rtl8169.c revision 1.18 1 /* $NetBSD: rtl8169.c,v 1.18 2005/05/02 15:34:31 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1997, 1998-2003
5 * Bill Paul <wpaul (at) windriver.com>. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 /* $FreeBSD: /repoman/r/ncvs/src/sys/dev/re/if_re.c,v 1.20 2004/04/11 20:34:08 ru Exp $ */
37
38 /*
39 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
40 *
41 * Written by Bill Paul <wpaul (at) windriver.com>
42 * Senior Networking Software Engineer
43 * Wind River Systems
44 */
45
46 /*
47 * This driver is designed to support RealTek's next generation of
48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
49 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
50 * and the RTL8110S.
51 *
52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
53 * with the older 8139 family, however it also supports a special
54 * C+ mode of operation that provides several new performance enhancing
55 * features. These include:
56 *
57 * o Descriptor based DMA mechanism. Each descriptor represents
58 * a single packet fragment. Data buffers may be aligned on
59 * any byte boundary.
60 *
61 * o 64-bit DMA
62 *
63 * o TCP/IP checksum offload for both RX and TX
64 *
65 * o High and normal priority transmit DMA rings
66 *
67 * o VLAN tag insertion and extraction
68 *
69 * o TCP large send (segmentation offload)
70 *
71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
72 * programming API is fairly straightforward. The RX filtering, EEPROM
73 * access and PHY access is the same as it is on the older 8139 series
74 * chips.
75 *
76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
77 * same programming API and feature set as the 8139C+ with the following
78 * differences and additions:
79 *
80 * o 1000Mbps mode
81 *
82 * o Jumbo frames
83 *
84 * o GMII and TBI ports/registers for interfacing with copper
85 * or fiber PHYs
86 *
87 * o RX and TX DMA rings can have up to 1024 descriptors
88 * (the 8139C+ allows a maximum of 64)
89 *
90 * o Slight differences in register layout from the 8139C+
91 *
92 * The TX start and timer interrupt registers are at different locations
93 * on the 8169 than they are on the 8139C+. Also, the status word in the
94 * RX descriptor has a slightly different bit layout. The 8169 does not
95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
96 * copper gigE PHY.
97 *
98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
99 * (the 'S' stands for 'single-chip'). These devices have the same
100 * programming API as the older 8169, but also have some vendor-specific
101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
103 *
104 * This driver takes advantage of the RX and TX checksum offload and
105 * VLAN tag insertion/extraction features. It also implements TX
106 * interrupt moderation using the timer interrupt registers, which
107 * significantly reduces TX interrupt load. There is also support
108 * for jumbo frames, however the 8169/8169S/8110S can not transmit
109 * jumbo frames larger than 7.5K, so the max MTU possible with this
110 * driver is 7500 bytes.
111 */
112
113 #include "bpfilter.h"
114 #include "vlan.h"
115
116 #include <sys/param.h>
117 #include <sys/endian.h>
118 #include <sys/systm.h>
119 #include <sys/sockio.h>
120 #include <sys/mbuf.h>
121 #include <sys/malloc.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/device.h>
125
126 #include <net/if.h>
127 #include <net/if_arp.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net/if_vlanvar.h>
132
133 #include <netinet/in_systm.h> /* XXX for IP_MAXPACKET */
134 #include <netinet/in.h> /* XXX for IP_MAXPACKET */
135 #include <netinet/ip.h> /* XXX for IP_MAXPACKET */
136
137 #if NBPFILTER > 0
138 #include <net/bpf.h>
139 #endif
140
141 #include <machine/bus.h>
142
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 #include <dev/pci/pcidevs.h>
149
150 #include <dev/ic/rtl81x9reg.h>
151 #include <dev/ic/rtl81x9var.h>
152
153 #include <dev/ic/rtl8169var.h>
154
155
156 static int re_encap(struct rtk_softc *, struct mbuf *, int *);
157
158 static int re_newbuf(struct rtk_softc *, int, struct mbuf *);
159 static int re_rx_list_init(struct rtk_softc *);
160 static int re_tx_list_init(struct rtk_softc *);
161 static void re_rxeof(struct rtk_softc *);
162 static void re_txeof(struct rtk_softc *);
163 static void re_tick(void *);
164 static void re_start(struct ifnet *);
165 static int re_ioctl(struct ifnet *, u_long, caddr_t);
166 static int re_init(struct ifnet *);
167 static void re_stop(struct ifnet *, int);
168 static void re_watchdog(struct ifnet *);
169
170 static void re_shutdown(void *);
171 static int re_enable(struct rtk_softc *);
172 static void re_disable(struct rtk_softc *);
173 static void re_power(int, void *);
174
175 static int re_ifmedia_upd(struct ifnet *);
176 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
177
178 static int re_gmii_readreg(struct device *, int, int);
179 static void re_gmii_writereg(struct device *, int, int, int);
180
181 static int re_miibus_readreg(struct device *, int, int);
182 static void re_miibus_writereg(struct device *, int, int, int);
183 static void re_miibus_statchg(struct device *);
184
185 static void re_reset(struct rtk_softc *);
186
187 static int
188 re_gmii_readreg(struct device *self, int phy, int reg)
189 {
190 struct rtk_softc *sc = (void *)self;
191 u_int32_t rval;
192 int i;
193
194 if (phy != 7)
195 return 0;
196
197 /* Let the rgephy driver read the GMEDIASTAT register */
198
199 if (reg == RTK_GMEDIASTAT) {
200 rval = CSR_READ_1(sc, RTK_GMEDIASTAT);
201 return rval;
202 }
203
204 CSR_WRITE_4(sc, RTK_PHYAR, reg << 16);
205 DELAY(1000);
206
207 for (i = 0; i < RTK_TIMEOUT; i++) {
208 rval = CSR_READ_4(sc, RTK_PHYAR);
209 if (rval & RTK_PHYAR_BUSY)
210 break;
211 DELAY(100);
212 }
213
214 if (i == RTK_TIMEOUT) {
215 aprint_error("%s: PHY read failed\n", sc->sc_dev.dv_xname);
216 return 0;
217 }
218
219 return rval & RTK_PHYAR_PHYDATA;
220 }
221
222 static void
223 re_gmii_writereg(struct device *dev, int phy, int reg, int data)
224 {
225 struct rtk_softc *sc = (void *)dev;
226 u_int32_t rval;
227 int i;
228
229 CSR_WRITE_4(sc, RTK_PHYAR, (reg << 16) |
230 (data & RTK_PHYAR_PHYDATA) | RTK_PHYAR_BUSY);
231 DELAY(1000);
232
233 for (i = 0; i < RTK_TIMEOUT; i++) {
234 rval = CSR_READ_4(sc, RTK_PHYAR);
235 if (!(rval & RTK_PHYAR_BUSY))
236 break;
237 DELAY(100);
238 }
239
240 if (i == RTK_TIMEOUT) {
241 aprint_error("%s: PHY write reg %x <- %x failed\n",
242 sc->sc_dev.dv_xname, reg, data);
243 return;
244 }
245
246 return;
247 }
248
249 static int
250 re_miibus_readreg(struct device *dev, int phy, int reg)
251 {
252 struct rtk_softc *sc = (void *)dev;
253 u_int16_t rval = 0;
254 u_int16_t re8139_reg = 0;
255 int s;
256
257 s = splnet();
258
259 if (sc->rtk_type == RTK_8169) {
260 rval = re_gmii_readreg(dev, phy, reg);
261 splx(s);
262 return rval;
263 }
264
265 /* Pretend the internal PHY is only at address 0 */
266 if (phy) {
267 splx(s);
268 return 0;
269 }
270 switch (reg) {
271 case MII_BMCR:
272 re8139_reg = RTK_BMCR;
273 break;
274 case MII_BMSR:
275 re8139_reg = RTK_BMSR;
276 break;
277 case MII_ANAR:
278 re8139_reg = RTK_ANAR;
279 break;
280 case MII_ANER:
281 re8139_reg = RTK_ANER;
282 break;
283 case MII_ANLPAR:
284 re8139_reg = RTK_LPAR;
285 break;
286 case MII_PHYIDR1:
287 case MII_PHYIDR2:
288 splx(s);
289 return 0;
290 /*
291 * Allow the rlphy driver to read the media status
292 * register. If we have a link partner which does not
293 * support NWAY, this is the register which will tell
294 * us the results of parallel detection.
295 */
296 case RTK_MEDIASTAT:
297 rval = CSR_READ_1(sc, RTK_MEDIASTAT);
298 splx(s);
299 return rval;
300 default:
301 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
302 splx(s);
303 return 0;
304 }
305 rval = CSR_READ_2(sc, re8139_reg);
306 splx(s);
307 return rval;
308 }
309
310 static void
311 re_miibus_writereg(struct device *dev, int phy, int reg, int data)
312 {
313 struct rtk_softc *sc = (void *)dev;
314 u_int16_t re8139_reg = 0;
315 int s;
316
317 s = splnet();
318
319 if (sc->rtk_type == RTK_8169) {
320 re_gmii_writereg(dev, phy, reg, data);
321 splx(s);
322 return;
323 }
324
325 /* Pretend the internal PHY is only at address 0 */
326 if (phy) {
327 splx(s);
328 return;
329 }
330 switch (reg) {
331 case MII_BMCR:
332 re8139_reg = RTK_BMCR;
333 break;
334 case MII_BMSR:
335 re8139_reg = RTK_BMSR;
336 break;
337 case MII_ANAR:
338 re8139_reg = RTK_ANAR;
339 break;
340 case MII_ANER:
341 re8139_reg = RTK_ANER;
342 break;
343 case MII_ANLPAR:
344 re8139_reg = RTK_LPAR;
345 break;
346 case MII_PHYIDR1:
347 case MII_PHYIDR2:
348 splx(s);
349 return;
350 break;
351 default:
352 aprint_error("%s: bad phy register\n", sc->sc_dev.dv_xname);
353 splx(s);
354 return;
355 }
356 CSR_WRITE_2(sc, re8139_reg, data);
357 splx(s);
358 return;
359 }
360
361 static void
362 re_miibus_statchg(struct device *dev)
363 {
364
365 return;
366 }
367
368 static void
369 re_reset(struct rtk_softc *sc)
370 {
371 register int i;
372
373 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
374
375 for (i = 0; i < RTK_TIMEOUT; i++) {
376 DELAY(10);
377 if (!(CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET))
378 break;
379 }
380 if (i == RTK_TIMEOUT)
381 aprint_error("%s: reset never completed!\n",
382 sc->sc_dev.dv_xname);
383
384 /*
385 * NB: Realtek-supplied Linux driver does this only for
386 * MCFG_METHOD_2, which corresponds to sc->sc_rev == 2.
387 */
388 if (1) /* XXX check softc flag for 8169s version */
389 CSR_WRITE_1(sc, 0x82, 1);
390
391 return;
392 }
393
394 /*
395 * The following routine is designed to test for a defect on some
396 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
397 * lines connected to the bus, however for a 32-bit only card, they
398 * should be pulled high. The result of this defect is that the
399 * NIC will not work right if you plug it into a 64-bit slot: DMA
400 * operations will be done with 64-bit transfers, which will fail
401 * because the 64-bit data lines aren't connected.
402 *
403 * There's no way to work around this (short of talking a soldering
404 * iron to the board), however we can detect it. The method we use
405 * here is to put the NIC into digital loopback mode, set the receiver
406 * to promiscuous mode, and then try to send a frame. We then compare
407 * the frame data we sent to what was received. If the data matches,
408 * then the NIC is working correctly, otherwise we know the user has
409 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
410 * slot. In the latter case, there's no way the NIC can work correctly,
411 * so we print out a message on the console and abort the device attach.
412 */
413
414 int
415 re_diag(struct rtk_softc *sc)
416 {
417 struct ifnet *ifp = &sc->ethercom.ec_if;
418 struct mbuf *m0;
419 struct ether_header *eh;
420 struct rtk_desc *cur_rx;
421 bus_dmamap_t dmamap;
422 u_int16_t status;
423 u_int32_t rxstat;
424 int total_len, i, s, error = 0;
425 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
426 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
427
428 /* Allocate a single mbuf */
429
430 MGETHDR(m0, M_DONTWAIT, MT_DATA);
431 if (m0 == NULL)
432 return ENOBUFS;
433
434 /*
435 * Initialize the NIC in test mode. This sets the chip up
436 * so that it can send and receive frames, but performs the
437 * following special functions:
438 * - Puts receiver in promiscuous mode
439 * - Enables digital loopback mode
440 * - Leaves interrupts turned off
441 */
442
443 ifp->if_flags |= IFF_PROMISC;
444 sc->rtk_testmode = 1;
445 re_init(ifp);
446 re_stop(ifp, 0);
447 DELAY(100000);
448 re_init(ifp);
449
450 /* Put some data in the mbuf */
451
452 eh = mtod(m0, struct ether_header *);
453 bcopy((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
454 bcopy((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
455 eh->ether_type = htons(ETHERTYPE_IP);
456 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
457
458 /*
459 * Queue the packet, start transmission.
460 */
461
462 CSR_WRITE_2(sc, RTK_ISR, 0xFFFF);
463 s = splnet();
464 IF_ENQUEUE(&ifp->if_snd, m0);
465 re_start(ifp);
466 splx(s);
467 m0 = NULL;
468
469 /* Wait for it to propagate through the chip */
470
471 DELAY(100000);
472 for (i = 0; i < RTK_TIMEOUT; i++) {
473 status = CSR_READ_2(sc, RTK_ISR);
474 if ((status & (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK)) ==
475 (RTK_ISR_TIMEOUT_EXPIRED | RTK_ISR_RX_OK))
476 break;
477 DELAY(10);
478 }
479 if (i == RTK_TIMEOUT) {
480 aprint_error("%s: diagnostic failed, failed to receive packet "
481 "in loopback mode\n", sc->sc_dev.dv_xname);
482 error = EIO;
483 goto done;
484 }
485
486 /*
487 * The packet should have been dumped into the first
488 * entry in the RX DMA ring. Grab it from there.
489 */
490
491 dmamap = sc->rtk_ldata.rtk_rx_list_map;
492 bus_dmamap_sync(sc->sc_dmat,
493 dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
494 dmamap = sc->rtk_ldata.rtk_rx_dmamap[0];
495 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
496 BUS_DMASYNC_POSTWRITE);
497 bus_dmamap_unload(sc->sc_dmat,
498 sc->rtk_ldata.rtk_rx_dmamap[0]);
499
500 m0 = sc->rtk_ldata.rtk_rx_mbuf[0];
501 sc->rtk_ldata.rtk_rx_mbuf[0] = NULL;
502 eh = mtod(m0, struct ether_header *);
503
504 cur_rx = &sc->rtk_ldata.rtk_rx_list[0];
505 total_len = RTK_RXBYTES(cur_rx);
506 rxstat = le32toh(cur_rx->rtk_cmdstat);
507
508 if (total_len != ETHER_MIN_LEN) {
509 aprint_error("%s: diagnostic failed, received short packet\n",
510 sc->sc_dev.dv_xname);
511 error = EIO;
512 goto done;
513 }
514
515 /* Test that the received packet data matches what we sent. */
516
517 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
518 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
519 ntohs(eh->ether_type) != ETHERTYPE_IP) {
520 aprint_error("%s: WARNING, DMA FAILURE!\n",
521 sc->sc_dev.dv_xname);
522 aprint_error("%s: expected TX data: %s",
523 sc->sc_dev.dv_xname, ether_sprintf(dst));
524 aprint_error("/%s/0x%x\n", ether_sprintf(src), ETHERTYPE_IP);
525 aprint_error("%s: received RX data: %s",
526 sc->sc_dev.dv_xname,
527 ether_sprintf(eh->ether_dhost));
528 aprint_error("/%s/0x%x\n", ether_sprintf(eh->ether_shost),
529 ntohs(eh->ether_type));
530 aprint_error("%s: You may have a defective 32-bit NIC plugged "
531 "into a 64-bit PCI slot.\n", sc->sc_dev.dv_xname);
532 aprint_error("%s: Please re-install the NIC in a 32-bit slot "
533 "for proper operation.\n", sc->sc_dev.dv_xname);
534 aprint_error("%s: Read the re(4) man page for more details.\n",
535 sc->sc_dev.dv_xname);
536 error = EIO;
537 }
538
539 done:
540 /* Turn interface off, release resources */
541
542 sc->rtk_testmode = 0;
543 ifp->if_flags &= ~IFF_PROMISC;
544 re_stop(ifp, 0);
545 if (m0 != NULL)
546 m_freem(m0);
547
548 return error;
549 }
550
551
552 /*
553 * Attach the interface. Allocate softc structures, do ifmedia
554 * setup and ethernet/BPF attach.
555 */
556 void
557 re_attach(struct rtk_softc *sc)
558 {
559 u_char eaddr[ETHER_ADDR_LEN];
560 u_int16_t val;
561 struct ifnet *ifp;
562 int error = 0, i, addr_len;
563
564
565 /* XXX JRS: bus-attach-independent code begins approximately here */
566
567 /* Reset the adapter. */
568 re_reset(sc);
569
570 if (sc->rtk_type == RTK_8169) {
571 uint32_t hwrev;
572
573 /* Revision of 8169/8169S/8110s in bits 30..26, 23 */
574 hwrev = CSR_READ_4(sc, RTK_TXCFG) & 0x7c800000;
575 if (hwrev == (0x1 << 28)) {
576 sc->sc_rev = 4;
577 } else if (hwrev == (0x1 << 26)) {
578 sc->sc_rev = 3;
579 } else if (hwrev == (0x1 << 23)) {
580 sc->sc_rev = 2;
581 } else
582 sc->sc_rev = 1;
583
584 /* Set RX length mask */
585
586 sc->rtk_rxlenmask = RTK_RDESC_STAT_GFRAGLEN;
587
588 /* Force station address autoload from the EEPROM */
589
590 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_AUTOLOAD);
591 for (i = 0; i < RTK_TIMEOUT; i++) {
592 if (!(CSR_READ_1(sc, RTK_EECMD) & RTK_EEMODE_AUTOLOAD))
593 break;
594 DELAY(100);
595 }
596 if (i == RTK_TIMEOUT)
597 aprint_error("%s: eeprom autoload timed out\n",
598 sc->sc_dev.dv_xname);
599
600 for (i = 0; i < ETHER_ADDR_LEN; i++)
601 eaddr[i] = CSR_READ_1(sc, RTK_IDR0 + i);
602
603 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8169;
604 } else {
605
606 /* Set RX length mask */
607
608 sc->rtk_rxlenmask = RTK_RDESC_STAT_FRAGLEN;
609
610 if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
611 addr_len = RTK_EEADDR_LEN1;
612 else
613 addr_len = RTK_EEADDR_LEN0;
614
615 /*
616 * Get station address from the EEPROM.
617 */
618 for (i = 0; i < 3; i++) {
619 val = rtk_read_eeprom(sc, RTK_EE_EADDR0 + i, addr_len);
620 eaddr[(i * 2) + 0] = val & 0xff;
621 eaddr[(i * 2) + 1] = val >> 8;
622 }
623
624 sc->rtk_ldata.rtk_tx_desc_cnt = RTK_TX_DESC_CNT_8139;
625 }
626
627 aprint_normal("%s: Ethernet address %s\n",
628 sc->sc_dev.dv_xname, ether_sprintf(eaddr));
629
630 if (sc->rtk_ldata.rtk_tx_desc_cnt >
631 PAGE_SIZE / sizeof(struct rtk_desc)) {
632 sc->rtk_ldata.rtk_tx_desc_cnt =
633 PAGE_SIZE / sizeof(struct rtk_desc);
634 }
635
636 aprint_verbose("%s: using %d tx descriptors\n",
637 sc->sc_dev.dv_xname, sc->rtk_ldata.rtk_tx_desc_cnt);
638
639 /* Allocate DMA'able memory for the TX ring */
640 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_TX_LIST_SZ(sc),
641 RTK_ETHER_ALIGN, 0, &sc->rtk_ldata.rtk_tx_listseg,
642 1, &sc->rtk_ldata.rtk_tx_listnseg, BUS_DMA_NOWAIT)) != 0) {
643 aprint_error("%s: can't allocate tx listseg, error = %d\n",
644 sc->sc_dev.dv_xname, error);
645 goto fail_0;
646 }
647
648 /* Load the map for the TX ring. */
649 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_tx_listseg,
650 sc->rtk_ldata.rtk_tx_listnseg, RTK_TX_LIST_SZ(sc),
651 (caddr_t *)&sc->rtk_ldata.rtk_tx_list,
652 BUS_DMA_NOWAIT)) != 0) {
653 aprint_error("%s: can't map tx list, error = %d\n",
654 sc->sc_dev.dv_xname, error);
655 goto fail_1;
656 }
657 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
658
659 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_TX_LIST_SZ(sc), 1,
660 RTK_TX_LIST_SZ(sc), 0, BUS_DMA_ALLOCNOW,
661 &sc->rtk_ldata.rtk_tx_list_map)) != 0) {
662 aprint_error("%s: can't create tx list map, error = %d\n",
663 sc->sc_dev.dv_xname, error);
664 goto fail_2;
665 }
666
667
668 if ((error = bus_dmamap_load(sc->sc_dmat,
669 sc->rtk_ldata.rtk_tx_list_map, sc->rtk_ldata.rtk_tx_list,
670 RTK_TX_LIST_SZ(sc), NULL, BUS_DMA_NOWAIT)) != 0) {
671 aprint_error("%s: can't load tx list, error = %d\n",
672 sc->sc_dev.dv_xname, error);
673 goto fail_3;
674 }
675
676 /* Create DMA maps for TX buffers */
677 for (i = 0; i < RTK_TX_QLEN; i++) {
678 error = bus_dmamap_create(sc->sc_dmat,
679 round_page(IP_MAXPACKET),
680 RTK_TX_DESC_CNT(sc) - 4, RTK_TDESC_CMD_FRAGLEN,
681 0, BUS_DMA_ALLOCNOW,
682 &sc->rtk_ldata.rtk_txq[i].txq_dmamap);
683 if (error) {
684 aprint_error("%s: can't create DMA map for TX\n",
685 sc->sc_dev.dv_xname);
686 goto fail_4;
687 }
688 }
689
690 /* Allocate DMA'able memory for the RX ring */
691 if ((error = bus_dmamem_alloc(sc->sc_dmat, RTK_RX_LIST_SZ,
692 RTK_RING_ALIGN, 0, &sc->rtk_ldata.rtk_rx_listseg, 1,
693 &sc->rtk_ldata.rtk_rx_listnseg, BUS_DMA_NOWAIT)) != 0) {
694 aprint_error("%s: can't allocate rx listseg, error = %d\n",
695 sc->sc_dev.dv_xname, error);
696 goto fail_4;
697 }
698
699 /* Load the map for the RX ring. */
700 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->rtk_ldata.rtk_rx_listseg,
701 sc->rtk_ldata.rtk_rx_listnseg, RTK_RX_LIST_SZ,
702 (caddr_t *)&sc->rtk_ldata.rtk_rx_list,
703 BUS_DMA_NOWAIT)) != 0) {
704 aprint_error("%s: can't map rx list, error = %d\n",
705 sc->sc_dev.dv_xname, error);
706 goto fail_5;
707 }
708 memset(sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
709
710 if ((error = bus_dmamap_create(sc->sc_dmat, RTK_RX_LIST_SZ, 1,
711 RTK_RX_LIST_SZ, 0, BUS_DMA_ALLOCNOW,
712 &sc->rtk_ldata.rtk_rx_list_map)) != 0) {
713 aprint_error("%s: can't create rx list map, error = %d\n",
714 sc->sc_dev.dv_xname, error);
715 goto fail_6;
716 }
717
718 if ((error = bus_dmamap_load(sc->sc_dmat,
719 sc->rtk_ldata.rtk_rx_list_map, sc->rtk_ldata.rtk_rx_list,
720 RTK_RX_LIST_SZ, NULL, BUS_DMA_NOWAIT)) != 0) {
721 aprint_error("%s: can't load rx list, error = %d\n",
722 sc->sc_dev.dv_xname, error);
723 goto fail_7;
724 }
725
726 /* Create DMA maps for RX buffers */
727 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
728 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
729 0, BUS_DMA_ALLOCNOW, &sc->rtk_ldata.rtk_rx_dmamap[i]);
730 if (error) {
731 aprint_error("%s: can't create DMA map for RX\n",
732 sc->sc_dev.dv_xname);
733 goto fail_8;
734 }
735 }
736
737 /*
738 * Record interface as attached. From here, we should not fail.
739 */
740 sc->sc_flags |= RTK_ATTACHED;
741
742 ifp = &sc->ethercom.ec_if;
743 ifp->if_softc = sc;
744 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
745 ifp->if_mtu = ETHERMTU;
746 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
747 ifp->if_ioctl = re_ioctl;
748 sc->ethercom.ec_capabilities |=
749 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
750 ifp->if_start = re_start;
751 ifp->if_stop = re_stop;
752 ifp->if_capabilities |=
753 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
754 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
755 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
756 IFCAP_TSOv4;
757 ifp->if_watchdog = re_watchdog;
758 ifp->if_init = re_init;
759 if (sc->rtk_type == RTK_8169)
760 ifp->if_baudrate = 1000000000;
761 else
762 ifp->if_baudrate = 100000000;
763 ifp->if_snd.ifq_maxlen = RTK_IFQ_MAXLEN;
764 ifp->if_capenable = ifp->if_capabilities;
765 IFQ_SET_READY(&ifp->if_snd);
766
767 callout_init(&sc->rtk_tick_ch);
768
769 /* Do MII setup */
770 sc->mii.mii_ifp = ifp;
771 sc->mii.mii_readreg = re_miibus_readreg;
772 sc->mii.mii_writereg = re_miibus_writereg;
773 sc->mii.mii_statchg = re_miibus_statchg;
774 ifmedia_init(&sc->mii.mii_media, IFM_IMASK, re_ifmedia_upd,
775 re_ifmedia_sts);
776 mii_attach(&sc->sc_dev, &sc->mii, 0xffffffff, MII_PHY_ANY,
777 MII_OFFSET_ANY, 0);
778 ifmedia_set(&sc->mii.mii_media, IFM_ETHER | IFM_AUTO);
779
780 /*
781 * Call MI attach routine.
782 */
783 if_attach(ifp);
784 ether_ifattach(ifp, eaddr);
785
786
787 /*
788 * Make sure the interface is shutdown during reboot.
789 */
790 sc->sc_sdhook = shutdownhook_establish(re_shutdown, sc);
791 if (sc->sc_sdhook == NULL)
792 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
793 sc->sc_dev.dv_xname);
794 /*
795 * Add a suspend hook to make sure we come back up after a
796 * resume.
797 */
798 sc->sc_powerhook = powerhook_establish(re_power, sc);
799 if (sc->sc_powerhook == NULL)
800 aprint_error("%s: WARNING: unable to establish power hook\n",
801 sc->sc_dev.dv_xname);
802
803
804 return;
805
806 fail_8:
807 /* Destroy DMA maps for RX buffers. */
808 for (i = 0; i < RTK_RX_DESC_CNT; i++)
809 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
810 bus_dmamap_destroy(sc->sc_dmat,
811 sc->rtk_ldata.rtk_rx_dmamap[i]);
812
813 /* Free DMA'able memory for the RX ring. */
814 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
815 fail_7:
816 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
817 fail_6:
818 bus_dmamem_unmap(sc->sc_dmat,
819 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
820 fail_5:
821 bus_dmamem_free(sc->sc_dmat,
822 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
823
824 fail_4:
825 /* Destroy DMA maps for TX buffers. */
826 for (i = 0; i < RTK_TX_QLEN; i++)
827 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
828 bus_dmamap_destroy(sc->sc_dmat,
829 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
830
831 /* Free DMA'able memory for the TX ring. */
832 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
833 fail_3:
834 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
835 fail_2:
836 bus_dmamem_unmap(sc->sc_dmat,
837 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
838 fail_1:
839 bus_dmamem_free(sc->sc_dmat,
840 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
841 fail_0:
842 return;
843 }
844
845
846 /*
847 * re_activate:
848 * Handle device activation/deactivation requests.
849 */
850 int
851 re_activate(struct device *self, enum devact act)
852 {
853 struct rtk_softc *sc = (void *) self;
854 int s, error = 0;
855
856 s = splnet();
857 switch (act) {
858 case DVACT_ACTIVATE:
859 error = EOPNOTSUPP;
860 break;
861 case DVACT_DEACTIVATE:
862 mii_activate(&sc->mii, act, MII_PHY_ANY, MII_OFFSET_ANY);
863 if_deactivate(&sc->ethercom.ec_if);
864 break;
865 }
866 splx(s);
867
868 return error;
869 }
870
871 /*
872 * re_detach:
873 * Detach a rtk interface.
874 */
875 int
876 re_detach(struct rtk_softc *sc)
877 {
878 struct ifnet *ifp = &sc->ethercom.ec_if;
879 int i;
880
881 /*
882 * Succeed now if there isn't any work to do.
883 */
884 if ((sc->sc_flags & RTK_ATTACHED) == 0)
885 return 0;
886
887 /* Unhook our tick handler. */
888 callout_stop(&sc->rtk_tick_ch);
889
890 /* Detach all PHYs. */
891 mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
892
893 /* Delete all remaining media. */
894 ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
895
896 ether_ifdetach(ifp);
897 if_detach(ifp);
898
899 /* XXX undo re_allocmem() */
900
901 /* Destroy DMA maps for RX buffers. */
902 for (i = 0; i < RTK_RX_DESC_CNT; i++)
903 if (sc->rtk_ldata.rtk_rx_dmamap[i] != NULL)
904 bus_dmamap_destroy(sc->sc_dmat,
905 sc->rtk_ldata.rtk_rx_dmamap[i]);
906
907 /* Free DMA'able memory for the RX ring. */
908 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
909 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_rx_list_map);
910 bus_dmamem_unmap(sc->sc_dmat,
911 (caddr_t)sc->rtk_ldata.rtk_rx_list, RTK_RX_LIST_SZ);
912 bus_dmamem_free(sc->sc_dmat,
913 &sc->rtk_ldata.rtk_rx_listseg, sc->rtk_ldata.rtk_rx_listnseg);
914
915 /* Destroy DMA maps for TX buffers. */
916 for (i = 0; i < RTK_TX_QLEN; i++)
917 if (sc->rtk_ldata.rtk_txq[i].txq_dmamap != NULL)
918 bus_dmamap_destroy(sc->sc_dmat,
919 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
920
921 /* Free DMA'able memory for the TX ring. */
922 bus_dmamap_unload(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
923 bus_dmamap_destroy(sc->sc_dmat, sc->rtk_ldata.rtk_tx_list_map);
924 bus_dmamem_unmap(sc->sc_dmat,
925 (caddr_t)sc->rtk_ldata.rtk_tx_list, RTK_TX_LIST_SZ(sc));
926 bus_dmamem_free(sc->sc_dmat,
927 &sc->rtk_ldata.rtk_tx_listseg, sc->rtk_ldata.rtk_tx_listnseg);
928
929
930 shutdownhook_disestablish(sc->sc_sdhook);
931 powerhook_disestablish(sc->sc_powerhook);
932
933 return 0;
934 }
935
936 /*
937 * re_enable:
938 * Enable the RTL81X9 chip.
939 */
940 static int
941 re_enable(struct rtk_softc *sc)
942 {
943 if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
944 if ((*sc->sc_enable)(sc) != 0) {
945 aprint_error("%s: device enable failed\n",
946 sc->sc_dev.dv_xname);
947 return EIO;
948 }
949 sc->sc_flags |= RTK_ENABLED;
950 }
951 return 0;
952 }
953
954 /*
955 * re_disable:
956 * Disable the RTL81X9 chip.
957 */
958 static void
959 re_disable(struct rtk_softc *sc)
960 {
961
962 if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
963 (*sc->sc_disable)(sc);
964 sc->sc_flags &= ~RTK_ENABLED;
965 }
966 }
967
968 /*
969 * re_power:
970 * Power management (suspend/resume) hook.
971 */
972 void
973 re_power(int why, void *arg)
974 {
975 struct rtk_softc *sc = (void *) arg;
976 struct ifnet *ifp = &sc->ethercom.ec_if;
977 int s;
978
979 s = splnet();
980 switch (why) {
981 case PWR_SUSPEND:
982 case PWR_STANDBY:
983 re_stop(ifp, 0);
984 if (sc->sc_power != NULL)
985 (*sc->sc_power)(sc, why);
986 break;
987 case PWR_RESUME:
988 if (ifp->if_flags & IFF_UP) {
989 if (sc->sc_power != NULL)
990 (*sc->sc_power)(sc, why);
991 re_init(ifp);
992 }
993 break;
994 case PWR_SOFTSUSPEND:
995 case PWR_SOFTSTANDBY:
996 case PWR_SOFTRESUME:
997 break;
998 }
999 splx(s);
1000 }
1001
1002
1003 static int
1004 re_newbuf(struct rtk_softc *sc, int idx, struct mbuf *m)
1005 {
1006 struct mbuf *n = NULL;
1007 bus_dmamap_t map;
1008 struct rtk_desc *d;
1009 u_int32_t cmdstat;
1010 int error;
1011
1012 if (m == NULL) {
1013 MGETHDR(n, M_DONTWAIT, MT_DATA);
1014 if (n == NULL)
1015 return ENOBUFS;
1016 m = n;
1017
1018 MCLGET(m, M_DONTWAIT);
1019 if (!(m->m_flags & M_EXT)) {
1020 m_freem(m);
1021 return ENOBUFS;
1022 }
1023 } else
1024 m->m_data = m->m_ext.ext_buf;
1025
1026 /*
1027 * Initialize mbuf length fields and fixup
1028 * alignment so that the frame payload is
1029 * longword aligned.
1030 */
1031 m->m_len = m->m_pkthdr.len = MCLBYTES;
1032 m_adj(m, RTK_ETHER_ALIGN);
1033
1034 map = sc->rtk_ldata.rtk_rx_dmamap[idx];
1035 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1036
1037 if (error)
1038 goto out;
1039
1040 d = &sc->rtk_ldata.rtk_rx_list[idx];
1041 if (le32toh(d->rtk_cmdstat) & RTK_RDESC_STAT_OWN)
1042 goto out;
1043
1044 cmdstat = map->dm_segs[0].ds_len;
1045 d->rtk_bufaddr_lo = htole32(RTK_ADDR_LO(map->dm_segs[0].ds_addr));
1046 d->rtk_bufaddr_hi = htole32(RTK_ADDR_HI(map->dm_segs[0].ds_addr));
1047 if (idx == (RTK_RX_DESC_CNT - 1))
1048 cmdstat |= RTK_RDESC_CMD_EOR;
1049 d->rtk_cmdstat = htole32(cmdstat);
1050
1051 sc->rtk_ldata.rtk_rx_list[idx].rtk_cmdstat |=
1052 htole32(RTK_RDESC_CMD_OWN);
1053 sc->rtk_ldata.rtk_rx_mbuf[idx] = m;
1054
1055 bus_dmamap_sync(sc->sc_dmat, sc->rtk_ldata.rtk_rx_dmamap[idx], 0,
1056 sc->rtk_ldata.rtk_rx_dmamap[idx]->dm_mapsize,
1057 BUS_DMASYNC_PREREAD);
1058
1059 return 0;
1060 out:
1061 if (n != NULL)
1062 m_freem(n);
1063 return ENOMEM;
1064 }
1065
1066 static int
1067 re_tx_list_init(struct rtk_softc *sc)
1068 {
1069 int i;
1070
1071 memset(sc->rtk_ldata.rtk_tx_list, 0, RTK_TX_LIST_SZ(sc));
1072 for (i = 0; i < RTK_TX_QLEN; i++) {
1073 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
1074 }
1075
1076 bus_dmamap_sync(sc->sc_dmat,
1077 sc->rtk_ldata.rtk_tx_list_map, 0,
1078 sc->rtk_ldata.rtk_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1079 sc->rtk_ldata.rtk_txq_prodidx = 0;
1080 sc->rtk_ldata.rtk_txq_considx = 0;
1081 sc->rtk_ldata.rtk_tx_free = RTK_TX_DESC_CNT(sc);
1082 sc->rtk_ldata.rtk_tx_nextfree = 0;
1083
1084 return 0;
1085 }
1086
1087 static int
1088 re_rx_list_init(struct rtk_softc *sc)
1089 {
1090 int i;
1091
1092 memset((char *)sc->rtk_ldata.rtk_rx_list, 0, RTK_RX_LIST_SZ);
1093 memset((char *)&sc->rtk_ldata.rtk_rx_mbuf, 0,
1094 (RTK_RX_DESC_CNT * sizeof(struct mbuf *)));
1095
1096 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
1097 if (re_newbuf(sc, i, NULL) == ENOBUFS)
1098 return ENOBUFS;
1099 }
1100
1101 /* Flush the RX descriptors */
1102
1103 bus_dmamap_sync(sc->sc_dmat,
1104 sc->rtk_ldata.rtk_rx_list_map,
1105 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1106 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1107
1108 sc->rtk_ldata.rtk_rx_prodidx = 0;
1109 sc->rtk_head = sc->rtk_tail = NULL;
1110
1111 return 0;
1112 }
1113
1114 /*
1115 * RX handler for C+ and 8169. For the gigE chips, we support
1116 * the reception of jumbo frames that have been fragmented
1117 * across multiple 2K mbuf cluster buffers.
1118 */
1119 static void
1120 re_rxeof(struct rtk_softc *sc)
1121 {
1122 struct mbuf *m;
1123 struct ifnet *ifp;
1124 int i, total_len;
1125 struct rtk_desc *cur_rx;
1126 u_int32_t rxstat, rxvlan;
1127
1128 ifp = &sc->ethercom.ec_if;
1129 i = sc->rtk_ldata.rtk_rx_prodidx;
1130
1131 /* Invalidate the descriptor memory */
1132
1133 bus_dmamap_sync(sc->sc_dmat,
1134 sc->rtk_ldata.rtk_rx_list_map,
1135 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1136 BUS_DMASYNC_POSTREAD);
1137
1138 while (!RTK_OWN(&sc->rtk_ldata.rtk_rx_list[i])) {
1139
1140 cur_rx = &sc->rtk_ldata.rtk_rx_list[i];
1141 m = sc->rtk_ldata.rtk_rx_mbuf[i];
1142 total_len = RTK_RXBYTES(cur_rx);
1143 rxstat = le32toh(cur_rx->rtk_cmdstat);
1144 rxvlan = le32toh(cur_rx->rtk_vlanctl);
1145
1146 /* Invalidate the RX mbuf and unload its map */
1147
1148 bus_dmamap_sync(sc->sc_dmat,
1149 sc->rtk_ldata.rtk_rx_dmamap[i],
1150 0, sc->rtk_ldata.rtk_rx_dmamap[i]->dm_mapsize,
1151 BUS_DMASYNC_POSTWRITE);
1152 bus_dmamap_unload(sc->sc_dmat,
1153 sc->rtk_ldata.rtk_rx_dmamap[i]);
1154
1155 if (!(rxstat & RTK_RDESC_STAT_EOF)) {
1156 m->m_len = MCLBYTES - RTK_ETHER_ALIGN;
1157 if (sc->rtk_head == NULL)
1158 sc->rtk_head = sc->rtk_tail = m;
1159 else {
1160 m->m_flags &= ~M_PKTHDR;
1161 sc->rtk_tail->m_next = m;
1162 sc->rtk_tail = m;
1163 }
1164 re_newbuf(sc, i, NULL);
1165 RTK_RX_DESC_INC(sc, i);
1166 continue;
1167 }
1168
1169 /*
1170 * NOTE: for the 8139C+, the frame length field
1171 * is always 12 bits in size, but for the gigE chips,
1172 * it is 13 bits (since the max RX frame length is 16K).
1173 * Unfortunately, all 32 bits in the status word
1174 * were already used, so to make room for the extra
1175 * length bit, RealTek took out the 'frame alignment
1176 * error' bit and shifted the other status bits
1177 * over one slot. The OWN, EOR, FS and LS bits are
1178 * still in the same places. We have already extracted
1179 * the frame length and checked the OWN bit, so rather
1180 * than using an alternate bit mapping, we shift the
1181 * status bits one space to the right so we can evaluate
1182 * them using the 8169 status as though it was in the
1183 * same format as that of the 8139C+.
1184 */
1185 if (sc->rtk_type == RTK_8169)
1186 rxstat >>= 1;
1187
1188 if (rxstat & RTK_RDESC_STAT_RXERRSUM) {
1189 ifp->if_ierrors++;
1190 /*
1191 * If this is part of a multi-fragment packet,
1192 * discard all the pieces.
1193 */
1194 if (sc->rtk_head != NULL) {
1195 m_freem(sc->rtk_head);
1196 sc->rtk_head = sc->rtk_tail = NULL;
1197 }
1198 re_newbuf(sc, i, m);
1199 RTK_RX_DESC_INC(sc, i);
1200 continue;
1201 }
1202
1203 /*
1204 * If allocating a replacement mbuf fails,
1205 * reload the current one.
1206 */
1207
1208 if (re_newbuf(sc, i, NULL)) {
1209 ifp->if_ierrors++;
1210 if (sc->rtk_head != NULL) {
1211 m_freem(sc->rtk_head);
1212 sc->rtk_head = sc->rtk_tail = NULL;
1213 }
1214 re_newbuf(sc, i, m);
1215 RTK_RX_DESC_INC(sc, i);
1216 continue;
1217 }
1218
1219 RTK_RX_DESC_INC(sc, i);
1220
1221 if (sc->rtk_head != NULL) {
1222 m->m_len = total_len % (MCLBYTES - RTK_ETHER_ALIGN);
1223 /*
1224 * Special case: if there's 4 bytes or less
1225 * in this buffer, the mbuf can be discarded:
1226 * the last 4 bytes is the CRC, which we don't
1227 * care about anyway.
1228 */
1229 if (m->m_len <= ETHER_CRC_LEN) {
1230 sc->rtk_tail->m_len -=
1231 (ETHER_CRC_LEN - m->m_len);
1232 m_freem(m);
1233 } else {
1234 m->m_len -= ETHER_CRC_LEN;
1235 m->m_flags &= ~M_PKTHDR;
1236 sc->rtk_tail->m_next = m;
1237 }
1238 m = sc->rtk_head;
1239 sc->rtk_head = sc->rtk_tail = NULL;
1240 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1241 } else
1242 m->m_pkthdr.len = m->m_len =
1243 (total_len - ETHER_CRC_LEN);
1244
1245 ifp->if_ipackets++;
1246 m->m_pkthdr.rcvif = ifp;
1247
1248 /* Do RX checksumming if enabled */
1249
1250 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
1251
1252 /* Check IP header checksum */
1253 if (rxstat & RTK_RDESC_STAT_PROTOID)
1254 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;;
1255 if (rxstat & RTK_RDESC_STAT_IPSUMBAD)
1256 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1257 }
1258
1259 /* Check TCP/UDP checksum */
1260 if (RTK_TCPPKT(rxstat) &&
1261 (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)) {
1262 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1263 if (rxstat & RTK_RDESC_STAT_TCPSUMBAD)
1264 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1265 }
1266 if (RTK_UDPPKT(rxstat) &&
1267 (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)) {
1268 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1269 if (rxstat & RTK_RDESC_STAT_UDPSUMBAD)
1270 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1271 }
1272
1273 if (rxvlan & RTK_RDESC_VLANCTL_TAG) {
1274 VLAN_INPUT_TAG(ifp, m,
1275 be16toh(rxvlan & RTK_RDESC_VLANCTL_DATA),
1276 continue);
1277 }
1278 #if NBPFILTER > 0
1279 if (ifp->if_bpf)
1280 bpf_mtap(ifp->if_bpf, m);
1281 #endif
1282 (*ifp->if_input)(ifp, m);
1283 }
1284
1285 /* Flush the RX DMA ring */
1286
1287 bus_dmamap_sync(sc->sc_dmat,
1288 sc->rtk_ldata.rtk_rx_list_map,
1289 0, sc->rtk_ldata.rtk_rx_list_map->dm_mapsize,
1290 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1291
1292 sc->rtk_ldata.rtk_rx_prodidx = i;
1293
1294 return;
1295 }
1296
1297 static void
1298 re_txeof(struct rtk_softc *sc)
1299 {
1300 struct ifnet *ifp;
1301 int idx;
1302
1303 ifp = &sc->ethercom.ec_if;
1304 idx = sc->rtk_ldata.rtk_txq_considx;
1305
1306 /* Invalidate the TX descriptor list */
1307
1308 bus_dmamap_sync(sc->sc_dmat,
1309 sc->rtk_ldata.rtk_tx_list_map,
1310 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1311 BUS_DMASYNC_POSTREAD);
1312
1313 while (/* CONSTCOND */ 1) {
1314 struct rtk_txq *txq = &sc->rtk_ldata.rtk_txq[idx];
1315 int descidx;
1316 u_int32_t txstat;
1317
1318 if (txq->txq_mbuf == NULL) {
1319 KASSERT(idx == sc->rtk_ldata.rtk_txq_prodidx);
1320 break;
1321 }
1322
1323 descidx = txq->txq_descidx;
1324 txstat =
1325 le32toh(sc->rtk_ldata.rtk_tx_list[descidx].rtk_cmdstat);
1326 KASSERT((txstat & RTK_TDESC_CMD_EOF) != 0);
1327 if (txstat & RTK_TDESC_CMD_OWN)
1328 break;
1329
1330 sc->rtk_ldata.rtk_tx_free += txq->txq_dmamap->dm_nsegs;
1331 KASSERT(sc->rtk_ldata.rtk_tx_free <= RTK_TX_DESC_CNT(sc));
1332 bus_dmamap_unload(sc->sc_dmat, txq->txq_dmamap);
1333 m_freem(txq->txq_mbuf);
1334 txq->txq_mbuf = NULL;
1335
1336 if (txstat & (RTK_TDESC_STAT_EXCESSCOL | RTK_TDESC_STAT_COLCNT))
1337 ifp->if_collisions++;
1338 if (txstat & RTK_TDESC_STAT_TXERRSUM)
1339 ifp->if_oerrors++;
1340 else
1341 ifp->if_opackets++;
1342
1343 idx = (idx + 1) % RTK_TX_QLEN;
1344 }
1345
1346 /* No changes made to the TX ring, so no flush needed */
1347
1348 if (idx != sc->rtk_ldata.rtk_txq_considx) {
1349 sc->rtk_ldata.rtk_txq_considx = idx;
1350 ifp->if_flags &= ~IFF_OACTIVE;
1351 ifp->if_timer = 0;
1352 }
1353
1354 /*
1355 * If not all descriptors have been released reaped yet,
1356 * reload the timer so that we will eventually get another
1357 * interrupt that will cause us to re-enter this routine.
1358 * This is done in case the transmitter has gone idle.
1359 */
1360 if (sc->rtk_ldata.rtk_tx_free != RTK_TX_DESC_CNT(sc))
1361 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1362
1363 return;
1364 }
1365
1366 /*
1367 * Stop all chip I/O so that the kernel's probe routines don't
1368 * get confused by errant DMAs when rebooting.
1369 */
1370 static void
1371 re_shutdown(void *vsc)
1372
1373 {
1374 struct rtk_softc *sc = (struct rtk_softc *)vsc;
1375
1376 re_stop(&sc->ethercom.ec_if, 0);
1377 }
1378
1379
1380 static void
1381 re_tick(void *xsc)
1382 {
1383 struct rtk_softc *sc = xsc;
1384 int s;
1385
1386 /*XXX: just return for 8169S/8110S with rev 2 or newer phy */
1387 s = splnet();
1388
1389 mii_tick(&sc->mii);
1390 splx(s);
1391
1392 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1393 }
1394
1395 #ifdef DEVICE_POLLING
1396 static void
1397 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1398 {
1399 struct rtk_softc *sc = ifp->if_softc;
1400
1401 RTK_LOCK(sc);
1402 if (!(ifp->if_capenable & IFCAP_POLLING)) {
1403 ether_poll_deregister(ifp);
1404 cmd = POLL_DEREGISTER;
1405 }
1406 if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1407 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1408 goto done;
1409 }
1410
1411 sc->rxcycles = count;
1412 re_rxeof(sc);
1413 re_txeof(sc);
1414
1415 if (ifp->if_snd.ifq_head != NULL)
1416 (*ifp->if_start)(ifp);
1417
1418 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1419 u_int16_t status;
1420
1421 status = CSR_READ_2(sc, RTK_ISR);
1422 if (status == 0xffff)
1423 goto done;
1424 if (status)
1425 CSR_WRITE_2(sc, RTK_ISR, status);
1426
1427 /*
1428 * XXX check behaviour on receiver stalls.
1429 */
1430
1431 if (status & RTK_ISR_SYSTEM_ERR) {
1432 re_reset(sc);
1433 re_init(sc);
1434 }
1435 }
1436 done:
1437 RTK_UNLOCK(sc);
1438 }
1439 #endif /* DEVICE_POLLING */
1440
1441 int
1442 re_intr(void *arg)
1443 {
1444 struct rtk_softc *sc = arg;
1445 struct ifnet *ifp;
1446 u_int16_t status;
1447 int handled = 0;
1448
1449 ifp = &sc->ethercom.ec_if;
1450
1451 if (!(ifp->if_flags & IFF_UP))
1452 return 0;
1453
1454 #ifdef DEVICE_POLLING
1455 if (ifp->if_flags & IFF_POLLING)
1456 goto done;
1457 if ((ifp->if_capenable & IFCAP_POLLING) &&
1458 ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1459 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
1460 re_poll(ifp, 0, 1);
1461 goto done;
1462 }
1463 #endif /* DEVICE_POLLING */
1464
1465 for (;;) {
1466
1467 status = CSR_READ_2(sc, RTK_ISR);
1468 /* If the card has gone away the read returns 0xffff. */
1469 if (status == 0xffff)
1470 break;
1471 if (status) {
1472 handled = 1;
1473 CSR_WRITE_2(sc, RTK_ISR, status);
1474 }
1475
1476 if ((status & RTK_INTRS_CPLUS) == 0)
1477 break;
1478
1479 if ((status & RTK_ISR_RX_OK) ||
1480 (status & RTK_ISR_RX_ERR))
1481 re_rxeof(sc);
1482
1483 if ((status & RTK_ISR_TIMEOUT_EXPIRED) ||
1484 (status & RTK_ISR_TX_ERR) ||
1485 (status & RTK_ISR_TX_DESC_UNAVAIL))
1486 re_txeof(sc);
1487
1488 if (status & RTK_ISR_SYSTEM_ERR) {
1489 re_reset(sc);
1490 re_init(ifp);
1491 }
1492
1493 if (status & RTK_ISR_LINKCHG) {
1494 callout_stop(&sc->rtk_tick_ch);
1495 re_tick(sc);
1496 }
1497 }
1498
1499 if (ifp->if_flags & IFF_UP) /* kludge for interrupt during re_init() */
1500 if (ifp->if_snd.ifq_head != NULL)
1501 (*ifp->if_start)(ifp);
1502
1503 #ifdef DEVICE_POLLING
1504 done:
1505 #endif
1506
1507 return handled;
1508 }
1509
1510 static int
1511 re_encap(struct rtk_softc *sc, struct mbuf *m, int *idx)
1512 {
1513 bus_dmamap_t map;
1514 int error, i, startidx, curidx;
1515 struct m_tag *mtag;
1516 struct rtk_desc *d;
1517 u_int32_t cmdstat, rtk_flags;
1518 struct rtk_txq *txq;
1519
1520 if (sc->rtk_ldata.rtk_tx_free <= 4) {
1521 return EFBIG;
1522 }
1523
1524 /*
1525 * Set up checksum offload. Note: checksum offload bits must
1526 * appear in all descriptors of a multi-descriptor transmit
1527 * attempt. (This is according to testing done with an 8169
1528 * chip. I'm not sure if this is a requirement or a bug.)
1529 */
1530
1531 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
1532 u_int32_t segsz = m->m_pkthdr.segsz;
1533
1534 rtk_flags = RTK_TDESC_CMD_LGSEND |
1535 (segsz << RTK_TDESC_CMD_MSSVAL_SHIFT);
1536 } else {
1537
1538 /*
1539 * set RTK_TDESC_CMD_IPCSUM if any checksum offloading
1540 * is requested. otherwise, RTK_TDESC_CMD_TCPCSUM/
1541 * RTK_TDESC_CMD_UDPCSUM doesn't make effects.
1542 */
1543
1544 rtk_flags = 0;
1545 if ((m->m_pkthdr.csum_flags &
1546 (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) != 0) {
1547 rtk_flags |= RTK_TDESC_CMD_IPCSUM;
1548 if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1549 rtk_flags |= RTK_TDESC_CMD_TCPCSUM;
1550 } else if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
1551 rtk_flags |= RTK_TDESC_CMD_UDPCSUM;
1552 }
1553 }
1554 }
1555
1556 txq = &sc->rtk_ldata.rtk_txq[*idx];
1557 map = txq->txq_dmamap;
1558 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1559
1560 if (error) {
1561 /* XXX try to defrag if EFBIG? */
1562
1563 aprint_error("%s: can't map mbuf (error %d)\n",
1564 sc->sc_dev.dv_xname, error);
1565
1566 return error;
1567 }
1568
1569 if (map->dm_nsegs > sc->rtk_ldata.rtk_tx_free - 4) {
1570 error = EFBIG;
1571 goto fail_unload;
1572 }
1573 /*
1574 * Map the segment array into descriptors. Note that we set the
1575 * start-of-frame and end-of-frame markers for either TX or RX, but
1576 * they really only have meaning in the TX case. (In the RX case,
1577 * it's the chip that tells us where packets begin and end.)
1578 * We also keep track of the end of the ring and set the
1579 * end-of-ring bits as needed, and we set the ownership bits
1580 * in all except the very first descriptor. (The caller will
1581 * set this descriptor later when it start transmission or
1582 * reception.)
1583 */
1584 i = 0;
1585 curidx = startidx = sc->rtk_ldata.rtk_tx_nextfree;
1586 while (1) {
1587 d = &sc->rtk_ldata.rtk_tx_list[curidx];
1588 if (le32toh(d->rtk_cmdstat) & RTK_TDESC_STAT_OWN) {
1589 while (i > 0) {
1590 sc->rtk_ldata.rtk_tx_list[
1591 (curidx + RTK_TX_DESC_CNT(sc) - i) %
1592 RTK_TX_DESC_CNT(sc)].rtk_cmdstat = 0;
1593 i--;
1594 }
1595 error = ENOBUFS;
1596 goto fail_unload;
1597 }
1598
1599 cmdstat = map->dm_segs[i].ds_len;
1600 d->rtk_bufaddr_lo =
1601 htole32(RTK_ADDR_LO(map->dm_segs[i].ds_addr));
1602 d->rtk_bufaddr_hi =
1603 htole32(RTK_ADDR_HI(map->dm_segs[i].ds_addr));
1604 if (i == 0)
1605 cmdstat |= RTK_TDESC_CMD_SOF;
1606 else
1607 cmdstat |= RTK_TDESC_CMD_OWN;
1608 if (curidx == (RTK_TX_DESC_CNT(sc) - 1))
1609 cmdstat |= RTK_TDESC_CMD_EOR;
1610 d->rtk_cmdstat = htole32(cmdstat | rtk_flags);
1611 i++;
1612 if (i == map->dm_nsegs)
1613 break;
1614 RTK_TX_DESC_INC(sc, curidx);
1615 }
1616
1617 d->rtk_cmdstat |= htole32(RTK_TDESC_CMD_EOF);
1618
1619 txq->txq_mbuf = m;
1620 sc->rtk_ldata.rtk_tx_free -= map->dm_nsegs;
1621
1622 /*
1623 * Set up hardware VLAN tagging. Note: vlan tag info must
1624 * appear in the first descriptor of a multi-descriptor
1625 * transmission attempt.
1626 */
1627
1628 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m)) != NULL) {
1629 sc->rtk_ldata.rtk_tx_list[startidx].rtk_vlanctl =
1630 htole32(htons(VLAN_TAG_VALUE(mtag)) |
1631 RTK_TDESC_VLANCTL_TAG);
1632 }
1633
1634 /* Transfer ownership of packet to the chip. */
1635
1636 sc->rtk_ldata.rtk_tx_list[curidx].rtk_cmdstat |=
1637 htole32(RTK_TDESC_CMD_OWN);
1638 if (startidx != curidx)
1639 sc->rtk_ldata.rtk_tx_list[startidx].rtk_cmdstat |=
1640 htole32(RTK_TDESC_CMD_OWN);
1641
1642 txq->txq_descidx = curidx;
1643 RTK_TX_DESC_INC(sc, curidx);
1644 sc->rtk_ldata.rtk_tx_nextfree = curidx;
1645 *idx = (*idx + 1) % RTK_TX_QLEN;
1646
1647 return 0;
1648
1649 fail_unload:
1650 bus_dmamap_unload(sc->sc_dmat, map);
1651
1652 return error;
1653 }
1654
1655 /*
1656 * Main transmit routine for C+ and gigE NICs.
1657 */
1658
1659 static void
1660 re_start(struct ifnet *ifp)
1661 {
1662 struct rtk_softc *sc;
1663 int idx;
1664
1665 sc = ifp->if_softc;
1666
1667 idx = sc->rtk_ldata.rtk_txq_prodidx;
1668 while (/* CONSTCOND */ 1) {
1669 struct mbuf *m;
1670 int error;
1671
1672 IFQ_POLL(&ifp->if_snd, m);
1673 if (m == NULL)
1674 break;
1675
1676 if (sc->rtk_ldata.rtk_txq[idx].txq_mbuf != NULL) {
1677 KASSERT(idx == sc->rtk_ldata.rtk_txq_considx);
1678 ifp->if_flags |= IFF_OACTIVE;
1679 break;
1680 }
1681
1682 error = re_encap(sc, m, &idx);
1683 if (error == EFBIG &&
1684 sc->rtk_ldata.rtk_tx_free == RTK_TX_DESC_CNT(sc)) {
1685 IFQ_DEQUEUE(&ifp->if_snd, m);
1686 m_freem(m);
1687 ifp->if_oerrors++;
1688 continue;
1689 }
1690 if (error) {
1691 ifp->if_flags |= IFF_OACTIVE;
1692 break;
1693 }
1694
1695 IFQ_DEQUEUE(&ifp->if_snd, m);
1696
1697 #if NBPFILTER > 0
1698 /*
1699 * If there's a BPF listener, bounce a copy of this frame
1700 * to him.
1701 */
1702 if (ifp->if_bpf)
1703 bpf_mtap(ifp->if_bpf, m);
1704 #endif
1705 }
1706
1707 if (sc->rtk_ldata.rtk_txq_prodidx == idx) {
1708 return;
1709 }
1710 sc->rtk_ldata.rtk_txq_prodidx = idx;
1711
1712 /* Flush the TX descriptors */
1713
1714 bus_dmamap_sync(sc->sc_dmat,
1715 sc->rtk_ldata.rtk_tx_list_map,
1716 0, sc->rtk_ldata.rtk_tx_list_map->dm_mapsize,
1717 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1718
1719 /*
1720 * RealTek put the TX poll request register in a different
1721 * location on the 8169 gigE chip. I don't know why.
1722 */
1723
1724 if (sc->rtk_type == RTK_8169)
1725 CSR_WRITE_2(sc, RTK_GTXSTART, RTK_TXSTART_START);
1726 else
1727 CSR_WRITE_2(sc, RTK_TXSTART, RTK_TXSTART_START);
1728
1729 /*
1730 * Use the countdown timer for interrupt moderation.
1731 * 'TX done' interrupts are disabled. Instead, we reset the
1732 * countdown timer, which will begin counting until it hits
1733 * the value in the TIMERINT register, and then trigger an
1734 * interrupt. Each time we write to the TIMERCNT register,
1735 * the timer count is reset to 0.
1736 */
1737 CSR_WRITE_4(sc, RTK_TIMERCNT, 1);
1738
1739 /*
1740 * Set a timeout in case the chip goes out to lunch.
1741 */
1742 ifp->if_timer = 5;
1743
1744 return;
1745 }
1746
1747 static int
1748 re_init(struct ifnet *ifp)
1749 {
1750 struct rtk_softc *sc = ifp->if_softc;
1751 u_int32_t rxcfg = 0;
1752 u_int32_t reg;
1753 int error;
1754
1755 if ((error = re_enable(sc)) != 0)
1756 goto out;
1757
1758 /*
1759 * Cancel pending I/O and free all RX/TX buffers.
1760 */
1761 re_stop(ifp, 0);
1762
1763 /*
1764 * Enable C+ RX and TX mode, as well as VLAN stripping and
1765 * RX checksum offload. We must configure the C+ register
1766 * before all others.
1767 */
1768 reg = 0;
1769
1770 /*
1771 * XXX: Realtek docs say bits 0 and 1 are reserved, for 8169S/8110S.
1772 * FreeBSD drivers set these bits anyway (for 8139C+?).
1773 * So far, it works.
1774 */
1775
1776 /*
1777 * XXX: For 8169 and 8196S revs below 2, set bit 14.
1778 * For 8169S/8110S rev 2 and above, do not set bit 14.
1779 */
1780 if (sc->rtk_type == RTK_8169 && sc->sc_rev == 1)
1781 reg |= (0x1 << 14) | RTK_CPLUSCMD_PCI_MRW;;
1782
1783 if (1) {/* not for 8169S ? */
1784 reg |= RTK_CPLUSCMD_VLANSTRIP |
1785 (ifp->if_capenable &
1786 (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx |
1787 IFCAP_CSUM_UDPv4_Rx) ?
1788 RTK_CPLUSCMD_RXCSUM_ENB : 0);
1789 }
1790
1791 CSR_WRITE_2(sc, RTK_CPLUS_CMD,
1792 reg | RTK_CPLUSCMD_RXENB | RTK_CPLUSCMD_TXENB);
1793
1794 /* XXX: from Realtek-supplied Linux driver. Wholly undocumented. */
1795 if (sc->rtk_type == RTK_8169)
1796 CSR_WRITE_2(sc, RTK_CPLUS_CMD+0x2, 0x0000);
1797
1798 DELAY(10000);
1799
1800 /*
1801 * Init our MAC address. Even though the chipset
1802 * documentation doesn't mention it, we need to enter "Config
1803 * register write enable" mode to modify the ID registers.
1804 */
1805 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_WRITECFG);
1806 memcpy(®, LLADDR(ifp->if_sadl), 4);
1807 CSR_WRITE_STREAM_4(sc, RTK_IDR0, reg);
1808 reg = 0;
1809 memcpy(®, LLADDR(ifp->if_sadl) + 4, 4);
1810 CSR_WRITE_STREAM_4(sc, RTK_IDR4, reg);
1811 CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
1812
1813 /*
1814 * For C+ mode, initialize the RX descriptors and mbufs.
1815 */
1816 re_rx_list_init(sc);
1817 re_tx_list_init(sc);
1818
1819 /*
1820 * Enable transmit and receive.
1821 */
1822 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1823
1824 /*
1825 * Set the initial TX and RX configuration.
1826 */
1827 if (sc->rtk_testmode) {
1828 if (sc->rtk_type == RTK_8169)
1829 CSR_WRITE_4(sc, RTK_TXCFG,
1830 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON);
1831 else
1832 CSR_WRITE_4(sc, RTK_TXCFG,
1833 RTK_TXCFG_CONFIG | RTK_LOOPTEST_ON_CPLUS);
1834 } else
1835 CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
1836 CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
1837
1838 /* Set the individual bit to receive frames for this host only. */
1839 rxcfg = CSR_READ_4(sc, RTK_RXCFG);
1840 rxcfg |= RTK_RXCFG_RX_INDIV;
1841
1842 /* If we want promiscuous mode, set the allframes bit. */
1843 if (ifp->if_flags & IFF_PROMISC)
1844 rxcfg |= RTK_RXCFG_RX_ALLPHYS;
1845 else
1846 rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
1847 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1848
1849 /*
1850 * Set capture broadcast bit to capture broadcast frames.
1851 */
1852 if (ifp->if_flags & IFF_BROADCAST)
1853 rxcfg |= RTK_RXCFG_RX_BROAD;
1854 else
1855 rxcfg &= ~RTK_RXCFG_RX_BROAD;
1856 CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
1857
1858 /*
1859 * Program the multicast filter, if necessary.
1860 */
1861 rtk_setmulti(sc);
1862
1863 #ifdef DEVICE_POLLING
1864 /*
1865 * Disable interrupts if we are polling.
1866 */
1867 if (ifp->if_flags & IFF_POLLING)
1868 CSR_WRITE_2(sc, RTK_IMR, 0);
1869 else /* otherwise ... */
1870 #endif /* DEVICE_POLLING */
1871 /*
1872 * Enable interrupts.
1873 */
1874 if (sc->rtk_testmode)
1875 CSR_WRITE_2(sc, RTK_IMR, 0);
1876 else
1877 CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS_CPLUS);
1878
1879 /* Start RX/TX process. */
1880 CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
1881 #ifdef notdef
1882 /* Enable receiver and transmitter. */
1883 CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB | RTK_CMD_RX_ENB);
1884 #endif
1885 /*
1886 * Load the addresses of the RX and TX lists into the chip.
1887 */
1888
1889 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_HI,
1890 RTK_ADDR_HI(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1891 CSR_WRITE_4(sc, RTK_RXLIST_ADDR_LO,
1892 RTK_ADDR_LO(sc->rtk_ldata.rtk_rx_list_map->dm_segs[0].ds_addr));
1893
1894 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_HI,
1895 RTK_ADDR_HI(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1896 CSR_WRITE_4(sc, RTK_TXLIST_ADDR_LO,
1897 RTK_ADDR_LO(sc->rtk_ldata.rtk_tx_list_map->dm_segs[0].ds_addr));
1898
1899 CSR_WRITE_1(sc, RTK_EARLY_TX_THRESH, 16);
1900
1901 /*
1902 * Initialize the timer interrupt register so that
1903 * a timer interrupt will be generated once the timer
1904 * reaches a certain number of ticks. The timer is
1905 * reloaded on each transmit. This gives us TX interrupt
1906 * moderation, which dramatically improves TX frame rate.
1907 */
1908
1909 if (sc->rtk_type == RTK_8169)
1910 CSR_WRITE_4(sc, RTK_TIMERINT_8169, 0x800);
1911 else
1912 CSR_WRITE_4(sc, RTK_TIMERINT, 0x400);
1913
1914 /*
1915 * For 8169 gigE NICs, set the max allowed RX packet
1916 * size so we can receive jumbo frames.
1917 */
1918 if (sc->rtk_type == RTK_8169)
1919 CSR_WRITE_2(sc, RTK_MAXRXPKTLEN, 16383);
1920
1921 if (sc->rtk_testmode)
1922 return 0;
1923
1924 mii_mediachg(&sc->mii);
1925
1926 CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD | RTK_CFG1_FULLDUPLEX);
1927
1928 ifp->if_flags |= IFF_RUNNING;
1929 ifp->if_flags &= ~IFF_OACTIVE;
1930
1931 callout_reset(&sc->rtk_tick_ch, hz, re_tick, sc);
1932
1933 out:
1934 if (error) {
1935 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1936 ifp->if_timer = 0;
1937 aprint_error("%s: interface not running\n",
1938 sc->sc_dev.dv_xname);
1939 }
1940
1941 return error;
1942
1943 }
1944
1945 /*
1946 * Set media options.
1947 */
1948 static int
1949 re_ifmedia_upd(struct ifnet *ifp)
1950 {
1951 struct rtk_softc *sc;
1952
1953 sc = ifp->if_softc;
1954
1955 return mii_mediachg(&sc->mii);
1956 }
1957
1958 /*
1959 * Report current media status.
1960 */
1961 static void
1962 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1963 {
1964 struct rtk_softc *sc;
1965
1966 sc = ifp->if_softc;
1967
1968 mii_pollstat(&sc->mii);
1969 ifmr->ifm_active = sc->mii.mii_media_active;
1970 ifmr->ifm_status = sc->mii.mii_media_status;
1971
1972 return;
1973 }
1974
1975 static int
1976 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1977 {
1978 struct rtk_softc *sc = ifp->if_softc;
1979 struct ifreq *ifr = (struct ifreq *) data;
1980 int s, error = 0;
1981
1982 s = splnet();
1983
1984 switch (command) {
1985 case SIOCSIFMTU:
1986 if (ifr->ifr_mtu > RTK_JUMBO_MTU)
1987 error = EINVAL;
1988 ifp->if_mtu = ifr->ifr_mtu;
1989 break;
1990 case SIOCGIFMEDIA:
1991 case SIOCSIFMEDIA:
1992 error = ifmedia_ioctl(ifp, ifr, &sc->mii.mii_media, command);
1993 break;
1994 default:
1995 error = ether_ioctl(ifp, command, data);
1996 if (error == ENETRESET) {
1997 if (ifp->if_flags & IFF_RUNNING)
1998 rtk_setmulti(sc);
1999 error = 0;
2000 }
2001 break;
2002 }
2003
2004 splx(s);
2005
2006 return error;
2007 }
2008
2009 static void
2010 re_watchdog(struct ifnet *ifp)
2011 {
2012 struct rtk_softc *sc;
2013 int s;
2014
2015 sc = ifp->if_softc;
2016 s = splnet();
2017 aprint_error("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
2018 ifp->if_oerrors++;
2019
2020 re_txeof(sc);
2021 re_rxeof(sc);
2022
2023 re_init(ifp);
2024
2025 splx(s);
2026 }
2027
2028 /*
2029 * Stop the adapter and free any mbufs allocated to the
2030 * RX and TX lists.
2031 */
2032 static void
2033 re_stop(struct ifnet *ifp, int disable)
2034 {
2035 register int i;
2036 struct rtk_softc *sc = ifp->if_softc;
2037
2038 callout_stop(&sc->rtk_tick_ch);
2039
2040 #ifdef DEVICE_POLLING
2041 ether_poll_deregister(ifp);
2042 #endif /* DEVICE_POLLING */
2043
2044 mii_down(&sc->mii);
2045
2046 CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
2047 CSR_WRITE_2(sc, RTK_IMR, 0x0000);
2048
2049 if (sc->rtk_head != NULL) {
2050 m_freem(sc->rtk_head);
2051 sc->rtk_head = sc->rtk_tail = NULL;
2052 }
2053
2054 /* Free the TX list buffers. */
2055 for (i = 0; i < RTK_TX_QLEN; i++) {
2056 if (sc->rtk_ldata.rtk_txq[i].txq_mbuf != NULL) {
2057 bus_dmamap_unload(sc->sc_dmat,
2058 sc->rtk_ldata.rtk_txq[i].txq_dmamap);
2059 m_freem(sc->rtk_ldata.rtk_txq[i].txq_mbuf);
2060 sc->rtk_ldata.rtk_txq[i].txq_mbuf = NULL;
2061 }
2062 }
2063
2064 /* Free the RX list buffers. */
2065 for (i = 0; i < RTK_RX_DESC_CNT; i++) {
2066 if (sc->rtk_ldata.rtk_rx_mbuf[i] != NULL) {
2067 bus_dmamap_unload(sc->sc_dmat,
2068 sc->rtk_ldata.rtk_rx_dmamap[i]);
2069 m_freem(sc->rtk_ldata.rtk_rx_mbuf[i]);
2070 sc->rtk_ldata.rtk_rx_mbuf[i] = NULL;
2071 }
2072 }
2073
2074 if (disable)
2075 re_disable(sc);
2076
2077 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2078 ifp->if_timer = 0;
2079
2080 return;
2081 }
2082