtk_softc *sc = device_private(dev);
    363 	uint16_t re8139_reg = 0;
    364 	int s, rv;
    365 
    366 	s = splnet();
    367 
    368 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    369 		rv = re_gmii_writereg(dev, phy, reg, val);
    370 		splx(s);
    371 		return rv;
    372 	}
    373 
    374 	/* Pretend the internal PHY is only at address 0 */
    375 	if (phy) {
    376 		splx(s);
    377 		return -1;
    378 	}
    379 	switch (reg) {
    380 	case MII_BMCR:
    381 		re8139_reg = RTK_BMCR;
    382 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0) {
    383 			/* 8139C+ has different bit layout. */
    384 			val &= ~(BMCR_LOOP | BMCR_ISO);
    385 		}
    386 		break;
    387 	case MII_BMSR:
    388 		re8139_reg = RTK_BMSR;
    389 		break;
    390 	case MII_ANAR:
    391 		re8139_reg = RTK_ANAR;
    392 		break;
    393 	case MII_ANER:
    394 		re8139_reg = RTK_ANER;
    395 		break;
    396 	case MII_ANLPAR:
    397 		re8139_reg = RTK_LPAR;
    398 		break;
    399 	case MII_PHYIDR1:
    400 	case MII_PHYIDR2:
    401 		splx(s);
    402 		return 0;
    403 		break;
    404 	default:
    405 		printf("%s: bad phy register\n", device_xname(sc->sc_dev));
    406 		splx(s);
    407 		return -1;
    408 	}
    409 	CSR_WRITE_2(sc, re8139_reg, val);
    410 	splx(s);
    411 	return 0;
    412 }
    413 
    414 static void
    415 re_miibus_statchg(struct ifnet *ifp)
    416 {
    417 
    418 	return;
    419 }
    420 
    421 static void
    422 re_reset(struct rtk_softc *sc)
    423 {
    424 	int i;
    425 
    426 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
    427 
    428 	for (i = 0; i < RTK_TIMEOUT; i++) {
    429 		DELAY(10);
    430 		if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
    431 			break;
    432 	}
    433 	if (i == RTK_TIMEOUT)
    434 		printf("%s: reset never completed!\n",
    435 		    device_xname(sc->sc_dev));
    436 
    437 	/*
    438 	 * NB: Realtek-supplied FreeBSD driver does this only for MACFG_3,
    439 	 *     but also says "Rtl8169s sigle chip detected".
    440 	 */
    441 	if ((sc->sc_quirk & RTKQ_MACLDPS) != 0)
    442 		CSR_WRITE_1(sc, RTK_LDPS, 1);
    443 
    444 }
    445 
    446 /*
    447  * The following routine is designed to test for a defect on some
    448  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
    449  * lines connected to the bus, however for a 32-bit only card, they
    450  * should be pulled high. The result of this defect is that the
    451  * NIC will not work right if you plug it into a 64-bit slot: DMA
    452  * operations will be done with 64-bit transfers, which will fail
    453  * because the 64-bit data lines aren't connected.
    454  *
    455  * There's no way to work around this (short of talking a soldering
    456  * iron to the board), however we can detect it. The method we use
    457  * here is to put the NIC into digital loopback mode, set the receiver
    458  * to promiscuous mode, and then try to send a frame. We then compare
    459  * the frame data we sent to what was received. If the data matches,
    460  * then the NIC is working correctly, otherwise we know the user has
    461  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
    462  * slot. In the latter case, there's no way the NIC can work correctly,
    463  * so we print out a message on the console and abort the device attach.
    464  */
    465 
    466 int
    467 re_diag(struct rtk_softc *sc)
    468 {
    469 	struct ifnet *ifp = &sc->ethercom.ec_if;
    470 	struct mbuf *m0;
    471 	struct ether_header *eh;
    472 	struct re_rxsoft *rxs;
    473 	struct re_desc *cur_rx;
    474 	bus_dmamap_t dmamap;
    475 	uint16_t status;
    476 	uint32_t rxstat;
    477 	int total_len, i, s, error = 0;
    478 	static const uint8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
    479 	static const uint8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
    480 
    481 	/* Allocate a single mbuf */
    482 
    483 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
    484 	if (m0 == NULL)
    485 		return ENOBUFS;
    486 
    487 	/*
    488 	 * Initialize the NIC in test mode. This sets the chip up
    489 	 * so that it can send and receive frames, but performs the
    490 	 * following special functions:
    491 	 * - Puts receiver in promiscuous mode
    492 	 * - Enables digital loopback mode
    493 	 * - Leaves interrupts turned off
    494 	 */
    495 
    496 	ifp->if_flags |= IFF_PROMISC;
    497 	sc->re_testmode = 1;
    498 	re_init(ifp);
    499 	re_stop(ifp, 0);
    500 	DELAY(100000);
    501 	re_init(ifp);
    502 
    503 	/* Put some data in the mbuf */
    504 
    505 	eh = mtod(m0, struct ether_header *);
    506 	memcpy(eh->ether_dhost, &dst, ETHER_ADDR_LEN);
    507 	memcpy(eh->ether_shost, &src, ETHER_ADDR_LEN);
    508 	eh->ether_type = htons(ETHERTYPE_IP);
    509 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
    510 
    511 	/*
    512 	 * Queue the packet, start transmission.
    513 	 */
    514 
    515 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
    516 	s = splnet();
    517 	IF_ENQUEUE(&ifp->if_snd, m0);
    518 	re_start(ifp);
    519 	splx(s);
    520 	m0 = NULL;
    521 
    522 	/* Wait for it to propagate through the chip */
    523 
    524 	DELAY(100000);
    525 	for (i = 0; i < RTK_TIMEOUT; i++) {
    526 		status = CSR_READ_2(sc, RTK_ISR);
    527 		if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
    528 		    (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
    529 			break;
    530 		DELAY(10);
    531 	}
    532 	if (i == RTK_TIMEOUT) {
    533 		aprint_error_dev(sc->sc_dev,
    534 		    "diagnostic failed, failed to receive packet "
    535 		    "in loopback mode\n");
    536 		error = EIO;
    537 		goto done;
    538 	}
    539 
    540 	/*
    541 	 * The packet should have been dumped into the first
    542 	 * entry in the RX DMA ring. Grab it from there.
    543 	 */
    544 
    545 	rxs = &sc->re_ldata.re_rxsoft[0];
    546 	dmamap = rxs->rxs_dmamap;
    547 	bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    548 	    BUS_DMASYNC_POSTREAD);
    549 	bus_dmamap_unload(sc->sc_dmat, dmamap);
    550 
    551 	m0 = rxs->rxs_mbuf;
    552 	rxs->rxs_mbuf = NULL;
    553 	eh = mtod(m0, struct ether_header *);
    554 
    555 	RE_RXDESCSYNC(sc, 0, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    556 	cur_rx = &sc->re_ldata.re_rx_list[0];
    557 	rxstat = le32toh(cur_rx->re_cmdstat);
    558 	total_len = rxstat & sc->re_rxlenmask;
    559 
    560 	if (total_len != ETHER_MIN_LEN) {
    561 		aprint_error_dev(sc->sc_dev,
    562 		    "diagnostic failed, received short packet\n");
    563 		error = EIO;
    564 		goto done;
    565 	}
    566 
    567 	/* Test that the received packet data matches what we sent. */
    568 
    569 	if (memcmp(&eh->ether_dhost, &dst, ETHER_ADDR_LEN) ||
    570 	    memcmp(&eh->ether_shost, &src, ETHER_ADDR_LEN) ||
    571 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
    572 		aprint_error_dev(sc->sc_dev, "WARNING, DMA FAILURE!\n"
    573 		    "expected TX data: %s/%s/0x%x\n"
    574 		    "received RX data: %s/%s/0x%x\n"
    575 		    "You may have a defective 32-bit NIC plugged "
    576 		    "into a 64-bit PCI slot.\n"
    577 		    "Please re-install the NIC in a 32-bit slot "
    578 		    "for proper operation.\n"
    579 		    "Read the re(4) man page for more details.\n" ,
    580 		    ether_sprintf(dst),  ether_sprintf(src), ETHERTYPE_IP,
    581 		    ether_sprintf(eh->ether_dhost),
    582 		    ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
    583 		error = EIO;
    584 	}
    585 
    586  done:
    587 	/* Turn interface off, release resources */
    588 
    589 	sc->re_testmode = 0;
    590 	ifp->if_flags &= ~IFF_PROMISC;
    591 	re_stop(ifp, 0);
    592 	if (m0 != NULL)
    593 		m_freem(m0);
    594 
    595 	return error;
    596 }
    597 
    598 
    599 /*
    600  * Attach the interface. Allocate softc structures, do ifmedia
    601  * setup and ethernet/BPF attach.
    602  */
    603 void
    604 re_attach(struct rtk_softc *sc)
    605 {
    606 	uint8_t eaddr[ETHER_ADDR_LEN];
    607 	struct ifnet *ifp;
    608 	struct mii_data *mii = &sc->mii;
    609 	int error = 0, i;
    610 	const struct re_revision *rr;
    611 	const char *re_name = NULL;
    612 
    613 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
    614 		/* Revision of 8169/8169S/8110s in bits 30..26, 23 */
    615 		sc->sc_hwrev = CSR_READ_4(sc, RTK_TXCFG) & RTK_TXCFG_HWREV;
    616 
    617 		for (rr = re_revisions; rr->re_name != NULL; rr++) {
    618 			if (rr->re_chipid == sc->sc_hwrev)
    619 				re_name = rr->re_name;
    620 		}
    621 
    622 		if (re_name == NULL)
    623 			aprint_normal_dev(sc->sc_dev,
    624 			    "unknown ASIC (0x%04x)\n", sc->sc_hwrev >> 16);
    625 		else
    626 			aprint_normal_dev(sc->sc_dev,
    627 			    "%s (0x%04x)\n", re_name, sc->sc_hwrev >> 16);
    628 
    629 		switch (sc->sc_hwrev) {
    630 		case RTK_HWREV_8169:
    631 			sc->sc_quirk |= RTKQ_8169NONS;
    632 			break;
    633 		case RTK_HWREV_8169S:
    634 		case RTK_HWREV_8110S:
    635 		case RTK_HWREV_8169_8110SB:
    636 		case RTK_HWREV_8169_8110SBL:
    637 		case RTK_HWREV_8169_8110SC:
    638 			sc->sc_quirk |= RTKQ_MACLDPS;
    639 			break;
    640 		case RTK_HWREV_8168B_SPIN1:
    641 		case RTK_HWREV_8168B_SPIN2:
    642 		case RTK_HWREV_8168B_SPIN3:
    643 			sc->sc_quirk |= RTKQ_MACSTAT;
    644 			break;
    645 		case RTK_HWREV_8168C:
    646 		case RTK_HWREV_8168C_SPIN2:
    647 		case RTK_HWREV_8168CP:
    648 		case RTK_HWREV_8168D:
    649 		case RTK_HWREV_8168DP:
    650 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    651 			    RTKQ_MACSTAT | RTKQ_CMDSTOP;
    652 			/*
    653 			 * From FreeBSD driver:
    654 			 *
    655 			 * These (8168/8111) controllers support jumbo frame
    656 			 * but it seems that enabling it requires touching
    657 			 * additional magic registers. Depending on MAC
    658 			 * revisions some controllers need to disable
    659 			 * checksum offload. So disable jumbo frame until
    660 			 * I have better idea what it really requires to
    661 			 * make it support.
    662 			 * RTL8168C/CP : supports up to 6KB jumbo frame.
    663 			 * RTL8111C/CP : supports up to 9KB jumbo frame.
    664 			 */
    665 			sc->sc_quirk |= RTKQ_NOJUMBO;
    666 			break;
    667 		case RTK_HWREV_8168E:
    668 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    669 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
    670 			    RTKQ_NOJUMBO;
    671 			break;
    672 		case RTK_HWREV_8168E_VL:
    673 		case RTK_HWREV_8168F:
    674 		case RTK_HWREV_8411:
    675 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    676 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
    677 			break;
    678 		case RTK_HWREV_8168EP:
    679 		case RTK_HWREV_8168FP:
    680 		case RTK_HWREV_8168G:
    681 		case RTK_HWREV_8168GU:
    682 		case RTK_HWREV_8168H:
    683 		case RTK_HWREV_8411B:
    684 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    685 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_PHYWAKE_PM |
    686 			    RTKQ_NOJUMBO | RTKQ_RXDV_GATED | RTKQ_TXRXEN_LATER;
    687 			break;
    688 		case RTK_HWREV_8100E:
    689 		case RTK_HWREV_8100E_SPIN2:
    690 		case RTK_HWREV_8101E:
    691 			sc->sc_quirk |= RTKQ_NOJUMBO;
    692 			break;
    693 		case RTK_HWREV_8102E:
    694 		case RTK_HWREV_8102EL:
    695 		case RTK_HWREV_8102EL_SPIN1:
    696 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    697 			    RTKQ_MACSTAT | RTKQ_CMDSTOP | RTKQ_NOJUMBO;
    698 			break;
    699 		case RTK_HWREV_8103E:
    700 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD |
    701 			    RTKQ_MACSTAT | RTKQ_CMDSTOP;
    702 			break;
    703 		case RTK_HWREV_8401E:
    704 		case RTK_HWREV_8105E:
    705 		case RTK_HWREV_8105E_SPIN1: /* XXX */
    706 		case RTK_HWREV_8106E:
    707 			sc->sc_quirk |= RTKQ_PHYWAKE_PM |
    708 			    RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
    709 			    RTKQ_CMDSTOP;
    710 			break;
    711 		case RTK_HWREV_8402:
    712 			sc->sc_quirk |= RTKQ_PHYWAKE_PM |
    713 			    RTKQ_DESCV2 | RTKQ_NOEECMD | RTKQ_MACSTAT |
    714 			    RTKQ_CMDSTOP; /* CMDSTOP_WAIT_TXQ */
    715 			break;
    716 		default:
    717 			/* assume the latest features */
    718 			sc->sc_quirk |= RTKQ_DESCV2 | RTKQ_NOEECMD;
    719 			sc->sc_quirk |= RTKQ_NOJUMBO;
    720 		}
    721 
    722 		/* Set RX length mask */
    723 		sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
    724 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8169;
    725 	} else {
    726 		sc->sc_quirk |= RTKQ_NOJUMBO;
    727 
    728 		/* Set RX length mask */
    729 		sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
    730 		sc->re_ldata.re_tx_desc_cnt = RE_TX_DESC_CNT_8139;
    731 	}
    732 
    733 	/* Reset the adapter. */
    734 	re_reset(sc);
    735 
    736 	/*
    737 	 * RTL81x9 chips automatically read EEPROM to init MAC address,
    738 	 * and some NAS override its MAC address per own configuration,
    739 	 * so no need to explicitly read EEPROM and set ID registers.
    740 	 */
    741 #ifdef RE_USE_EECMD
    742 	if ((sc->sc_quirk & RTKQ_NOEECMD) != 0) {
    743 		/*
    744 		 * Get station address from ID registers.
    745 		 */
    746 		for (i = 0; i < ETHER_ADDR_LEN; i++)
    747 			eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    748 	} else {
    749 		uint16_t val;
    750 		int addr_len;
    751 
    752 		/*
    753 		 * Get station address from the EEPROM.
    754 		 */
    755 		if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
    756 			addr_len = RTK_EEADDR_LEN1;
    757 		else
    758 			addr_len = RTK_EEADDR_LEN0;
    759 
    760 		/*
    761 		 * Get station address from the EEPROM.
    762 		 */
    763 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    764 			val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
    765 			eaddr[(i * 2) + 0] = val & 0xff;
    766 			eaddr[(i * 2) + 1] = val >> 8;
    767 		}
    768 	}
    769 #else
    770 	/*
    771 	 * Get station address from ID registers.
    772 	 */
    773 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    774 		eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
    775 #endif
    776 
    777 	/* Take PHY out of power down mode. */
    778 	if ((sc->sc_quirk & RTKQ_PHYWAKE_PM) != 0)
    779 		CSR_WRITE_1(sc, RTK_PMCH, CSR_READ_1(sc, RTK_PMCH) | 0x80);
    780 
    781 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    782 	    ether_sprintf(eaddr));
    783 
    784 	if (sc->re_ldata.re_tx_desc_cnt >
    785 	    PAGE_SIZE / sizeof(struct re_desc)) {
    786 		sc->re_ldata.re_tx_desc_cnt =
    787 		    PAGE_SIZE / sizeof(struct re_desc);
    788 	}
    789 
    790 	aprint_verbose_dev(sc->sc_dev, "using %d tx descriptors\n",
    791 	    sc->re_ldata.re_tx_desc_cnt);
    792 	KASSERT(RE_NEXT_TX_DESC(sc, RE_TX_DESC_CNT(sc) - 1) == 0);
    793 
    794 	/* Allocate DMA'able memory for the TX ring */
    795 	if ((error = bus_dmamem_alloc(sc->sc_dmat, RE_TX_LIST_SZ(sc),
    796 	    RE_RING_ALIGN, 0, &sc->re_ldata.re_tx_listseg, 1,
    797 	    &sc->re_ldata.re_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    798 		aprint_error_dev(sc->sc_dev,
    799 		    "can't allocate tx listseg, error = %d\n", error);
    800 		goto fail_0;
    801 	}
    802 
    803 	/* Load the map for the TX ring. */
    804 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_tx_listseg,
    805 	    sc->re_ldata.re_tx_listnseg, RE_TX_LIST_SZ(sc),
    806 	    (void **)&sc->re_ldata.re_tx_list,
    807 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    808 		aprint_error_dev(sc->sc_dev,
    809 		    "can't map tx list, error = %d\n", error);
    810 		goto fail_1;
    811 	}
    812 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
    813 
    814 	if ((error = bus_dmamap_create(sc->sc_dmat, RE_TX_LIST_SZ(sc), 1,
    815 	    RE_TX_LIST_SZ(sc), 0, 0,
    816 	    &sc->re_ldata.re_tx_list_map)) != 0) {
    817 		aprint_error_dev(sc->sc_dev,
    818 		    "can't create tx list map, error = %d\n", error);
    819 		goto fail_2;
    820 	}
    821 
    822 
    823 	if ((error = bus_dmamap_load(sc->sc_dmat,
    824 	    sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
    825 	    RE_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
    826 		aprint_error_dev(sc->sc_dev,
    827 		    "can't load tx list, error = %d\n", error);
    828 		goto fail_3;
    829 	}
    830 
    831 	/* Create DMA maps for TX buffers */
    832 	for (i = 0; i < RE_TX_QLEN; i++) {
    833 		error = bus_dmamap_create(sc->sc_dmat,
    834 		    round_page(IP_MAXPACKET),
    835 		    RE_TX_DESC_CNT(sc), RE_TDESC_CMD_FRAGLEN,
    836 		    0, 0, &sc->re_ldata.re_txq[i].txq_dmamap);
    837 		if (error) {
    838 			aprint_error_dev(sc->sc_dev,
    839 			    "can't create DMA map for TX\n");
    840 			goto fail_4;
    841 		}
    842 	}
    843 
    844 	/* Allocate DMA'able memory for the RX ring */
    845 	/* XXX see also a comment about RE_RX_DMAMEM_SZ in rtl81x9var.h */
    846 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    847 	    RE_RX_DMAMEM_SZ, RE_RING_ALIGN, 0, &sc->re_ldata.re_rx_listseg, 1,
    848 	    &sc->re_ldata.re_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
    849 		aprint_error_dev(sc->sc_dev,
    850 		    "can't allocate rx listseg, error = %d\n", error);
    851 		goto fail_4;
    852 	}
    853 
    854 	/* Load the map for the RX ring. */
    855 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->re_ldata.re_rx_listseg,
    856 	    sc->re_ldata.re_rx_listnseg, RE_RX_DMAMEM_SZ,
    857 	    (void **)&sc->re_ldata.re_rx_list,
    858 	    BUS_DMA_COHERENT | BUS_DMA_NOWAIT)) != 0) {
    859 		aprint_error_dev(sc->sc_dev,
    860 		    "can't map rx list, error = %d\n", error);
    861 		goto fail_5;
    862 	}
    863 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_DMAMEM_SZ);
    864 
    865 	if ((error = bus_dmamap_create(sc->sc_dmat,
    866 	    RE_RX_DMAMEM_SZ, 1, RE_RX_DMAMEM_SZ, 0, 0,
    867 	    &sc->re_ldata.re_rx_list_map)) != 0) {
    868 		aprint_error_dev(sc->sc_dev,
    869 		    "can't create rx list map, error = %d\n", error);
    870 		goto fail_6;
    871 	}
    872 
    873 	if ((error = bus_dmamap_load(sc->sc_dmat,
    874 	    sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
    875 	    RE_RX_DMAMEM_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
    876 		aprint_error_dev(sc->sc_dev,
    877 		    "can't load rx list, error = %d\n", error);
    878 		goto fail_7;
    879 	}
    880 
    881 	/* Create DMA maps for RX buffers */
    882 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
    883 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    884 		    0, 0, &sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    885 		if (error) {
    886 			aprint_error_dev(sc->sc_dev,
    887 			    "can't create DMA map for RX\n");
    888 			goto fail_8;
    889 		}
    890 	}
    891 
    892 	/*
    893 	 * Record interface as attached. From here, we should not fail.
    894 	 */
    895 	sc->sc_flags |= RTK_ATTACHED;
    896 
    897 	ifp = &sc->ethercom.ec_if;
    898 	ifp->if_softc = sc;
    899 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    900 	ifp->if_mtu = ETHERMTU;
    901 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    902 	ifp->if_ioctl = re_ioctl;
    903 	sc->ethercom.ec_capabilities |=
    904 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    905 	ifp->if_start = re_start;
    906 	ifp->if_stop = re_stop;
    907 
    908 	/*
    909 	 * IFCAP_CSUM_IPv4_Tx on re(4) is broken for small packets,
    910 	 * so we have a workaround to handle the bug by padding
    911 	 * such packets manually.
    912 	 */
    913 	ifp->if_capabilities |=
    914 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    915 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    916 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
    917 	    IFCAP_TSOv4;
    918 
    919 	ifp->if_watchdog = re_watchdog;
    920 	ifp->if_init = re_init;
    921 	ifp->if_snd.ifq_maxlen = RE_IFQ_MAXLEN;
    922 	ifp->if_capenable = ifp->if_capabilities;
    923 	IFQ_SET_READY(&ifp->if_snd);
    924 
    925 	callout_init(&sc->rtk_tick_ch, 0);
    926 	callout_setfunc(&sc->rtk_tick_ch, re_tick, sc);
    927 
    928 	/* Do MII setup */
    929 	mii->mii_ifp = ifp;
    930 	mii->mii_readreg = re_miibus_readreg;
    931 	mii->mii_writereg = re_miibus_writereg;
    932 	mii->mii_statchg = re_miibus_statchg;
    933 	sc->ethercom.ec_mii = mii;
    934 	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
    935 	    ether_mediastatus);
    936 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    937 	    MII_OFFSET_ANY, 0);
    938 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    939 
    940 	/*
    941 	 * Call MI attach routine.
    942 	 */
    943 	if_attach(ifp);
    944 	if_deferred_start_init(ifp, NULL);
    945 	ether_ifattach(ifp, eaddr);
    946 
    947 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    948 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    949 
    950 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
    951 		pmf_class_network_register(sc->sc_dev, ifp);
    952 	else
    953 		aprint_error_dev(sc->sc_dev,
    954 		    "couldn't establish power handler\n");
    955 
    956 	return;
    957 
    958  fail_8:
    959 	/* Destroy DMA maps for RX buffers. */
    960 	for (i = 0; i < RE_RX_DESC_CNT; i++)
    961 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
    962 			bus_dmamap_destroy(sc->sc_dmat,
    963 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
    964 
    965 	/* Free DMA'able memory for the RX ring. */
    966 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    967  fail_7:
    968 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
    969  fail_6:
    970 	bus_dmamem_unmap(sc->sc_dmat,
    971 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
    972  fail_5:
    973 	bus_dmamem_free(sc->sc_dmat,
    974 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
    975 
    976  fail_4:
    977 	/* Destroy DMA maps for TX buffers. */
    978 	for (i = 0; i < RE_TX_QLEN; i++)
    979 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
    980 			bus_dmamap_destroy(sc->sc_dmat,
    981 			    sc->re_ldata.re_txq[i].txq_dmamap);
    982 
    983 	/* Free DMA'able memory for the TX ring. */
    984 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    985  fail_3:
    986 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
    987  fail_2:
    988 	bus_dmamem_unmap(sc->sc_dmat,
    989 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
    990  fail_1:
    991 	bus_dmamem_free(sc->sc_dmat,
    992 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
    993  fail_0:
    994 	return;
    995 }
    996 
    997 
    998 /*
    999  * re_activate:
   1000  *     Handle device activation/deactivation requests.
   1001  */
   1002 int
   1003 re_activate(device_t self, enum devact act)
   1004 {
   1005 	struct rtk_softc *sc = device_private(self);
   1006 
   1007 	switch (act) {
   1008 	case DVACT_DEACTIVATE:
   1009 		if_deactivate(&sc->ethercom.ec_if);
   1010 		return 0;
   1011 	default:
   1012 		return EOPNOTSUPP;
   1013 	}
   1014 }
   1015 
   1016 /*
   1017  * re_detach:
   1018  *     Detach a rtk interface.
   1019  */
   1020 int
   1021 re_detach(struct rtk_softc *sc)
   1022 {
   1023 	struct ifnet *ifp = &sc->ethercom.ec_if;
   1024 	int i;
   1025 
   1026 	/*
   1027 	 * Succeed now if there isn't any work to do.
   1028 	 */
   1029 	if ((sc->sc_flags & RTK_ATTACHED) == 0)
   1030 		return 0;
   1031 
   1032 	/* Unhook our tick handler. */
   1033 	callout_stop(&sc->rtk_tick_ch);
   1034 
   1035 	/* Detach all PHYs. */
   1036 	mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
   1037 
   1038 	rnd_detach_source(&sc->rnd_source);
   1039 	ether_ifdetach(ifp);
   1040 	if_detach(ifp);
   1041 
   1042 	/* Delete all remaining media. */
   1043 	ifmedia_fini(&sc->mii.mii_media);
   1044 
   1045 	/* Destroy DMA maps for RX buffers. */
   1046 	for (i = 0; i < RE_RX_DESC_CNT; i++)
   1047 		if (sc->re_ldata.re_rxsoft[i].rxs_dmamap != NULL)
   1048 			bus_dmamap_destroy(sc->sc_dmat,
   1049 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
   1050 
   1051 	/* Free DMA'able memory for the RX ring. */
   1052 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
   1053 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_rx_list_map);
   1054 	bus_dmamem_unmap(sc->sc_dmat,
   1055 	    (void *)sc->re_ldata.re_rx_list, RE_RX_DMAMEM_SZ);
   1056 	bus_dmamem_free(sc->sc_dmat,
   1057 	    &sc->re_ldata.re_rx_listseg, sc->re_ldata.re_rx_listnseg);
   1058 
   1059 	/* Destroy DMA maps for TX buffers. */
   1060 	for (i = 0; i < RE_TX_QLEN; i++)
   1061 		if (sc->re_ldata.re_txq[i].txq_dmamap != NULL)
   1062 			bus_dmamap_destroy(sc->sc_dmat,
   1063 			    sc->re_ldata.re_txq[i].txq_dmamap);
   1064 
   1065 	/* Free DMA'able memory for the TX ring. */
   1066 	bus_dmamap_unload(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
   1067 	bus_dmamap_destroy(sc->sc_dmat, sc->re_ldata.re_tx_list_map);
   1068 	bus_dmamem_unmap(sc->sc_dmat,
   1069 	    (void *)sc->re_ldata.re_tx_list, RE_TX_LIST_SZ(sc));
   1070 	bus_dmamem_free(sc->sc_dmat,
   1071 	    &sc->re_ldata.re_tx_listseg, sc->re_ldata.re_tx_listnseg);
   1072 
   1073 	pmf_device_deregister(sc->sc_dev);
   1074 
   1075 	/* we don't want to run again */
   1076 	sc->sc_flags &= ~RTK_ATTACHED;
   1077 
   1078 	return 0;
   1079 }
   1080 
   1081 /*
   1082  * re_enable:
   1083  *     Enable the RTL81X9 chip.
   1084  */
   1085 static int
   1086 re_enable(struct rtk_softc *sc)
   1087 {
   1088 
   1089 	if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
   1090 		if ((*sc->sc_enable)(sc) != 0) {
   1091 			printf("%s: device enable failed\n",
   1092 			    device_xname(sc->sc_dev));
   1093 			return EIO;
   1094 		}
   1095 		sc->sc_flags |= RTK_ENABLED;
   1096 	}
   1097 	return 0;
   1098 }
   1099 
   1100 /*
   1101  * re_disable:
   1102  *     Disable the RTL81X9 chip.
   1103  */
   1104 static void
   1105 re_disable(struct rtk_softc *sc)
   1106 {
   1107 
   1108 	if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
   1109 		(*sc->sc_disable)(sc);
   1110 		sc->sc_flags &= ~RTK_ENABLED;
   1111 	}
   1112 }
   1113 
   1114 static int
   1115 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
   1116 {
   1117 	struct mbuf *n = NULL;
   1118 	bus_dmamap_t map;
   1119 	struct re_desc *d;
   1120 	struct re_rxsoft *rxs;
   1121 	uint32_t cmdstat;
   1122 	int error;
   1123 
   1124 	if (m == NULL) {
   1125 		MGETHDR(n, M_DONTWAIT, MT_DATA);
   1126 		if (n == NULL)
   1127 			return ENOBUFS;
   1128 
   1129 		MCLAIM(n, &sc->ethercom.ec_rx_mowner);
   1130 		MCLGET(n, M_DONTWAIT);
   1131 		if ((n->m_flags & M_EXT) == 0) {
   1132 			m_freem(n);
   1133 			return ENOBUFS;
   1134 		}
   1135 		m = n;
   1136 	} else
   1137 		m->m_data = m->m_ext.ext_buf;
   1138 
   1139 	/*
   1140 	 * Initialize mbuf length fields and fixup
   1141 	 * alignment so that the frame payload is
   1142 	 * longword aligned.
   1143 	 */
   1144 	m->m_len = m->m_pkthdr.len = MCLBYTES - RE_ETHER_ALIGN;
   1145 	m->m_data += RE_ETHER_ALIGN;
   1146 
   1147 	rxs = &sc->re_ldata.re_rxsoft[idx];
   1148 	map = rxs->rxs_dmamap;
   1149 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1150 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1151 
   1152 	if (error)
   1153 		goto out;
   1154 
   1155 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1156 	    BUS_DMASYNC_PREREAD);
   1157 
   1158 	d = &sc->re_ldata.re_rx_list[idx];
   1159 #ifdef DIAGNOSTIC
   1160 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1161 	cmdstat = le32toh(d->re_cmdstat);
   1162 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD);
   1163 	if (cmdstat & RE_RDESC_STAT_OWN) {
   1164 		panic("%s: tried to map busy RX descriptor",
   1165 		    device_xname(sc->sc_dev));
   1166 	}
   1167 #endif
   1168 
   1169 	rxs->rxs_mbuf = m;
   1170 
   1171 	d->re_vlanctl = 0;
   1172 	cmdstat = map->dm_segs[0].ds_len;
   1173 	if (idx == (RE_RX_DESC_CNT - 1))
   1174 		cmdstat |= RE_RDESC_CMD_EOR;
   1175 	re_set_bufaddr(d, map->dm_segs[0].ds_addr);
   1176 	d->re_cmdstat = htole32(cmdstat);
   1177 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1178 	cmdstat |= RE_RDESC_CMD_OWN;
   1179 	d->re_cmdstat = htole32(cmdstat);
   1180 	RE_RXDESCSYNC(sc, idx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1181 
   1182 	return 0;
   1183  out:
   1184 	if (n != NULL)
   1185 		m_freem(n);
   1186 	return ENOMEM;
   1187 }
   1188 
   1189 static int
   1190 re_tx_list_init(struct rtk_softc *sc)
   1191 {
   1192 	int i;
   1193 
   1194 	memset(sc->re_ldata.re_tx_list, 0, RE_TX_LIST_SZ(sc));
   1195 	for (i = 0; i < RE_TX_QLEN; i++) {
   1196 		sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   1197 	}
   1198 
   1199 	bus_dmamap_sync(sc->sc_dmat,
   1200 	    sc->re_ldata.re_tx_list_map, 0,
   1201 	    sc->re_ldata.re_tx_list_map->dm_mapsize,
   1202 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1203 	sc->re_ldata.re_txq_prodidx = 0;
   1204 	sc->re_ldata.re_txq_considx = 0;
   1205 	sc->re_ldata.re_txq_free = RE_TX_QLEN;
   1206 	sc->re_ldata.re_tx_free = RE_TX_DESC_CNT(sc);
   1207 	sc->re_ldata.re_tx_nextfree = 0;
   1208 
   1209 	return 0;
   1210 }
   1211 
   1212 static int
   1213 re_rx_list_init(struct rtk_softc *sc)
   1214 {
   1215 	int i;
   1216 
   1217 	memset(sc->re_ldata.re_rx_list, 0, RE_RX_LIST_SZ);
   1218 
   1219 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   1220 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
   1221 			return ENOBUFS;
   1222 	}
   1223 
   1224 	sc->re_ldata.re_rx_prodidx = 0;
   1225 	sc->re_head = sc->re_tail = NULL;
   1226 
   1227 	return 0;
   1228 }
   1229 
   1230 /*
   1231  * RX handler for C+ and 8169. For the gigE chips, we support
   1232  * the reception of jumbo frames that have been fragmented
   1233  * across multiple 2K mbuf cluster buffers.
   1234  */
   1235 static void
   1236 re_rxeof(struct rtk_softc *sc)
   1237 {
   1238 	struct mbuf *m;
   1239 	struct ifnet *ifp;
   1240 	int i, total_len;
   1241 	struct re_desc *cur_rx;
   1242 	struct re_rxsoft *rxs;
   1243 	uint32_t rxstat, rxvlan;
   1244 
   1245 	ifp = &sc->ethercom.ec_if;
   1246 
   1247 	for (i = sc->re_ldata.re_rx_prodidx;; i = RE_NEXT_RX_DESC(sc, i)) {
   1248 		cur_rx = &sc->re_ldata.re_rx_list[i];
   1249 		RE_RXDESCSYNC(sc, i,
   1250 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1251 		rxstat = le32toh(cur_rx->re_cmdstat);
   1252 		rxvlan = le32toh(cur_rx->re_vlanctl);
   1253 		RE_RXDESCSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1254 		if ((rxstat & RE_RDESC_STAT_OWN) != 0) {
   1255 			break;
   1256 		}
   1257 		total_len = rxstat & sc->re_rxlenmask;
   1258 		rxs = &sc->re_ldata.re_rxsoft[i];
   1259 		m = rxs->rxs_mbuf;
   1260 
   1261 		/* Invalidate the RX mbuf and unload its map */
   1262 
   1263 		bus_dmamap_sync(sc->sc_dmat,
   1264 		    rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize,
   1265 		    BUS_DMASYNC_POSTREAD);
   1266 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1267 
   1268 		if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
   1269 			m->m_len = MCLBYTES - RE_ETHER_ALIGN;
   1270 			if (sc->re_head == NULL)
   1271 				sc->re_head = sc->re_tail = m;
   1272 			else {
   1273 				m_remove_pkthdr(m);
   1274 				sc->re_tail->m_next = m;
   1275 				sc->re_tail = m;
   1276 			}
   1277 			re_newbuf(sc, i, NULL);
   1278 			continue;
   1279 		}
   1280 
   1281 		/*
   1282 		 * NOTE: for the 8139C+, the frame length field
   1283 		 * is always 12 bits in size, but for the gigE chips,
   1284 		 * it is 13 bits (since the max RX frame length is 16K).
   1285 		 * Unfortunately, all 32 bits in the status word
   1286 		 * were already used, so to make room for the extra
   1287 		 * length bit, RealTek took out the 'frame alignment
   1288 		 * error' bit and shifted the other status bits
   1289 		 * over one slot. The OWN, EOR, FS and LS bits are
   1290 		 * still in the same places. We have already extracted
   1291 		 * the frame length and checked the OWN bit, so rather
   1292 		 * than using an alternate bit mapping, we shift the
   1293 		 * status bits one space to the right so we can evaluate
   1294 		 * them using the 8169 status as though it was in the
   1295 		 * same format as that of the 8139C+.
   1296 		 */
   1297 		if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0)
   1298 			rxstat >>= 1;
   1299 
   1300 		if (__predict_false((rxstat & RE_RDESC_STAT_RXERRSUM) != 0)) {
   1301 #ifdef RE_DEBUG
   1302 			printf("%s: RX error (rxstat = 0x%08x)",
   1303 			    device_xname(sc->sc_dev), rxstat);
   1304 			if (rxstat & RE_RDESC_STAT_FRALIGN)
   1305 				printf(", frame alignment error");
   1306 			if (rxstat & RE_RDESC_STAT_BUFOFLOW)
   1307 				printf(", out of buffer space");
   1308 			if (rxstat & RE_RDESC_STAT_FIFOOFLOW)
   1309 				printf(", FIFO overrun");
   1310 			if (rxstat & RE_RDESC_STAT_GIANT)
   1311 				printf(", giant packet");
   1312 			if (rxstat & RE_RDESC_STAT_RUNT)
   1313 				printf(", runt packet");
   1314 			if (rxstat & RE_RDESC_STAT_CRCERR)
   1315 				printf(", CRC error");
   1316 			printf("\n");
   1317 #endif
   1318 			if_statinc(ifp, if_ierrors);
   1319 			/*
   1320 			 * If this is part of a multi-fragment packet,
   1321 			 * discard all the pieces.
   1322 			 */
   1323 			if (sc->re_head != NULL) {
   1324 				m_freem(sc->re_head);
   1325 				sc->re_head = sc->re_tail = NULL;
   1326 			}
   1327 			re_newbuf(sc, i, m);
   1328 			continue;
   1329 		}
   1330 
   1331 		/*
   1332 		 * If allocating a replacement mbuf fails,
   1333 		 * reload the current one.
   1334 		 */
   1335 
   1336 		if (__predict_false(re_newbuf(sc, i, NULL) != 0)) {
   1337 			if_statinc(ifp, if_ierrors);
   1338 			if (sc->re_head != NULL) {
   1339 				m_freem(sc->re_head);
   1340 				sc->re_head = sc->re_tail = NULL;
   1341 			}
   1342 			re_newbuf(sc, i, m);
   1343 			continue;
   1344 		}
   1345 
   1346 		if (sc->re_head != NULL) {
   1347 			m->m_len = total_len % (MCLBYTES - RE_ETHER_ALIGN);
   1348 			/*
   1349 			 * Special case: if there's 4 bytes or less
   1350 			 * in this buffer, the mbuf can be discarded:
   1351 			 * the last 4 bytes is the CRC, which we don't
   1352 			 * care about anyway.
   1353 			 */
   1354 			if (m->m_len <= ETHER_CRC_LEN) {
   1355 				sc->re_tail->m_len -=
   1356 				    (ETHER_CRC_LEN - m->m_len);
   1357 				m_freem(m);
   1358 			} else {
   1359 				m->m_len -= ETHER_CRC_LEN;
   1360 				m_remove_pkthdr(m);
   1361 				sc->re_tail->m_next = m;
   1362 			}
   1363 			m = sc->re_head;
   1364 			sc->re_head = sc->re_tail = NULL;
   1365 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
   1366 		} else
   1367 			m->m_pkthdr.len = m->m_len =
   1368 			    (total_len - ETHER_CRC_LEN);
   1369 
   1370 		m_set_rcvif(m, ifp);
   1371 
   1372 		/* Do RX checksumming */
   1373 		if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1374 			/* Check IP header checksum */
   1375 			if ((rxstat & RE_RDESC_STAT_PROTOID) != 0) {
   1376 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1377 				if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1378 					m->m_pkthdr.csum_flags |=
   1379 					    M_CSUM_IPv4_BAD;
   1380 
   1381 				/* Check TCP/UDP checksum */
   1382 				if (RE_TCPPKT(rxstat)) {
   1383 					m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1384 					if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1385 						m->m_pkthdr.csum_flags |=
   1386 						    M_CSUM_TCP_UDP_BAD;
   1387 				} else if (RE_UDPPKT(rxstat)) {
   1388 					m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1389 					if (rxstat & RE_RDESC_STAT_UDPSUMBAD) {
   1390 						/*
   1391 						 * XXX: 8139C+ thinks UDP csum
   1392 						 * 0xFFFF is bad, force software
   1393 						 * calculation.
   1394 						 */
   1395 						if (sc->sc_quirk & RTKQ_8139CPLUS)
   1396 							m->m_pkthdr.csum_flags
   1397 							    &= ~M_CSUM_UDPv4;
   1398 						else
   1399 							m->m_pkthdr.csum_flags
   1400 							    |= M_CSUM_TCP_UDP_BAD;
   1401 					}
   1402 				}
   1403 			}
   1404 		} else {
   1405 			/* Check IPv4 header checksum */
   1406 			if ((rxvlan & RE_RDESC_VLANCTL_IPV4) != 0) {
   1407 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1408 				if (rxstat & RE_RDESC_STAT_IPSUMBAD)
   1409 					m->m_pkthdr.csum_flags |=
   1410 					    M_CSUM_IPv4_BAD;
   1411 
   1412 				/* Check TCPv4/UDPv4 checksum */
   1413 				if (RE_TCPPKT(rxstat)) {
   1414 					m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
   1415 					if (rxstat & RE_RDESC_STAT_TCPSUMBAD)
   1416 						m->m_pkthdr.csum_flags |=
   1417 						    M_CSUM_TCP_UDP_BAD;
   1418 				} else if (RE_UDPPKT(rxstat)) {
   1419 					m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
   1420 					if (rxstat & RE_RDESC_STAT_UDPSUMBAD)
   1421 						m->m_pkthdr.csum_flags |=
   1422 						    M_CSUM_TCP_UDP_BAD;
   1423 				}
   1424 			}
   1425 			/* XXX Check TCPv6/UDPv6 checksum? */
   1426 		}
   1427 
   1428 		if (rxvlan & RE_RDESC_VLANCTL_TAG) {
   1429 			vlan_set_tag(m,
   1430 			     bswap16(rxvlan & RE_RDESC_VLANCTL_DATA));
   1431 		}
   1432 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1433 	}
   1434 
   1435 	sc->re_ldata.re_rx_prodidx = i;
   1436 }
   1437 
   1438 static void
   1439 re_txeof(struct rtk_softc *sc)
   1440 {
   1441 	struct ifnet *ifp;
   1442 	struct re_txq *txq;
   1443 	uint32_t txstat;
   1444 	int idx, descidx;
   1445 
   1446 	ifp = &sc->ethercom.ec_if;
   1447 
   1448 	for (idx = sc->re_ldata.re_txq_considx;
   1449 	    sc->re_ldata.re_txq_free < RE_TX_QLEN;
   1450 	    idx = RE_NEXT_TXQ(sc, idx), sc->re_ldata.re_txq_free++) {
   1451 		txq = &sc->re_ldata.re_txq[idx];
   1452 		KASSERT(txq->txq_mbuf != NULL);
   1453 
   1454 		descidx = txq->txq_descidx;
   1455 		RE_TXDESCSYNC(sc, descidx,
   1456 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1457 		txstat =
   1458 		    le32toh(sc->re_ldata.re_tx_list[descidx].re_cmdstat);
   1459 		RE_TXDESCSYNC(sc, descidx, BUS_DMASYNC_PREREAD);
   1460 		KASSERT((txstat & RE_TDESC_CMD_EOF) != 0);
   1461 		if (txstat & RE_TDESC_CMD_OWN) {
   1462 			break;
   1463 		}
   1464 
   1465 		sc->re_ldata.re_tx_free += txq->txq_nsegs;
   1466 		KASSERT(sc->re_ldata.re_tx_free <= RE_TX_DESC_CNT(sc));
   1467 		bus_dmamap_sync(sc->sc_dmat, txq->txq_dmamap,
   1468 		    0, txq->txq_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1469 		bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
   1470 		m_freem(txq->txq_mbuf);
   1471 		txq->txq_mbuf = NULL;
   1472 
   1473 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1474 		if (txstat & (RE_TDESC_STAT_EXCESSCOL | RE_TDESC_STAT_COLCNT))
   1475 			if_statinc_ref(nsr, if_collisions);
   1476 		if (txstat & RE_TDESC_STAT_TXERRSUM)
   1477 			if_statinc_ref(nsr, if_oerrors);
   1478 		else
   1479 			if_statinc_ref(nsr, if_opackets);
   1480 		IF_STAT_PUTREF(ifp);
   1481 	}
   1482 
   1483 	sc->re_ldata.re_txq_considx = idx;
   1484 
   1485 	if (sc->re_ldata.re_txq_free > RE_NTXDESC_RSVD)
   1486 		ifp->if_flags &= ~IFF_OACTIVE;
   1487 
   1488 	/*
   1489 	 * If not all descriptors have been released reaped yet,
   1490 	 * reload the timer so that we will eventually get another
   1491 	 * interrupt that will cause us to re-enter this routine.
   1492 	 * This is done in case the transmitter has gone idle.
   1493 	 */
   1494 	if (sc->re_ldata.re_txq_free < RE_TX_QLEN) {
   1495 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0)
   1496 			CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1497 		if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
   1498 			/*
   1499 			 * Some chips will ignore a second TX request
   1500 			 * issued while an existing transmission is in
   1501 			 * progress. If the transmitter goes idle but
   1502 			 * there are still packets waiting to be sent,
   1503 			 * we need to restart the channel here to flush
   1504 			 * them out. This only seems to be required with
   1505 			 * the PCIe devices.
   1506 			 */
   1507 			CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1508 		}
   1509 	} else
   1510 		ifp->if_timer = 0;
   1511 }
   1512 
   1513 static void
   1514 re_tick(void *arg)
   1515 {
   1516 	struct rtk_softc *sc = arg;
   1517 	int s;
   1518 
   1519 	/* XXX: just return for 8169S/8110S with rev 2 or newer phy */
   1520 	s = splnet();
   1521 
   1522 	mii_tick(&sc->mii);
   1523 	splx(s);
   1524 
   1525 	callout_schedule(&sc->rtk_tick_ch, hz);
   1526 }
   1527 
   1528 int
   1529 re_intr(void *arg)
   1530 {
   1531 	struct rtk_softc *sc = arg;
   1532 	struct ifnet *ifp;
   1533 	uint16_t status, rndstatus = 0;
   1534 	int handled = 0;
   1535 
   1536 	if (!device_has_power(sc->sc_dev))
   1537 		return 0;
   1538 
   1539 	ifp = &sc->ethercom.ec_if;
   1540 
   1541 	if ((ifp->if_flags & IFF_UP) == 0)
   1542 		return 0;
   1543 
   1544 	const uint16_t status_mask = (sc->sc_quirk & RTKQ_IM_HW) ?
   1545 	    RTK_INTRS_IM_HW : RTK_INTRS_CPLUS;
   1546 
   1547 	for (;;) {
   1548 
   1549 		status = CSR_READ_2(sc, RTK_ISR);
   1550 		/* If the card has gone away the read returns 0xffff. */
   1551 		if (status == 0xffff)
   1552 			break;
   1553 		if (status != 0) {
   1554 			handled = 1;
   1555 			CSR_WRITE_2(sc, RTK_ISR, status);
   1556 			rndstatus = status;
   1557 		}
   1558 
   1559 		if ((status & status_mask) == 0)
   1560 			break;
   1561 
   1562 		if (status & (RTK_ISR_RX_OK | RTK_ISR_RX_ERR))
   1563 			re_rxeof(sc);
   1564 
   1565 		if (status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_TX_ERR |
   1566 		    RTK_ISR_TX_DESC_UNAVAIL | RTK_ISR_TX_OK))
   1567 			re_txeof(sc);
   1568 
   1569 		if (status & RTK_ISR_SYSTEM_ERR) {
   1570 			re_init(ifp);
   1571 		}
   1572 
   1573 		if (status & RTK_ISR_LINKCHG) {
   1574 			callout_stop(&sc->rtk_tick_ch);
   1575 			re_tick(sc);
   1576 		}
   1577 	}
   1578 
   1579 	if (handled)
   1580 		if_schedule_deferred_start(ifp);
   1581 
   1582 	rnd_add_uint32(&sc->rnd_source, rndstatus);
   1583 
   1584 	return handled;
   1585 }
   1586 
   1587 
   1588 
   1589 /*
   1590  * Main transmit routine for C+ and gigE NICs.
   1591  */
   1592 
   1593 static void
   1594 re_start(struct ifnet *ifp)
   1595 {
   1596 	struct rtk_softc *sc;
   1597 	struct mbuf *m;
   1598 	bus_dmamap_t map;
   1599 	struct re_txq *txq;
   1600 	struct re_desc *d;
   1601 	uint32_t cmdstat, re_flags, vlanctl;
   1602 	int ofree, idx, error, nsegs, seg;
   1603 	int startdesc, curdesc, lastdesc;
   1604 	bool pad;
   1605 
   1606 	sc = ifp->if_softc;
   1607 	ofree = sc->re_ldata.re_txq_free;
   1608 
   1609 	for (idx = sc->re_ldata.re_txq_prodidx;; idx = RE_NEXT_TXQ(sc, idx)) {
   1610 
   1611 		IFQ_POLL(&ifp->if_snd, m);
   1612 		if (m == NULL)
   1613 			break;
   1614 
   1615 		if (sc->re_ldata.re_txq_free == 0 ||
   1616 		    sc->re_ldata.re_tx_free == 0) {
   1617 			/* no more free slots left */
   1618 			ifp->if_flags |= IFF_OACTIVE;
   1619 			break;
   1620 		}
   1621 
   1622 		/*
   1623 		 * Set up checksum offload. Note: checksum offload bits must
   1624 		 * appear in all descriptors of a multi-descriptor transmit
   1625 		 * attempt. (This is according to testing done with an 8169
   1626 		 * chip. I'm not sure if this is a requirement or a bug.)
   1627 		 */
   1628 
   1629 		vlanctl = 0;
   1630 		if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
   1631 			uint32_t segsz = m->m_pkthdr.segsz;
   1632 
   1633 			if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1634 				re_flags = RE_TDESC_CMD_LGSEND |
   1635 				    (segsz << RE_TDESC_CMD_MSSVAL_SHIFT);
   1636 			} else {
   1637 				re_flags = RE_TDESC_CMD_LGSEND_V4;
   1638 				vlanctl |=
   1639 				    (segsz << RE_TDESC_VLANCTL_MSSVAL_SHIFT);
   1640 			}
   1641 		} else {
   1642 			/*
   1643 			 * set RE_TDESC_CMD_IPCSUM if any checksum offloading
   1644 			 * is requested.  otherwise, RE_TDESC_CMD_TCPCSUM/
   1645 			 * RE_TDESC_CMD_UDPCSUM doesn't make effects.
   1646 			 */
   1647 			re_flags = 0;
   1648 			if ((m->m_pkthdr.csum_flags &
   1649 			    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1650 			    != 0) {
   1651 				if ((sc->sc_quirk & RTKQ_DESCV2) == 0) {
   1652 					re_flags |= RE_TDESC_CMD_IPCSUM;
   1653 					if (m->m_pkthdr.csum_flags &
   1654 					    M_CSUM_TCPv4) {
   1655 						re_flags |=
   1656 						    RE_TDESC_CMD_TCPCSUM;
   1657 					} else if (m->m_pkthdr.csum_flags &
   1658 					    M_CSUM_UDPv4) {
   1659 						re_flags |=
   1660 						    RE_TDESC_CMD_UDPCSUM;
   1661 					}
   1662 				} else {
   1663 					vlanctl |= RE_TDESC_VLANCTL_IPCSUM;
   1664 					if (m->m_pkthdr.csum_flags &
   1665 					    M_CSUM_TCPv4) {
   1666 						vlanctl |=
   1667 						    RE_TDESC_VLANCTL_TCPCSUM;
   1668 					} else if (m->m_pkthdr.csum_flags &
   1669 					    M_CSUM_UDPv4) {
   1670 						vlanctl |=
   1671 						    RE_TDESC_VLANCTL_UDPCSUM;
   1672 					}
   1673 				}
   1674 			}
   1675 		}
   1676 
   1677 		txq = &sc->re_ldata.re_txq[idx];
   1678 		map = txq->txq_dmamap;
   1679 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1680 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1681 
   1682 		if (__predict_false(error)) {
   1683 			/* XXX try to defrag if EFBIG? */
   1684 			printf("%s: can't map mbuf (error %d)\n",
   1685 			    device_xname(sc->sc_dev), error);
   1686 
   1687 			IFQ_DEQUEUE(&ifp->if_snd, m);
   1688 			m_freem(m);
   1689 			if_statinc(ifp, if_oerrors);
   1690 			continue;
   1691 		}
   1692 
   1693 		nsegs = map->dm_nsegs;
   1694 		pad = false;
   1695 		if (__predict_false(m->m_pkthdr.len <= RE_IP4CSUMTX_PADLEN &&
   1696 		    (re_flags & RE_TDESC_CMD_IPCSUM) != 0 &&
   1697 		    (sc->sc_quirk & RTKQ_DESCV2) == 0)) {
   1698 			pad = true;
   1699 			nsegs++;
   1700 		}
   1701 
   1702 		if (nsegs > sc->re_ldata.re_tx_free) {
   1703 			/*
   1704 			 * Not enough free descriptors to transmit this packet.
   1705 			 */
   1706 			ifp->if_flags |= IFF_OACTIVE;
   1707 			bus_dmamap_unload(sc->sc_dmat, map);
   1708 			break;
   1709 		}
   1710 
   1711 		IFQ_DEQUEUE(&ifp->if_snd, m);
   1712 
   1713 		/*
   1714 		 * Make sure that the caches are synchronized before we
   1715 		 * ask the chip to start DMA for the packet data.
   1716 		 */
   1717 		bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1718 		    BUS_DMASYNC_PREWRITE);
   1719 
   1720 		/*
   1721 		 * Set up hardware VLAN tagging. Note: vlan tag info must
   1722 		 * appear in all descriptors of a multi-descriptor
   1723 		 * transmission attempt.
   1724 		 */
   1725 		if (vlan_has_tag(m))
   1726 			vlanctl |= bswap16(vlan_get_tag(m)) |
   1727 			    RE_TDESC_VLANCTL_TAG;
   1728 
   1729 		/*
   1730 		 * Map the segment array into descriptors.
   1731 		 * Note that we set the start-of-frame and
   1732 		 * end-of-frame markers for either TX or RX,
   1733 		 * but they really only have meaning in the TX case.
   1734 		 * (In the RX case, it's the chip that tells us
   1735 		 *  where packets begin and end.)
   1736 		 * We also keep track of the end of the ring
   1737 		 * and set the end-of-ring bits as needed,
   1738 		 * and we set the ownership bits in all except
   1739 		 * the very first descriptor. (The caller will
   1740 		 * set this descriptor later when it start
   1741 		 * transmission or reception.)
   1742 		 */
   1743 		curdesc = startdesc = sc->re_ldata.re_tx_nextfree;
   1744 		lastdesc = -1;
   1745 		for (seg = 0; seg < map->dm_nsegs;
   1746 		    seg++, curdesc = RE_NEXT_TX_DESC(sc, curdesc)) {
   1747 			d = &sc->re_ldata.re_tx_list[curdesc];
   1748 #ifdef DIAGNOSTIC
   1749 			RE_TXDESCSYNC(sc, curdesc,
   1750 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1751 			cmdstat = le32toh(d->re_cmdstat);
   1752 			RE_TXDESCSYNC(sc, curdesc, BUS_DMASYNC_PREREAD);
   1753 			if (cmdstat & RE_TDESC_STAT_OWN) {
   1754 				panic("%s: tried to map busy TX descriptor",
   1755 				    device_xname(sc->sc_dev));
   1756 			}
   1757 #endif
   1758 
   1759 			d->re_vlanctl = htole32(vlanctl);
   1760 			re_set_bufaddr(d, map->dm_segs[seg].ds_addr);
   1761 			cmdstat = re_flags | map->dm_segs[seg].ds_len;
   1762 			if (seg == 0)
   1763 				cmdstat |= RE_TDESC_CMD_SOF;
   1764 			else
   1765 				cmdstat |= RE_TDESC_CMD_OWN;
   1766 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1767 				cmdstat |= RE_TDESC_CMD_EOR;
   1768 			if (seg == nsegs - 1) {
   1769 				cmdstat |= RE_TDESC_CMD_EOF;
   1770 				lastdesc = curdesc;
   1771 			}
   1772 			d->re_cmdstat = htole32(cmdstat);
   1773 			RE_TXDESCSYNC(sc, curdesc,
   1774 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1775 		}
   1776 		if (__predict_false(pad)) {
   1777 			d = &sc->re_ldata.re_tx_list[curdesc];
   1778 			d->re_vlanctl = htole32(vlanctl);
   1779 			re_set_bufaddr(d, RE_TXPADDADDR(sc));
   1780 			cmdstat = re_flags |
   1781 			    RE_TDESC_CMD_OWN | RE_TDESC_CMD_EOF |
   1782 			    (RE_IP4CSUMTX_PADLEN + 1 - m->m_pkthdr.len);
   1783 			if (curdesc == (RE_TX_DESC_CNT(sc) - 1))
   1784 				cmdstat |= RE_TDESC_CMD_EOR;
   1785 			d->re_cmdstat = htole32(cmdstat);
   1786 			RE_TXDESCSYNC(sc, curdesc,
   1787 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1788 			lastdesc = curdesc;
   1789 			curdesc = RE_NEXT_TX_DESC(sc, curdesc);
   1790 		}
   1791 		KASSERT(lastdesc != -1);
   1792 
   1793 		/* Transfer ownership of packet to the chip. */
   1794 
   1795 		sc->re_ldata.re_tx_list[startdesc].re_cmdstat |=
   1796 		    htole32(RE_TDESC_CMD_OWN);
   1797 		RE_TXDESCSYNC(sc, startdesc,
   1798 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1799 
   1800 		/* update info of TX queue and descriptors */
   1801 		txq->txq_mbuf = m;
   1802 		txq->txq_descidx = lastdesc;
   1803 		txq->txq_nsegs = nsegs;
   1804 
   1805 		sc->re_ldata.re_txq_free--;
   1806 		sc->re_ldata.re_tx_free -= nsegs;
   1807 		sc->re_ldata.re_tx_nextfree = curdesc;
   1808 
   1809 		/*
   1810 		 * If there's a BPF listener, bounce a copy of this frame
   1811 		 * to him.
   1812 		 */
   1813 		bpf_mtap(ifp, m, BPF_D_OUT);
   1814 	}
   1815 
   1816 	if (sc->re_ldata.re_txq_free < ofree) {
   1817 		/*
   1818 		 * TX packets are enqueued.
   1819 		 */
   1820 		sc->re_ldata.re_txq_prodidx = idx;
   1821 
   1822 		/*
   1823 		 * Start the transmitter to poll.
   1824 		 *
   1825 		 * RealTek put the TX poll request register in a different
   1826 		 * location on the 8169 gigE chip. I don't know why.
   1827 		 */
   1828 		if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   1829 			CSR_WRITE_1(sc, RTK_TXSTART, RTK_TXSTART_START);
   1830 		else
   1831 			CSR_WRITE_1(sc, RTK_GTXSTART, RTK_TXSTART_START);
   1832 
   1833 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
   1834 			/*
   1835 			 * Use the countdown timer for interrupt moderation.
   1836 			 * 'TX done' interrupts are disabled. Instead, we reset
   1837 			 * the countdown timer, which will begin counting until
   1838 			 * it hits the value in the TIMERINT register, and then
   1839 			 * trigger an interrupt. Each time we write to the
   1840 			 * TIMERCNT register, the timer count is reset to 0.
   1841 			 */
   1842 			CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
   1843 		}
   1844 
   1845 		/*
   1846 		 * Set a timeout in case the chip goes out to lunch.
   1847 		 */
   1848 		ifp->if_timer = 5;
   1849 	}
   1850 }
   1851 
   1852 static int
   1853 re_init(struct ifnet *ifp)
   1854 {
   1855 	struct rtk_softc *sc = ifp->if_softc;
   1856 	uint32_t rxcfg = 0;
   1857 	uint16_t cfg;
   1858 	int error;
   1859 #ifdef RE_USE_EECMD
   1860 	const uint8_t *enaddr;
   1861 	uint32_t reg;
   1862 #endif
   1863 
   1864 	if ((error = re_enable(sc)) != 0)
   1865 		goto out;
   1866 
   1867 	/*
   1868 	 * Cancel pending I/O and free all RX/TX buffers.
   1869 	 */
   1870 	re_stop(ifp, 0);
   1871 
   1872 	re_reset(sc);
   1873 
   1874 	/*
   1875 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
   1876 	 * RX checksum offload. We must configure the C+ register
   1877 	 * before all others.
   1878 	 */
   1879 	cfg = RE_CPLUSCMD_PCI_MRW;
   1880 
   1881 	/*
   1882 	 * XXX: For old 8169 set bit 14.
   1883 	 *      For 8169S/8110S and above, do not set bit 14.
   1884 	 */
   1885 	if ((sc->sc_quirk & RTKQ_8169NONS) != 0)
   1886 		cfg |= (0x1 << 14);
   1887 
   1888 	if ((sc->ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) != 0)
   1889 		cfg |= RE_CPLUSCMD_VLANSTRIP;
   1890 	if ((ifp->if_capenable & (IFCAP_CSUM_IPv4_Rx |
   1891 	     IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) != 0)
   1892 		cfg |= RE_CPLUSCMD_RXCSUM_ENB;
   1893 	if ((sc->sc_quirk & RTKQ_MACSTAT) != 0) {
   1894 		cfg |= RE_CPLUSCMD_MACSTAT_DIS;
   1895 		cfg |= RE_CPLUSCMD_TXENB;
   1896 	} else
   1897 		cfg |= RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB;
   1898 
   1899 	CSR_WRITE_2(sc, RTK_CPLUS_CMD, cfg);
   1900 
   1901 	/* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
   1902 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
   1903 		if ((sc->sc_quirk & RTKQ_IM_HW) == 0) {
   1904 			CSR_WRITE_2(sc, RTK_IM, 0x0000);
   1905 		} else {
   1906 			CSR_WRITE_2(sc, RTK_IM, 0x5151);
   1907 		}
   1908 	}
   1909 
   1910 	DELAY(10000);
   1911 
   1912 #ifdef RE_USE_EECMD
   1913 	/*
   1914 	 * Init our MAC address.  Even though the chipset
   1915 	 * documentation doesn't mention it, we need to enter "Config
   1916 	 * register write enable" mode to modify the ID registers.
   1917 	 */
   1918 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
   1919 	enaddr = CLLADDR(ifp->if_sadl);
   1920 	reg = enaddr[0] | (enaddr[1] << 8) |
   1921 	    (enaddr[2] << 16) | (enaddr[3] << 24);
   1922 	CSR_WRITE_4(sc, RTK_IDR0, reg);
   1923 	reg = enaddr[4] | (enaddr[5] << 8);
   1924 	CSR_WRITE_4(sc, RTK_IDR4, reg);
   1925 	CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
   1926 #endif
   1927 
   1928 	/*
   1929 	 * For C+ mode, initialize the RX descriptors and mbufs.
   1930 	 */
   1931 	re_rx_list_init(sc);
   1932 	re_tx_list_init(sc);
   1933 
   1934 	/*
   1935 	 * Load the addresses of the RX and TX lists into the chip.
   1936 	 */
   1937 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
   1938 	    RE_ADDR_HI(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1939 	CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
   1940 	    RE_ADDR_LO(sc->re_ldata.re_rx_list_map->dm_segs[0].ds_addr));
   1941 
   1942 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
   1943 	    RE_ADDR_HI(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1944 	CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
   1945 	    RE_ADDR_LO(sc->re_ldata.re_tx_list_map->dm_segs[0].ds_addr));
   1946 
   1947 	if (sc->sc_quirk & RTKQ_RXDV_GATED) {
   1948 		CSR_WRITE_4(sc, RTK_MISC,
   1949 		    CSR_READ_4(sc, RTK_MISC) & ~RTK_MISC_RXDV_GATED_EN);
   1950 	}
   1951 
   1952 	/*
   1953 	 * Enable transmit and receive.
   1954 	 */
   1955 	if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) == 0)
   1956 		CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   1957 
   1958 	/*
   1959 	 * Set the initial TX and RX configuration.
   1960 	 */
   1961 	if (sc->re_testmode && (sc->sc_quirk & RTKQ_8169NONS) != 0) {
   1962 		/* test mode is needed only for old 8169 */
   1963 		CSR_WRITE_4(sc, RTK_TXCFG,
   1964 		    RE_TXCFG_CONFIG | RTK_LOOPTEST_ON);
   1965 	} else
   1966 		CSR_WRITE_4(sc, RTK_TXCFG, RE_TXCFG_CONFIG);
   1967 
   1968 	CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
   1969 
   1970 	CSR_WRITE_4(sc, RTK_RXCFG, RE_RXCFG_CONFIG);
   1971 
   1972 	/* Set the individual bit to receive frames for this host only. */
   1973 	rxcfg = CSR_READ_4(sc, RTK_RXCFG);
   1974 	rxcfg |= RTK_RXCFG_RX_INDIV;
   1975 
   1976 	/* If we want promiscuous mode, set the allframes bit. */
   1977 	if (ifp->if_flags & IFF_PROMISC)
   1978 		rxcfg |= RTK_RXCFG_RX_ALLPHYS;
   1979 	else
   1980 		rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
   1981 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1982 
   1983 	/*
   1984 	 * Set capture broadcast bit to capture broadcast frames.
   1985 	 */
   1986 	if (ifp->if_flags & IFF_BROADCAST)
   1987 		rxcfg |= RTK_RXCFG_RX_BROAD;
   1988 	else
   1989 		rxcfg &= ~RTK_RXCFG_RX_BROAD;
   1990 	CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
   1991 
   1992 	/*
   1993 	 * Program the multicast filter, if necessary.
   1994 	 */
   1995 	rtk_setmulti(sc);
   1996 
   1997 	/*
   1998 	 * some chips require to enable TX/RX *AFTER* TX/RX configuration
   1999 	 */
   2000 	if ((sc->sc_quirk & RTKQ_TXRXEN_LATER) != 0)
   2001 		CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   2002 
   2003 	/*
   2004 	 * Enable interrupts.
   2005 	 */
   2006 	if (sc->re_testmode)
   2007 		CSR_WRITE_2(sc, RTK_IMR, 0);
   2008 	else if ((sc->sc_quirk & RTKQ_IM_HW) != 0)
   2009 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_IM_HW);
   2010 	else
   2011 		CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
   2012 
   2013 	/* Start RX/TX process. */
   2014 	CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
   2015 #ifdef notdef
   2016 	/* Enable receiver and transmitter. */
   2017 	CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
   2018 #endif
   2019 
   2020 	/*
   2021 	 * Initialize the timer interrupt register so that
   2022 	 * a timer interrupt will be generated once the timer
   2023 	 * reaches a certain number of ticks. The timer is
   2024 	 * reloaded on each transmit. This gives us TX interrupt
   2025 	 * moderation, which dramatically improves TX frame rate.
   2026 	 */
   2027 
   2028 	unsigned defer;		/* timer interval / ns */
   2029 	unsigned period;	/* busclock period / ns */
   2030 
   2031 	/*
   2032 	 * Maximum frame rate
   2033 	 * 1500 byte PDU -> 81274 Hz
   2034 	 *   46 byte PDU -> 1488096 Hz
   2035 	 *
   2036 	 * Deferring interrupts by up to 128us needs descriptors for
   2037 	 * 1500 byte PDU -> 10.4 frames
   2038 	 *   46 byte PDU -> 190.4 frames
   2039 	 *
   2040 	 */
   2041 	defer = 128000;
   2042 
   2043 	if ((sc->sc_quirk & RTKQ_IM_HW) != 0) {
   2044 		period = 1;
   2045 		defer = 0;
   2046 	} else if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
   2047 		period = 8;
   2048 	} else {
   2049 		switch (CSR_READ_1(sc, RTK_CFG2_BUSFREQ) & 0x7) {
   2050 		case RTK_BUSFREQ_33MHZ:
   2051 			period = 30;
   2052 			break;
   2053 		case RTK_BUSFREQ_66MHZ:
   2054 			period = 15;
   2055 			break;
   2056 		default:
   2057 			/* lowest possible clock */
   2058 			period = 60;
   2059 			break;
   2060 		}
   2061 	}
   2062 
   2063 	/* Timer Interrupt register address varies */
   2064 	uint16_t re8139_reg;
   2065 	if ((sc->sc_quirk & RTKQ_8139CPLUS) != 0)
   2066 		re8139_reg = RTK_TIMERINT;
   2067 	else
   2068 		re8139_reg = RTK_TIMERINT_8169;
   2069 	CSR_WRITE_4(sc, re8139_reg, defer / period);
   2070 
   2071 	if ((sc->sc_quirk & RTKQ_8139CPLUS) == 0) {
   2072 		/*
   2073 		 * For 8169 gigE NICs, set the max allowed RX packet
   2074 		 * size so we can receive jumbo frames.
   2075 		 */
   2076 		CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
   2077 	}
   2078 
   2079 	if (sc->re_testmode)
   2080 		return 0;
   2081 
   2082 	CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD);
   2083 
   2084 	ifp->if_flags |= IFF_RUNNING;
   2085 	ifp->if_flags &= ~IFF_OACTIVE;
   2086 
   2087 	callout_schedule(&sc->rtk_tick_ch, hz);
   2088 
   2089  out:
   2090 	if (error) {
   2091 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2092 		ifp->if_timer = 0;
   2093 		printf("%s: interface not running\n",
   2094 		    device_xname(sc->sc_dev));
   2095 	}
   2096 
   2097 	return error;
   2098 }
   2099 
   2100 static int
   2101 re_ioctl(struct ifnet *ifp, u_long command, void *data)
   2102 {
   2103 	struct rtk_softc *sc = ifp->if_softc;
   2104 	struct ifreq *ifr = data;
   2105 	int s, error = 0;
   2106 
   2107 	s = splnet();
   2108 
   2109 	switch (command) {
   2110 	case SIOCSIFMTU:
   2111 		/*
   2112 		 * Disable jumbo frames if it's not supported.
   2113 		 */
   2114 		if ((sc->sc_quirk & RTKQ_NOJUMBO) != 0 &&
   2115 		    ifr->ifr_mtu > ETHERMTU) {
   2116 			error = EINVAL;
   2117 			break;
   2118 		}
   2119 
   2120 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
   2121 			error = EINVAL;
   2122 		else if ((error = ifioctl_common(ifp, command, data)) ==
   2123 		    ENETRESET)
   2124 			error = 0;
   2125 		break;
   2126 	default:
   2127 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   2128 			break;
   2129 
   2130 		error = 0;
   2131 
   2132 		if (command == SIOCSIFCAP)
   2133 			error = if_init(ifp);
   2134 		else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
   2135 			;
   2136 		else if (ifp->if_flags & IFF_RUNNING)
   2137 			rtk_setmulti(sc);
   2138 		break;
   2139 	}
   2140 
   2141 	splx(s);
   2142 
   2143 	return error;
   2144 }
   2145 
   2146 static void
   2147 re_watchdog(struct ifnet *ifp)
   2148 {
   2149 	struct rtk_softc *sc;
   2150 	int s;
   2151 
   2152 	sc = ifp->if_softc;
   2153 	s = splnet();
   2154 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
   2155 	if_statinc(ifp, if_oerrors);
   2156 
   2157 	re_txeof(sc);
   2158 	re_rxeof(sc);
   2159 
   2160 	re_init(ifp);
   2161 
   2162 	splx(s);
   2163 }
   2164 
   2165 /*
   2166  * Stop the adapter and free any mbufs allocated to the
   2167  * RX and TX lists.
   2168  */
   2169 static void
   2170 re_stop(struct ifnet *ifp, int disable)
   2171 {
   2172 	int i;
   2173 	struct rtk_softc *sc = ifp->if_softc;
   2174 
   2175 	callout_stop(&sc->rtk_tick_ch);
   2176 
   2177 	mii_down(&sc->mii);
   2178 
   2179 	if ((sc->sc_quirk & RTKQ_CMDSTOP) != 0)
   2180 		CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_STOPREQ | RTK_CMD_TX_ENB |
   2181 		    RTK_CMD_RX_ENB);
   2182 	else
   2183 		CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
   2184 	DELAY(1000);
   2185 	CSR_WRITE_2(sc, RTK_IMR, 0x0000);
   2186 	CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
   2187 
   2188 	if (sc->re_head != NULL) {
   2189 		m_freem(sc->re_head);
   2190 		sc->re_head = sc->re_tail = NULL;
   2191 	}
   2192 
   2193 	/* Free the TX list buffers. */
   2194 	for (i = 0; i < RE_TX_QLEN; i++) {
   2195 		if (sc->re_ldata.re_txq[i].txq_mbuf != NULL) {
   2196 			bus_dmamap_unload(sc->sc_dmat,
   2197 			    sc->re_ldata.re_txq[i].txq_dmamap);
   2198 			m_freem(sc->re_ldata.re_txq[i].txq_mbuf);
   2199 			sc->re_ldata.re_txq[i].txq_mbuf = NULL;
   2200 		}
   2201 	}
   2202 
   2203 	/* Free the RX list buffers. */
   2204 	for (i = 0; i < RE_RX_DESC_CNT; i++) {
   2205 		if (sc->re_ldata.re_rxsoft[i].rxs_mbuf != NULL) {
   2206 			bus_dmamap_unload(sc->sc_dmat,
   2207 			    sc->re_ldata.re_rxsoft[i].rxs_dmamap);
   2208 			m_freem(sc->re_ldata.re_rxsoft[i].rxs_mbuf);
   2209 			sc->re_ldata.re_rxsoft[i].rxs_mbuf = NULL;
   2210 		}
   2211 	}
   2212 
   2213 	if (disable)
   2214 		re_disable(sc);
   2215 
   2216 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2217 	ifp->if_timer = 0;
   2218 }
   2219